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Abstract

The aim of this work is to implement a static analyser of Prolog programs.
According to specifications provided by the user including some information
about types, modes, sharing, relations between the input and output sizes of
terms, multiplicity, and termination, the analyser will check if the input Prolog
program respect or no these specifications. It relies on an Abstract Interpreta-
tion framework. Conceptually, the analyser is based on the notion of abstract
sequence which makes it possible to collect all the desirable information, and
which allows a step by step analysis of a clause, able to model the result of the
execution of a goal.

We cover all the theoretical aspects of this analyser (relying on the paper of
B. Le Charlier et al.: Automated verification of Prolog programs [14]) and we
give in detail the algorithms of all the abstract operations. Finally we discuss
the practical implementation in Java.

Keywords:
Abstract interpretation; Automated verification; Logic programs; Prolog

Résumé

Ce travail consiste en 'implémentation d’un analyseur statique de program-
mes Prolog. Etant données des spécifications relatives aux types, modes, par-
tages de variables, relations entre les tailles des termes en entrée et en sortie,
la connectivité, et la terminaison, ’analyseur vérifie si le programme Prolog en
entrée respecte ou non ces specifications. Il est construit grice i la méthode
d’interprétation abstraite. Conceptuellement, 'analyseur se base sur la notion
de séquence abstraite, qui collecte toutes les informations désirables, et qui per-
met une analyse étape par étape d’une clause, capable de modéliser le résultat
de Pexécution d’un but.

Nous couvrons tous les aspects théoriques de 'analyseur (se référant au
rapport de B. Le Charlier et al. : Automated verification of Prolog programs [14])
et nous fournissons les algorithmes détaillés de toutes les opérations abstraites.
Finallement, nous discutons 'implémentation effective en Java.

Mots-clés:
Interprétation abstraite; Vérification automatique; Programmes logiques; Prolog
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Chapter 1

Introduction

Declarative programming and logic programming in particular have received
a lot of attention in the last years. Such languages allow the programmer to
concentrate on the description of the problem to be solved and to ignore low
level implementation details. Nevertheless, the implementation of declarative
languages remains a delicate issue: since efficiency is a major concern for most
applications, “real” “declarative” languages often deviate from the declarative
paradigm and include additional “impure” features, which are intended to im-
prove on the efficiency of the language but often ruin its declarative nature. This
is what happens in logic programming with Prolog, which is characterized by
an incomplete (depth-first) search rule and a number of non logical operations
such as the test predicates (e.g., var, novar), the negation by failure (not), the
cut (!), and so on.

Various forms of program analyses have been investigated by numerous re-
searchers in order to improve on this situation. A methodology for Prolog
program construction has been proposed by Y. Deville in [2]. This methodology
consists of three main steps: elaboration of a specification, construction of a
logic description, and derivation of a Prolog procedure. The third step of the
methodology involves a number of checks relative to the modes and the types
of the arguments, the number of solutions to the procedure, and termination,
in order to 1) find a correct permutation, and then to 2) optimize this permu-
tation by applying some transformations.

A static analyser often concentrates on one of these two aspects, but in general,
the same information serves both of them. The analyser we will describe in this
report is useful mainly in 1) but its results can be used also to validate the
transformations done in 2).

We have discerned two broad classes among static analysers, according to they
are oriented towards verification or towards optimization. Let us illustrate them.



2 CHAPTER 1. INTRODUCTION

1.1 Analyses oriented towards Verification

Some analyses attempt to verify that a non declarative implementation of a
program in fact behaves accordingly to its declarative meaning. Basically, the
analyses reject programs whose operational behaviour is not guaranteed to meet
their logical meaning but it is often possible to do better by reordering the liter-
als in the clauses: the analysis then serves a basis for a transformation technique.
Alternatively, such analyses can be used to perform static debugging.

A motivating sample

Let us illustrate how a “dataflow” analysis can help the programmer to trans-
form a first (declaratively but not operationally correct) version of a program
into a both declaratively and operationally correct version.

Procedure
delete(X, L, Ldel)

Type
X: any term
L, Ldel : lists

Relation
X is an element of L and Ldel is L without the first occurrence of X.

Directionality
in(any,ground,any):out(ground,ground,ground)

Logic (declarative) construction

delete(X, L, Ldel) &
L= [HIT] A
(H = X A Ldel = T A list(T))
V
(H # X A Ldel = [H|Tdel] A delete(X, T, Tdel))

Syntactic transformation (in Prolog)

delete(X,L,Ldel) « L=[H|T),H =X,
Ldel = T list(T).
delete(X,L, Ldel) « L =[H|T},not(H = X),
Ldel = [H|Tdel), delete(X, T, Tdel).
Now if we query delete(X,[1,2,1, 3], Ldel), only one solution — derived from the
first clause — is calculated:
X=1
Ldel = [2,1,3] ;

No

Automated Verification of Prolog programs: an implementation



1.1. ANALYSES ORIENTED TOWARDS VERIFICATION 3

As the following dataflow analysis emphases, the reason comes from the fact
that the negation not(H = X) in the second clause fails. Indeed, because X
is a variable, the unification H = X never fails, such that not(H = X) never
succeeds. In order to solve this problem, it suffices to allow a call to the negation
built-in only when all of its arguments are ground. In this example, this can be
easily reached by putting it at the end of the clause.

Dataflow analysis

N.B. a
g

e Clause 1

any
ground

i

{X/a,L/g,Ldel/a}

delete(X, L, Ldel) —
{X/a,L/g,Ldel/a,H/var, T/var}
L= H|T),
{X/a,L/g,Ldel/a,H/g, T/g}
H=X,
{X/g,L/g,Ldel/a,H/g, T/g}
Ldel =T,
{X/e,L/g,Ldel /g, H/g, T/g}
list(T).
{*/e,L/g,Ldel/g,H/g, T/g}

{X/e,1/g,Lael/g}

e Clause 2

{X/a,L/g,Ldel/a}
delete(X, L, Ldel) «
{X/a,L/g,Ldel/a, H/var, T/var, Tdel /var}
L =[H|T),
{¥/a,1/g,1del/a,H/g, T/g, Tdel /var}
not(H = X),
Not ok because X not g
To place at the end
Ldel = [H| Tdel],
{X/a,L/g,Lael/[H|Tdel],H/g, T/g, Tdel/a}
delete(X,T, Tdel),
Possible because X/a, T/g, Tdel/a
{X/g,1/g,Ldel/g,H/g, T/g, Tdel/g}
not(H = X).
OK because Hand X g
{X/g,L/g,Ldel /g, H/g, T/g, Tdel/g}
{X/g,L/g,Ldel/g}

Final code (after the reordering)
delete(X,L,Ldel) « L=[HT),H=X,
Ldel =T, list(T).
delete(X, L,Ldel) « L =[H|T), Ldel = [H|Tdel],
delete(X, T, Tdel),not(H = X).

By now, if we query delete(X, [1,2,1, 3], Ldel) again, all the possible solutions
are returned:

Automated Verification of Prolog programs: an implementation



4 CHAPTER 1. INTRODUCTION
=1
Ldel = [2,1,3] ;
X=2
Ldel = [1,1,3] ;
X=23
Ldel = [1,2,1] ;
No
1.2 Analyses oriented towards Optimization

Other analyses aim at optimizing programs automatically, relieving the pro-
grammer from using impure control features. Some optimizations can be ex-
pressed by source-to-source transformations such as introduction of cuts, re-
placement of negated literals by cuts, and partial evaluation.

A motivating sample

Consider the following three correct versions of the procedure delete/3:

Version 1

delete_1(X,L,Ldel)
delete_1(X,L,Ldel)

:- L=[H|T],%X=H,Ldel=T.
i~ L=[HIT] ,Ldel=[H|Tdel],
delete_1(X,T,Tdel) ,not (X=H).

Version 2

delete_2(H, [HIT],T).

delete_2(X, [HIT], [HiTdel]l) :~ delete_2(X,T,Tdel),not(X=H).

Version 3

delete_3(H, [H|T],Tdel) :- !,Tdel=T.
delete_3(X, [HIT), [HITdel]) :- delete_3(X,T,Tdel).

In Table 1.1 we compare the related execution times of those three versions
and we see that the introduction of a cut (in version 3) in place of an explicit
negation (in versions 1 and 2) makes it well more performing.

Data Related execution times
X L Ldel delete_l | delete 2 | delete 3
2 [1,2,3,2,4] | [1,3,2,4] 8 2 1
2 | [1,2,3,2,4] | [1,2,3,4] 8 3 1

Table 1.1: Efficiency of delete/3. Source: [2].

Automated Verification of Prolog programs: an implementation
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1.3 Contribution of this paper

An automated verification of Prolog programs — based on an abstract interpre-
tation! methodology — was proposed in [13] and [14]. In this report, we provide
a detailed description and an implementation of that static analyser.

Our work was mainly concerned with the acquisition of the needed background
and the formalization of the problem. In order to obtain a strong theoretical
basis, we did a kind of “unification” of the concepts and notations of different
references (mainly [7], [8], [13] and [14]). That job was not so easy: we needed
clear insight and in-depth understanding of the nontrivial problems we have
encountered.

We didn’t want to reinvent the wheel: some elements of the analyser were al-
ready well written. So we directly took back them without paraphrasing (further
more, there is not so many ways to formalize those concepts). However, some
existing implementations were sometimes readjusted in order to improve on
their accuracy (this is necessary if we want our analyser to give “good” results).
Also, new fresh algorithms never implemented before appear in this report.

Last but not least, this “self-contained” report has served as a basis for an
effective implementation in Java.

1.4 Plan of the paper

The rest of the report is organized as follows: Chapter 2 provides an overview of
the functionalities of the analyser based on a simple example. In Chapter 3 we
provide the concrete semantics of normalized Prolog programs and we explain
rapidly the different standard (concrete) operations that will be later approx-
imated by their non-standard (abstract) ones. Chapter 4 contains a complete
description of our domain of abstract sequences. The execution of the anal-
yser (i.e., the abstract semantics) is then described in Chapter 5. In Chapters
6, 7 and 8 you will find the specifications and the implementations of the ab-
stract operations, written in a formal, mathematical way. Chapter 9 discusses
the practical implementation of the analyser (coded in Java), where we explain
quickly the data types used for the different abstract domains. Finally, Chapter
10 concludes.

The appendix contains the following materials: Appendix A shows the con-
crete syntax written in ABNF of the Pure Prolog procedures and of the formal
specifications. The transformational semantics of such a formal specification
is given in Appendix B. Next we explain in Appendix C how to transform a

1 Abstract interpretation {4, 5] is a general methodology for systematic development of static
program analysis. An abstract interpretation framework is centered around the definition of
a non-standard (or abstract) semantics approximating a concrete semantics of the language.
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Prolog procedure into its normalized counterpart. Appendix D gives an infor-
mal description of the classes belonging to the Java packages and shows some
UML-like diagrams displaying the structural relations between the classes (the
organization of the packages). Appendix E explains briefly the pseudo-code of
the analyser (i.e., the abstract semantics). Finally, Appendix F provides some
output reports (i.e., some analyses tested by our analyser implemented in Java),
where the different steps of the analyses are shown.

Automated Verification of Prolog programs: an implementation



Chapter 2

Overview of the analyser

In this Chapter, we give an overview of the analyser. First, we present the
“big steps” of the analyser. We then identify what information is useful for
verification. Finally, we show on a example the functionalities that we want to
achieve.

2.1 Steps of our analyser

In practice, how does our analyser work? Important question indeed!
The analyser processes two files.

First the user gives us in some file the code of the program he writes in Prolog
and he wants to verify. In general it contains several so-called logic procedures.
In Appendix A.2 we show the concrete syntax written in ABNF of the Pure
Prolog subset we will accept to proceed.

Then the user gives us in an other file all the formal specifications of all the
used procedures. A procedure may have a lot of different specifications (or
behaviours), according to its use: these specifications mainly differ from one an-
other by the so-called directionality of their call (i.e., different modes are used).
In Appendix A.3 we show the grammar (the concrete syntax) written in ABNF
defining such formal specifications.

The user can specify logic procedures without giving their effective implementa-
tion (i.e., their Prolog code). Indeed this may be done because when analyzing
a logic procedure, if we encounter a predicate literal (that is a subcall to an-
other procedure if we are talking with the operational paradigm terminology)
the analyser just relies on the reading of the formal specifications of the called
procedure. Note that this approach is different from the one of GAIA (8] where
the analyser does not exploit user-provided information to “solve” recursive calls
but performs fix-point computations on the code.
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Let us define the steps of our analyser (they are depicted in Figure 2.1):

1. Parse the Prolog procedures and construct the abstract tree that repre-
sents (i.e., that “encodes internally”) them. It will be very important to
think about an efficient data type so that we can access rapidly to every
procedures and to every program points of a specific clause {designed for
the “step by step” static analysis).

2. Transform all the clauses of all the procedures in their normalized form (in
Appendix C, we show the syntax of normalized programs and we explain
how such translation can be done).

3. In a parallel step, parse the formal specifications and construct the ab-
stract tree that represents them. Of course, if the user forgot to write any
specifications, the further analysis will fail.

4. A normalization process must be done here also, where the user-defined
variables used as arguments in the formal specifications must be mapped
onto normalized variables. Refer to Appendix B where we explain how to
package the information contained in an user-provided specification into a
corresponding “abstract” behaviour (that is a big structure of our abstract
domain containing an abstract sequence).

5. Finally but the major one, the analyser does its proper job and checks
if yes or no the program written by the user (in its normalized form) is
correct according to the specifications he received (the set of Behaviours).
It consists of abstract executions of clauses, relying on abstract operations
acting on the abstract domains.

6. At the end of the analysis, the global result will be either a success or a
failure. The result has to be interpreted carefully: a success means that the
program fully satisfies the specifications represented by the behaviours; on
the other side, a failure means that either the program is not correct with
respect to the specifications, or that the analyser is not precise enough
to check its correctness with respect to the specifications. The output
reports contains the traces of the analyses (one report for each pair of
procedure /specification).

Automated Verification of Prolog programs: an implementation
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Figure 2.1: Big steps of the analyser.
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2.2 What information is useful?

The nature of the information useful for the various applications of logic and
Prolog program analyses is nowadays well identified. Let us summarize the in-
formation the most relevant for logic programs that is integrated in our analyser.

e Determinacy and cardinality information models the number of solutions
to a procedure and is useful for optimizations, like dead code elimination,
and automatic complexity analysis.

e Mode information describes the instantiation level of program variables
at some program point. Groundness (“is a variable bound to a ground
term?”) and freeness (“is a variable either uninstantiated or an alias of
other variables?”) are the most interesting situations to detect since they
allow for various forms of unification specialization. Groundness is also es-
sential for ensuring a safe use of negation by failure and is instrumental for
determinacy analysis. Freeness is useful to detect sure success of unifica-
tion, which is required by some optimizing transformations and improves
the precision of a cardinality analysis.

e Sharing information expresses that the terms bound to different program
variables may (or may not) contain occurrences of the same (free) variable.
This kind of information is needed to ensure that unification is occur-check
free, and to improve the precision of mode analysis.

e Term size information states relationships between the size of the terms
bound to different program variables. It is useful for termination analysis.

e Type information defines an approximation to the set of terms that can
be bound to a program variable. It allows one to refine most analyses and
optimizations based on modes. In a verification context, type information
is inferred to ensure that procedures are correctly called and/or produce
well-typed results. Type information is instrumental for term size analysis.

Automated Verification of Prolog programs: an implementation
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2.3 Informal overview of the analyser

Before embarking on the technical description of our analyser, we show on an
example the functionalities that we want to achieve.

Consider the Prolog procedures provided by the user depicted in Figure 2.2:

list([1).
list([_ILS]) :- 1list(LS).

select (X, [XIT],T) :- list(T).
select (X, [HIT], [HITS]) :- select(X,T,TS).

Figure 2.2: The procedures list/1 and select/3.

Declaratively, the procedure select/3 defines a relation select(X, L, LS), be-
tween three terms, that holds if and only if the terms L and LS are lists and LS
is obtained by removing one occurrence of X from L. Note that, declaratively,
the type checking literal 1ist (T) is needed to express that the relation does not
hold if I and LS are not lists.

Because our analyser only processes normalized Prolog programs (see Appendix
C), the procedures are transformed® as depicted in Figure 2.3:

list(L):- L=[].
list(L):- L=[HIT], 1list(T).

select (X, L, L8):- L=[XILS], list(LS).
select(X, L, LS):- L=[HIT], LS=[HITS], select(X, T, TS).

Figure 2.3: The normalized procedures list/1 and select/3.

Our analyser is not aimed at verifying the (informal) declarative specification
but instead it checks a number of operational properties which ensure that Pro-
log actually computes the specified relation (assuming that the procedure is
“declaratively” correct). In fact, it is not the case that the procedure is correct
for all possible calls. So, we restrict our attention to one particular and reason-
able class of calls, i.e., calls such that X and LS are distinct variables and L is
any ground term (not necessarily a list). For this class of calls, the user has to
provide a description of the expected behaviour of the procedure by means of
the formal specifications depicted in Figure 2.4.

1For the sake of clarity, the normalized variables have not been named X1, X2, X3, ...

Automated Verification of Prolog programs: an implementation
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% Specification of "list/1"
list(in(L:ground),

ref (list),

out(_),

srel(),

sol(sol = 1),

sexpr (L))

% Specification of "select/3"
select(in(X:var , L:ground , LS:var ; noshare={(X,LS)}),
ref(_ , [_llist] , ),
out(ground , _ , ground list),
srel(L_ref = LS_out + 1),
sol(sol = L_ref),
. sexpr (L))

Figure 2.4: Formal specifications for 1ist/1 and select/3.

In order to explain the meaning of such a specification, we view the (concrete)
semantics? of the procedure select/3 as a (total) function that maps every
(input) substitution @ such that dom(8) = {X,L,LS} to a sequence S of (output)
substitutions over the same domain. According to this viewpoint, the formal
specification describes (1) the set of all input substitutions § considered accept-
able (i.e., the class of calls to be analyzed) and (2) (an over-approximation of)
the set of all pairs (#, S) such that € is an acceptable input substitution and §
is the corresponding sequence of output substitutions.

We give an informal overview of the different parts of the formal specification
of select/3:

e The in part states that the acceptable input substitutions 6 are exactly
those such that X@ and LS@® are distinct variables and Lé is any ground
term. The fact that X and LS are distinet is expressed by the no-sharing
information in the in part.

e The ref part is a refinement of the in part; it gives properties shared by
all acceptable input substitutions 8 that lead to at least one result, i.e.,
such that S has at least one element. In this case, the ref part indicates
that the execution succeeds at least once only if L is a non empty list.
Occurrences of the symbol “.” in this part of the specification means that
the information about the corresponding argument cannot be refined with
respect to the in part. More generally, the user is allowed to omit from the

28ee Chapter 3 where we explain more precisely the concrete domain and the concrete
semantics of (normalized) Prolog programs.
3To simplify the notations, we abusively denote X4, L8, and LS8 by X, L and LS.

Automated Verification of Prolog programs: an implementation
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specification all pieces of information which can be inferred from another
part.

e The out part provides information about output substitutions (i.e., the
elements of S). In this case, it indicates that X will become a ground term
and that LS will become a ground list.

The srel part describes a relation between the sizes of input terms and
the sizes of output terms. In this case, it says that the input size of L is
always equal to the output size of LS plus 1.

e The sol part describes a relation between the sizes of input terms and the
number of solutions to the call. In this case, it says that the number of
solutions (i.e., the length of S) is equal to the input size of L.

e The sexpr part is useful to prove termination. Based on a norm?, the
‘sexpr part of the specification describes a positive integer linear function
of the input terms sizes, which must strictly decrease through recursive
calls. In this case, it is just the size of L. This information is used to prove
that the execution terminates for all calls described by the in part.

Technically, the first five parts of a specification define a mathematical object
called abstract sequence:

B = <:Bina,8ref1ﬂout7Eref_out’ Esol)-

The semantics of abstract sequences is defined in Section 4.3.2.

From the procedure and the above information, the analyser computes a num-
ber of abstract sequences: one for every prefix of the body of every clause of
the procedure, one for every clause, and, finally, one for the complete procedure.

For instance, in our example, the analyser computes an abstract sequence B
expressing that (for the specified class of input calls) the first clause succeeds
if and only if L is a non-empty list and that it succeeds exactly once in this
case. The derivation of this information is possible because the analyser is able
to detect that the unification L=[X|LS] succeeds if and only if L is of the form
[t 1221 (not necessarily a list) and because X and LS are free and do not share.
Moreover, the analyser needs an abstract sequence describing the behaviour of
the procedure 1ist/1. The abstract sequence states that, for ground calls, the
literal succeeds only for list and exactly once. From this behaviour and the
previous information, the abstract sequence Bj is inferred.

The second clause is treated similarly but contains a recursive call, which de-
serves a special treatment. First the analyser is able to infer that the recursive
call will be executed at most once and, in fact, exactly once when L is of the

4A size measure, or norm, is a function |- | : 7 — N, where 7 is the set of all terms. We
refer here to the list-length measure. See Section 4.1 for the general norm definition.

Automated Verification of Prolog programs: an implementation
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form [t1]t2]. It also infers that X and LS are distinct variables and that T is
ground and strictly smaller than L. Thus, we can assume by induction that the
recursive call satisfies the conditions provided by the user through the abstract
sequence B. So the analyser deduces that the recursive call succeeds only if T
is a non-empty list and that it returns a number of solution equal to the length
of T; it also infers that X is ground and that TS is a ground list whose size is
the same as the size of T minus 1. Putting all pieces of information together,
the analyser computes the abstract sequence By, which states that the second
clause succeeds only for a list L of at least two elements (and actually succeeds
for all of them) and that the output size of LS is equal to the size of L minus 1,
i.e., |L] — 1; moreover, the number of solution is also equal to ||L| — 1.

The next step of the analyser is to combine the abstract sequences By and Bs to
get a new abstract sequence B’ describing the behaviour of the whole procedure.
A careful analysis is once again necessary to get the most precise result: when
L is a list of at least two elements, the first clause succeeds once and the second
one succeeds |L| — 1 times, so the procedure succeeds |L| times. However, when
the length of L is equal to 1, the second clause fails and the first one succeeds
once; so the procedure also succeeds |L| times (because |L| = 1). Hence, putting
the abstract sequences B; and By together, the analyser is able to reconstruct
exactly the information provided by the user, which is thus correct.

The previous discussion is intended to give insights into how all kinds of infor-
mation interact to produce an accurate analysis. It may however suggest that
the automatization of the process is straightforward; this is because we have
used all notions without formalizing them. In the rest of this paper a complete
formalization of the process is described.

Automated Verification of Prolog programs: an implementation




Chapter 3

Concrete domains and
concrete semantics

3.1 Concrete domains

The concrete domain is the set of values an object can take in the standard
computation domain. Prolog is based on the handling of substitutions which
are defined on sets of variables and correspond to a set of assignment of terms
to variables.

In this Section, we recall some terminology used for the basic concepts of logic
programming, that define the concrete domains of Prolog programs. Note that
we assume a preliminary knowledge of logic programming; see for instance [1],
[2] or [3].

Variables and Terms. We assume the existence of two disjoint and infinite
sets of variables, denoted by PV and SV. Elements of PV are called program
variables' and are denoted by X, Xa, ..., X;, .... The set PV is totally
ordered; X; is the i-th element of PV. Elements of SV are called standard
variables and are denoted by letters y and z (possibly subscripted). Terms are
built using standard variables only.

Substitutions. A program substitution 8 is a finite set {X;, /t1,...,X;, /tn}
where X, ,...,X;, arve distinct program variables and the ¢;’s are terms. Vari-
ables occurring in tq, ... ,t, are taken from the set of standard variables which is
disjoint from the set of program variables. The domain of #, denoted by dom(9),
is the set of variables {X,,,...,X;,}. We denote by PSp the set of program
substitutions whose domain is D. A standaerd substitution o is a substitution
in the usual sense which only uses standard variables. The application of a

1Program variables are those used in the clauses.

15
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standard substitution o to a program substitution 8 = {X;, /t1,...,X;, [tn} is
the program substitution 8o = {X;, /t10,..., X, /tno}. We say that 6, is more
general (or less precise) than 8y, noted 0y < 6y, iff there exists ¢ such that
05 = 010. We denote the set of standard substitutions that are a most general
unifier of t; and ¢y by mgu(ti,t2). The restriction of 8 to a set of variables
D C dom(8), denoted by 8,p, is such that dom(f,p) = D and X;6 = X;(6,p),
for all X; € D.

Substitution Sequences. A program substitution sequence S is a finite se-
quence < 6y,...,8, > (n > 0) where the 8; are program substitutions with the
same domain D. D is also the domain of S, denoted by dom(S). We denote
by < > the empty sequence. Subst(S) is the set of all substitutions which are
elements of S. SSeq is the set of all program substitution sequences. The re-
striction of S to D C dom(S), denoted by S,p, is the sequence obtained by
restricting each 8 € Subst(S) to D. The symbol :: denotes sequence concatena-
tion.

3.2 Concrete semantics

The reasoning underlying the design of our analyser is based on the intuition
that a Prolog procedure is a function mapping every input substitution to a
sequence of (answer) substitutions.

Programs are assumed to be in a normalized form (see Appendix C.1).

The concrete semantics associates with every program P a total function from
the set of pairs (8, p), where p is a predicate symbol occurring in P and dom(6)
is the set {X1,...,X,}, where n is the arity of p, to the set of substitution
sequences. In the rest of this section, we only consider input pairs (#,p) such
that the execution of the call p(X4,...,X,)0 terminates and produces the (fi-
nite) sequence of answer substitutions S. This fact is denoted by (6, p) — S in
our concrete semantics. We use similar notations for describing the execution of
a procedure pr, a clause ¢ and a prefix of the body of a clause, denoted by (g, ¢).

The concrete semantics of terminating executions is characterized by the set of
transition rules:

pri=c, pr’
pr defines p in P pri=c (#,¢) — S
. 8, pr) —— S - {8,0)r— S ) @, pr’y — 5’
R1: 8,p) — S R2: @, pry — S R3: 0,pryr— 8§58

Automated Verification of Prolog programs: an implementation
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gu=g',1
=X, =X,
0,9 ¢) —
S5 =<6y,...,0, >
cu=h: —g 6, = RESTRG(!, 6y,)
0,g,c) — S’ gu= <> . = UNIF.VAR(6},)
8 =RESTRC(c, §') 8§ =EXTC(c,0) ) Sk = EXTG(I, Ok, S},)
R4 (0,¢) — S R5: 6,9,¢) = S R6 : (,9,¢) —> Sy ... S,
gu=g',l g:u=g,l1
lu=X;, = f(Xip, .-, Xin) lo=p(Xi,..., X))
0,9',¢)— S (0,9',c) — S
S =<0,...,0, > S =<0y,...,0, >
0., = RESTRG(, 6% 9!, = RESTRG(], 6x)
S, = UNIF_FUNC(6}, /) (6},p) — S
R7 Sy = EXTG(I, O, S;c) B8 Sk = EXTG(l, O, S,Ic)

(f,g,¢) —> Syt 8, " {f,g,¢) — Sy .. Sy

We briefly discuss the meaning of the rules above.

If pr is the procedure defining p in P, then the result of executing
p(X1,..., Xn)0 is obtained by executing pr with the call substitution 8. This
is expressed by Rule R1.

Rules R2 and R3 state, respectively, that the execution of a procedure pr consi-
sting of one clause ¢ is simply equal to the execution of ¢, whereas, in general,
it is obtained by concatenating the results of the clauses belonging to the pro-
cedure.

Rule R4 describes the execution of a clause ¢ called with 6. In this case, the
body g of ¢ is executed with 8 returning the sequence S’, and the domain of S’
is restricted to the set of variables {X;,...,X,} in the head of ¢. The restric-
tion is realized by the RESTRC operation defined by: RESTRC(c, S’) = S where
S= S}{Xl,..,,xn}-

The execution of the empty body ¢ of ¢ with 8 (rule R5) returns a one-element
sequence S obtained by extending # to all the variables {X;,..., X} (m > n)
occurring in ¢. Formally, S = EXTC(c,8) is of the form < €' > such that
X0 =X,0 (1 <i<n)and X,116,...,X,,0" are new distinct standard vari-
ables.

In the general case, suppose that g is of the form ¢’,!. We distinguish three
cases depending on the form of I. They are illustrated by rules R6, R7 and RS,

Automated Verification of Prolog programs: an implementation
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respectively. In all the cases, the following steps are performed.
e The prefix? ¢ of c is computed returning the sequence of answers S.

e The domain of each 8, € Subst(S) is restricted to the variables X, ,..., X,
of | and renamed into Xi,..., X, returning the substitution 8}; this is
done by applying the operation RESTRG formally defined by:
RESTRG(!, 6) = 0}, where 0}, = {X1/X;,0k,...,Xn/X;, 0k}

e The literal | is executed with all the ) returning for each of them a
sequence of answers S,.

e The results in S}, are propagated to 6, with the EXTG operation defined
by: if S, is of the form < 0},04,...,0,0, > with dom(o;) C codom(6},),
then EXTG(I, 8y, S},) = Sk where Sy =< O04,...,00, >.

e The sequences S), are concatenated.

The execution of the built-in X;, = X;, (rule R6) is realized by the operation
UNIF_VAR defined by: for all § with dom(8) = {X1, X2},

UNIF VAR(d) = { <> if § = mgu(X,0, X50)

<o > if o € mgu(X.6, X20)

The execution of the built-in X;, = f(X,,,...,X;,) (rule R7) is realized by the
operation UNIF_FUNC defined by: for all § with dom(6) = {Xi,...,X,} and all
functor f of arity n — 1,

<> if @ = mgu(X16, f(Xa,...,Xn)0)
<00 > if o€ mgu(X:6, f(Xa,...,Xn)0)
The result of the execution of a procedure call p(Xj,, ..., X;,) is simply obtained

by applying the function —— which is indeed the concrete semantics and specifies
the result of the execution of any procedure call.

UNIF_FUNC(8, f) = {

In this context, ¢’ is the goal obtained by removing the last literal of the goal g.
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Chapter 4

Abstract domains

The domains are a fundamental notion in abstract interpretation. We have to
abstract the concrete domain on which the language is based in order to obtain
an abstract domain. Following different parameters, we deduce an abstract do-
main which fits the best what we need. All the calculations are related to this
abstract domain and the results, as well as the accuracy and efficiency, depend
on this choice.

In this Chapter we describe in great detail the abstract domains. It consists of
the ones described in [14]. Section 4.1 introduces some objects we need to ex-
press our abstract domains (like norms, disjoint unions, linear expressions,...).
Section 4.2 shows our domain of abstract substitutions. Section 4.3 presents
our domain of abstract sequences. Finally, Section 4.4 defines the notion of
behaviour, which formalizes the notion of formal specification (whose concrete
syntax can be found in Appendix A.3), i.e., the full package of information pro-
vided (for verification) by the user to the system.

For each abstract domain, we always give its definition (i.e., we show the (ab-
stract) objects it contains and its (pre)order denoted <), and also its semantics,
i.e., we give the related concretization function

Cc: ABSTRACT .DOMAIN — p(CONCRETE_DOMAIN).
In Chapters 6, 7 and 8 we will describe the abstract operations applying on
these abstract domains.
4.1 Preliminaries
Terms, Indices and Norms. We denote by 7 the set of all terms, and
by I (possibly subscripted or superscripted) a set of indices; in particular, we

assume that I is a finite subset of N. We denote by I, (p > 0) the set of
indices {1,...,p}. 7! is the set of all tuples of terms (¢;);c; and T} is the set
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of all “frames” of the form f(41,...,%,) where f is a functor of arity n and
i1,...,in € I. A size measure, or norm, is a function |- | : 7 — N. We refer to
the list-length measure for terms that have a list pattern:

it =0

Italtall = 14|t where {2 has a list pattern
For all terms that have another pattern, we always refer to this general measure:
IX] = 0
£ t)l = T+[tal+. .+ ]

Disjoint Unions. Let A and B be two (possibly non disjoint) sets. The
disjoint union of A and B is an arbitrarily chosen set, denoted by A + B,
equipped with two injections functions ins and inp satisfying the following
property: for any set C and for any pair of functions f4 : A — C and

fB : B — C, there exists a unique function f : A+B — C such that f4 = foingk
and fp = foinpg (where the symbol o is the usual function composition). Since
the function f is uniquely defined, we can express it in terms of f4 and fp. In
the following, it is denoted by fa + fp. The functions inga, ing, fa, fB, and
fa + fp satisfy the commutative diagram depicted in Fig.4.1.

7N
fa+fB

A+B >

B

Figure 4.1: Disjoint Union f4 + f5.

Linear Expressions. Let V be a set of variables. We denote by Expy, the
set of all linear expressions with integer coefficients on the set of variables V.
An element se € Expyx, . x,.} can also be seen as a function from N™ to N,
as size expressions are positive. The value of se((ny,...,n,)) is obtained by
evaluating the expression se where each X; is replaced by ;.

4.2 Abstract Substitutions

The domain of abstract substitutions is an instantiation to modes, types and
possible sharing of the generic abstract domain Pat(R) described in [7].
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An abstract substitution 8 over variables Xy,..., X, is a triplet (sv, frm, &)
where sv is a function from {X;,...,X,} to a set of indices I, frm is a par-
tial function from I to 77, and « describes properties concerning modes, types
and possible sharing of some terms. It represents a set of program substi-
tutions of the form {Xy/ti,...,Xn/t,}. The main idea behind this abstract
domain is that an abstract substitution § can provide information not only
about terms ti,...,t, but also about subterms of them. If ¢; is a term of
the form f(¢;,,...,%,, ), then B is expected to represent information relative to
tis- .-, ts, - BEach term described in B is denoted by the corresponding index.

Let us describe the three components of § = (sv,frm,a). The same-value
component sv is responsible for mapping each variable X; to the index i cor-
responding to the term ;. In particular, it may express equality constraints
between two variables X; and X;, when sv(X;) = sv(X;). The frame (or pat-
tern) -component frm is a partial function that provides information relative to
the structure of terms. The value of frm(z), when it is defined, is equal to a term
of the form f(¢1,...,%,), meaning that ¢; is of the form f(¢;,,...,¢;,). Finally,
the abstract tuple o provides information about modes, types and possible shar-
ing of the terms ¢;’s. It is defined in terms of the elementary domains Modes,
Types and PSharing described below.

In this Section we describe the various components and then turn to the ordering
of the abstract substitutions.

4.2.1 The domain SVp

Definition:
[same-value component]. This domain assigns a subterm to each variable in
the substitution. Given a set of program variables D = {X;,...,X,} and
a set of indices I, we denote by SVp j,. the set of all surjective functions
from D to I,,.

Semantics:
The semantics of an element sv € SVp 1, is given by the following concretiza-
tion function Cc : SVp 1, - p(PSp), that makes sure that two variables
assigned to the same index have the same value:

Ce(sv) = {0 | dom(0) = D and Vz;, z; € D : sv(x;) = sv(z;) = z:0 = z;60}.

4.2.2 The domain FRMj,

Definition:
[frame or pattern component]. This domain associates with some of the in-
dices in I, an expression f(i1,...,%q), where f is a functor symbol of arity
q and {iy,...,iq} C Ip. It is then a set of partial functions from I, to 7}‘;
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(frm : I, #» T7'). We denote the fact that no frame is associated with ¢ by
frm(2) = undef.

Semantics:
The meaning of an element frm € FRMj, is given by the following con-
cretization function Cc : FRM |, — p(T'»), that specifies that the compo-
nent represents all p-tuples of terms that satisfy simultaneously all pattern
constraints:

Cc(f'rm) = {(ti)iefp S Tlpl Vi, 41,... yig € Ip :
frm(z) = f(il, N ,’iq) = {; = f(til, - )tiq)}-

4.2.3 The domain Modes

Deﬁnitioﬁ.’
We consider the set of modes

Modes = { L, ground, var, ngv, novar, gv, noground, any},

satisfying the ordering relationship implied by the diagram depicted in Fig-
ure 4.2, where an arc between M; and M, with M; above M, means that
My > M, 1

Semantics:

The semantics of modes can be given by the following concretization function
Cc: Modes — p(T):

Ce(L) =

Cc(ground) = {teT|tisaground term};

Ce(var) = {t€T|tis a variable};

Ce(gv) = {t € T|tis either a ground term or a variable};
Cc(noground) = {teT|tisnot a ground term};

Cc(novar) = {t € T|tis not a variable};

Ce(ngv) = {t € T| t is neither a ground term nor a variable};
Ce(any) = T,

Ce(Mq) U Ce(My). [Least Upper Bound];
Ce(My) N Ce(My). [Greatest Lower Bound).

CC(LUB(Ml, Mg))
CC(GLB(Ml, M2))

i

We recall the definitions of the least upper bound and of the greatest lower
bound:

LUB(M;, My) = My UMy =M | M = min<{M; € Modes : My, My < M;}.

GLB(M), M) = My N My = M | M = maz<{M; € Modes : My, My > M;}.

INote that (M1 < M) # ~(M1 > Ma).
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any

b noground
<X

Figure 4.2: Ordering of modes as a Hasse diagram.

4.2.4 The domain Modesy,

Definition:
For any set of indices I, we denote by Modes;, the set of all functions from
I, to Modes augmented with L.

Semantics:
The semantics of an element mo € Modes;, is given by the following con-
cretization function Cc : Modesy, — p(T'»). If mo = L then Cc(mo) =0,
otherwise Cc(mo) is the set {(t;)ic1, € T'?| Vi € I, : t; € Ce(mo(i))}.

4.2.5 The domain Types

Definition:
The following type domain for lists is considered:

Types = {.L, list, anylist, any},

ordered by: L < list < anylist < any 2.
Semantics:
The semantics of types can be given by the following concretization function

Cec: Types — p(7T):

Ce(l) = 0

Ce(list) = {teT|tisalist};

Ce(anylist) = {t e T|tis aterm that can be instantiated to a list};
Ce(any) = T;

Cc(LUB(T1,T3)) Ce(Ty) U Ce(T3). [Least Upper Bound];
Ce(GLB(Ty,T3)) Ce(Ty) N Ce(T3). [Greatest Lower Bound].

Be careful with the definition of list and anylist.

[

By type list, we consider this recursive definition:

[] has type list
[ty | t2] has type list if t; has type list

2Note that (T < To) = ~(T1 > Ty).
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By type anylist, we consider this recursive definition:

t has type anylist if ¢t has type list
[t1 | t2] has type anylist if t5 has type anylist
X has type anylist where X is a variable

Note that by definition of our Types semantics, a term that has mode var au-
tomatically has the type anylist (of course, it can also have the type list if
specified), because a variable can be instantiated to a list.

Also, any ground term has either the type list or the type any. Indeed, a ground
term that has the type anylist is in fact already instantiated to a list: it is the
reason why every ground anylist has to be replaced by ground list.

We recall the definitions of the least upper bound and of the greatest lower
bound:

LUB(Tl,Tz) =TuTly=T | T= minS{Tj € Types : 11, T < TJ}
GLB(Tl,TQ) =Nl = T | T= m(ZIlIS{T}, S Types : Tl,T2 > T}}

4.2.6 The domain Types;

Definition.:
For any set of indices I,, we denote by Types I, the set of all functions from
I, to Types augmented with L.

Semantics:
The semantics of an element ty € Types; is given by the following con-
cretization function Cec : Types; — p(T™). If ty = L then Cc(ty) = 0,
otherwise Cc(ty) is the set {(t:)icr, € T'| Vi € I, : t; € Ce(ty(i))}.

4.2.7 The domain PSharing;

Definition:
This domain specifies possible variable sharing between terms. For any set
of indices I,,, we denote by PSharing;  the set of all binary and symmetrical
relations ps C I, x I, angmented with L.

Semantics:
The semantics of an element ps € PSharing 1, 1s given by the following con-

cretization function Cc : PSharing; — p(T'»). If ps = 1 then Cc(ps) = 0,
otherwise

Ce(ps) = {(ti)ier, € T'*| V4,5 € I+ Var(t;) N Var(t;) # 0 = (i,5) € ps}.
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For the implementation, we don’t want to store all this information, because
a lot of this can be found in the frame component frm € FRMj,. It is the
reason why we only store in ps the pairs of terms that possibly share variables
and whose patterns are undefined. So, ps should satisfy the property

Vi,j:1<14,j <p:ps(,j) = frm(i) = frm(j) = undef.

Together with the frame component (frm), ps allows us to deduce the actual
sharing relation (that will be noted ps*, in order to distinguish it with the
stored information ps). It is defined as the smallest relation on I, satisfying the
following two rules for all 4,5,k € I,

(1) ps(i,g) = ps*(3,5);
(2) frm(k) = f(...,5,...) &ps*(i,5) = ps*(k, ).

So at the implementation level, it is more efficient if we only store ps and if we
recompute ps* when necessary.

4.2.8 The domain of Abstract Tuples

Definition:
The component of abstract substitutions that gives information about the
modes, types and possible sharing of the terms is called the abstract tuple.
In the Pat(R) terminology [7], it corresponds to (is an instantiation of) the
so-called R-component or R®-domain.
An abstract tuple a over a set of indices I, is either L or a triplet of the form
(mo, ty, ps) where mo € Modesy,, ty € Types 1, and ps € PSharing 1, With
mo, ty, ps # L and for all i € I,, mo(z) ty(?) 75 1.
We can write Abstract Tuples = Modesj, x Types 1, % PSharing; .
Semantics:
The semantics of an abstract tuple a over I, is given by the following con-
cretization function Ce : AbstractTuples — p(T'r).
If @ = L then Cc(a) = 0, otherwise Ce(a) = Ce(mo) N Ce(ty) N Ce(ps).

4.2.9 The domain of Abstract Substitutions ASp

The semi-generic pattern domain Pat(R) automatically upgrades a domain D
with structural information yielding a more accurate domain Pat (D).

The key idea behind Pat(®R) is to provide a generic implementation of the ab-
stract operations of Pat (D) in terms of a few basic operations on the domain D.

The main advantages of this approach are the simplicity, modularity, and accu-
racy it offers to abstract domain designers. Simplicity is achieved by abstracting
away any structural information and allowing designers to focus at one domain
at a time. Modularity comes from the fact that abstract domains can be viewed
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as abstract data types simplifying both the correctness proofs and the imple-
mentation. Finally, accuracy results from structural information and from the
idea of open operation which is so general that abstract domains can interact
at will although through well-defined interfaces.

Our abstract substitution domain is an instantiation of Pat(R), namely
Pat (Abstract Tuples):

Definition: |(pseudo-) abstract substitution]
A(n) (pseudo-) abstract substitution G over a set of indices I, (the latter con-
tains a subset I,,, with m < p) is either L or a triplet of the form (sv, frm, c)
where sv € SVp,1,.; frm € FRM|, and o is an abstract tuple over I,,.
The set of variables D = {Xj,...,X,} is called the domain of 3 and is de-
noted by dom(3). The set of abstract substitutions with domain D is denoted
ASp. ‘
We will often represent in this way an abstract substitution where the o tuple
is explicit: (sv, frm, (mo, ty, ps)).
In the following, we always assume, unless specified otherwise, and for the
convenience of implementation, that the abstract substitution
B = (sv, frm, (mo, ty, ps)) is such that sv € SVp 1., frm € FRM,,
mo € Modesy,,, ty € Typesr,, ps € PSharingy,. m is the number of indices
in the codomain of sv and p is the number of indices in the domains of frm,
mo, ty and ps. Similarly B’ (resp. 8;) is defined according to m' and p’ (resp.
m; and p;).

Semantics:
The semantics of such an abstract substitution f§ is given by the following
concretization function Cc :ASp — p(PSp).

If 8= L then Cc(B) =0, otherwise

Ce(B) = {0|dom(d) =D and 3 (t;)ier, € T>:
(ti)ier, € Ce(frm)n Ce(a);
VX € D, X0 =tex)}

Note that the set of indices assigned to the variables by the same-value com-
ponent does not cover all of the indices used by the other components of the
domains (e.g., if a term has a pattern then our domain will keep some infor-
mation about its subterms). This is expressed by the fact that m < p where
m is the codomain of sv. On the other hand, if several variables are assigned
the same value (e.g., after unification) it may be the case that the number of
indices used in this component is smaller than the number of variables (this is
expressed by m < n).

In fact we use here the pseudo-version of the definition of this abstract object
which is simpler to manipulate. The corresponding strict-version is endowed
with further conditions to prevent from incorrect and redundant representation.
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Some auxiliary notation is necessary for defining strict-abstract substitutions.

Definition:

Let I be a set of indices, sv: {X;,...,Xn} — I be a function and

frm : I 4 T} be a partial function. Consider the following relation between
the indices of It ¢ <pm § holds iff frm(i) = f(i1,...,%m) and 4y = j for some
ke{l,...,m}.

We denote by < the transitive closure of <y, and by =g the reflexive
and transitive closure of <f,. We say that frm is circuit-free iff there exists
no index 4 € I such that ¢ <., i. Anindex i € I is reachable by sv and frm
iff there exists a variable X (1 < k < n) such that sv(Xy) % @

Definition: [strict-abstract substitution]
A strict-abstract substitution § over I, is a (pseudo-) abstract substitution
(sv, frm, o) over I, such that
e a# L
e frm is circuit-free;
e all ¢ € I, are reachable by sv and frm;
for all ¢,j € I, such that frm(i) = f(é1,...,in) and (j,ix) € ps for some
ke{l,...,n}, (4,%) € ps*.

Note that the latest condition will be satisfied because we took the convention
to only store (in ps) the possible sharing information between terms whose
pattern are undefined. The total possible sharing (ps*) is computed on ps
such that the above condition holds.

At the implementation level, times to times, we can imagine to call a “nor-
malization procedure” that takes a pseudo abstract substitution and returns its
strict version. Indeed this can improve the accuracy of the algorithms which
perform some abstract substitutions comparisons.

4.2.10 Decomposition (DECOMP)

Given one particular substitution # with domain {X;,..., X,} and represented
by an abstract substitution 3 over I, the correspondence between indices in I,
and (sub)terms in X;90,..., X0 is made explicit by the function DECOMP. This
operation computes a set S of term tuples. Each of them is a decomposition of
# with respect to the abstract substitution (.

Let 8 be a substitution and 8 = (sv : {X1,...,Xn} — In, frm, o) be an abstract
substitution over I, such that § € Cc(3). DECOMP(, ) returns the set S C T'»
of term tuples such that for all (t;);cs, € S the following properties hold:

o 0 ={X1/tex)r s Xn/towx, )}
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e Vi€ Ip, f'rm(z) = f(il, . ,Zn) =t = f(til, . 7tin);
® <ti>i€]'p € Ce(e).

4.2.11 Pre-Ordering on Abstract Substitutions

Definition:
Let 1 and Sy be two abstract substitutions on the same domain D (i.e.,
B1,B2 € ASp). B1 < B, iff there exists a function t : I, — I, satisfying

(1) Vz € D : svi(z) = t(sva(x));
(2) Vi,il,...,inIpzi
frma(i) = f(i1, ..., tq) = frm1(t(2)) = fE(i1), ..., t(2q));
(3) Vie I, :moi(t(s)) < moa(i);
(4) Vi€ Iy, sty (4(3)) < tua(6);
(5) V'L,] € Ipz : f’l‘mz(l) = frmz(J) = undef pST(t(l),t(])) = pSQ(Z,])

Note in fact that this relation < is only a preorder: two distinct substitutions
can represent the same set of actual substitutions simply by permuting some
indices. It is not difficult to obtain an ordering relation by considering equiv-
alence classes. However, for all practical purposes, this is not really necessary,
and we will continue to work with that domain.

Semantics:

Conceptually, 81 < fs should hold iff 8; imposes the same as or more con-
straints on all components than (5 does, that is, iff Ce(B;1) C Ce(f2).

4.2.12 Structural mapping on Abstract Substitutions

A structural mapping between two abstract substitutions is a mapping on the
corresponding indices preserving same-value and frame. Let § = (sv, frm, )
and § = (sv', frm’, &/) be two abstract substitutions over I, and I, respec-

tively. A structural mapping between S and B (if it exists) is a function
tr : I, — Iy such that

e VX € dom(B), tr(sv(X)) = sv/(X);
e Vi€ I, frm(i) = f(i1,...,in) = frm/(tr(i)) = f(tr(in),. .., tr(in)).

4.3 Abstract Sequences

4.3.1 The domain Sizesy,

Definition:
We denote by Sizesy, the set of all systems of linear equations and inequations
over Exp; , extended with the special symbol L. In order to distinguish
indices of [, considered as variables, from integer coefficient and constants
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when writing elements of Exp 1,» We wrap up each element i of I, into the
symbol sz().
Semantics:

Sizesy, is endowed with a concretization function Cc : Sizesy, — p(N),
For all E € Sizesy,, if E = L then Cc¢(E) = 0, otherwise,

Ce(E) = {(ni)ic1, € N'r| (ni)ier, is a solution of E}.

In the following, (in)equations will be written between double brackets [-- ],
meaning that they are syntactic objects, not semantic relations. If f is a function
from one set of indices to another one, such that f(¢) = ¢ and f(j) = 7/, the
expression [sz(f(i)) = sz(f(4)) + 1] has to be read as the syntactical equation
sz(?') =sz(j’) + 1. As indices from different abstract substitutions can occur
in these (in)equations (e.g., we use indices from S, and B, to compare the
size of the terms before and after the execution of a procedure), we use the
notion of disjoint union® allowing us to “merge” two sets of indices into one set,
in such a way that elements from both sets remain distinct (the indices that are
present in both abstract substitutions should remain distinct, as they refer to
different terms).

4.3.2 The domain of Abstract Sequences ASSp

The analyzer is built upon the notion of abstract sequence. Abstract sequences
describe pairs (6, S) where 8 is a substitution and S is the sequence of answer
substitutions resulting from executing a program (a procedure, a clause, etc.)
with input substitution 6.

Definition: [(pseudo-) abstract sequence]
A (pseudo-) abstract sequence B is either 1 or a tuple of the form
(ﬁina ﬁref, Bout, Eref_outa Esol) where

o (i, is an abstract substitution over I, (describing the class of accepted
input calls);

e Brer is an abstract substitution over Iy with dom(Brer) = dom(B;,) (de-
scribing an over approximation of the successful input calls, i.e., those that
produce at least one solution);

o Bout is an abstract substitution over I,y with dom(Bout) 2 dom(B:s)
(describing an over approximation of the set of outputs corresponding to
the successful calls);

e Erer our € Sizes(y, 41,,) (describing a relation between the size of the
terms of a successful call and the size of the terms returned by the calls);

e Eo € Sizes(s, 4 {sot)) (describing a relation between the size of the terms
occurring in a successful call and the number of solutions returned by the
call).

3See Section 4.1 where the notion of disjoint union is formally explained.
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At the view of the disjoint union I.ey + Iout, two injections are implicit:

inref : Iref - Iref + Iour and ingys & Jour — Iref + Lout-

We will refer to 8;, and B also as input(B) and output(B), respectively.

Moreover, we define dom,(B) = dom(Bi) and domeut(B) = dom(Bout).

The set of abstract sequences with the same dom;, = D is denoted ASSp.
Semantics:

The semantics of an abstract sequence B is given by the following concretiza-

tion function Cc :ASSp — p(PSp x SSeq): if B = 1 then Cc¢(B) = @, oth-

erwise?

Ce(B) = {(0,5) | 0 € Cc(Bin), S € SSeq, Subst(S) C Cec(Bout),
(S #£< >=> 0 € Cc(Bref)),
(9' S Subst(S), (ti>i€1mf EDECUMP(O, ﬂref),
(31’)72610": [ DECOMP(Q’, ,Bout)
= ([til)iery + (Isil)icton € Co(Ere_out)),
((ti)ie]m[ € DECOMP(Q,ﬂmf)
= ([til)ier.; + {sol = |S|} € Ce(Esar))}-

The first condition on {#,.S) expresses that all the substitutions # that are not
described by Bt lead to unsuccessful calls (indeed, the assertion is equivalent
to 0 & Cc(Brey) = S = ()); the second and third ones ensures that the re-
lations expressed by Eres_out (between the terms of the input substitution and
those of the output substitution) and by E,,; (between the terms of the input
substitution and the number of solutions, i.e., the number of substitutions in 5)
are respected.

Additional conditions are introduced to avoid (at least partially) multiple repre-
sentations of the same set of substitution sequences. A strict-abstract sequence
is defined as follows.

Definition: |[strict-abstract sequence]
A strict-abstract sequence B is a (pseudo-) abstract sequence
<,3in, ﬁ'I‘Efy ﬂouta Eref-out; Esol) such that

4 ﬂin 7é L
i ﬂref < Bins
o for all §' € Ce(Bout), 30 € Ce(Bres) such that 0} dom(pryy < 05

e if either Bref or Bour Or Erep_out OF Eso is equal to L, then they are all
equal to L.

As discussed for strict abstract substitutions, we can also here imagine a kind
of “normalization procedure” that transforms a pseudo version of abstract se-
quence into its strict one.

4Notice that the + operator used below is the one that applies to functions, as defined in
Section 4.1, since tuples ([¢;}):c1 actually are functions from I to N.
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4.3.3 Pre-Ordering on Abstract Sequences

Definition:
Let B; and By be two abstract sequences on the same domain D (i.e.,
By, B; € ASSp). By < By iff:

1) B =82,
(2) Bres < BL;
(3) ﬂtlmt S /Bgut

(4) E%ef-out :; Eref-out
(5) Esol = Esol

Note that the implications (=) between sets of constraints in the conditions
(4) and (5) have to be understood taking into account the structural mappings
(if they exist) between the indices of 8}, and 82, and between the indices

1 2
Of :Bout and ﬂout‘
Semantics:

Conceptually, B; < B should hold iff B; imposes the same as or more
constraints on all components than By does, that is, iff Ce(By) C Ce(Bs).

4.4 Behaviours

4.4.1 Definition of a behaviour

A behaviour for a procedure is a formalization of the specification of behavioural
properties provided by the user.

A behaviour Beh,, for a procedure name p € P® of arity n is a finite set of pairs
{(B1,se1),...,{Bm,sem)} where By,..., B, are abstract sequences such that
domin(Bg) = domey(Br) = {X1,...,Xn} (1 <k < m); and sey,..., se,, are
positive linear expressions® from Exp {X1)nXn}:

Each pair of the form (By, ser) will be called a behavioural pair (or, if no con-
fusion is possible, a behaviour). The positive linear expression se is required to
strictly decrease in recursive calls of the described procedure to ensure termi-
nation.

In the following, SBeh is a family of behaviours SBeh = (Beh,)pcp containing
exactly one behaviour Beh, for each procedure name p € P.

5P is the set of all procedure names occurring in the analyzed program.

61In fact, it is possible to use more general linear expressions, possibly involving negative
coefficient, and to prove that such expressions actually are positive at each procedure call.
However, for simplicity, we only consider positive linear expressions in the rest of the paper.
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4.4.2 A sample behaviour

Consider the formal specification for select/3 informally described in Sec-
tion 2.3 (page 11). The related behaviour Behgeiear/s is {(B, se)} where

B = (ﬂina ﬂref; ;Bout, Eref_out, Esol> N
se = L.
and where

ﬂin = (S'Uin, f"'mi'n.y <m0iny tyin)psin)> with:

SV : X—= 1 frmg,: 17 moy, : 1+— var tYin :
L 2 2 7 2 — ground
LS+— 3 37 3+ var

PSin = {(1’ 1)’ (31 3)}

Bres = (SUref, fTMres, (MOref, tyres, PSres)) With:

SUpert X2 1 frmpep: 107 MOref
L2 2 — [4]5]
LS+ 3 37
4 7?
57

PSref = {(1,1),(3, 3)}

ﬂout = (3'Uout) frmout7 <mooutv tyout’psout» with:
SUout : X1 frmgy : 17 MOgut .

L—2 2+ [4]5]
LS— 3 37
417
57
PSout = m

Npef ={1— 1,2 2,3 3,4 4,5 5}
Moyt = {1+ 6,2 7,3+ 8,41 9,5 10}
Brafout = {55(8) = s3(5)}

Eqo1 = {sol = sz(5) + 1}
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1+ var
2 — ground
3+ var
4 +— ground
51— ground

1+ ground tyou: :

2+ ground
3 ground
4 +— ground
5 ground

1+ anylist
2 — any
3 > anylist

tWrep : 1+ anylist

2+ list
3 +— anylist
4 — any
5+ list

1 any
2+ list
3 — list
4 any
5 list



Chapter 5

Description of the analyser

In this Chapter, we describe the analyser, and we discuss how it executes a
program at the abstract level. If the analyser succeeds, the given behaviours
correctly describe the execution of the analyzed program. In particular, every
procedure call (allowed by these behaviours) terminates. If the analyser does
not succeed, then, either the program does not terminate or is not consistent
with the behaviours given by the user, or the information given in the behaviours
is not sufficient for the analyser to deduce that the program is consistent and
terminates.

To simplify the presentation, we assume that the program we want to analyze
contains no mutually recursive procedures. Moreover, we assume that each re-
cursive subcall occurring in the execution of a call described by some behaviour
(Bg, seq) can also be described by this behaviour. We explain how these sim-
plifications can be removed in Section 5.5.

5.1 Abstract Execution of a Prolog program

Our analyser is based on a standard verification technique: for a given program,
it analyzes each procedure; for a given procedure, it analyzes each clause; for
a given clause, it analyzes each atom. If an atom in the body of a clause is a
procedure call, the analyser looks at the given behaviours to infer information
about its execution. The analyser succeeds if, for each procedure and each be-
haviour describing this procedure, the analysis of the procedure yields results
that are covered by the considered behaviour.

In the following next Sections, we describe how our analyser executes at the
abstract level the clauses and the procedures of a given Prolog program. You
can find the algorithm of the analyser in Appendix E.
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5.2 Specification of the Abstract Operations

This Section contains the specifications of the operations used for the abstract
execution of a procedure. We suggest the reader to skip it at a first reading, and
to refer to it whenever one of these operations occurs in the next (sub)sections.

e EXTC(c, B) = B is an operation that extends the domain of 8 to the set of
all variables occurring in the clause e¢. The result is an abstract sequence
B such that V8 € Cc(B) : (8, S) € Ce(B), where S is the sequence whose
only element is the extension of the substitution 8 to the set of all variables
of c.

e RESTRC(c, B) = B’ is an operation that restricts the output domain of B
(which is assumed to be the set of all variables occurring in the clause
¢) to the variables occurring in the head of c¢. The abstract sequence B’
must satisfy V(0, S) € Ce(B) : (9,5") € Cc(B'), where S’ is the sequence
obtained by restricting the substitutions of S to the variables of the head
of c.

! o RESTRG([, B) = B is an operation that restricts the output domain of B
| to (a renaming of) the variables occurring in the literal [. The result is
an abstract substitution 3 satisfying V(8,S5) € Ce(B),V8' € Subst(S) :
8" € Cc(B), where 6" is a substitution obtained from 6’ in two steps: by
first restricting ' to the variables X;,, ..., X;, of the litteral [ and then
by renaming those variables to the standard ones (X,, ..., X, ) in order to
allow the execution of the procedure the litteral is a call of.

e EXTG(l, B;, By) = B is an operation computing the effect of the execu-
tion of the literal ! (which is given by the abstract sequence By) on the
abstract sequence B;. Intuitively, the effect of the execution of the lit-
teral [ on B; can be computed as an instantiation by some substitution,
which yields By (when applied on RESTRG((, B1)). The operation EXTG
extends the effect of the instanciation on the whole sequence B; (taking
into account necessary renaming to avoid name clashes). More formally,
the abstract substitution B must satisfy the following property. For all
0,< 6y,...,6, >) € Ce(By), if 8, = RESTRG(L,0), (6.,5,) € Cc(B2),
and Sy = EXTG(I, 0, S},) for every k < n, then (6,5, :: ... 2 S,) € Ce(B).

o LOOKUP(S, p, SBeh) = (success, Byy,) is an operation searching Beh, for
an abstract sequence B € Beh, whose input substitution is at least as
general as B8. If such an abstract sequence exists, this operation returns
success = true and this abstract sequence. Otherwise, it returns success =
false, and the value of B,y is undefined. The specification of LOOKUP can
be written as success = Jse | (B, se) € Beh, A < input(B).

e CHECK.TERM(!, B, se) = term is an operation checking if the size (according
to se) of the arguments of a recursive call given by the output substitution
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of B is smaller than the size of the arguments of the head call. If the value
term is true and the literal  is p(X;,, ..., X,,), then V(6, S) € Cc(B), V' €
Subst(S), se({| X, &', .., 1 X:,. 0'[1)) < se({[[ X281, ..., [ XnOl))-

e UNIF_VAR(() = B executes the unification X; = X5 on the abstract sub-
stitution 8. The abstract sequence B is such that, for all # € Ce(f3), and
for all o € mgu(X;0, X20), the tuple (8, < 8o >) belongs to Ce(B); more-
over, the tuple (8, <>) belongs to Cc{B) whenever X6 and X0 are not
unifiable.

e UNIF_FUNC(3, f) = B executes the unification X7 = f(Xa,...,X,) on the
abstract substitution 3, where n — 1 is the arity of f. Its specification is
similar to the previous one.

e CONC(Bi, By) = B concatenates the abstract sequences B; and B, which
must have the same input abstract substitution and the same output do-
main. The abstract sequence B must satisfy V(0, 51) € Cc(B1),¥(0,5,) €
Cc(By), (8,51 :: S3) € Ce(B).

5.3 Abstract Execution of a Clause

Let

c=p(X1,. ., X)) -1, s
be a clause of the program P and (B,se) be an element of Beh,. Let also
Bin = input(B) be the input abstract substitution of B. The execution of the

clause ¢ for the input abstract substitution §;, may be computed as depicted
below.

Bin) p(X1,..., Xn) : = (Bo) u, (B1) ..., (Bi=1) bk, (Br) ..., (Bo-1) ls (Bs) . (Bout)

RESTRG,” yyir.yvaR  \EXTG

inter — Buuz RESTRC

N LOOKUP /

cu=h: —g
= <> (Bins9,¢) — B’
r ) " _ /
By, B =EXIC(C, ﬁm/) Ry B = BESTRC(c, /1/3 )
(/Bin)g,c) — B (ﬁin,c> > B
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gu=g,l g:u=g,1
l!ZZXil :Xiz l:IZXil =f(X52,...,Xin)
(ﬂin,g/7c> — BI (,B'in’g/)c> — B’
Binter = RESTRG(!, B') Binter = RESTRG(I, B')
Baua: = UNIF—VAR(ﬂinter) Baua: = UNIF—FUNC(Bintera f)
R3. B/ =EXIC(,B', Bus)  p,  B"=EXIG(, B’ Bou)
' (Bin, g,¢) — B” ' {Bin,g,¢) — B”
gu=4g,1
gi=g',1! Lo=p(X,. o Xiy)
li=q(Xiy,..., Xi,) p is the predicate of ¢
q # p, where p is the predicate of ¢ (Bin,g'sc) — B’
(ﬂiny gl, C> — B’ ﬁinter - RESTRG(Z, B,)
R ﬂinter = RESTRG(Z’B,) ,Binter S IB'in
(true, Boug) = LOOKUP(Binter, q, SBeh) CHECK.TERM(, B', se) = true
RS - B” =EXTG(!,B’, Byys) RS - B" = EXTG(l, B', B)
. <13inag,c>"—-’B” - <:8inag,c)’——')B”

Let us now briefly describe the rules depicted above.

Rule R1 initiates the abstract execution of the clause by extending the input
substitution §;, to the set of all variables in c¢. Rules R3, R4, R5 and R5 are
used for executing the literals of the clause. Observe that, for each literal, only
one rule amongst those may apply.

First, Rule R3 takes care of the unifications of the type “X;, = X,,”. In or-
der to obtain the abstract sequence B, associated to the program point just
after the unification, from B’, associated to the program point just before it,
we use three abstract operations: RESTRG to obtain an abstract substitution
Binter Whose domain is {X, X2} (computed from the abstract sequence B’);
UNIF_VAR to compute the unification on B;nier; and EXTG to extend the effect
of the unification on the whole abstract sequence B’. This last step guarantees
that all the variables (in the substitution of B’) whose instantiation shares a
variable with the instantiation of X;, or X, will be correctly treated. Rule R4
follows a very similar process to execute function unification.

Rule R5 and R5’ execute procedure calls (either non-recursive or recursive). In
the case of R5 (non-recursive call), the effect of the procedure call is obtained
by searching SBeh for a description of the procedure ¢. In the case of recursive
calls, we impose that two conditions are satisfied: first, we only allow recursive
calls that can be described by the behaviour currently analyzed (Binter < Bin)
and second, we require the recursive call to be strictly “smaller” (according to
the size expression given in the behaviour) than the initial call (this condition
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is verified by CHECK_TERM). If those two assumptions hold, we simulate the exe-
cution of the recursive call by the information given in the behaviour currently
analyzed. If any of those tests fails, we give up the analysis as we do not possess
enough information to go on safely.

Finally, Rule R2 completes the execution of the clause ¢ by restricting the output
substitutions described by B’ to the variables occurring in the head of c.

5.4 Abstract Execution of a Procedure

Let pr = ¢y,...,c, be a procedure whose name is p. Its abstract execution can
be summarized by the following graph and rules.

Ta=C

p
(Bin,c) — B’

(Bin) 1 (B1) .

s \ B ) B
(Bin) ek (Bx) —CQ‘&"Bout pri=c, pr’

. (ﬁinyc) — BI

(ﬁinap’rl) b B”
CONC(B', B") = B™

(Bin, pr) — B"

(ﬂzn) Cr (B'r) RT:

Rules R6 and R7 simply assert that, in order to compute the abstract execution
of a whole procedure, it suffices to compute the abstract sequences given by
each of its clauses and to (abstractly) concatenate those results.

In order to check that the given set of behaviours SBeh correctly describes the
execution of a program P, the analyser simply verify that, for each behavioural
pair (B, se) attached to a procedure p, it is possible to deduce from Rules R1
to R7 that (B;n, pr) — B’, where B;, is the input substitution of B and pr is
the text consisting of all the clauses describing the procedure p, and that the
abstract sequence B’ is more precise than B.

5.5 Removing the restrictions of the analyser

In this Section we explain how the simplifying hypotheses about the form of
the program can be removed. We do not discuss the treatment of additional
built-ins, such as test predicates and the cut, nor the treatment of negation,
since these issues are addressed in the conclusion. Here, we concentrate on how
to deal with mutual recursion and with recursive calls using other behaviours
than the one that is currently analyzed.

Procedures with recursive subcalls that may not be described by the abstract
sequence used for the input call are in fact very similar (at the abstract level) to
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mutually recursive procedures. Indeed, when such procedures p are decomposed

into several procedures py,...,ps (with different names but - nearly - the same
definition as p), each of them associated with one of the abstract sequences of
Beh,,, these procedures py,...,ps are mutually recursive.

Therefore, we first explain how to treat mutual recursion and, afterwards, we
explicit how to replace procedures with subcalls that cannot be described by
the abstract sequence of the input call by mutually recursive procedures.

Mutual Recursion. If mutual recursion is allowed, we have to add a termi-
nation test based on the size expressions of all procedures concerned by mutual
recursion (above, we only used such a test for recursive procedures). So, if p
and g are mutually recursive procedures, if (B,, sep) € Beh, and if the execu-
tion of (8, p), where 6 € Cc(input(By)), uses a subcall (¢, q), where 8’ can be
described by (B, seq) € Behq, we have to check (at the abstract level) that
seq((19' X1, .-, 10/ X)) < sep({|0X1|l,- -, |6Xx]])), where n and m are re-
spectively the arities of p and g. This test ensures that the mutually recursive
procedures will not loop infinitely.

In order to use this method, we must analyze the program to find out all mu-
tually recursive procedures or, more precisely, all pairs of triplets

({p, Bp, sep), (q, By, seq)) (with (By, sep) € Behy, and (B, seq) € Behy) describ-
ing procedure calls that may use subcalls described by the other one. The
termination test should be realized only when the triplets associated with the
subcall and the head call are “mutually recursive”.

Procedures with Subcalls that Cannot Be Described by the Abstract
Sequence of the Input Call. Once the restriction about mutual recursivity
has been removed, it is quite easy to allow recursive calls that cannot be de-
scribed by the abstract sequence used for the head call by creating several copies
of the procedure with different names (one copy for each abstract sequence given
in SBeh) and replacing the recursive calls by calls to one of these new procedures.

More precisely, let p be the name of a procedure and (Bj, sei1), ..., (Bs,ses) be
the elements of Beh,. In order to simplify the presentation, we assume that
the definition of p contains only one recursive call. We first compute (using
the abstract execution process described previously), for each (input) abstract
sequence By, which abstract sequence Bj, can be used to solve the recursive
call. Afterwards, we create s procedures named py,. .., ps (we assume that these
names are not used), one for each abstract sequence in Beh,. BEach procedure pi
is defined by the same text as p but the recursive call p(X;,,...,X;,), found in
the definition of p, is replaced by p;, (Xi,, ..., X;,) in the definition of px. Then,
we remove Beh,, from SBeh and add Beh,,, ..., Beh, , where Beh,, = (B, sex).

So, instead of analyzing a single procedure where recursive calls are described
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by abstract sequences different from the one used as input, we analyze several
(possibly mutually recursive) procedures. Once all “mutually recursive” triplets
have been listed, we may be able to remove some termination tests for the
(simply) recursive procedure that has been replaced and, thereby, extend the
applicability of the analyser. For example, if the execution of all calls described
by the triplet ¢ = (p, B, se) leads to subcalls that may be described by t' =
(p, B’, se') and if the execution of calls described by ¢’ never uses subcalls of ¢,
we may remove the termination test for ¢.

5.6 Design of the analyser

In the three next Chapters 6, 7 and 8, the interested reader can find a detailed
description of all the abstract operations needed to build the analyser.

The Operations. Abstract operations are defined along several layers, as
depicted in Figure 5.1. The Chapters corresponding to the layers are annotated.

Automated Verification [ Abstract
(Chapter 5) Semantics
)
Abstract Sequence Layer
(Chapter 8)
Abstract Substitution ﬁf,’f,:;‘,’,fi
Layer > &
Chapter 7 Abstract
(Chapter 7) Sizes Operations
Basic Layer: (Chapter 8)
Frm, Modes, Types,
PSharing
(Chapter 6) )

Figure 5.1: Abstract Operations Layers.

Implementation. We use the algorithms written for GAIA [8] to implement
the operations acting on the abstract substitution domain, because this domain
is quite similar to the one proposed in Automated Verification [14]. In order to
reuse the existing algorithms with minor effort, we have “flatten” the abstract
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substitution representation (abstract tuples are no more considered). Some of
these algorithms were revisited to make them more accurate. Also, because
the domain Types was not present in GAIA, we have entirely written new algo-
rithms for that domain (limited to the lists). What about the abstract sequences
operations, their implementation is based on the polyhedron library described
in [15}, in order to manipulate size information. We reuse the two abstract op-
erations UNIF_VAR and CONC fully described in Automated Verification [14]. In
this report, you will find also all the other abstract sequences operations that
we have implemented. The interested reader can refer to the List of Operations

(page xi) to relate those operations with the references of this report (mainly
[7], [8], and [14]) .

Terminology. FEach operation will be described by a specification and an im-
plementation both written in a formal, mathematical way. The specification is
the fundamental property that the implementation must satisfy and is always
expressed relatively the standard (concrete) domain, using the concretization
function denoted Ce.

We are now ready to go on with the implementation!
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Chapter 6

Basic abstract operations

This Chapter presents the “low-level” abstract operations acting on Frmy ,
Modes, Types and PSharingy,.

The operations on FRMy,, Modes and PSharing;, were taken from GAIA [8].
The operations on Types are new ones.

6.1 Operations on FRM],

See Section 4.2.2 (page 21) where the domain FRMj, is defined.

6.1.1 Reachability (REACHABLE)

Operation 1. REACHABLE(i, frm)
Some operations need to compute the set of indices reachable from a given
index, as the other indices are no longer relevant.
The set of indices reachable from ¢ € I, via frm, denoted REACHABLE(4, frm),
is defined inductively by

(1) {i}if frm(i) = undef
(2) {¢} U (U}_, REACHABLE(i;, frm)) if frm(i) = f(i1,...,in).

We also use REACHABLE(I, frm) to denote U;er reachable(i, frm).

6.2 Operations on Modes

See Section 4.2.3 (page 22) where the domain Modes is defined.
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6.2.1 Construction of Modes (CONS_MOD)

Operation 2. CONSMO(f, My,..., M) =M’
This operation computes the mode of a complex term from the modes of the
subterms.

Specification:
Let My,..., M, be modes, let t1,...,t, be terms, and let f be an n-arity
functor symbol. This operation satisfies the following property:

Vi:l<i<n:t;€ Cc(M;)= f(t1,...,tn) € Ce(M').

Implementation:
Denote by C the condition Ji : 1 <4 < n: M; = L. Then the CONS_MO
operation can be implemented as follows:

M = 1 if C;
ground ifVi:1l<i<n: M =ground,
ngv if ~C and 3¢ : 1 <i < n: M; < noground,

novar otherwise.

6.2.2 Extraction of Modes (EXTR_MO)

Operation 3. EXTRMO(f, M) = (My,..., M,)
This operation is the reverse of the CONS_MO operation. It computes the most
precise modes of terms {,. .., t, when we know that the mode of f(¢i,...,t,)
is M. For instance, if f(t1,...,t,) is ground, it is clear that all of its argu-
ments are ground as well.

Specification:
Let f be a functor symbol of arity n and M € Modes. The operation satisfies
the following property:

f(t1,...,tn) € Ce(M) = t; € Ce(M;) (1 <i<n).

Implementation.:
The operation is implemented as follows for (1 <i < n):

M = 1 if M € {L1,var};
ground if M € {ground, gv};
noground if M € {noground,ngv} and n = 1;
any otherwise.
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6.2.3 Matching of Modes (MATCH_MO)

Operation 4. MATCHMO(M, f,M,,...,M,) =M’
This operation recomputes the mode of a compound term when some of its

subterms may have been instantiated (resulting in new subterms ty,...,%,,
with modes M, ..., M,).

Specification:
Let M, My,..., M, bemodes, t,t1,...,t, be terms, and f be an n-ary functor
symbol. The operation satisfies the following property:

t e Ce(M)
Vi:l<i<n:t; € Ce(M;) = f(t1,...,tn) € Ce(M').
do ito = f(t1,...,tn)

Implementation:
The implementation is M’ = LUB(M{, M}) where

M{ = CONSMO(f,Mi,...,M,) if M +# L and M # ground;
1 otherwise.

Mj, = ground if M > ground and Vi : M; > ground,
L otherwise.

6.2.4 Abstract Unification of Modes (UAT_MO)

Operation 5. UATMO(M;, Mp) = M’
Given the modes of two terms, this operation returns the mode resulting of
the unification of the terms.

Specification:
Let My, M5 be modes, t1,ty be terms, and o be a standard substitution. The
operation satisfies the following property:

t, € CC(Ml)
ity € CC(MQ) = ti0 € CC(M').
o is a mgu of t1,ty

Implementation:
The implementation is depicted in Table 6.1. As the operation is symmetric,
M; and My can be read vertically or horizontally.
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1L war ngv ground  noground  gv novar any
L L L L L L L L L
var 1 wvaer ngv ground noground gu novar any
ngv 1L nge novar ground  novar novar novar novar
ground L ground ground  ground  ground ground  ground  ground
noground L noground novar ground  any any novar any
gv L g novar ground  any gu novar any
nover L novar novar  ground novar novar novar novar
any L any novar ground any any novar any

Table 6.1: Abstract Unification of Modes.

6.2.5 Abstract Instantiation of Modes (IAT-MO)

Operation 6. IATMO(M) =M’
This operation computes the mode M’ of a term whose mode was M and
that has been arbitrarily instantiated.

Specification:
Let M be a mode. For any term t and standard substitution o, the following
holds:

t € Ce(M) = to € Ce(M").

Implementation:
The implementation is depicted in Table 6.2.

M 1 wvar ngv ground noground gv  novar any
M' 1 any novar ground any any novar any

Table 6.2: Abstract Instantiation of Modes.

6.2.6 Reverse Abstract Instantiation of Modes (UNIST.MO)

Operation 7. UNISTMO(M) = M’
This operation is the reverse of the IAT MO operation. It approximates the
set of terms that can be instantiated to a term t € Ce(M).

Specification:
Let M, M’ € Modes. The following relation holds:

t € Ce(M)

/ ’
f— o } = t' e Ce(M’).

Implementation:
The implementation is as follows:
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M = war if M = wvar
noground if M € {ngv, noground}
L M =1
any otherwise.

6.2.7 Specialized Abstract Instantiation of Modes (IAT_MO,)

Operation 8. IATMOo(M;, Mp) =M’
This operation computes the mode M’ of a term whose mode was M; and
that has since been instantiated according to a substitution of a variable by
a term whose mode is M.

Specification:
Let My, My be modes, t;,ts be terms, and y be a variable. The operation
satisfies the following property:

2 é gz%;g } = ti{y < t2} € Cc(M').

Implementation:
The implementation is given in the form of Table 6.3. The values of the first
argument are given vertically.

1 war ngv ground mnoground gv novar any
L 1 1 L 4 N 1 4 L
var 1 war noground  gv noground  gv any any
ngv L ngv ngv novar  ngv novar  novar  novar
ground 1 ground ground ground ground ground ground ground
noground 1 noground noground any noground any any any
gv L gv any gv any gv any any
novar 1 novar novar nover  novar novar  novar  novar
any 1 any any any any any any any

Table 6.3: Specialized Abstract Instantiation of Modes: The values of the first
argument are given vertically.

6.3 Operations on Types
See Section 4.2.5 (page 23) where the domain Types is defined.

The operations defined on the types are the same as the ones defined on the
modes.
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6.3.1 Construction of Types (CONS_TY)

Operation 9. CONS_TY(f,T1,...,T,) =T’
This operation computes the type of a complex term from the types of the
subterms.

Specification.:
Let T1,...,T, betypes, let t1,...,t, be terms, and let f be an n-arity functor
symbol. This operation satisfies the following property:

Vi:1<i<n:t; € Cc(Ty) = f(t1,...,tn) € Cec(T).

Implementation:
Denote by C the condition 3t :1 <i < n:T; = L. If C then the type result
T’ is 1, otherwise the CONS.TY operation can be implemented as follows:

coNs_TY([], ) = list
CONS_TY([|],T1,list) = list
CONS.TY([ | ], Th,anylist) = anylist
CONS_TY([ | ], T3, any) = any
CONS_TY(f/n,Ty,...,T,) = any

6.3.2 Extraction of Types (EXTR.TY)

Operation 10. EXTR.TY(f,T) = (Th,...,Ty)
This operation is the reverse of the CONS.TY operation. It computes the most
precise types of terms ty,...,t, when we know that the type of f(¢1,...,t,)
is T

Specification:
Let f be a functor symbol of arity n and T € Types. This operation satisfies
the following property:

f(tl,. .. ,tn) S CC(T) = ; € CC(T,,) (1 <1 < n)

Implementation:
The operation is implemented as follows:

EXTR_TY(f /n, L) = (L,...,1)
EXTR_TY([ ], list) = ()

EXTR-TY([ | ], lést) = (any,list)
EXTR.TY([ | ],anylist) = (any,anylist)
EXTR-TY([ | ], any) = (any,any)
EXTR.TY(f/n,T) = ({(eny,...,any)
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6.3.3 Matching of Types (MATCH_TY)

Operation 11. MATCH.TY(T, f,Ty,...,T,) =1T"
This operation recomputes the type of a compound term when some of its

subterms may have been instantiated (resulting in new subterms £q,...,t,,
with types T3, ...,T,).
Specification:

Let T,Ty,...,T, be types, t,t1,...,t, be terms, and f be an n-ary functor
symbol. The operation satisfies the following property:

t e Ce(T)
Vi:l1<i<n:t; e CeTy) = f(t1,...,tn) € Ce(T").
do tto = f(t1,...,tn)

Implementation:
The operation is implemented as follows:
MATCH_TY(T, f,T1,...,T,,) = CONS_TY(f,T4,...,T). We don’t have to rely
on T (that is the previous type of f). Indeed, the new type T” of a functor is
entirely defined by its functor name f and by the new types of its subterms.

6.3.4 Abstract Unification of Types (UAT_TY)

Operation 12. UAT.TY(T},T3) =T"
Given the types of two terms, this operation returns the type resulting of the
unification of the terms.

Specification:
Let 11,15 be types, t1,ta be terms, and o be a standard substitution. The
operation satisfies the following property:

t € CC(Tl)
ty € CC(Tz) = 110€ CC(T’)
o is amgu of t1,tn
Implementation:

The implementation is depicted in Table 6.4. As the operation is symmetric,
Ty and 1% can be read vertically or horizontally.

Someone may wonder why the abstract unification between two anylist terms
results in a term that has the type any. It is indeed the case: as an example,
the unification between [X,alX] and [b,Y|Z] (which are both of type anylist)
gives [b,alb] which is of type any.

6.3.5 Abstract Instantiation of Types (IAT.TY)

Operation 13. IAT.TY(T)="T"
This operation computes the type T of a term whose type was T and that
has been arbitrarily instantiated.
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L list anylist any
L L L 1 L
list L list list list
anylist 1 list any any
any L list any any

Table 6.4: Abstract Unification of Types.

Specification:

Let T be a type. For any term ¢ and standard substitution o, the following
holds:

t € Ce(T) = to € Ce(T').

Implementation:
The implementation is depicted in Table 6.5.

T L list anylist any
T L1 list any any

Table 6.5: Abstract Instantiation of Types.

6.3.6 Reverse Abstract Instantiation of Types (UNIST_TY)

Operation 14. UNIST.TY(T) =T"
This operation is the reverse of the IAT.TY operation. It approximates the
set of terms that can be instantiated to a term t € Ce(T).

Specification:
Let T, T’ € Types. The following relation holds:

te Ce(T
t::t’cr( ) } = t'e Ce(T).
Implementation.:

The implementation is as follows:

T = oanylist ifT € {list, anylist}
1 fT=1
any otherwise.
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6.3.7 Specialized Abstract Instantiation of Types (IAT_TY;)

Operation 15. IAT.TYo(TY,T3) =T
This operation computes the type T of a term whose type was T and that
has since been instantiated according to a substitution of a variable by a term
whose type is T5.

Specification.:
Let Th,Ty be types, t1,to be terms, and y be a variable. The operation
satisfies the following property:

i € Oelh) } = ti{y — 12} € Ce(T").

Implementation:
The implementation is given in the form of Table 6.6. The values of the first
argument are given vertically.

L list anylist any
L L 1 L L
list L st list list
anylist L anylist anylist any
any 1 any any any

Table 6.6: Specialized Abstract Instantiation of Types: The values of the first
argument are given vertically.

6.4 Operations on PSharingy,

See Section 4.2.7 (page 24) where the domain PSharingy, is defined.

6.4.1 Construction of ps* (PS_STAR)

Operation 16. PS_STAR(frm, ps) = ps*
This operation constructs the complete possible sharing relation ps*, given
the frame component (frm) and the stored possible sharing relation ps (the
latter considers only the pairs of terms that possibly share variables and
whose patterns are undefined).

Implementation:
ps* is defined as the smallest (symmetrical) relation on I, satisfying the
following two rules for all ¢,5,k € I, :

(1) ps(i,5) = ps*(,5);
(2) frm(k)=f(...,7,...) & ps*(i,7) = ps*(k, ).
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Chapter 7

Operations on Abstract
Substitutions

See Section 4.2.9 (page 26) where the domain of Abstract Substitutions is de-
fined.

Most of the following operations have been taken from GAIA [8]. However, some
of the prototypes may differ slightly from the originate ones found in GAIA. In-
deed, higher level operations acting on the domain of abstract sequences need
more information about the structural mapping between input and output ab-
stract substitutions. Further more, you will find in this paper some improvement
about the “accuracy” of the results.

7.1 Least Upper Bound (LUB)

Operation 17. LUB(f1,82) = (B, try,tra)
This operation! returns an abstract substitution (over I,) 8 = f; Ll B2 and
two structural mappings ¢ri, between B and By, i.e., try : I, — Ip, (k=1,2).
Specification:
Let By and B, be two abstract substitutions over I, and I, respectively,
such that dom(8;) = dom(B2) = D (i.e., $1, 82 € ASp). LUB(f3;, B2) produces
an abstract substitution § such that:

B1,02 <P & VB €ASp: (b1, < By = (BLA).

Implementation:
We define the set F of pairs in correspondence induced by the same-value
component:

E={(tj7) |3z € D:i=sv(z) & j=sva(z)}.

1The prototype of this operation has changed relatively to the one proposed in GAIA
(LUB(f1, B2) = B). We now return explicitly the two structural mappings try and try.
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The remaining correspondences can be obtained from E and the frame com-
ponents. Hence we define the set F' of all correspondences as the smallest set
satisfying the two following rules:

(1) GieE=(G4)eF

(¢,7) € F
me2(J):f(311aJn)

We need a bijective function ¢ : ' — I, to establish the relation between
the old and the new indices of the corresponding subterms (where p = #F).
This bijective function is a function into I,,, when restricted to E. LUB(S, (2)

produces an abstract substitution 8 = (sv, frm, (mo, ty, ps)) over I, defined
as follows:

su(z) = t(svi(z),sva(z)) Vz e D,
frm = {(t(5, ), F(t(i1, 1) - - - £ (s 3n))) |
(i) e F &
Frma(i) = ity . in) &
frma(§) = f(G1,- .5 dn)}s
mo(t(:,7)) = LUB(moi(7),mo2(j)) V(3,7) € F;
ty(t(i, 7)) = LUB(tw1(7),ty2(4)) V(5 5) € F
ps = {(t(iaj)yt(ilvjl)) | ('L,]) EF & (ilvj,) €EF&

(ps1(4,4) V ps(4,5")) &
frm(t(, 5)) = frm(t(i', §)) = undef}.

The operation returns also explicitly these two structural mappings:

try : I, — I, defined as try(k) =4 if 3(¢,75) € F such that ¢(4,5) = k;
try : I, — I, defined as tro(k) = j if 3(¢,5) € F such that ¢(4,5) = k.

7.2 Extended Least Upper Bound (EXT_LUB)

Operation 18. EXT.LUB(f1, 82) = (B, try, tro, st)

Specification:

This operation? returns an abstract substitution 8 = £; U f,, two structural
mappings try (k = 1,2) between 3 and B (i.e., try : I, — I,,) and a boolean
value, st, such that st = true implies that ( is a strict union, i.e.,

st =true = Ce(B) = Ce(f1)V Ce(Bs).
st = false = Cec(B) 2 Ce(f1) U Ce(Ba).

2The EXT_LUB specification has been described in Automated Verification [14].
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Implementation:
(B, try, tra) = LUB(fB1, B2), where LUB has been implemented just before.
If either 8; < B3 or By < B then st = true. Note that in this case, we have
B = max<{B1,B2}. The boolean st is set to false otherwise.

7.3 Greatest Lower Bound (GLB)

Operation 19. GLB(8y,82) = (B, try, tra)
Specification:
Let B; and B € ASp. This operation® returns the abstract substitution
B = P11 By (Greatest Lower Bound?*) and two structural mappings try
between fi and B, i.e., try : I, — I, (k=1,2).
In . the sense of the concretization function, we have

Ce(B) = Ce(B1) N Ce(Be).

Implementation:

We define the set F of pairs in correspondence induced by the same-value
component:

E={(j)| 3z € D:i=svi(z) & j = sva(z)}.

The remaining correspondences can be obtained from F and the frame com-
ponents frm; and frms. Hence we define the set F' of all correspondences
as the set satisfying:

1)y @GjlHeE=G)eF

(Lj)erF
(@) frma(i) = flinyein) 3= (ki) € F (1< k <),
frm2(j) = f(jh e ,jn)

(i,j) € F
(3)  frmi(i) = undef
frma(3) = f(r, ..., Jn)

(ik,Jk) € F (1 <k <n)
where 1), are new fresh variables.

(,j)eF o
@) frou() = f,....0n) 0= E:rfl,ezz)jf 51'8( ln(ivkﬁisz)variables
frma(j) = undef : '

Note that for the convenience of the algorithm, the components of the ab-
stract substitutions must be updated to take into account the entering of new

3The implementation of GLB is not present in the references [7, 8, 13, 14]. We use the same
approach as the one of the LUB operation.

4We recall the definition: S1 1By = 8| B < B, B2 & VB € ASp : (B < B1,B2) = (B’ < B).
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fresh indices in the domain (properties (3) and (4)):

- For the property (3), we define every times:
frma(ix) « undef (1 <k <n);
mo1(ix) — My (1 <k <n);
ty1(ix) < T (1 <k <n);
frma(@) « f(i1,. ., in);
ps1 = [ps1\{(6,w) € psi H U {(is w)|(1 <k < 1) A (i, w) € psy ).
where (My,...,M,) =EXTRMO(f/n,mo1(i))
and (T1,...,T,) = EXTR.TY(f /n,ty1(3))

- For the property (4), we define every times:
frma(jr) < undef (1 <k <n);
mog(ji) — My (1 <k <n);
tyo(gr) « T (1 <k < n)
frma(g) « f(d1, .-, dn);
ps2 = [ps2\{(J,w) € PSz}] U{(k, w)|(1 <k <n) A (j,w) € psa}.
where (Ma,...,M,) =EXTRMO(f/n,moz(j))
and (Ty,..., )—EXTR.TY(f/n ty2(7))

To check if the constraints (in terms of the both pattern components) defined
by the two abstract substitutions are compatible (i.e., their intersection is not
1), we define the boolean incompatible as follows:

(incompatible = true) = (Ce(B) = 1).

This boolean is set to true if one of these two conditions occurs:

(Z,7) E' F ' . \
(4) ;;2; 8)) z .g %;11 ,’ -. -. -. ,’z]?;)l ) = incompatible = true.
f#g J
(i,j) € F )
(B) ;:Z; El)) ((Zjll,, . . ,_7,,)1) = incompatible = true.
n#m J

At this point of the implementation, if incompatible is true, then we return
immediately = L.

Otherwise, we need a function ¢ : I — I, to establish the relation between
the old and the new indices of the corresponding subterms. This function is a
function into I,,, when restricted to E. GLB(f;, 82) produces then an abstract
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substitution § = (sv, frm, (mo,ty, ps)) over I, defined as follows:

su(X) = tlsvi(X),sva(X)) VX e D,
frm = {{(i,5), f(t(i1,51), - -, t(in, Jn))) |
(L,j)eF&
frmi(D) = f(i1,...,in) &
frma(3) = (41, dn)}
mo(t(i,5)) = GLB(moy(2),mox(5)) V(3,7) € F;
ty(t(i,5)) = CLB(tyi(i),tya(s)) V(i) € F;

ps = {9t iN|¢EH)eF & (i,j)e F&
(psi(i, i) Aps3(d, ') &
frm(t(s, 5)) = frm(d(¥,5)) = undef}.

Note that if there exists a new indice k € I, such that mo(k) = L
or.ty(k) = L, then the resulting abstract substitution 8 is L.

We must also check the consistency between the two sharing-components. If
the two following properties are not satisfied, the GLB operation returns L:

(1) VYiel, : Vi, € 1p,
('i‘yjk) EF
(iajl) eF
moq(fr) # ground
mog(fi) # ground
(2) Vi€l : Vigd €l
(ikaj) eF
(ibj) eF
moy (ix) # ground
moy (i) # ground

= ps;(jk’jl)

= psi(ik, 41)

Finally, we return these two structural mappings:

try : I, — I, defined as try(¢) = £(¢,7) | 37 such that (i,5) € F
tro : I, — Ip defined as tro(j) = ¢(4,7) | 3t such that (i,5) € F

7.4 Extension at Clause Entry (EXTCgypst)

Operation 20. EXTCsupst(c, 8) = 5
This operation extends an abstract substitution with the new free variables
of the clause. It is used at the entry of a clause to include the variables in
the body not present in the head.

Specification:
Let D = {z1,...,x,} be the set of variables in the head of ¢, dom(8) = D and
D' = {z1,..., 241} be the set of all variables in ¢. EXTC;yps0(c, §) produces
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a substitution £’ such that:

Ce(f) = {0:dom()=D" &
9/1) S CC(,@) &
Znt1,. .., Tyl are distinct renaming variables &
Tpyi0 & codom(B,p) (1 <5 <k) }

Implementation:
Under the assumptions of the specification, the resulting abstract substitution
B = {sv', frm!, (mo',ty’, ps’)) is defined as follows:

p = p+tk
.om = m+k.
sv'(z;) = sv(zy) (1<i<n).
sV (Tpti) = m+i (1<i<k).
. i (1<i<m);
ti = z—k; (m' <i<p).

frm! = {1, 00)) ¢ (6(8), F(2(51), ..., t(in))) € frm}.
mo(t(z)) (1<i<m)or(m' <i<p,

(s —
mo'(i) = var (m<i<m).
W) = ty(t(@)) (1<i<m)or (m' <i<p);
A anylist (m <i<m').
ps' = {(4,4) | ps(t(),t(4))} U {(i,5) |m <i < m'}.
The new variables must be mapped onto indices m +1,...,m + k. It is the

reason the function ¢ : Iy — I, is introduced to shift old indices greater than
m (See Figure 7.1).

1 m p
IP
Iy . '
1 m m p
;___..Y___/
k

Figure 7.1: EXTCsupst, shift function ¢ : Iy — I,
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7.5 Restriction at Clause Exit (RESTRCgypst)

Operation 21. RESTRCgypst(c, 8) = (', tr)
This operation® restricts an (output) abstract substitution of a clause to the
head variables only. It is used at the exit of a clause.

Specification:
Let D be the domain of 8, and let D’ be the set of variables in the head
of ¢ (D' C D). RESTRC,upst(c, 3) produces an abstract substitution 8’ such
that:

Ce(B') = {0,p; 6 € Cc(B)}.

Moreover, this operation returns a structural mapping tr between £’ and 8
(tr: Iy — I,).

Implementation:
Under the assumptions of the specification, the resulting abstract substitution

B = (sv/, frm/, (mo',ty’, ps’)} and the structural mapping ir are defined as
follows:

I = REACHABLE(sv(D'), frm);
m = Fsu(D'Y;
po=
t = the unique strictly increasing function from I to I,y (See Figure 7.2).
sv'(z) = t(sv(z)) VzelD
frm’ = {((3), F(¢(31), .. ., 8(0n))) 2 (5, F (i1, .. 0n)) € frm & i€ Ih
mo'(t(i)) = mo(i) Vi e I,
ty'(t(1)) = ty(i) Viel,
ps' = {(t(2),1(5)) : 4,5 € I & ps(i, 5)};
tr = t-L
D
~ A
1 : m P Note: the black circles are
p indices that belong to .
I £
1 m P
—
D

Figure 7.2: RESTRCgypst, shift function ¢ : I, — Iy

5The prototype of this operation has changed relatively to the one proposed in GAIA
(RESTRCgypst (¢, B) = B'). We now return explicitly the structural mapping tr.
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7.6 Restriction before a Goal (RESTRGypst)

Operation 22. RESTRG,y;5(, 5) = 5
This operation restricts an abstract substitution to (a renaming of) the vari-
ables occurring in the literal [. It is used before the (abstract) execution of a
literal in the body of a clause.

Specification.:
Let 8 be an abstract substitution on D = {z1,...,z,} and [ be a literal
P(Tigy- .oy Ti,,) (O Ty = Ty, or T, = f(Tiy,..., %, ). RESTRGgubst(l, B)
returns the abstract substitution obtained by these two steps:

(1) projecting S on {x;,,...,x;,, } , obtaining Beuz

(2) expressing Baus in terms of {z,...,z,,} by mapping z;, to z,
giving g4'.
The resulting abstract substitution is expressed in terms of {z1,...,zn,},

that is, as an input abstract substitution for p/m.

Implementation:
The algorithm is exactly the same you can find in RESTRCyps:(c, 8), if you
consider in this case that D’ is the set of variables occurring in ! (that is
D' = {zi,... 2, }), giving Bauz. The result §’ is Byur where you replace
each z;, by x, such that sv’: {z1,...,2m} — Iy.

7.7 General Unification between Two Terms

The purpose of this Section is to show the implementation of the unification
at the abstract substitution level®. In the following, by abuse of language, we
often use “abstract term :” to denote the information associated with an index
i in a substitution 8. We also use “abstract unification of abstract terms 7 and
4” to denote the result of an operation whose result is an abstract substitution
approximating the set of concrete substitutions resulting from the unification of
the terms ¢; and t; in all the substitutions belonging to Cc(B).

7.7.1 Overview

The kernel of the unification operation is a procedure to unify two abstract
terms. Our abstract unification considers three cases depending upon the pat-
tern components of ¢ and j:

(1) frm(s) = frm(j) = undef ;
(2)frm(i) = undef & frm(j) = f(j1,- -, Jn) ;
(B)frm(i) = f(ix,...,in) & frm(j) = f(1,- ., Jn)-

SWe use the approach proposed in [7] for the global schema of the implementation.
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The rest of this section is organized in the following way: we start by introducing
some notations which significantly simplify the definitions. We then present the
suboperations FCTA (whose job is to manipulate indices), UNIF1 (that performs
the first case (basic case)), SPECAT (that achieves a big part of the second case)
and finally the operation UNIF (that resolves the entire problem).

7.7.2 Notation

The removal operations are rather frequent in the unification process and, in-
stead of updating permanently the components, the equalities will be stored
using a function fi : I; — I, such that fi(i) = fi(j) = t; = t;, where I,
denotes a set of old indices and I, denotes a set of new indices. This allows us
to simplify the presentation and the implementation as well. The idea is that
the same value component needs only to be updated at the very end of each
operation. So for the moment we restrict attention to two components omitting
the same value component.

We call a d-tuple the association (frm,a, fi) of two components frm and
a = {mo,ty,ps) both defined on the same set of indices I,, and a function
fi. The unification suboperations are defined on é-tuples. Note also that we
implicitly assume that a d-tuple dj, is associated to a tuple
(frmg, ok, fix) = (frmk, (mok,tyk, psk), fir) (and similarly a é-tuple &' to
a tuple (frm/, &, fi') = (frm/, (mod',ty',ps’), fi’)). As usual, we define the
meaning of §-tuples by means of a concretization function as follows:
Cc(6) = {(u1,...,uq) 1 3(t1,...,tp) € Ce(frm) N Ce(a) :
ui =tpp (1<i<q)}
= {{triq)s--rtsi(q)) : (t1ye .2 tp) € Ce(frm) N Ce(a)}.
In the rest of the presentation, we will often have to write expressions such as

expr(t(ii),...,t(in)) where iy,...,in € Ip, and t : I, — I, . We take the
convention of representing those expressions as

expr(ii,...,in) (1),

meaning that all indices 7 from I, in the expression have to be substituted by
their values t(i).

7.7.3 The sub-operation FCTA

Operation 23. FCTA(:,7,0) = ¢’
This operation amounts to adding an equality between terms ¢; and ¢; and
to propagating this equality in the rest of tuple 6. The basic idea behind this
operation is to remove a subterm which is no longer necessary.

Specification:
Let @ = (u1,...,uq) be a é-tuple of terms. Then the following holds:
U € Ce(d) } = € Cc(d)
Ui = Uyj
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Implementation:
Let us define two functions, assuming maz = maz(t,j) (fi)
1. i Ip — Ip_l

k if k< max;
ti(k) = min(i, 7)(fi) if k= magz;
kE—1 if k> max;

2. it : Ip-—-l — Ip

. k if k< maxz;
k) = {k—i—l if k> maz;

When applied to the components, the function ¢ removes one of the terms
(the one with the largest index) by pushing leftwards the indices which are
greater than the removed term while the function it allows us to retrieve
previous information.

Finally, the function FCTA(Z, 5, 6) = &' is defined as

frmt = L), k) i) : (b S (R ) € Frm)
mo’ = mooit

ty’ = tyoit,

ps = {(ti(k), i) : ps(i, D)

fi' = tiofi.

Note that the function f7 of the é-tuple needs to be updated as well.
max( fi(i), fi(j))
i

I 1 fi() fi(j) p

Figure 7.3: FCTA, shift function ¢ : I, — I,

7.7.4 The sub-operation UNIF1

Operation 24. UNIF1(4,j,8) = (&, ss)
This operation” is defined on a é-tuple § = (frm,a, fi). It assumes that

"The prototype of this operation has changed relatively to the one proposed in GAIA
(UNIF1(%,4,8) = 6’). We now return explicitly an information about the sure success (ss) of
the unification.
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frm(i) = frm(j) = undef (fi) and produces another §-tuple

& = (frm/, o/, fi'). Informally, UNIF1(i,4,0) unifies subterms ¢ and j in
the 8-tuple 6, giving 6’. An information about the sure success (ss) of the
unification is also returned.

Specification:
Given a p-tuple of terms £ = (t1,...,%,) and a substitution o, the operation
verifies ( )
o € mgult;,t; - ,
fe Cels) = to € Cc(d).
and

ss = true => the (abstract) terms fi(¢) and fi(j) (i.e.,
the terms ts;(;) and t7;(;)) are unifiable in 6.

Implementation:
Let § = (frm,a, fi). The result of UNIF1(z, j,8) is 6’ = FCTA(%, 4, 61), where
81 = (frmy, oy, fiy) is computed as follows:

frmy = frm;
o1 = ALPHAUNIFi(frm,a,t,5) (fi);
fiu = fi

where ALPHA_UNIF1(frm,a,4,5) = o = (md,ty’, ps’) is defined as follows®:

| Construction of mo': |

Let SH(k) be the condition ps*(i, k) V ps*(j, k), defined for (1 < k < p).

mo(k) if Z_é I];gké)J
UAT_MO(mo(i), mo(j)) if (k =1V k = j)

iFk#E]
MATCHMO(mo(k), f, mo'(k1), ..., mo(kn)) if ?ﬂg) =
FE, . k)
mo'(k) = i#k#]
SH(E)

TAT MOz(mo(k), mo'(¢)) if frm(k) = undef

(mo(t) = var) V (mo(j) = var)
iFk#]
SH(k)
frm(k) = undef
(mo(t) # var) A (mo(j) # var)

IAT_MO(mo(k)) if

8We made this algorithm a little more accurate than the one proposed in GAIA, by splitting
the case where the frame is undef according to either i or j is a variable or not. The gain of
accuracy comes from the fact that the operation IAT_MO2 is more precise than IAT.MO.
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[ Construction of ty': |°

mo’(k) = ground

List if ty* (k) = anylist
ty’ T mo' (k) = var
anylist if ty* (k) = any
ty* otherwise.
where
( iFEk#]
ty(k) if { ~SH(k)
frm(k) = undef
UAT TY(ty(5), ty(5)) if (k =iV k = 5)
iFk#]
MATCH.TY(ty(k), £t/ (k1) ..t/ (k) if {  frm(k) =
f(klv'--akn)
ty* (k) = it kA]

SH(k)
frm(k) = undef

(mo(z) = var) V (mo(j) = var)

IAT_TY, (ty(k), ty' (i) if

il
. SH(k
IAT-TY(ty(k)) if frm(k) = undef
{ (mo(i) # var) A (mo(j) # var)

| Construction of ps': |

;L PSq if ground(mo’(z))
ps = ps, Upsy otherwise.
where

psa = {(k,1)|ps(k,l) & —ground(mo’(k)) & —~ground(mo'(l))},

psy = {(k, 1) |3k :ps(k' k) & ps(U',1) & KV € {4,7}}.

The pattern component frm remains the same, as no new pattern is introduced.

In the mode component, a subterm having no sharing with subterms 7 or j is
not affected by the unification and keeps its mode. The mode of 7 and j is given
by the abstract unification of their old mode. If a subterm has sharing with
and 7 and has a well-defined pattern, its new mode is given by the matching
operation on modes, given the old mode of the subterm and the new modes of
the arguments of its pattern. The matching is necessary because subterms ¢
and j may be reachable from k, and since their modes may have been updated,

9We note that a ground anylist is in fact a ground kst and that a var any is in fact a var
anylist.
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the mode of k may need to be updated as well. If a subterm has an undefined
pattern, its new mode is given by the abstract instantiation of its old mode.

The constructing of the type component is analogous to the mode component.

In the sharing component, two cases are distinguished depending on the re-
sulting modes of the unified subterms. If their new mode is ground, only the
old sharing is considered and updated to take into account the new groundness
information. Otherwise, the sharing component should merge the sharing infor-
mation on 7 and j.

Finally, the boolean ss (sure success) is set to true if one of the three following
conditions is satisfied!?:

1 (i=3) (o).
@) ((mo(d) =var) A (mo(j) =wvar)) (fi).

( (mo(i) =wvar) V (mo(j) =var))

-ps(t, §) )
(3) (ty(2) = list) = (ty(j) < anylist) (£9).

(ty(§) = list) = (ty(i) < anylist)

7.7.5 The sub-operation SPECAT

Operation 25. SPECAT(i,j,0) = ¢’
This operation is defined on a dé-tuple § = (frm,«q, fi). SPECAT(z,7,6) is
useful for the unification of two terms t;,t; where frm(i) = undef and

frm(5) = f(4j1,...,Jn). Such an unification can be achieved in two steps:
1. the unification of t; and f(y1,...,yr) giving o where yy,...,y, are new
variables;

2. the unification of (y1,...,yn)0 and t;,,...,¢;

nt

The operation SPECAT performs the first step. The second step is carried out
by the general unification procedure (UNIF).

Specification:
Given ¢ = (ty,...,tp), a p-tuple of terms, o a substitution, y1,...,yn, 7
distinct variables not occurring in ¢, the operation SPECAT(3, 7, §) = &' verifies

t € Cce(d)
t;,tjare unifiable = (ty,.. 0t Y1, .-, yn)o € Ce(d).
S mgu(f(ylv B 7y'n)yt‘i)

10The first two conditions come from [9]. We add the third one, in order to respect the type
constraint.

Automated Verification of Prolog programs: an implementation




64 CHAPTER 7. OPERATIONS ON ABSTRACT SUBSTITUTIONS

Implementation:
The implementation returns §’ = L if fi(i) € REACHABLE(fi(j), frm): this
case corresponds to the “occur check” problem. Otherwise let p’ = p -+ n.
The R-component ¢ is obtained by adding to « the correspondence between
the term ¢; and the set of terms {ty41,...,tp4n}, the pattern component is
defined by adding the new pattern, and the new function fi’ : Ig1n — Ipyn
is obtained by including the new indices (where dom(fi) = I;). Note that
1<i,j<q.
More precisely,

frm! frm U {(fi(@), flp+1,...,p+n))};
of = ALPHA_SPECAT(frm,c,1,7) (fi);
) fi(k) ifk<g
‘ -
fi(k) = { k—qtp ifk>q.
where ALPHA_SPECAT(frm,a,,5) = o = (mo,ty’,ps’) is defined as fol-
lows!!:

The mode component mo’, considering (M, ..., M,) = EXTRMO(f, mo(3)):

(1) k<p
if ¢ # k and ( —ps*(i, k) V k € REACHABLE(, frm) ) then
mo' (k) = mo(k)
else if k =4 then
mo' (k) = ground if CONSMO(f,var,...,var) = ground
mo'(k) = CONSMO(f, var,...,var) if mo(i) = var
mo’ (k) = GLB(novar, LUB(mo(i), CONS_MO(f, var, .. .,var))) if mo(i) > var
mo' (k) = mo(i) otherwise
else if k # i and frm(k) = g(k1,...,km) then
mo' (k) = MATCHMO(mo(k), g, mo’ (k1),...,mo (kp)))
else if k +# i and frm(k) = undef then
mo' (k) = TAT MOz (mo(k), mo'(3)) if mo(i) > var
mo'(k) = mo(k) otherwise
(2) p<k<p+n
if mo(%) = var then mo'(k) = var
if mo(i) > var then mo’(k) = LUB(My_p,var)
else mo'(k) = My,

The type component ty’ 12:

mo'(k) = ground

list if ty* (k) = anylist

ty = L mo'(k) = var
anylist if ty* (k) = any
ty* otherwise.

11We made this algorithm a little more accurate than the one proposed in GAIA. In par-
ticular, remark that the new mode of i is at least novar.

12We note that a ground anylist is in fact a ground kst and that a var any is in fact a var
anylist.
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where ty* is computed as below, considering (T, ..., T, = EXTR_TY(f, ty(?)):

(1) k<p
if ¢ # k and ( -ps*(4, k) V k € REACHABLE(j, frm) ) then
ty* (k) = ty(k)
else if k = ¢ then
ty* (k) = UAT_TY(ty(¢), CONS_TY(f, anylist, ... ,anylist))
else if k # ¢ and frm(k) = g(k1,...,kmn) then
ty* (k) = MATCH-TY(ty(k), g, ty' (K1), - - ., 2y’ (km)))
else if k + i and frm(k) = undef then
ty* (k) = IAT_TY(ty(k), ty' (7)) if mo(i) > var
ty* (k) = ty(k) otherwise
(2) p<k<p+n
ty* (k) = Te—p

The sharing component ps’:

ps’ = (ps\pPs;) Ups, U pss U psy,

where
psi1 = {(i,k)|1<k<pandps(ik)},
psa = {(k,p+1)|1<k<p andps(i,k)andk#iand1 <! <nand
mo/ (k) + ground # mo/ (p+1) },
ps3 = {(kk)|p<k<p+n}if mo(i)>var
) otherwise
psa = Qif mo(i) = var

{ (k) |p<k,l<p+nand My_, # ground # M;_, } otherwise

Note that ps is the symmetrical relation deduced from ps.

Justification:

The implementation is based on a reasoning about the unification process of
f(y1,...,yn) and t;, under the assumption that ¢; and ¢; are unifiable.

By hypothesis, t; is of the form f(¢;,,...,t;,). Therefore, t; is either a variable
y or a compound term f(uy, ..., u,). Hence, two cases must be distinguished in
the reasoning. They are, however, amalgamated in the implementation mainly
by means of operation LUB.

Now consider the case where t; is a variable (say, y). This case is possible only
if var < mo(i). Then o is simply {y — f(y1,...,¥)}. The mode of t; becomes
CONSMO(f,var,...,var). Variables y;,...,y, are not instantiated: their modes
remain var.
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On the contrary, if ¢; is the compound term f(u1,...,u,), 0 is equal to

{y1 < u1,...,Yn “ Un}, since the y; are new distinct variables.

EXTRMO(f, mo(t)) provides the modes My,..., M, of uy,...,uy, which are the
new modes for y1,..., %Y. The mode of ¢; is not modified.

Now what is the effect of applying ¢ to any other term ¢,? Clearly, tyo differs
from tj, only if £; is a variable y and if ¢; contains y. (In the other cases, only
Y1,-.-,Yn are modified). This cannot happen if ¢, does not share with ¢; or if
tx is a subterm of ¢;, because ¢; should contain y and the unification would fail.
In any other cases, if the pattern of ¢; is known, we adjust its mode according
to the new mode of its subterms; if it is not, tx becomes tx{y — f(y1,...,¥n)}
So its new mode is IAT-MOy(mo(k), CONSMO(f,var, ..., var)).

7.7.6 The operation UNIF

Operation 26. UNIF(i,3,4) = (&, ss)
Let us present the main procedure for unification UNIF(%,j,8) = &' which
consists mainly of the three cases mentioned in the overview!3. Informally
speaking, procedure UNIF(s, 7, ) unifies subterms ¢ and j in the d-tuple 4. In
the following, we say that (u1,...,un) is a prefix of (¢1,...,t,) (m < n) iff
u;=1; (1 <i<m).

Specification:
Given @ = (u1,...,uq), a g-tuple of terms, and o a substitution, the operation
verifies

o € mgu(u;, u;) } = 3a’ € Cc(8') : 1o is a prefix of u’.

@ € Ce(6)
and
ss = true = the (abstract) terms fi(i) and fi(j) (i.e.,
the terms ty;(;y and ty;(;)) are unifiable in 6.
Implementation.

The skeleton of the algorithm is the same as the one proposed in GAIA, but

13The prototype of this operation has changed relatively to the one proposed in GAIA
(UNIF(i,4,6) = &’). We now return explicitly an information about the sure success (ss) of the
unification.
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differs by the insertion in each case of a computation of the boolean ss.
if i=j (fi)then
§=4
58 =true
else if (frm(i) = undef = frm(j) (fi)) then
(6', ss) = UNIF1(i, j, 8)
else if ((frm(i) = undef (f%)) & SPECAT(4,5,0) = L)V
((frm(j) = undef (f%)) & SPECAT(j,¢,6) = 1)V
(Frm(i) = Flir, . 1n) & frm(G) = gr- - dn) (F1)) &
(f £ gV n#m))then
6 =1
ss = false
else
§' = FCTA(i, j,6,) and ss = \j_, sSk where

SPECAT(j,%,6) if (frm(j) =undef (f7))
) otherwise

; { SPECAT(i, j, 6) if (frm(i) = undef (f1i))
0 =

((true if ( frm(i) # undef & frm(j) # undef) (f7)

frm(i) = undef
mo(t) = var
_'p'g*(iaj)
(ty(?) = list) = (ty(j) < anylist)

(f3)

true if

88g =
frm(y) = undef
mo(j) = var
m‘p'S* ("1.7)
(ty(§) = list) = (ty(i) < anylist)

true if

(f9)

| false otherwise

(meo('L) = f(ily s ,7‘71) & meO(J) = f(jl, vee ).777-) (flo))
(Jk,ssk) = UNIF(ik,jk,(Sk_l) (1<k<n).

Justification:

The implementation mimics a recursive algorithm for concrete unification as
long as at least one of the patterns of u; and u; is known.

The base case, when none of the patterns are known, is handled by UNIF1. In
this case the specification of UNIF reduces to the specification of UNIF1.

The simplest recursive case takes place when ¢ and j have compatible pat-
terns, that is, when frm(i) = f(i1,...,4,) and frm(5) = f(j1,...,jn). Then
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ui = f(ugy,...,us,) and u; = flujy,...,u;,.). It is a well-known result of logic
programming that ¢ = o,, where 09,01,09,...,0, are defined as follows:
0 {}

/
Ok
Ok

MGU(Uiy O—1, Uiy Ok—1);
O'k_ldic.

IOl

Ty can be computed by first unifying u;, and w;, and then applying o; to .
Terms u;,01 and uj,0q of the new g-tuple can then be unified, giving o9, and
so on. The recursive calls UNIF (i, jk, 0x—1) mimic this sequence of operations
on the abstract domain.

The nonsymmetric case, that is, when only one pattern (say, frm(j)) is known,
is the most complex. It is reduced to the symmetric case by means of operation
SPECAT. Suppose that u; is unifiable to u;, which is of the form f(u;,,...,u;. ).
Then, theré exist two substitutions og and o’ such that

NS mgu(f(yla e 7yn)>ui)7
o' € mgu(f(y1,--.,Yn)00, %),

@o is a prefix of (u1,...,Uq, Y1, ,Yn)000",
where yy, . .., yn are new distinct renaming variables. The proof can be sketched
as follows: w; is either a variable, say y, or a compound term, say f(s1,...,8xn),
because u; and u; are unifiable. In the first case, choose oo = {y « f(y1,...,9n)}

and o/ = {y1 < uj,,...,Yn + %;, }. In the second case, choose

o0 = {y1 < S1,...,Yn < Sp} and ¢’ = o. Operation SPECAT(%,,0) computes
oo such that (u1,... uq,y1,...,Yn)000’ is a prefix of some @' € Ce(o’). Of
course, iic is also a prefix of @',

The above reasoning shows that operation SPECAT allows one to avoid a com-
binatorial case analysis in the definition of the abstract operation. The cases
where a subterm can be a variable, a compound term, or both, are handled
uniformly and are reduced to the case where the pattern is known.

7.7.7 The operation UNIF_LIST

Operation 27. UNIF_LIST(List,d) = (&', ss)
This operation is a generalization of UNIF(3, j,§).

Specification:
This operation!? receives as inputs a list of pairs (i1, 51), ., (in,jn) and a
d-tuple, and produces as output another é-tuple, where the terms iy, 7 have
been unified. An information about the sure success (ss) of all the unifications
is also returned.

14The prototype of this operation has changed relatively to the one proposed in GAIA
(UNIF_LIST(List,8) = 6’). We now return explicitly an information about the sure success
(ss) of the unification.
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Implementation.:
UNIF_LIST(List,6) = (6,,ss) where

do = §
_ true if §+# L
880 - false otherwise
{0k, ssk) = UNIF(ig,Jk,0k-1) (1 <k<n)

and

k(3
88 = /\ 88k
k=0

7.8 TUnification between Two Substitutions

Operation 28. UNIF_SUBST(S;,5s) =’
This operation unifies two abstract substitutions. It is notably used when
normalizing a formal specification into an abstract behaviour.

Specification:
Let By and B3 be two abstract substitutions such that

{X1,...,Xpn} = dom(B1) = dom(B).

Let 81 and 65 be two substitutions such that dom(6;) = dom(3;) (i = 1,2).
Let ¢ be a standard substitution. The following holds:

61 € Ce(Br) & 0 € Ce(By)

0,0 = Or0 } = 010 =050 € Ce(f').

We note that this operation is symmetric.

Implementation.:
The implementation proceeds in two steps: First it builds a unique term that

contains both substitutions. Then it unifies the corresponding arguments of
the substitutions.
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More precisely:
§ = (frm, (mo, ty, sv), fi) with
frm = frmyU{E+p1, flt1 + P15 10 +D01)) : (& F(E1, .., 0n)) € frme}
fi=1id where id is the identity function into Ip, 1p,

mo : Ip, 4p, — Modes  is such that
me) = DO Hiso
ty: Dy yp, — Types is. sgch that
WO = i Hish

ps =ps1U{(i+p1,7 +p1) : psa(i, )}
Then UNIF_SUBST(f31, B2) produces ' = (sv', frm/, o), where

(o, fi'),¢) = UNIF_LIST(List,d);
sv! = fi' osuyg;

List = ((S’Ul(Xil), SUz(X1) —|-p1), ceey (S'Ul(Xik), S'Uz(Xk) +p1)).

7.9 Unification of Two Variables (UNIF_VARyst)

Operation 29. UNIF VAR u.s:(8) = (&, ss, of, tr,U)
This operation!® unifies X160 and X, for all § € Ce(f). More precisely
this operation returns an abstract substitution 8’, two boolean values ss
and sf specifying whether sure success or sure failure can be inferred at
the abstract level, a structural mapping ¢r between 8 and £, and a set of
indices U representing the set of terms in § whose norm is not affected by
the instantiation.

Specification.:
Let 8 be an abstract substitution over I with dom(8) = {X1, X2}
UNIF VAR5 (5) returns an abstract substitution S8’ over I’, two boolean
values ss and sf, a structural mapping ¢r: I — I' and U C I such that:

8 € Ce(B)

o € mgu(X16, X20)
(t;)ie1 € DECOMP(6, B)
<Si)i€1" < DECOMP(@O’, ,BI)

fo € Ce(f)
= { VieU, |t] = |tio]
Vi€ l, tio = s40y;

I5The prototype of this operation has changed relatively to the one proposed in GAIA
(UNIF—VARsubst (IB) = ;B/)
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ss = true = (VO € Ce(B): X160 and X260 are unifiable);
sf = true = (V6 € Cc(f): X10 and X0 are not unifiable).
Implementation:

The implementation of UNIF VARyps:(3) with 8 = (sv, frm, &) produces an
abstract substitution 3’ = (sv’, frm/, o) with:

({(frm/, o, fi'),88) = UNIF(sv(X1), sv(Xa), (frm,a,id));

sv' fi' osv
where id denotes the identity function.

The structural mapping fi’ is explicitly returned (i.e., tr = fi').

Further more, this operation computes the two boolean values ss (sure suc-
cess), returned by the UNIF operation, and sf (sure failure), set to true if
8 = L.
Finally, we explain the way to build the set of indices U:

Vk € I,,, we have k € U iff

( frm(k) = frm/(tr(k)) = undef A mo(k) = mo'(tr(k)) € {ground,var})
mo(k) = ground

frm(k) = f
(me(k?) =f(i1,...,in) Adgy..,in€U)
frm(k) =]

( frm(k) = [i1]i2] A d2€U)

When the pattern is a list (last case), note that we don’t care of the possible
size change of i1 (1.e., we don’t check if i; € U), because of the norm definition
of a list that refer to its list-length.

7.10 Unification of a Variable and a Functor

Operation 30. UNIF.FUNC,ust(8, f) = (&', ss, sf, tr, U)
This abstract operation!® unifies a variable X; with a term f(Xa,..., X,).
Specification:
Let B be an abstract substitution over I with dom(8) = {X;, Xs,..., X}
UNIF_FUNCyps: () returns an abstract substitution 3’ over I’, two boolean
values ss and sf, a structural mapping tr : I — I’ and U C I such that:

8 € Cc(B)

bo € Ce(B’
o € mgu(X16, f(Xa,.. . Xa)0) | _ ) Iy I%Z"): ol
{t:)ie1 € DECOMP(6, ) e T Il = Jaol
(s:)ier € DECOMP(f0, ') » i tr(i);

16The prototype of this operation has changed relatively to the one proposed in GAIA
(UNIF FUNCoupst (B, f) = B').
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ss=true = (V8 ¢€ Cc(B): X160 and f(Xo,...,
sf =true = (V0 € Cc(B): X0 and f(Xo,...,
Implementation:
The implementation is achieved by creating a new subterm p -+ 1 containing
the new function to unify and unifying terms p+ 1 and sv(X3).
Assuming that ¢, = sv(X}) (1 <1 < n), the implementation of UNIF_FUNC(f3)
produces 3’ = (sv’, frm’,a’), where
((frm/, o/, fi'),ss) = UNIF(i1,p+1,61);

sv/ = fi'osu.

X»)6 are unifiable);
Xp)0 are not unifiable).

where 6; = (frmy, (mo1,ty1,ps1), fi1) is computed below:

frmy = frmU{{p+1, f(iz,...,tn))}
fiin = id where id is the identical function into I
. mo(i) if 1<i<p),
mo1(®) =\ CoNSMO(f,mo(is), ..., mo(in)) if (i=p+ 1),
o (5) = ty(i) if (1<i<p),
@ = CoNSIY(, tyia), - ty(in)) i (i=p+1),
psy = ps

We return also explicitly the structural mapping ¢r = fi/. The computation
of ss, sf and U is achieved in the same way as UNIF_VAR,,pq:.

7.11 Extension of the result of a Goal (EXTGyst)

Operation 31. EXTG,upst(l, 51, 52) = (B, try, tra)
This operation!” instantiates (abstractly) a clause substitution (i.e., 1) with
the result of the execution of a procedure call'® (i.e., 3;). It is used after the
execution of a literal to propagate the results of the literal to all variables of
the clause.

Specification:
Let X;,,...,X;, be the sequence of variables occurring in the literal {. Let
us define D = {X;,,...,X;, }. Let B1 be an abstract substitution such that
{Xiy, -, X} € {X1,..., X} = dom(By1). Let By be an abstract sub-
stitution such that {Xi,...,Xx} = dom(f82). Let 6; and 6 be such that
dom(6;) = dom(B;) (i = 1,2). Let o be a standard substitution. The follow-
ing holds:

0, € C’C(ﬂl) &b, € CC(,BQ)

(Vj 01 S] S k: Xj92 = Xijgl(f)

dom(o) C codom(8y;p)

(codom(61) — codom(By,p)) N codom(o) = B

= 610 € Ce(f).

17The prototype of this operation has changed relatively to the one proposed in GAIA
(EXTGyupse (I, B, B2) = B'). We now return explicitly the two structural mappings ¢y and try.
Here, a procedure call means the (abstract) execution of a literal (either p(X; ' Xiy)

or a built-in (e.g., the unification X;, = X;, or X;, = f(Xiy,..., X5 ))).

IERER
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Further more, EXTGgybs¢ Teturns the two structural mappings try : I, — Iy
between S and B’ (k=1,2).

Implementation:
The implementation proceeds in two steps: First it builds a unique term that
contains both substitutions. Then it unifies the corresponding arguments of
the substitutions.
More precisely, let X;,,..., X;, be the sequence of the variables occurring in
l and assume that:

§ = {frm, {mo, ty, sv), fi) with
frm =f7'm1 U{<2+p17f(11 +p1a"‘)in +P1)> . <7'af(21,a7'n)> € meZ}
fi=1d where id is the identity function into I, 4,

mo: Ip, 4p, — Modes  is such that
mo (1) if 1 <py;

mo(z) = mOz(’i —p1) if 2> p;.

ty: Ipgp, — T(yz)ms isfsuch that
Nt if i <py;
WE = fli-p) i i>p,

ps=ps1 U {(i+p1,J+p1) : psali, 5)}-
Then EXTGsypsi(l, B1, 82) produces ' = (sv', frm/,o’), where

(¢, fi'),®) = UNIF.LIST(List,d);

sv! = fi' osvy;

List = ((sv1(X;,),sv2(X1) +p01),. .., (sv1(Xs, ), sva(Xk) + p1)).
Finally, the operation returns ¢r, and try built in this way:

try = fi'ot! with ¢! the identity function into I,,.
tro = fi'ot? withVie I, :t2(i) =i+ ps.

Automated Verification of Prolog programs: an implementation



74 CHAPTER 7. OPERATIONS ON ABSTRACT SUBSTITUTIONS

Automated Verification of Prolog programs: an implementation



Chapter 8

Operations on Abstract
Sequences

See Section 4.3.2 (page 29) where the domain of Abstract Sequences is defined.

The following operations on Sizes and on Abstract Sequences come from
Automated Verification [14]. We provide in this Chapter all the implementations
(except those which rely on the polyhedra library).

8.1 Constraint mapping

We define first the important notion of Constraint Mapping that will be fre-
quently used because it simplifies the expressivity {(and also the implementa-
tion) of the presented algorithms. Informally, the idea is to restrict or to extend
a concrete domain (or abstract domain) while keeping constraints. In our con-
cern, Constrained Mapping have been introduced as a formalism to manipulate
indices. More precisely,

Definition:
Let I and I’ be two finite sets of indices and t¢r : I — I’ be a function. The

concrete constmz‘nedl mapping of tr is ,the pair of dual functions,
tr2 s p(T1) — p(T7) and trg : p(TT) — p(TT) defined below.

For all £ € p(T!) and Ty € p(T7),
tr2(B1) = {{si)ier € TV Htdier € Br 1 Vi € I, sprgsy = i}

tr3(Sr) = {(tidier € T Hsidier € Sp 1 Vi € It = syp(iy }-

Let A7 and Aps be two abstract domains approximating p(77) and o(T7), re-
spectively, with concretization functions Ce. An (abstract) constrained map-
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ping is any sound approximation ¢r” : Ay — Ap and tr< : A;y — Arof a
concrete one, i.e.,

Yaj € Ap, tr7(Ce(ar)) C Ce(tr” (ar))
Var € Ap, tre(Ce(arp) C Ce(tr<(ar)).

Implementation:
A generic implementation of Constrained Mapping is discussed in [7]. But in
our case, we need only to manipulate indices: you can find in the appendix
of [13] a specific implementation for the domain Sizesy, .

8.2 Operations on Sizesy,

See Section 4.3.1 (page 28) where the domain Sizesy, is defined.

8.2.1 The operation (SUM,,)

Operation 32. SUM(Ey, Ey) = E'
This operation is used to express the length of an abstract sequence (i.e,
the number of its solutions) obtained by concatenating two other abstract
sequences.

Specification:
Let I be a set of indices and Ey € Sizespy (013 (k =1,2).
SUMso1(En, E2) returns E' € Sizesy, (so1y such that

(nf)ieu{saz} € Ce(Ey) (k=1,2)
nzl = TL,L2 =n; (1€l = (ni)i€I+{sol} € Ce(E').
Nsol = nﬁol + ngol
Implementation:
Let sol; and soly be two new variables.

E' = trS (Er[sol v soli) U Eg[sol — soly) U {[sol = soly + sola]})

where trgor: I+ {sol} — I+ {sol, soly, solp} is the canonical injection, and
E;[sol + sol;] is the set of (in)equations obtained by syntactically replacing
every occurrence of sol by sol; in E;.

8.2.2 The operation (MULT,,;)

Operation 33. MULT,,(E1, Es) = E'
This operation is used to express the length of an abstract sequence (i.e,
the number of its solutions) obtained by “multiplying” two other abstract
sequences.
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Specification:
Let I be a set of indices and Ey € Sizesyy {501y (k= 1,2).
MULT 01 (E1, E2) returns E' € Sizesyy (501 such that

(ni‘c)iGI+{sol} (S CC(Ek) (k = 1,2)
nl=n2=mn;(icl) = (Ni)ier{soty € Cc(E").
Nsol = nfslol * ngol
Implementation:
Let soly and soly be two new variables.

E' = S (Brfsol — soli) U Ep[sol  sola] U {[sol = soly  soly]})

where trgo 1 I + {sol} — I + {sol,sol;,sols} is the canonical injection,
and E;[sol — sol;] is the set of (in)equations obtained by syntactically re-
placing every occurrence of sol by sol; in E;.

The problem with this implementation is that the new equation

[sol = soly # sols] is not linear (a solution cannot be calculated with the
polyhedra library [15]). A temporary solution can consist of replacing multi-
plications by additions, if it is possible, as follows:

If soly is a known single value (e.g., sol; = 0 or sol; =1 or soly = 2 or ...),
then:

[sol = soly + soly + - - - + soly |

soly times

If soly is a known single value (e.g., soly = 0 or soly =1 or soly = 2 or ...),
then:

[sol = soly + soly + - - - + solq ]

soly times

8.3 Extension at Clause Entry (EXTC)

Operation 34. EXTC(c,f) =B
This operation extends the domain of 8 to the set of all variables occurring
in the clause c.

Specification:
The result is an abstract sequence B such that V8 € Ce(8) : (8, S) € Ce(B),
where S is the sequence whose only element is the extension of the substitu-
tion 8 to the set of all variables of c.

Implementation:
Let 8/ = EXTCsupst(c, £).
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The abstract sequence B = (ﬁzns IBTCf? ﬂout: Ef‘ef_out) Esol) is defined by

ﬂin = ;B
,Bref = ﬂ
,Bout = ,B/
E'r'ef_out = {}
Esq = {[sol=1]}

The abstract substitution Gr.s is identical to fi, because the head of the
clause is unifiable with any call since it contains distinct variables (indeed
remember that the clause is in a normalized form). Similarly, Bou: is ob-
tained by extending fB;, with information about the local variables. Since
they are brand-new, their mode, type, and sharing information is obviously
obtained (this is done by EXTC,upst(c, 8)). All size constraints between terms
can be inferred by establishing a correspondence between the indices of B,
and those of By, thus the component E,cf o, is empty because we only
depict essential constraints. Finally, the component E,, expresses that the
unification of the head of the clause succeeds exactly once.

8.4 Restriction at Clause Exit (RESTRC)

Operation 35. RESTRC(c,B) = B’
This operation restricts the output domain of B (which is assumed to be the

set of all variables occurring in the clause c) to the variables occurring in the
head of c.

Specification:
The abstract sequence B’ must satisfy V(#,S5) € Cc(B) : (8,5') € Ce(B'),
where S’ is the sequence obtained by restricting the substitutions of S to the
variables of the head of c.

Implementation:

Let B = <:Bina ﬂref, ﬂauta Eref..o'u.ta Esol)
and let (', trour) = RESTRCsupst (¢, Bout), Where 74y, is the structural map-
ping between 8" and Bout (trout : Ly — Lout)-

The abstract sequence B’ = (B, Brefs Bouts Ere_outr Loor) 18 defined by
1{n = fin
':'ef = :Href
t,)ut = ﬂ/
E;‘ef‘aut = ((inref o trref) + (inout o t7'out))< (Eref_out)
Egol = ESOl

where 17,5 : I;ef — I.5 and is equal to idyep  Irey — Irer (that is the
identical function), because f,.y hasn’t changed. Note that E’ , doesn't
need to be updated because the sole indices occurring in this component are
ones taken from By (left unchanged) and from the special indice sol.
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8.5 Restriction before a Goal (RESTRG)

Operation 36. RESTRG(I,B) =7
This operation restricts the output domain of B to (a renaming of) the vari-
ables occurring in the literal [.

Specification:
The result is an abstract substitution § satisfying

V(6,S) € Ce(B),V0' € Subst(S): 8" € Cc(B),

where 8" is a substitution obtained from 8’ in two steps: by first restricting
#' to the variables X, ,..., X;, of the literal [ and then by renaming those
variables to the standard ones (X3, ..., X,) in order to allow the execution of
the procedure the literal is a call of.

Implementation:

Let B = (,Bm, ,B'ref, ,Bout, E'ref-aut, ESOZ)'
The result is 8 = RESTRGsyubst (I, Bout)-

8.6 Looking up a behaviour of a Predicate

Operation 37. LOOKUP(S,p, SBeh) = (success, Boyt)
This operation is searching Beh, for an abstract sequence B € Beh,, whose
input substitution is at least as general as 8. If such an abstract sequence
exists, this operation returns success = true and this abstract sequence.
Otherwise, it returns success = false, and the value of B,,; is undefined.
Specification:
success = Ise | (B, se) € Beh, A B < input(B).
Implementation:
The implementation is straightforward.

8.7 Checking term sizes for a recursive Call

Operation 38. CHECK.TERM(I, B, se) = term
This operation is checking if the size (according to se) of the arguments of a

recursive call given by the output substitution of B is smaller than the size
of the arguments of the head call.
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Specification:
If the value term is true and the literal [ is p(X;,,...,X;, ), then
Y(8,S) € Cc(B), we must have:

Vo' € Subst(S), se({| X &), .-, 1 X:, 0'l) < se((I X106, .., [ Xnbll)).

Implementation:
The implementation relies on operations on (in)equation systems. See [15]
that contains a library to do such comparisons on linear expressions.

8.8 Unification of Two Variables (UNIF_VAR)

8.8.1 Overview

The operation UNIF_VAR executes the built-ins X; = X; at the abstract level.
The implementation is as follows: first, we use the version of the operation
applying on abstract substitutions, here called UNIF_VAR !, to compute an
abstract substitution [, describing the result of X; = X called with an ab-
stract input substitution . Then, in order to refine 3 to the set of 8 € Cc(f)
for which the unification succeeds, we establish a structural mapping between
the indices of 8 and the indices of 8., representing the corresponding terms.
This allows us to refine the information on modes, types, and patterns provided
by B, producing ﬂ;,ef. This is realized by operation REF,.s. Finally, we derive
constraints between the size of terms in 8, and 8, as well as constraints on
the number of solutions.

8.8.2 Refinement operations

Operation 39. REF,ef (01, B2, tr1,2) = (B, tr')
This operation refines the abstract substitution 8; by keeping substitutions
in Ce(B;) that have at least an instance in Ce(B2).

Specification:
Let 51 and B3 be two abstract substitutions over Iy and I, respectively, with
dom(B1) = dom(fs) and tr12 : It — Iy be a structural mapping between
B1 and fBy. REF,ef(B1,02,1r1,2) produces an abstract substitution §' over
I’ and a structural mapping tr' : I' — Iy between (' and B such that
dom (") = dom(B) (k=1,2), #’ < and

Z}; 2 g;c(ﬂk) (k = 1’2) } = f,¢ Cc(ﬁ/)'

1See operation 29 (page 70) where the operation UNIF_VARy;s; is specified and implemented.
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Implementation:
(B3, tra2) = REFgpn(B1, B2, tr1,2)
(B',tr") = REFa(fs, [z, 1r32).

where the operations REF ;,.,,, and REF, are described below.

Operation 40. REFf(B1, B2, tr12) = (B, tr')
It refines the abstract substitution 8y only using the frame component of 3s.

Specification:
The specification is the same as the one of REF .

Implementation:
Construct the sequence of intermediate abstract substitutions 3°,...,6%,...
and structural mappings #r°, ..., tr%, ... as follows.

1. 8% =P and trf = trya.

2. Assume given 3¢ and the structural mapping tr® : I* — I,
Suppose that there exists j € I ¢ such that .
mo*(j) < novar, frm*(4) = undef and frmy(tr*(5)) = f(k1,..., kn).
Then Bi+! and trit! are defined by:
e I't' = [*U{j1,...,jn} Where ji,...,j, are distinct new indices;
e svitl = gyt
o frm*l = frm* U{j = f(51,- ., Gn)};
o tr'tl =triu{j1 = ki,...,0n  kn};

e mo'tl(j) = mo'(j) for all j € I' and
(mo**1(j), ..., o™ (jn)) = EXTRMO(f, mo’(5));
o tyit1(5) = tyi(j) for all j € I and

(1), 9 () = EXTRIY(S, b (5));

psttl = pstU{(i, k)| L€ {1,...,n},
mo*+1(5) ;é ground,
(ja k) € psl}_

3. Otherwise, B’ = A% and tr' = trt.

Operation 41. REF, (81, Ba, tr1,2) = (&, tr')
It refines B; only considering the o component of Fs.

Specification:
The specification is the same as the one of REF .
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Implementation:
The implementation is as follows:
I = I
sv’ = su;
frm/ = frm,
mo’(i) = mo1(d) MUNISTMO(moqg(tr12(i))) foralliel’
ty'(1) =ty () MUNISTTY(ty,(tr1,2(4))) forallie I’
ps’ =  ps
tr! = .

8.8.3 Unification of two variables

We are now in position to define UNIF_VAR.
Operation 42. UNIF_VAR(8) = B’
This operation executes the unification X; = X5 on the abstract substitution

B.

Specification:
Let 3 be an abstract substitution such that dom(8) = {X1, Xa}.
UNIF_VAR() computes an abstract sequence B’ such that:

0 e Ce(B) ,
o€ mgu(X:0,X0) [ = (H<00>) € Ce(B)
0 € Ce(f) ,
mou(X10,X:0) =0 [ = (6,< >) € Ce(B').
Implementation:

Let (Bout, 85, 8f, tr, U) = UNIF_VAR b1 (0)-

The abstract sequence B' = ( ; ﬂ;ef’ﬁ:)uta E:‘ef_outv Egol) is defined by

in?

én = IB
out = /Bout
(ﬂ;efy tTref-out) = ( én’ t’l") if ss
(L, undef) if sf
REFTef(ﬂ;n,ﬁzl)utv tT) if —ss and “‘I.S‘f
E;"ef_out = 1 if Sf
{[s2(inres (1)) = s2(in Gy (trres_out (1)))] :
t € trin_ref (U)} otherwise
E, = {[sol =1]} if ss
4 if sf
{[0 < sol], [sol < 1]} if —ss and —sf.

where the structural mapping tri, s is a canonical inclusion. The following
commutative diagram is satisfied by rin_ref, t7ref_out and the injections n,¢f
and in gy
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t'rin_ref trref_out
U C I= I{n 1I"ef I:)ut

I .
WMref M out

I;'ef + Iéut

8.9 Unlification of a Variable and a Functor

Operation 43. UNIF.FUNC(S, f) = B’
This operation executes the unification X; = f(Xa,...,X,) on the abstract
substitution 8, where n — 1 is the arity of f.

Specification.
The specification is similar to the UNIF_VAR one.

Implementation:
The implementation is identical to UNIF_VAR, where you replace the call to
UNIF.VAR,.bet by a call to UNIF _FUNC,yps:-

8.10 Abstract Concatenation (CONC)

Operation 44. CONC(By,B;) =B’

This operation is used to concatenate the (abstract) results obtained from
the execution of a procedure and a clause. It is the counterpart for abstract
sequences of the operation UNION, used in [8], which simply collects the in-
formation provided by two abstract substitutions into a single one. In fact,
the operation CONC is similar to UNION for all but one component, namely
E.1; this is because the number of solutions of a procedure is the sum of the
numbers of solutions of its clauses, not an “upper bound” of them. First, we
compute the greatest lower bound of the G, component of the two abstract
sequences. Then, we compute the sum of the numbers of solutions for this
greatest lower bound only. In particular, when the greatest lower bound is
equal to L, the clauses are exclusive, and no sum is computed: we only collect
the numbers of solutions of the two clauses.

Specification:
Let By = (Bin, BEf, Brrer BE s _ouss EX,1) (k= 1,2) be two abstract sequences
with domeye(B1) = domoy(B2). CONC(Bq, By) returns an abstract sequence

such that dom,(B’) = dom, (Bg), domeyi(B') = domyu(By) (k = 1,2) and

(6,8,) € Ce(By)

(0, S3) € Ce(Bs) } = (0,5 = Sp) € Ce(B").
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Implementation.:
The implementation is defined as follows.

B'= ( in’ f’ﬂout’ ref out’Egol> with:
'Im = Pin
(B! ref trref, trref, sty = EXT_LUB(,HTe B2, )
( out? trout’ trout) = LUB(/Bout’ lgout)
E:'ef_out = ((’Lnref °© trref) + (ZnOUt °© tréut))<(E1%ef_out)
L

((7,nref o t’f',,,ef) + (Znout otr out))<( ref out)

( (trref + {30l = SOZ}) ( sol)LI
(tr7es -+ {s0l > s0l})<(EZ,)U if st
(trime + {500 1= 501})< (SWMs0t (Bror Boor))

4

sol (trref + {sol — sol})<(EL )u
(trref + {sol — sol})<(EZ2,,)U i st
(tr‘mt + {SOZ = 501}) (SUMSOI(ESOI’ Esol))
L tr:ol([[‘goz = O]])
where
( t’rmh trznt) = GLB(IB}ef’ﬂgef)
By = (trh + {sol > sol})> (EL,)

Eiol = (trmt + {SOZ = SOZ})> Esol)

and trgo ¢ {sol} — Ij,¢ + {so0l} is the canonical injection. The structural

mappings tr¥ ., trk . (k =1,2) and try, satisfy the following commutative

diagram:

ref? int

/ \
rint

mn
¥ Lint
The least upper bound operator LI between (in)equation systems is implemented
as convex union (see [15]).

re f
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8.11 Extension of the result of a Goal (EXTG)

Operation 45. EXTG(l, Bi,B;) = B’

This operation computes the effect of the execution of the literal I (which
is given by the abstract sequence Bjy) on the abstract sequence Bj. Intu-
itively, the effect of the execution of the literal [ on By can be computed
as an instantiation by some substitution, which yields By (when applied on
RESTRG(!, B1)). The operation EXTG extends the effect of the instantiation
on the whole sequence B; (taking into account necessary renaming to avoid
name clashes).

Specification:
The abstract substitution B’ must satisfy the following property. For all
(6,< 01,...,0, >) € Cc(By), if 6, = RESTRG(!, Ox), (6}, S;) € Ce(Bz), and
S = EXTG(l, 0k, S,) for every k < n, then (6,51 ... 11 Sp) € Ce(B).

Implementation:
Let X;,,...,X;, be the sequence of variables occurring in the literal 1.
Let Bk = ( ‘gcn) fef’ {qut’Efef_out’Efol (k = 1’2)

EXTG(l, By, Bg) constructs B’ = (Bi,, Ble s> Bouts Eres_outr Euot) a8 follows?:

in)Frefs 8
1 len — zln 1 2
<:6¢,7ut’ t'rout’ trout) = EXTGSubStl(la ﬁout? :Bout
(:B;'ef’ .> = REFTBf (ﬂrej;a ﬁtlmta trrefl_out’]? .
:-ef_out = ((Zn:'ef © trref) + ('Lnimt o trout))> (E-ref_out)
N
((in{ref °© tr?ef) + (in:mt 0 trgut))>l(E3ef2_out)
.;ol = (tri'n-t + {SOZ - SOZ})< (MULTSOl(Esol’ Esal))
where ) ) ) .
<leﬂt’ trint’ trint) = GLB(IBref’ ﬂref)
Esol = (trilnt + {SOZ i SOZ})>(E¢}OZ)
Esol = (t'riznt + {SOl = SOl})>(E.Eol)

with 87, constructed from ﬂfef by renaming and extending the domain of
B2,s- More precisely, dom(B8Z,;) = {X1,..., Xi} is extended by first renam-
ing Xy,..., Xk to X;;,..., X;, (that is the effective sequence of variables
occurring in the literal ) and then by adding the variables belonging to the
domain of 32, f that does not appear yet in ;. (the implementation of this
extension is exactly the same as EXTCgyp,:, Page 55).

trint denotes the structural mapping between 3, ; and Bin:.

The greatest lower bound operator M between (in)equation systems can be
implemented using [15].

2tr . £1_outs denotes the structural mapping between ﬁ}e P and 8/ ,.
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Chapter 9
Coding

In this Chapter, we briefly discuss the development effort concerning the coding
in Java of our analyser described so far. Unfortunately, the work is still under
progress; indeed the operations related to the size components based on the
polyhedron library of D.K. Wilde [15] have not been implemented yet.

9.1 Data Structures

Most data structures used to implement the analyser are the simple transfor-
mations of the ones presented in the previous Chapters.

Indeed our objective was not to implement efficiently the analyser!. Our choice
was to remain very close to the paper description. This manner to proceed was
very interesting for debugging purpose because of the readability of the Java
code. Further more, the code can be extended with minor effort by adding
more sophisticated abstract domains.

Java belongs to the Object-Oriented Programmation paradigm: it results that
all (more or less) is an object. Each domain is then represented by a class
(e.g., Mode, Type, ASubst, ASeq, ...). The sole notable exception is the domain
of abstract tuples, that does not correspond to any class. The reason is that
the domain of abstract substitutions was “flattened” (like it was done in GAIA
[8]), in order to make easier the implementation. What about the abstract op-
erations, they were just inserted in the classes describing their corresponding
abstract domains.

We have of course implemented the concept of mathematical relations, symmet-
rical relations and functions. Those classes belong to the package mystructure.

INote that this kind of analyser will usually be used only one time, typically just before
or just after the compilation process: therefore the efficiency is not a major issue.
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9.2 Description of the library

The library is composed of 75 files (among which 14 files were automatically
generated by JavaCC).

In Table 9.1 we give a brief description of the different Java packages.

Package Description of the package

root package Contains the launcher and the abstract semantics of the analyser.
myio Contains some basic operations on input/output with files.
mystructure Contains the structures we use to implement relations, functions, ...
parsing.prolog | Contains the parser of Prolog procedures.

parsing.beh Contains the parser of formal specifications.

program Contains the abstract tree representing a Prolog program.

spec Contains the abstract tree representing a formal specification.
adom , Contains all the abstract domains and the abstract operations.

Table 9.1: Description of the packages.
You will find in Appendix D more information about the content of those pack-

ages, and some UML-like diagrams report the organization inside the packages
(showing the structural relations between classes).
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Chapter 10

Conclusion

10.1 Contribution of this paper

In this report, we have presented the theoretical and methodological aspects of a
generic analyser for Prolog programs based on a verification approach. For that
purpose, we “unify” the concepts and notations of different references (mainly
(7], [8], [13] and [14]).

A complete domain of abstract sequences has been presented. This domain al-
lowed us to derive all kinds of information that arve useful for Prolog program
verification in a single analysis: modes, types, sharing, sizes, determinacy, and
multiplicity.

The algorithms of all the abstract operations have been fully described.

We have provided an implementation of the analyser in Java. At the time of
writing, the implementation is still underway, since the abstract domain is com-
plex: we have been able to rewrite most of the code of GAIA [8] but we still
have to implement the operations related to the size components based on the
polyhedron library of D.K. Wilde [15].

Hence, we have built a practical system in which some state-of-the-art tech-
niques of Prolog program verification have been integrated.

10.2 Towards a full analyser
Implementing a complete analyser is a long term project however, since it entails
1) to cover other important features of Prolog such as arithmetic built-ins, test

predicates, negation by failure, and the cut, 2) to implement a large number of
(cooperating) abstract domains, and 3) to extend the scope of the analyser to
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some classes of non terminating programs. Let us explain shortly how to reach
these three points.

Analyzing (almost) full Prolog. Although our analyser has been presented
for pure Prolog, it can be readily extended to deal with most non pure features
of Prolog.

Arithmetic built-ins, such as “is” and “<”, and test predicates, such as var
and ground, can be handled without additional coding by providing behaviours
capturing their operational semantics.

The treatment of the cut requires to enhance the concrete and abstract do-
mains with so-called “cut information” in the style of [9]; such a treatment can
be integrated in our analyser, since it is based on the same concrete semantics.
Furthermore, as negation by failure is easy modelled through the cut, it can also
be handled simply.

Nevertheless, other aspects of some Prolog systems such as the “dynamic pred-
icates” assert and retract cannot be handled by our analyser; neither can
other treatments of negation such as delaying non ground negated atoms.

Implementing a complete set of domains. The abstract domain presented
in this paper is conceptually generic. However the particular instance that we
have described is able to handle programs dealing with lists accurately, but not
other programs. A further step can then be to extend the analyser with more
powerful abstract domains for types. We can also improve the treatment of
sharing by adding a complementary domain for linearity information. Finally
we could attempt to design more powerful domains for the size components,
based on non linear constraints and/or computer algebra.

Extending the verification scope of the analyser. Some aspects of Pro-
log program verification have not been deal with this paper. A first issue is
the “occur check problem”. Our analyser assumes that the occur-check is per-
formed during unification. It is nevertheless straightforward to enhance the
operations UNIF_VAR and UNIF_FUNC with an additional result parameter spec-
ifying whether the occur-check is needed or not. Classical abstract domains
(including sharing and linearity information) will then allow us to solve the
problem quite satisfactorily. A second issue is the fact that our analyser cannot
deal with non terminating procedures at all (i.e., it always reject them), but
yet such procedures can sometimes be considered as correct if they “produce all
their solutions” or if the user is interested in merely “existential” termination
(i.e., the procedures produce at least one solution).

Let’s go towards a full analyser!
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Appendix A

Syntax of Pure Prolog and
of specifications

A.1 ABNF conventions

In this Appendix, we give the representation conventions of ABNF (Augmented
Backus/Naur Form) we adopt to explicit the concrete syntax of Prolog proce-
dures and of their formal specifications:

e Nonterminals are written between angular brackets < >

e "x" is a terminal and denotes the string z

e The meta-symbol | means choice

e [a..z] is a shortcut to denote "a" | "b" | ... | "z"

e [x] denotes that z is optional

e (x)* denotes multiplicity (none, one or more occurrences of x)
e (x)+ denotes proper multiplicity (one or more occurrences of x)
e <EOF> denotes the End Of the considered File

e Between two tokens (terminals) all possible sequences of spaces (" " or
"\t") or carriage returns ("\r" or "\n") are accepted.

We have chosen the JavaCC tool (Java Compiler-Compiler) to implement the
parsing of our defined grammars. The transition from the ABNF syntax to
the JavaCC syntax is quite easy to understand. However some transformations
about the structure of the given ABNF grammars were needed to remove some
left recursion issues and to make it LL(1) for its major part. So the parser will
be more efficient because it has to lookahead only one token to decide which
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rules taking.

Further more Java codes were added in the action parts of these grammars
where we construct the related abstract tree.

The user must read the ABNFE form that defines the same language at any way.
Indeed, he needs just to know the flat representation, without any concerns
about the optimality of such one (found in the JavaCC representation).

A.2 Concrete syntax of Pure Prolog procedures

We give now the concrete syntax in ABNF of the file containing the Prolog
procedures given by the user.

All texts following a symbol "%" until the end of the line and texts between
the symbols "/*" and "*/" are comments. They will not be considered by our

parser (the latter will just pass across).

Our parser will accept a subset of the Pure Prolog language:

<FileOfProcedures> = (<clauses>) * <EQOF>
<clause> D= <predicate> [":-" <goal>] "."
<predicate> 1= <ident> ["(" <terms> ")"]
<ident> S <letter-lo>(<letter>|<digit>|<underscore>)*
<letter> 1= <letter-lo> | <letter-up>
<letter-lo> Ti= [a..z]
<letter-up> D= [a..7]
<digit> = [0..9]
<natural> R 0 | ([1..9] <digit>%*)
<underscore> = no
<terms> D= <term> ("," <term>)*
<term> Do <variable> | <functor> | <natural>
<variable> 1= (<letter-up>|<underscore>)
(<letter>|<digit>|<underscore>)*
<functor> 1= <ident> ["(" <terms> ")"]
| [ [<cont-list-terms>] "I
<cont-list-terms> = <terms> ["|" <term>]
<goal> D= <literal> ("," <literal>)#*
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<literal> <unification> | <predicate>

<term> "=" <term>

i

<unification>

A.3 Concrete syntax of formal specifications

Formal specifications given by the user are required to be defined according to
the following grammar.

All texts following a symbol "%" until the end of the line and texts between
the symbols "/%" and "%/" are comments. They will not be considered by our
parser (the latter will just pass across).

<FileDfSpecifications> ::= (<specification>)* <EOF>
<specification> ::= <proc-name>
ll(ll
<in-part> ","
<ref-part> ","
<out-part> ","

<srel-part> ","
<sol-part> ","
<sexpr-part>

|I)l|
<proc-name> 1:= <identifier-lo>
<func-name> 1:1= <identifier-lo>
<arg-name> 1:= <identifier-up>

<identifier-lo>
<identifier-up>

<letter-lo> (<letter>|<digit>|<underscore>)*
<letter-up> (<letter>|<digit>|<underscore>)*

H

<letter> = <letter-lo> | <letter-up>
<letter-lo> ii= [a..z]

<letter-up> ii= [A..Z]

<digit> ::= [0..9]

<natural> pi= 0 | ([1..9] <digit>*)
<underscore> S

<tag> pi= M _ref" | "_out"

<tag—-arg-name> 1= <arg-name> <tag>

<in-part> pe= Min" "(" [<abstr-subst>] ")"
<ref-part> pi= "ref"  "(" [<abstr-subst>] ")"
<out-part> ci= lout® (" [<abstr-subst>] ")"
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<srel-part>
<sol-part>
<sexpr-part>

<abstr-subst>
<args-list>

<arg>

<mode>
<type>

<frame>

<cont-list-args>
<noshare-decl>
<noshare-list>
<noshare-pair>
<size-relation>
<sol-relation>

<sexpr-expr>

<inequality>
<sol-inequality>

<ineq-operator>

<expression>

<tag-expression>

<operator>

The “semantics” of such a formal specification containing information about

"srel" "(" [<size-relation>] ")"
"sol"  "(" [<sol-relation>] ")"
"sexpr" "(" [<expression>] ")"
<args-list> [";" <noshare-decl>]

<arg> ["," <args-list>]

[<arg-name> ":"]
(

<underscore>
| <mode> [<type>] [<frame>]
| [<mode>] <type> [<frame>]
| [<mede>] [<type>] <frame>
)
"ground" | "noground" | "“var" |
nnovaru I "gV" l "ngv" | uanyu
"list® ' "anylist" | uanyu

<func-name> ["(" <args-list> ")"] |
"[" [<cont-list-args>] "]" |

<patural>
<args-list> ["|" <arg>]
"noshare" "=" "{" [<noshare-list>] "}"

<noshare-pair> ["," <noshare-list>]
H(H <arg_name> u’n <arg_name> n)u

<inequality> ["," <size-relation>]
<sol-inequality> ["," <sol-relation>]
<expression>

<tag-expression> <ineq-operator> <tag-expression>

"sol" <ineg-operator> <tag-expression> |

<tag-expression> <ineq-operator> "sol"
Nt ' Nz

<arg-name> | <natural> |

<expression> <operator> <expression> |
"(" <expression> ")"

<tag-arg-name> | <natural> |

<tag-expression> <operator> <tag-expression> |

" (" <tag-expression> ")"
II+II I n_n ‘ II*Il
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modes, types, possible variable sharing between arguments, sizes relations, num-
ber of solutions, termination, is explained informally in Section 2.3, based on
a simple example. Formally, the semantics is explicated in terms of a(n) (ab-
stract) behaviour, which is one of the objects of our abstract domains that
“packages” this kind of information. This “translation process” is explained in
Appendix B.
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Appendix B

From a formal specification
to a behaviour

In this Appendix, we want to explicit the “transformational semantics” of a
formal specification provided by the user. In other words, it consists of expli-
cating how to transform such a formal specification into its related (abstract)
behaviour structure.

For that purpose, we will use some of the abstract operations which are specified
and implemented in the Chapters 6, 7 and 8.

The process that we will describe here is done by applying successively rewriting
and refinement rules, and by detecting inconsistencies on data encoded by the
user. This “normalization process” will also be able to infer some information
let understood by the user (notably due to the use of the terminal symbol ).

Note that the meaning of the underscore differs according to the normaliza-
tion process occurs “within” an abstract substitution (i.e., the formal object
<abstr-subst>) or “between” abstract substitutions (between <in-part> and
<ref-part> or between <ref-part> and <out-part>). In the first case, an ar-
gument annotated with an underscore (e.g., A:- ) is used to mean that its mode
is any, its type is any and its frame (or pattern) is undef. In the second case,
occurrences of the symbol “_” in the ref part means that the information about
the corresponding argument cannot be refined with respect to the in part. An
underscore in the out part means that we give no specific information about
the nature of the related argument after the execution of the logic procedure ;
the pattern of that argument cannot be refined with respect to the ref part.
More generally, the user is allowed to omit from the specification all pieces of
information which can be inferred from another part.

The rest of this Appendix is subdivided into three parts: we explain how
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to normalize an argument (i.e., <arg>), then an abstract substitution (i.e.,
<abstr-subst>) and finally a formal specification (i.e., <specification>).

B.1 Normalize an argument
NORM_ARG(a,e_mog,e_ty,)=a'

An argument a provided by the user respects the following syntax:

<arg> ::= [<arg-name> ":"]

(

<underscore>

| <mode>  [<type>] [<frame>]

| [<mode>] <type> [<frame>]
| [<mode>] [<type>] <frame>
)

By now, we consider only the canonical form of a:
name, : Mo, tys. frme
where

name, denotes the user name of the argument (<arg-name>);
if not specified, name, is noted “?”.

Mo, denotes the argument mode (<mode>);
if not specified, mo, is any.

tYa denotes the argument type (<type>);
if not specified, ty, is any.

frm,  denotes the argument pattern f(ai,...,a,) (<frame>);
if not specified, frm, is noted “?”.
ai,...,an are called the sub-arguments of a.

Starting from this canonical form of a, we will proceed by successive refinements
on its mode and its type. To infer the modes and types of the sub-arguments of
a, we use the notion of “expected mode” (e-mo,) and “expected type” (e-ty,)
of an argument, meaning that the mode of the argument a must be at least “as
constrained as” the mode e.mo, and that the type of ¢ must be at least “as
constrained as” the type e.ty,.

The normalization process of an argument - namely NORM_ARG(a, e.mo,, e-ty,) -
refines mo, and ty,, following the next four steps. Note that the process stops
and fails when an error occurs (e.g., if an abstract operation returns L),

1. For some kinds of mode, it is possible to refine the argument type:

If (mo, , tys) = (var , any) then ty, = anylist, because any variable
can be instantiated to a list.
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If (mo, , ty,) = (ground , anylist) then ty, = list, because a ground
term that has the type anylist is in fact already instantiated to a list.

2. We have to ensure the cousistency between the current mode and the
expected mode, and between the current type and the expected type. It
possibly refines mo, and/or ty,:

mo, = GLB(mo,,e.mo,)
tYa = GLB(tyme—tya)

3. If frm, is defined (e.g., frm, = f(ay,...,an)), we can build the expected
modes and expected types for a,...,a, as follows!:

(e-mog,,...,e-mo,,) = EXTR.MO(f/n,mo,)
(etYayy - etYa,) EXTR.TY(f /n,ty,)

We can then execute NORM_ARG(a;, e.mo,;, e_ty,, ) to refine the sub-arguments
a;. Therefore, at this process stage, we have that all the mo,, and ty,,
are computed and refined.

4. Finally, we compute mo, and ty,, taking into account the modes and
types of the sub-arguments?:

mo, GLB(mo,, CONSMO(f/n, (moq,,...,M0,,)))
tyl GLB(tyq, CONS_TY(f /1, (t¥ays -« »Wa,)))

]

Il

Let us show you some illustrations of the normalization process of an argument:

argument specification normalized canonical form

A: _ A: any any 7

B: var any B: var anylist 7

C: ground anylist C: ground list 7

D: f(ground,ground) D: ground any f(ground any ?,ground any 7)
E: ground list [.]_] E: ground list [ground any 7|ground list ?])

And now, let us show you some examples of inconsistencies that will be detected:

argument specification kind of error

A: any list £(.) /1 is not the pattern of a list.
B: var any £(.) a variable cannot have a pattern.
C: ground f(var) f(var) cannot be ground.

We are now in position to explain how to normalize an abstract substitution.

1See page 42 for the EXTR_MO operation and see page 46 for the EXTR.TY operation.
2See page 42 for the CONS.MO operation and see page 46 for the CONS_TY operation.
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B.2 Normalize an abstract substitution
NORM_ASUBST (<abstr-subst>) =0

The following abstract substitution specification (provided by the user)

<abstr-subst> = a1, ..., an;
noshare = {(name,, ,nameq; ),-.., (nameaip,nameajp)}

will be normalized and “paquetized” into an abstract substitution

B = (sv, frm, mo,ty, ps).

The arguments ay,...,a, are called the “main arguments” of the abstract sub-
stitution. The arguments which compose these main arguments are called the
“sub-arguments”. As an example, the abstract substitution

A:var , B:f(X:_,Y:_) ; noshare={(X,V)}

has two main arguments (A and B) and B is composed of two sub-arguments (X
and Y).

In order to construct 3, we have first to normalize and refine each argument
(the main arguments and the sub-arguments) occurring in <abstr-subst>. It
is done by applying the previous operation NORM_ARG to every argument.

Next, we have to bind an indice to each argument. It consists of the construc-
tion of I, with its subset I,, which contains the indices of the main arguments.
FEach distinct argument has an distinct indice. Two arguments are equals if
they have the same name. Note that two arguments without specified name
(i.e., name =7) are distinct and therefore are attached to a distinct indice. In
the next, we called 7, the corresponding indice of the argument a.

The same-value, frame, mode and type components of 3 are computed as follows:

sv(X;) = ig, for each main argument a;
N flagy---s8a,) if frmg = fla,...,an) .
frm(ia) = { undef if frmg =7 Via € Ip
mo(ia) = mo, Vig €1,
ty(ia) = tya  Vig €,

Detection of errors due to the noshare component.

Replace each name,, in noshare by its corresponding indice, so that we can
view it as a set of indice pairs. Then, for each (7, j) € noshare, we have to check
if (4, 7) may or not belong to noshare (if it is not the case, the process fails).
An error occurs if there exists (4, j) € noshare such that one of these conditions
happens:

e i=j A mo(i) = mo(j) < noground
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e i£j A frm(j) = f(...,4,..) A mo(i) < noground

e i£j A frm(i) = f(...,3,..) A mo(j) < noground

o i#j A frm(i) = f(....k,...) A frm(F) = g(..., k, ...) A mo(k) < noground
Refinement of some arguments modes.

Suppose that no inconsistence were detected up to now. Let (4, 7) € noshare.
In the following cases, the mode component mo of 8 can be updated:

e i=j } = mo(i)=mo(j) = ground

. #: j Z‘ = groun
J””(j) - f()'L,) } ( ) g d
| ] 7 7”'. 1) = > Mo .7' = ground

i# g
e frm(i) = f(...,k,...) } = mo(k) = ground
frm(5) = g(.., ky ...)

Construction of the ps-component of .
First we build the set NOSH ARFE satisfying the two following rules:

) (,7) € noshare = (i,j) € NOSHARE

(i,5) € NOSHARE
@) iffnzj(i) = f(nk,y (= (kD€ NOSHARE
frm(5) = g(...,1,...)
We are now in position to construct ps as follows:
PS = PSqus\ NOSHARE
where

PSauz = {(%,7) | 1,J € I, Amo(i) # ground A mo(j) # ground}

We are now in position to explain the semantics of a formal specification.

B.3 Normalize a specification
NORM_SPEC(specification)=(B, se)

The following formal specification
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<specification> ::= p(<im-part>,
<ref~-part>,
<out-part>,
<srel-part>,
<sol-part>,
<sexpr-part>)

will be refined, transformed and “paquetized” into the behaviour (B, se) which
will belong to Beh,, where:

- B ={Bin,Bref> Bout, Erefout, Esot) is built from the first five parts.
- se is built from the sexpr part.

We decompose this problem in the three next steps. Note that when an incon-
sistency is detected (e.g., if an abstract operation returns L), the whole process
stops.

1. Normalization process “within” the abstract substitutions.

Bin = NORM_ASUBST(<in-part>)
s = NORM_ASUBST(<ref-part>)
U = NORM-ASUBST(<out-part>)

where the operation NORM_ASUBST(<abstr-subst>) is described in the
part “Normalize an abstract substitution” of this Section.

At this process stage, we can detect all the inconsistencies occurring within
an abstract substitution.
2. Normalization process “between” the abstract substitutions®.

Bres and foy; are computed as follows:

ﬂref = GLB(ﬁin) ﬂ'g:f
Pout = GLB(Bguy, UNIF_SUBST(Bres, Boui)

out

At this process stage, we can detect the following kinds of inconsistencies:

e The domains of the three abstract substitutions f;,, frey and Bous
are not the same.
Example:

<in-part> ::= A:_
<ref-part> :: A:_ , B:_, C:
<out-part> :: A:_ , B:_

e The greatest lower bound between the abstract substitutions 3;, and
Bres fails.
Example:

3See page 53 for the GLB operation and see page 69 for the UNIF_SUBST operation.
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<in-part> ::= A:var
<ref-part> ::= A:ground
e The unification between the abstract substitutions 8,5 and B fails.
Example:
<ref-part> ::= A:f(_,.)
<out-part> ::= A:g(l)

3. Normalization of the srel, sol and sexpr parts into Eref_out, Fsor and
se respectively.

For doing this job, we have to keep in memory the mappings that bind each
user argument name with its corresponding indice (maprer and mapyy:)
and a mapping between the main argument names and their related nor-
malized variables:

mapres : UserArgspey — Iy,.,
A ref — 1
MaPoyut :  UserArgsouys — L,..
A_out — i
MAPnorm UserArgs +/ NormVars

In fact, these mappings will be constructed during the normalization pro-
cess acting on the in, ref and out parts (in the two previous points).

We can then construct the two injection functions in,ep and inyus:
ref o Ipy — Doy +Ip,.,

Moyt ! Ipoug - Iprc]' + Ipout

Finally, to obtain Eres_out, Esot and se, we have just to replace each ar-
gument name occurring in <srel-part>, <sol-part> and <sexpr-part>
by its corresponding indice or related normalized variable, applying the
rules depicted in the following table:

argument name replacement
Aref iNpes 0 MaPref(A_ref)
A_out Mout © MaPyt(A_out)
A MaPporm (A)
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Normalization of a program

The semantics and algorithms of the analyser were defined on normalized logic
programs. In this Appendix, we first provide the syntax of normalized programs
and then we provide the algorithm that performs the normalization process.

C.1 Syntax of normalized programs

We show the abstract syntax of normalized programs, given by B. Le Charlier
et al. [9)::

The variables occurring in a literal are distinct; all clauses of a procedure have
exactly the same head; if a clause uses m different program variables, these
variables are z1,...,Tmn.

P ¢ Programs P u= pr|prP

pr € Procedures pr u= ¢ |cpr

¢ € Clauses ¢ = h:—g.

h € ClauseHeads h u= pre,...,z5)

g € ClauseBodyPrefizes g = <>|g,!

I e Literals I u= plsy,...,z,) |

b € Built—ins b u= my=uw; | 2y = f(2iy,.Ti,)
p € ProcedureNames (P)

f € Functors

x € ProgramVariables (PV)

C.2 Advantages of normalization

The advantages of normalized programs come from the fact that a(n) (input or
output) substitution for a procedure p/n is always expressed in terms of variables

1The sole notable difference between [9] and our paper is that here a normalized program
may contain distinct procedures having the same name but with a different arity.
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Z1,..,Zn. This greatly simplifies all of the traditional problems encountered
with renaming.

C.3 A sample normalized program

Let us show you the normalized counterpart of the procedures list/1 and
select/3 whose usual Prolog codes and their normalized versions are depicted
in Figure C.1 and Figure C.2.

list([1).

list([_1L8]):- 1ist(LS).
list(X1):- Xi=[].

list(X1):~ X1=[X21X3], 1list(X3).

Figure C.1: The procedure 1ist/1 and its normalized version.

select (X, [XIT], T):- list(T).
select(X, [HIT}, [HITS]):- select(X, T, TS).

select (X1, X2, X3):- X2=[X1[X3], list(X3).
select (X1, X2, X3):- X2=[X4]X5], X3=[X4|X6], select(X1, X5, X8).

Figure C.2: The procedure select/3 and its normalized version.

C.4 Algorithm of normalization

Every Prolog program can be written in a normalized form. We explicit here
the rules that transform a Prolog procedure into its normalized form.

A Prolog procedure is normalized when its composing clauses are normalized.

The normalization of a Prolog clause is done by executing successively normal-
ization processes acting on the literals that compose that clause. In this manner,
the Prolog clause

p(tl,...,tn) := 11, ... , lq.
is normalized as follows?:

p($1,...,$n) :- norm[$1=t1] , ... , norm[$n=tn] ,
norm[11] , ... , norm{lq].

2The normalized variables are denoted $i, in place of X;, in order to make no confusion
with user variables X, Y, W, ...
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where the normalization process of a literal 1i has the effect to replace it by a
sequence of normalized literals 111, ...,1in which are semantically equivalent
to 1i.

This normalization process is denoted by ‘norm’:

norm : Literals --> P(Literals)
1i norm[1i] = 1i1,...,1lin

It remains now to show the different cases which occur during the normalization
process of a given literal. In fact we always come down to one of these two
interdependent problems (related to the two existing types of a literal):

e Case A : p(ti,...,tn)
It corresponds to the normalization of a predicate or a functor structure.

e Case B: t1 = t2
It corresponds to the normalization of an unification between two terms.

with tj € {$1,X,£(¢1,...,tn)}
where $i denotes a normalized variable
X denotes a user variable
£(t1,...,tn) denotes a functor of arity n (n possibly zero)

The normalization process supposes the existence of a mapping which will up-
date and keep in memory the correspondences between the user variables and
the normalized variables replacing them in the current building of the normal-
ized form.

There exists a mapping for each clause. It is denoted by ‘map’:

map : User Variables --> Normalized Variables
X map(X) = $i

This mapping will allow the user to analyze the results of the static analysis
(when reading the output reports), able in this way to correlate the normalized
variables with the variables initially provided by the user.

We explain now how to normalize p(t1,...,tn) and t1=t2.

| Case A: p(tl,...,tn) |

This structure is transformed into:
norm[$il=t1] , ... , norm[$in=tn] , p($il,...,$in)

where:
- all $1j must be different from each other

- we must keep in memory the mappings map(tj) = $ij when tj is a user
variable (e.g., X)
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Note that we have come down to the Case B normalization problem (consider
the list of successive norm[$ij=tj]).

As an example, let us normalize the structure p(£(X) ,X,Y,X,C).
Suppose that the mapping is in the following current state:

map(X) = $1
map(Y) = $2

The structure p(£f (X),X,Y,X,C) is therefore transformed into:

norm[$3=f (X)] ,norm[$1=X] ,norm[$2=Y] ,norm [$4=X],
norm [$56=C] ,p($3,$1,$2,%4,$5)

As you can see, the normalized variables $1,$2,$3,84 and $5 are all distinct. You
see also that we have used the existing mapping. Finally, note that in order to
maintain the condition of difference between normalized variables, the second X
has been attached to $4 and no more to $1.

The mapping has been updated as follows:

map(X) = $1
map(Y) = $2
map(C) = $5

| Case B: t1 = t2 |

Five subcases are to be considered:

1) $i=1¢t
(2) t=8i
3 X=t
4) t=X

(5) f£(t1,...,tn) = glwl,...,wm)

Subcase (1): $i = ¢

We have several possibilities depending of the nature of t:

e i =8jwithi = j
We can delete this item.
o $i = $jwithi #j
Already normalized.
e i =X
We can come down to the case $1 = $j where $j = map (X) if this mapping

exists or $j is a new normalized variable never used before in the current
clause otherwise.
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e $§i = f
Already normalized.

e $i = f(t1,...,tn)
It suffices to normalize £(t1,...,tn) (Case A) with the constraint that
the normalized variables appearing in the normalized functor must be all
different from each other and also with the supplementary constraint that
these latter must be all different from $i. We then obtain:

norm[$il = t1] , ... , norm[$in = tn] , $i = £($it,...,$i2)

The subcases (2), (3), (4) and (5) come down to the subcase (1) as follows:
Subcase (2): t = $i

It comes down to normalize $§i = t (subcase (1)).

Subcase (3): X = t

It comes down to normalize $i = t (subcase (1)) where $i = map(X) if this
mapping exists or $i is a new normalized variable never used before in the cur-

rent clause otherwise.

Subcase (4): t = X

It comes down to normalize X = t (subcase (3)).

Subcase (5): £(t1,...,tn) = g(wl,...,wm)

It is normalized into:
norm[$il = £(t1,...,tn)] , norm[$i2 = g(wl,...,wm)] , $il = $i2

where $i1 and $i2 are two distinct normalized variables never used before in
the current clause.

Note that there is an unification error when £ g or when n # m, but such an
error will be treated later, during the abstract execution of the literals.
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Appendix D

Description of the packages

In this Appendix we report in some tables the informal description of the pack-
ages and the classes they contain.

Package Description of the package

root package Contains the launcher and the abstract semantics of the analyser.
myio Contains some basic operations on input/output with files.
mystructure Contains the structures we use to implement relations, functions, ...
parsing.prolog | Contains the parser of Prolog procedures.

parsing.beh Contains the parser of formal specifications.

program Contains the abstract tree representing a Prolog program.

spec Contains the abstract tree representing a formal specification.
adom Contains all the abstract domains and the abstract operations.

Table D.1: Description of the packages.

Class Description of the class

Start The launcher of the analyzer.
It calls the different parsers and the analyser.
Analyser | Contains the abstract execution (abstract semantics) of the verification.

Table D.2: Description of the “root” package.

Class | Description of the class
MyFile | Contains some static methods used for processing with files.

Table D.3: Description of the package myio.
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Class Description of the class

Spec Represents a <specification> defined in Appendix A.3 (page 95),
that is a formal specification given by the user.

AbstrSubst | Represents an <abstr-subst> defined in Appendix A.3 (page 95),
that is an abstract substitution given by the user.

Arg Represents an <arg> defined in Appendix A.3 (page 95), that is
an argument of a formal abstract substitution given by the user.

ArgFrame Represents a <frame> defined in Appendix A.3 (page 95), that
contains the frame (pattern) information of a user-given argument.

VariableOut | Represents a ‘out’ <tag-arg-name> occurring in a
formal specification given by the user, in Appendix A.3 (page 95).

VariableRef | Represents a ‘ref’ <tag-arg-name> occurring in a

formal specification given by the user, in Appendix A.3 (page 95).

Table D.4: Description of the package spec.

Interface Description of the interface

MyObject An object that can belong to a MySet object.
Class Description of the class

MyBoolean A boolean.

MylInteger An integer.

Pair A pair of two MyObject objects “(x,y)”.

MySet A(n) (ordered) set of MyObject, with no duplications.
MyRelation A mathematical concept of relation.

MyFunction A mathematical concept of function.
MySymRelation | A mathematical concept of symmetrical relation.
121 A function from Indices to Indices.

va2v A function from Variables to Variables.

12Frame A function from Indices to Frames.

I12Mode A function from Indices to Modes.

12Type A function from Indices to Types.

12Variable A function from Indices to Variables.

Variable2l A function from Variables to Indices.

IxI21 A function from (Indices X Indices) to Indices.

IxI A symmetrical relation into (Indices X Indices).
VxV A symmetrical relation into (Variables X Variables).

Table D.5: Description of the package mystructure.
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Interface Description of the interface
Literal Represents a <literal> defined in Appendix A.2 (page 94).
Term Represents a <term> defined in Appendix A.2 (page 94).
Class Description of the class
Program The abstract tree representing internally a Prolog program
in its normalized form or not.
It contains a set of Procedure objects.
Procedure Represents a Prolog procedure. It contains its defined clauses
(i.e., an ordered sequence of Clause objects).
Clause Represents a <clause> defined in Appendix A.2 (page 94).
Variable Represents a <variable> defined in Appendix A.2 (page 94).
PredicateFunctor | Represents either a Predicate or a Functor.
Functor Represents a <functor> defined in Appendix A.2 (page 94).
Predicate Represents a <predicate> defined in Appendix A.2 (page 94).
Unification Represents a <unification> defined in Appendix A.2 (page 94).
EmptyLiteral Represents the empty literal (i.e., that is always true).
It is used for normalization purpose in Appendix C.4 (page 108).
Mapping Keeps information about correspondences between the terms

defined by the user and the new fresh normalized variables
when constructing the normalization form of a Clause.

Table D.6: Description of the package program.
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Interface Description of the interface
Exp Represents an <expression> and a <tag-expression>
defined in Appendix A.3 (page 95).
Class Description of the class
Indice Represents an indice.
Frame Represents a frame of indices defined in Section 4.1 (page 19).
Y Represents the domain SV, that is the same-value component
of an Abstract Substitution, defined in Section 4.2.1 (page 21).
FRM Represents the domain FRM, that is the frame-value
(or pattern) component of an Abstract Substitution,
defined in Section 4.2.2 (page 21).
Mode Represents the domain Modes, with the related abstract operations,
defined in Section 4.2.3 (page 22).
Modesl Represents the domain Modesl, that is the mode component
of an Abstract Substitution, defined in Section 4.2.4 (page 23).
Type Represents the domain Types, with the related abstract operations,
defined in Section 4.2.5 (page 23).
Typesl Represents the domain Typesl, that is the type component of
an Abstract Substitution, defined in Section 4.2.6 (page 24).
PSharingl Represents the domain PSharingl, that is the possible sharing
component of an Abstract Substitution,
defined in Section 4.2.7 (page 24).
ASubst Represents the domain of Abstract Substitutions, defined in
Section 4.2.9 (page 26). It contains the related abstract operations.
Sizes Represents the domain Sizesl, defined in Section 4.3.1 (page 28).
Sol Represents the terminal <sol>.
BinaryExp Represents a binary expression, defined in Appendix A.3 (page 95).
Constant Represents a <natural> defined in Appendix A.3 (page 95).
Delta Represents the é-tuple defined in Section 7.7.2 (page 59).
It is the structure used when implementing the
general unification between two terms (UNIF).
EqlnEq Represents an <inequality> or a <sol-inequality>,
defined in Appendix A.3 (page 95).
ASeq Represents the domain of Abstract Sequences, defined in
Section 4.3.2 (page 29). It contains the related abstract operations.
BehaviouralPair | Represents a behavioural pair of a behaviour,
defined in Section 4.4 (page 31).
Behaviour Represents a behaviour of a procedure and contains its defined
behavioural pairs, defined in Section 4.4 (page 31).
SBeh The abstract tree representing internally a family of behaviours.

Table D.7: Description of the package adom.
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Now follow some UML-like diagrams where we report the organization of the
different packages. Figure D.1 shows the representation conventions we adopted.

<<Intetfaces>
A v B
B is composed of A /‘\
y : F implements the interface E
B i
: F
G e

D is a specialization of C G is in relation with H

[comments L

- this is a comment

Figure D.1: UML conventions.
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The algorithm of the
analyser

In this Appendix we put the implementation of the three main procedures of our
analyser, namely analyze program, analyze procedure and analyze_clause.

PROCEDURE analyze program(P, SBeh) =
success « true
for all p e P, for all (B, se) € Beh,
success « success A analyze_procedure(p, B, se, SBeh)
return success.

PROCEDURE analyze.procedure(p, B, se, SBeh) =
for k1 to r do
(successy, Br) « analyze_clause(cy, B, se, SBeh)
if there exists k € {1,...,7} such that -success;
then sucess «— false
else B, «— CONC(Bi,...,B;)
success <« (Bout < B)
return success.
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PROCEDURE analyze._clause(c, B, se, SBeh) =
ﬂin — ZnPUt(B)
By « EXTC(c, Bin)
for k1 to s do
K ter < RESTRG(l), Br—1)
switch (l;) do
case X;, =X,
Btlzcua: A UNIF*VAR(ﬂzknter)
case X;, = f(Xiy,. ., Xi )
B{:u:z — UNIF—FUNC(IBfnteN f)
case q(X;,...,X;,) and g #p:
(successy, B, .) «— LOOKUP(BE ,..,q, SBeh)
case p(X;,...,X):
successy, «— CHECK_TERM(Ij, Bg-1, s€)
By, «— EXTG(lg, Br—1,BE,.)
if there exists k& such that
either I = q(X;,,..., X, ) A —successy
or I = p(Xy,,...,Xi,) A (—successy V BE or & Bin)
then success «— false
else success « true and Bo,; = RESTRC(c, B,)

return (success, Boyt)

The analyser follows the standard top-down verification technique: for a given
program, it analyzes each procedure; for a given procedure, it analyzes each
clause; for s given clause, it analyzes each atom. If an atom in the body of a
clause is a procedure call, the analyser looks at the given behaviours to infer in-
formation about its execution. The analyser succeeds if, for each procedure and
each behaviour describing this procedure, the analysis of the procedure yields
results that are covered by the considered behaviour.

Note that to make the code more readable, we have assumed that the algorithm
stops and fails (success = false) if one of the sub-operations returns L.

The operation CONC(By,. .., B,) is a shortcut for CONC(...CONC(B,_1,By)...).

The analysis of a clause ¢ = p(Xy,...,%n) : ~11,..., Ls. with respect to
(B, se) € Beh,, consists in the following steps:

1. extending the input substitution £;, of B to an abstract sequence By on
all the variables in the clause through the operation EXTC;
2. computing By, from By_1 and I (I € {1,...,8});

3. restricting B, to the variables in the head of ¢ through the operation
RESTRC.
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Fach By, is computed from Bj_; and I by:

1. restricting the domain of the output abstract substitution Buy: of Br_i
to the variables X, ,...,X;, of l; and renaming them into Xi,...,X,
through the operation RESTRG;

2. executing the literal I, with B, . which returns an abstract sequence
Bguz

3. propagating this result on By_1 by computing By = EXTG(lk, Bx—1, BX,.).

aur

k

inter

The execution of I with 3 depends on the form of lj:

1. If ly is a built-in of the form X;, = X;, then BX . = UNIF_VAR(BE,., ).

auzx

2. Ifly, is of the form X;, = f(Xi,, ..., X;,) then BX, = UNIF_FUNC(BE ..., f).

inter?

3. If lx, is a non-recursive call ¢(X;,,...,X;,.) (i.e., ¢ 5 p) then the analyzer
“looks at SBeh, the set of behaviours, to find an abstract sequence general
enough to give information about this call.

4, If Iy is a recursive call p(X;,,...,X;,) then the analyzer checks whether
the size the arguments decreases through the operation
CHECK_TERM(l),, Bi—1, se).
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Output reports

F.1 Structure of an output report

Output reports are the files generated by our analyser. There is one output
report for each pair of analyzed procedure/specification. The name of the files
have the following format:

<procedure-name> "." <arity> "." <specification-number>

The content of such a file is a trace consisting of the different steps of the
analysis. Let us show you the schema (the different parts) of an output report:

ok 3k ok sk sk ok sk ok sk sk ok 3k sk ok ok s ok sk ok ok sk ok o ok ok sk ok kot ok ok skeok ok sk

* PROCEDURE IDENTIFICATION *
sttt kot sk tokok etk sk ok ks sk ke stk ok s kst stttk ek ko

- Name:

The name of the analyzed procedure.
- Arity:

The arity of the analyzed procedure.
- Clauses:

The enumeration of the procedure clauses.

Each clause is given in its un-normalized form and in its
normalized form. Further more, a mapping keeping the
correspondences between user—given named arguments and
normalized variables is shown. Note that the normalized
variables have the format "$<natural>".

stk ok ke sk okeok sk ok sk stk sk ok kol ok skok ok sk stk skookok

* BEHAVIOUR IDENTIFICATION *
skt ek stk s kskok okskok ok sk stk ok stk ok sk sk ket sk sk ook
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- Formal Specification:
The formal specification (given by the user) currently
analyzed.

- Behaviour:
The behavioural pair related to the formal specification.
It consists of the normalized abstract sequence part
(noted "B") and of the size expression part (noted "se").

sk s ok ok ok ok sk ok sk e ok ok ok ok ok ko sk sk 3k ok sk sk ok sk ok ok sk ok sk sk ok sk ok k

* ANALYSIS *
soktokok ok akok sk ok ok ok ko ok kbR sk ok sk ok koK

The effective amalysis starts here.

Each clause is analyzed step by step, according to the rules
of the abstract execution of a clause:
(1) execution of EXTC
(2) for each each literal of the clause:
(a) RESTRG
(b) either UNIF_VAR, UNIF_FUNC or LOOKUP
(c) EXTG
(3) execution of RESTRC

When a failure occurs (e.g., a sub-operation returns bottom
or a condition is not satisfied), the analysis stops at that
point (does not continue). Further more, the global analysis
of the whole program stops, returning "success=false".

Otherwise - if no error occurs previously - the analyser
calculates the abstract concatenation of the abstract
sequences computed for each clause (operation CONC):

e T e e et et et SE L SR e R e
ABSTRACT CONCATENATION OF THE CLAUSES: CONC(Blist) = B_out

e e e e e S o e e e S S 3K S e e e o o e e e e e e

The result is then one of these two, according to we
obtain a successful analysis:

sk S o o o 3K o S e o ok o oK S e e K e e o o R e ok ok
==> We have "B_out <= B" ==> ye can infer the verification.
ok 3 S 3 e o o e 3 S 3o S e e S e o oK e e e oK o e SR —

or an unsuccessful analysis:

e ok o o o o o ok 3 e K oK e o o Sk e e A o ok o Sk ok ok — ok ok —
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==> We have not "B_out <= B" ==> ye cannot infer

the verification.
o e 3K e o S e e e o e K o e S o e e S o e S S e oK s o e

As already mentioned in Section Coding, the operations related to the size
components based on the polyhedron library have not been implemented yet,
since the work is still under progress. It is the reason you will then find in some
analyzed points of the report the label /* not implemented yet */; you will
note also that the operation CHECK_TERM (checking if a size expression strictly
decreases before executing a recursive call) returns always true, because it is not
implemented.

F.2 A successful analysis

In this Section, we provide the output report of the analysis of the program
select/3 according to the formal specifications of select/3 and list/1 given
in Section 2.3.

- Current file: "mySelect.3.1"

ook stk sokskoktokskok sk oK sk ok sk ok K sk ok ke ok ek sk ok ok skok

* PROCEDURE IDENTIFICATION *
stk sk s ok s sk s ook ok sk ok koK sk sk kK ke ok e sk o ok sk ok

- Name: mySelect
- Arity: 3

- Clauses:
(1) -> UnNormalized:
mySelect (X, [XIT],T) :- list(T).
-> Normalized:
mySelect($1,$2,$3) :- $2=[$1/$3],1ist($3).
~> Mapping:
{$1->X,$2->[XIT], $3->T}

(2) -> UnNormalized:
mySelect (X, [H|T], [H|TS]) :- mySelect(X,T,TS).
-> Normalized:
mySelect($1,$2,$3) :~ $2=[$41$5],$3=[$41$6] ,mySelect ($1,$5,$6).
~> Mapping:
{$1->X,$2->[HIT],$3->[H| TSI, $4->H, $5->T, $6->TS}

ok koK ok s o ook oKk ok S 3 ok o KoK oK o ok KoK oK ok ok oK ok o o ok ok
* BEHAVIOUR IDENTIFICATION *
ok kR Rk K stk ok ok sk o koK ok ok ok ok ok KK 3K ok ok ok ok o ok ok sk

- Formal Specification:
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mySelect

(
in(X:var,L:ground,LS:var ; noshare = {(X,LS)}),
ref(_,[_11ist], ),
out (ground, _,ground list),
srel({L_ref = LS_out + 1}),
sol({sol = L_ref}),
sexpr (L)

)

- Behaviour:

mySelect/3
{$1->1,$2->2,$3->3}; frm = {}

I

beta_in: sv

mo = {1->var,2->ground,3->var}
ty = {1->anylist,2->any,3->anylist}
ps = {(1,1),(3,3)}

beta_ref: sv = {$1->1,$2->2,$3->3}; frm = {2->[4]5]}
mo = {1->var,2->ground,3->var,4~>ground,5->ground}
ty = {1->anylist,2->list,3->anylist,4->any,5->list}
ps = {(1,1),(3,3)}
beta_out: sv = {$1->1,$2->2,$3->3}; frm = {2->[4|5]}
mo = {1->ground,2->ground,3->ground,4->ground,5->ground}
ty = {1->any,2->list,3->list,4->any,5->1list}
ps = {}
E_ref_out = /* not implemented yet */
E.sol = /# not implemented yet */

se = /% not implemented yet */

sokesoeok ok sk ok ek ok sk sk sk sl ok ok kol kil R oKk ok sk e ok

*

ANALYSIS *

e ofe o 3¢ ok e ok ok sk e sk ok o e e ok sk sk sk e 3k e ok ok of sk sk ok ko sk ek

PIPS 2002 IO PSES DI SS9 S 22D PP IPDS SIS NP
==> (Clause (1) to analyze:

¢ = mySelect($1,$2,$3) :- $2=[$11$3],1ist($3).

EXTC(c,betaln) = B_O

B_0

{$1->1,$2->2,$3->3}; frm = {}

beta_in: sv

mo = {i->var,2->ground,3->var}
ty = {1->anylist,2->any,3->anylist}
ps = {(1,1),(3,3)}
beta_ref: sv = {$1->1,$2->2,$3->3}; frm = {}
mo = {1->var,2->ground,3->var}
ty = {1->anylist,2->any,3->anylist}
ps = {(1,1),(3,3)}
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beta_out: sv = {$1->1,$2->2,$3->3}; frm = {}
mo = {i->var,2->ground,3->var}
ty = {i->anylist,2->any,3->anylist}
ps = {(1,1),(3,3)}

E_ref_out = /+ not implemented yet */

E_sol = /* not implemented yet */

Literal to abstractly execute: 11 = $2=[$11$3]

RESTRG(11,B_0) = beta"1i_inter
beta”1_inter: sv = {$1->2,$2->1,$3->3}; frm = {}
mo = {1->var,2->ground,3->var}
ty = {i->anylist,2->any,3->anylist}
ps = {{(1,1),(3,3)}

UNIF_FUNC(beta"1i_inter, [$11$3]) = B~1_aux

B~1_aux
beta_in: sv = {$1->2,$2->1,$3->3}; frm = {}
mo = {1->var,2->ground,3->var}
ty = {1->anylist,2->any,3->anylist}
ps = {(1,1),(3,3)}
beta_ref: sv = {$1->2,$2->1,$3->3}; frm = {2->[4]5]}

it

mo = {1->var,2->ground,3->var, 4->ground, 5->ground}
ty = {1->anylist,2->any,3->anylist,4->any,5->any}
ps = {(1,1),(3,3)}

beta_out: sv = {$1->2,$2->1,$3->3}; frn = {2->[113]1}
mo = {1->ground,2->ground,3->ground}
ty = {1->any,2->any,3->any}
ps = {}

E_ref _out = /* not implemented yet */
E.sol = /% not implemented yet */

EXTG(11,B_0,B"1_aux) = B_1

B_1

beta_in: sv = {$1->1,$2->2,$3->3}; frm = {}

mo = {1->var,2->ground,3->var}
ty = {1->anylist,2->any,3->anylist}
ps = {(1,1),(3,3)}

beta_ref: sv = {$1->1,$2->2,$3->3}; frm = {2->[415]}
mo = {l->var,2->ground,3->var,4->ground,5->ground}
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ty
ps
beta_out: sv
mo
ty
ps

it

I

E_ref_out = /%
E_sol = /#* not

{i->anylist,2~>any,3->anylist,4->any,5->any}
{(1,1),(3,3)}

{$1->1,$2->2,8$3->3}; frm = {2->[1]3]}
{1->ground, 2->ground, 3->ground’}
{1->any,2->any,3->any}

{+

not implemented yet */

implemented yet */

Literal to abstractly execute: 12 = list($3)

RESTRG(12,B_1) = beta”2_ inter

beta~2_inter: sv

{$1->1}; frm = {}

mo = {1->ground}
ty = {1~>any}
ps = {}

LOOKUP(beta~2_inter,list($3),sbeh) = B"2_aux

beta_in: sv =

B~ 2_aux

{$1->1}; frm = {}

mo = {1->ground}
ty = {1->any}
ps = {}
beta_ref: sv = {$1->1}; frm = {}
mo = {1->ground}
ty = {1->list}
ps = {}
beta_out: sv = {$1~->1}; frm = {}
mo = {i->ground}
ty = {1->list}
ps = {}
E_ref_out = /% not implemented yet */

E_sol = /* not implemented yet */

EXTG(12,B_1,B"2_aux) = B_2

n o

beta_in: sv
mo
ty
ps

#

D_ 4
{$1->1,$2->2,$3->3}; frm = {}
{1->var,2->ground,3->var}
{1->anylist,2->any,3->anylist}
{(1,1),03,3)}
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{$1->1,$2->2,$3->3}; frm = {2->[4]5]}

"

beta_ref: sv

mo = {1->var,2->ground,3->var,4->ground,5->ground}
ty = {1->anylist,2->1list,3->anylist,4->any,5->1list}
ps = {(1,1),(3,3)}

beta_out: sv = {$1->1,$2->2,$3->3}; frm = {2->[113]1}
mo = {1->ground,2->ground,3->ground}
ty = {i->any,2->list,3->1list}
ps = {}

E_ref_out = /* not implemented yet */
E_sol = /# not implemented yet */

RESTRC(c¢,B_2) = B_out

B_out
beta_in: sv = {$1->1,$2->2,$3->3}; frm = {}
mo = {1->var,2->ground,3->var}
ty = {1->anylist,2->any,3->anylist}
ps = {(1,1),(3,3)}
beta_ref: sv = {$1->1,$2->2,$3->3}; frm = {2->[4|5]}
mo = {1->var,2->ground,3->var,4->ground,5->ground}

]

ty = {1->anylist,2->list,3->anylist,4->any,5->1ist}
ps = {(1,1),(3,3)}

beta_out: sv = {$1->1,$2->2,$3->3}; frm = {2->[113]}
mo = {1->ground,2->ground,3->ground}

ty = {1->any,2->1ist,3->1list}
ps = {3
E_ref _out = /* not implemented yet */
E_sol = /# not implemented yet */

DOOOODODOODODOOODDOOD0O0D0005D50O00050555055050555>

DOODDOODODIODDDDIDDDIDIDIODDODIDOIDIDODIDIDOIDVIOODDOOOOOO>
==> (Clause (2) to analyze:
¢ = mySelect ($1,$2,$3) :- $2=[$41%51,$3=[$41$6],mySelect($1,$5,$6).

EXTC(c,betaln) = B_0O

B_O

{$1->1,$2->2,$3->3}; frm = {}
mo = {l1->var,2->ground,3->var}
ty = {1->anylist,2->any,3->anylist}
ps = {(1,1),(3,3)}

beta_ref: sv = {$1->1,%$2->2,$3->3}; frm = {3
mo = {1->var,2->ground,3->var}
ty = {1->anylist,2->any,3->anylist}

1]

beta_in: sv

i

n
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ps = {(1,1),(3,3)}

it

beta_out: sv
mo

ty

{$1->1,%$2->2,$3->3,$4~>4,$5~->5,$6->6}; frm = {}
{1->var,2->ground, 3~>var,4->var,5->var,6->var}
{1->anylist,2->any,3->anylist,4~>anylist,5->anylist,

6->anylist}
ps = {(1,1),(3,3),(4,4),(5,5),(6,6)}
E_ref_out = /% not implemented yet */
E_sol = /% not implemented yet */

Literal to abstractly execute: 11 = $2=[$4]$5]

RESTBG(ll,B_O) = beta”1_inter

beta”1_inter:

sv = {$1->1,$2->2,$3->3}; frm = {}
mo = {1->ground,2->var,3->var}
ty = {1->any,2->anylist,3->anylist}

ps = {(2,2),(3,3)}

UNIF_FUNC(beta~1_inter, [$4[$5]1) = B"1_aux

[}

beta_in: sv
mo
ty
ps

i

B~ 1_aux
{$1->1,$2->2,$3->3}; frm = {}
{1->ground,2->var,3->var}
{1->any,2->anylist,3->anylist}
{(2,2),(3,3)}

beta_ref: sv = {$1~>1,$2->2,$3->3}; frm = {1->[4]5]1}
mo = {1->ground,2->var,3->var,4->ground,5->ground}

ty
pPs
beta_out: sv
mo
ty
ps
E_ref_out = /

{1->any,2~>anylist,3->anylist,4->any,5~->any}

= {(2,2),(3,3)}

*

{$1->1,$2->2,$3->3}; frm = {1->[2]3]}
{1->ground, 2->ground, 3->ground}
{1->any,2->any,3->any}

{3

not implemented yet */

E_sol = /# not implemented yet */

EXTG(11,B_0,B"1_aux) = B_1

beta_in: sv
mo
ty
ps

B_1
{$1->1,$2->2,$3->3}; frm = {3
{1->var,2->ground, 3->var}
{1->anylist,2->any,3->anylist}

{1,1,03,3)}
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beta_ref: sv = {$1->1,$2->2,$3->3}; frm = {2->[4]5]}
mo = {i->var,2->ground,3->var,4->ground,5->ground}
ty = {1->anylist,2->any,3->anylist,4~>any,5->any}

ps
beta_out: sv

frm

mo = {i->var,2->ground,3->var,4~>ground,5->ground,

{1,1),(3,3)}
{$1->1,$2->2,$3->3,$4->4,$5->5,$6->6};

= {2->[4]5]}

6->var}

ty = {1->anylist,2->any,3->anylist,4->any,5->any,

6->anylist}

ps = {(1,1),(3,3),(6,6)}
E_ref_out = /* not implemented yet */
E_sol = /* not implemented yet */

Literal to abstractly execute: 12 = $3=[$4{$6]

RESTRG(12,B_1) = beta"2_inter

beta”2_inter

sv = {$1->1,$2->2,$3->3}; frm = {}
mo = {1->var,2->ground,3->var}

ty = {i->anylist,2->any,3->anylist}
ps = {(1,1),(3,3)}

UNIF_FUNC(beta"2_inter, [$41$6]) = B 2_aux

beta_in: sv
mo
ty
ps

L}

"

B"2_aux
{$1->1,$2->2,$3->3}; frm = {}
{i->var,2->ground, 3->var}
{1->anylist,2->any,3->anylist}
{(1,1),(3,3)}

beta_ref: sv = {$1->1,$2->2,$3->3}; frm = {}

mo
ty
ps
beta_out: sv
mo
ty
ps

"

"

E_ref_out = /*
E_sol = /* not

{1->var,2~>ground, 3->var}
{1->anylist,2->any,3->anylist}
{(1,1,(,3)

{$1~>1,$2->2,$3->3}; frm = {1->[213]}
{1->ngv,2->ground, 3->var}
{1->anylist,2->any,3->anylist}
{(3,3)}

not implemented yet */

implemented yet */
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R 9
D_4

{$1->1,$2->2,$3->3}; frm = {}

I

beta_in: sv

mo = {1->var,2->ground,3->var}
ty = {i->anylist,2->any,3->anylist}
ps = {(1,1),(3,3)}

beta_ref: sv = {$1->1,$2->2,$3->3}; frm = {2->[4]5]}
mo = {1->var,2->ground,3->var,4->ground,5->ground}
ty = {i1->anylist,2->any,3->anylist,4->any,5->any}
ps = {(1,1),(3,3)}
beta_out: sv = {$1->1,$2->2,$3->3,8$4->4,$5->5,$6~>6};
frm = {2->[415],3->[4|6]}
mo = {1->var,2->ground,3->ngv,4->ground,5->ground,
6->var}
ty = {i->anylist,2->any,3->anylist,4->any,5->any,
6->anylist}
' ps = {(1,1),(6,6)}
E_ref_out = /* not implemented yet %/
E_sol = /% not implemented yet */

Literal to abstractly execute: 13 = mySelect($1,$5,$6)

RESTRG(13,B_2) = beta3_inter

beta~3_inter: sv = {$1->1,$2->2,$3->3}; frm = {}
mo = {1->var,2->ground,3->var}
ty = {1->anylist,2->any,3->anylist}
ps = {(1,1),(3,3)}

CHECK_TERM(13,B3,se) = true

]

LEQ(beta~3_inter,betaln) = true

B~ 3_aux
{$1->1,$2->2,$3->3}; frm = {}

beta_in: sv

mo = {l->var,2->ground,3->var}
ty = {i->anylist,2->any,3->anylist}
ps = {(1,1),(3,3)}

beta_ref: sv = {$1->1,$2->2,$3->3}; frm = {2->[4I5]}
mo = {i->var,2->ground,3->var,4->ground,5->ground}
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ty = {1->anylist,2->list,3~>anylist,4~->any,5->1ist}
ps = {(1,1),(3,3)}
beta_out: sv = {$1->1,$2->2,$3->3}; frm = {2->[4]5]}
mo = {1->ground,2->ground,3->ground,4->ground,
5->ground}
ty = {1->any,2->1list,3->list,4->any,5->1list}
ps = {}

E_ref_out = /* not implemented yet */
E_sol = /* not implemented yet */

EXTG(13,B_2,B"3_aux) = B_3

n o
B O

beta_in: sv = {$1->1,$2->2,$3->3}; frm = {}
mo = {i->var,2->ground,3->var}
ty = {1->anylist,2->any,3->anylist}
ps = {(1,1),(3,3)}
beta_ref: sv = {$1->1,$2->2,$3->3}; frm = {2->[415]),5->[617]1}

mo = {1->var,2->ground,3->var,4->ground,5->ground,
6->ground,7->ground}
ty = {1->anylist,2->list,3->anylist,4->any,5->list,

6->any,7->list}
ps = {(1,1),(3,3)}
beta_out: sv = {$1->1,$2->2,$3->3,$4->4,$5->5,$6->6};
frm = {2->[4|5],3->[416]1,5->[718]}
mo = {1->ground,2->ground,3->ground,4->ground,5->ground,
6->ground, 7->ground, 8->ground}
ty = {1->any,2->1ist,3->list,4~>any,5->1ist,6->1list,
7->any,8->1ist}
ps = {}
E_ref _out = /% not implemented yet */
E_sol = /* not implemented yet */

RESTRC(c,B_3) = B_out

B_out

beta_in: sv = {$1->1,$2->2,$3->3}; frm = {}

mo = {1->var,2->ground,3->var}

ty = {i->anylist,2->any,3->anylist}

ps = {(1,1),(3,3)}
beta_ref: sv = {$1->1,$2->2,$3->3}; frm = {2~->[4|5],5->[6|7]}

mo = {1->var,2->ground,3->var,4->ground,5->ground,
6->ground, 7->ground}
{1->anylist,2->1list,3->anylist,4->any,5->1list,
6->any,7->1ist}

L3

ty
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beta_out:

ps = {(1,1),(3,3)}
sv = {$1->1,$2->2,$3->3}; frm = {2->[415],3->[4]6],
5->[7181}

mo = {1i->ground,2->ground,3->ground,4->ground,5->ground,
6~>ground, 7->ground , 8~>ground}

ty = {1->any,2->list,3->list,4->any,5->1list,6->list,
7->any,8->list}

ps = {}

E_ref_out = /* not implemented yet */
E_sol = /% not implemented yet */

SOODO355550505005 0500355500355 505 550005005500 355555005>

s 3 = o e e e S e 3 o e S e e e e o e K S e e oK e e
ABSTRACT CONCATENATION OF THE CLAUSES: CONC(Blist) = B_out
e 3 o o e o 3 3 e o e e K s o o e e

[}

beta_in: sv
mo

ty

ps
beta_ref: sv
mo
ty

ps
beta_out: sv
mo
ty

ps
E_ref_out = /
E_sol = /% no

"

[}

L}

*
t

B_out
{$1->1,%$2->2,$3->3}; frm = {}
{1->var,2->ground,3->var}
{1->anylist,2->any,3->anylist}

{(1,1),(3,3)}

{$1->1,$2->2,$3->3}; frm = {2->[4]5]}
{1->var,2->ground, 3->var,4->ground, 5->ground}
{1->anylist,2->1list,3->anylist,4~->any,5~>Llist}
{(1,1),(3,3)}

{$1->1,$2->2,$3~>3}; frm = {2->[4]5]}

{1->ground, 2->ground, 3->ground, 4->ground, 5->ground}

{1->any,2->1list,3->list,4->any,5->1ist}

{}
not implemented yet */
implemented yet */

s 3K 3 3 o ¢ e 3 o S S e e o e S o e e e S e o o e S et 3 e 3 o e e K e e
==> We have "B_out <= B" ==> ye can infer the verification.
= o o o S e e e e e o e o S e o K K 3K e 3 e e e e S e e
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F.3 An unsuccessful analysis

Consider the motivating sample of the Introduction. It concerns the declara-
tively correct but operationally incorrect procedure delete(X, L, Ldel):

delete(X,L,Ldel) :- L=[HIT],not(X=H),Ldel=[H|Tdel],
delete_1(X,T,Tdel).
delete(X,L,Ldel) :- L=[HIT],X=H,Ldel=T,list(T).

with the following formal specification:

% Specification of "delete/3"
delete(in(X:any,L:ground,Ldel:any),
ref(_,[_l1list],anylist),
out (ground,_,ground list),
srel({L_ref = Ldel_out + 1}),
s0l1({0 <= sol,sol <= L_ref}),
sexpr (L))

Because the not predicate does not belong to the Pure Prolog subset — our
parser cannot presently accept that lexical construction -, we temporarily re-
place not(X = H) by a call to not(X, H) where the formal specification is given
here:

% Specification of "not/2"
not (in(X:ground,Y:ground),
ref(_,_),
out(_,_),
srel(),
s01(0 <= sol,sol <= 1),
sexpr())

where we have specified in this way the fact that we allow calls to the not built-
in only if its arguments are both ground.

At the reading of the following output report, we see that our analyser detects
correctly the malposition of the not built-in.

~ Current file: "delete.3.1"
sk sk ok sk s sk ok ok ok ok skl ok stk Kook ok sk ok oK ok sk Kok oK ok ok ok

* PROCEDURE IDENTIFICATION *
ek ok sk sk ok ok sk ok ok ok e ok ok sk stk sk ok ok s e s ok sk ok skesk ok ok ok ok

- Name: delete
~ Arity: 3

- Clauses:
(1) -> UnNormalized:
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delete(X,L,Ldel) :- L=[H|T],not(H,X),Ldel=[H|Tdel],
delete(X,T,Tdel).
-> Normalized:
delete($1,$2,$3) :- $2=[$41$5] ,n0t($4,$1),$3=[$41$6],
delete($1,$5,$6).
~> Mapping:
{$1->X,$2->L,$3->Ldel, $4->H, $5->T,$6->Tdel}

(2) -> UnNormalized:
delete(X,L,Ldel) :- L=[H|T],H=X,Ldel=T,1list(T).
—> Normalized:
delete($1,$2,$3) :- $2=[$4]|$5],$4=$1,$3=$5,1ist($5).
-> Mapping:
{$1->X,$2~->L,$3->Ldel, $4->H, $5->T}

seokestoksk ok sk ks ok ket ok ok sk sk ke ek sk ok

* BEHAVIOUR IDENTIFICATION *
stk koo o sk sk ok R Kok o ke ok ok sk s sk sk sk sk sk ek ok

- Formal Specification:

delete

(
in(X:any,L:ground,Ldel:any),
ref(_, [_|list],anylist),
out(ground,_,ground list),
srel({L_ref = Ldel_out + 1}),
s01({0 <= sol,sol <= L_ref}),
sexpr(L)

- Behaviour:

delete/3
{$1->1,$2->2,$3->3}; frm = {}

mo = {l1->any,2->ground,3->any}

ty = {i->any,2->any,3->any}

ps = {(1,1),(1,3),(3,3)}
beta_ref: sv = {$1->1,$2~>2,$3->3}; frm = {2->[4]5]}

beta_in: sv

mo = {i->any,2->ground,3->any,4->ground,5->ground}
ty = {1->any,2->list,3->anylist,4->any,5->list}
ps = {(1,1),(1,3),(3,3)}

beta_out: sv = {$1->1,$2->2,$3->3}; frm = {2->[4]5]}
mo = {1->ground,2->ground,3->ground,4->ground,

5->ground}

ty = {i->any,2->1ist,3->1list,4->any,5->1list}
ps = {}

E_ref_out = /* not implemented yet */
E_sol = /% not implemented yet */

se = /% not implemented yet */
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sk ok sk ok s s ok ok kR ok koK sk sk ok ok sk o KR R oK K ok

* ANALYSIS *
ook kb s ook sk Mok ok ek s ke ke sk ke sk ok ke ks ok sk ok sk sk

D S P S S S P S 0 > P PSS PSPPI PR PIPE S TP > PSP
==> Clause (1) to analyze:
¢ = delete($1,$2,$3) :- $2=[$41$5] ,not($4,$1),$3=[$41%6],
delete($1,$5,%$6).

EXTC(c,betaln) = B_0O

B_0O

beta_in: sv = {$1->1,$2->2,$3->3}; frm = {}

mo = {1->any,2->ground,3->any}
ty = {1->any,2->any,3->any}
ps = {(1,1),(1,3),(3,3)}
beta_ref: sv = {$1->1,$2->2,$3->3}; frm = {}
mo = {1->any,2->ground,3->any}
ty = {1->any,2->any,3->any}

ps = {(1,1),(1,3),(3,3)}
beta_out: sv = {$1->1,$2->2,$3->3,$4->4,$5->5,$6->6}; frm = {}

mo = {1->any,2->ground,3->any,4->var,5->var, 6->var}

ty = {1->any,2->any,3->any,4->anylist,5~>anylist,
6->anylist}

ps = {(1,1),(1,3),(3,3),(4,4),(5,5),(6,6)}

E_ref_out = /* not implemented yet */
E_sol = /% not implemented yet */

Literal to abstractly execute: 11 = $2=[$4]$5]

RESTRG(11,B_0) = beta"1_inter

{$1->1,$2->2,$3->3}; frm = {}

beta”1_inter: sv

mo = {1->ground,2->var,3->var}
ty = {1->any,2->anylist,3->anylist}
ps = {(2,2),(3,3)}

UNIF_FUNC(beta~1i_inter, [$4]$5]) = B~1_aux

B~1_aux
{$1->1,$2->2,$3->3}; frm = {}
{1->ground, 2->var, 3->var}

beta_in: sv
mo
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ty =
ps =
beta_ref: sv
mo

ty
ps
beta_out: sv
mo
ty
ps
E_ref_out = /

]

{1->any,2~>anylist,3->anylist}

{(2,2),(8,3)}

{$1->1,$2->2,$3->3}; frm = {1->[4]5]}
{1->ground,2->var,3~>var,4~>ground,
5->ground}
{1->any,2->anylist,3->anylist,4~->any,5->any}
{(2,2),(3,3)}

{$1->1,$2->2,$3->3}; frm = {1->[2]3]}
{1->ground, 2->ground, 3->ground}
{1->any,2->any,3->any}

= {}

* not implemented yet */

i

]

E_sol = /* not implemented yet */

EXTG(11,B_0,B"1_aux) = B_1

beta_in: sv =
mo
ty
ps

beta_ref: sv
mo

i

ty
ps
beta_out: sv
frm
mo

ty
ps

E_ref_out = /
E_sol = /* no

B_1
{$1->1,%2->2,$3->3}; frm = {}
{1->any, 2->ground,3->any}
{1->any,2->any,3->any}
{1,1,(1,3),(3,3)}
= {$1->1,$2->2,$3->3}; frm = {2->[4|5]}
{1->any,2->ground,3->any,4->ground,
5->ground}
{1->any,2~->any,3->any,4->any,5->any}
{(1,1),(,3),(3,3)}
{$1->1,$2->2,$3->3,$4->4,$5->5,$6~>6} ;
= {2->[4]5]}
= {1->any,2->ground, 3->any, 4->ground,5->ground,
6->var}
= {1->any,2->any,3->any,4->any,5->any,
6->anylist}
={(1,1),(1,3),03,3),(6,6)}
* not implemented yet */
t implemented yet */

Literal to abstractly

execute: 12 = not($4,$1)

RESTRG(12,B_1) =

beta”2_inter

beta”2_inter:

sv = {$1->2,$2->1}; frm = {}
mo = {1->any,2->ground}

ty = {i->any,2->any}

ps = {(1,D}
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LOOKUP (beta~2_inter,not($4,%$1),sbeh) = B~2_aux

B"2_aux = null =====>

==> The analysis of the clause
"delete($1,$2,$3)

does not succeed...

FAILURE!!!

:- $2=[$41$5] ,n0t (34, $1),$3=[$41%6],

delete($1,$5,%6)."

Automated Verification of Prolog programs: an implementation



144 APPENDIX F. OUTPUT REPORTS

Automated Verification of Prolog programs: an implementation



Bibliography

(1] K.R. Apt. From Logic Programming to Prolog. Prentice Hall Europe, 1997.

[2] Y. Deville. Logic Programming: Systematic Program Development. Addison
- Wesley, 1990.

[3] L. Sterling and E. Shapiro. The Art of Prolog, Advanced Programming
Techniques. Second Edition. The MIT Press. 1994. Cambridge, Mas-
sachusetts. London, England.

[4] P. Cousot and R. Cousot. Abstract Interpretation and Application to Logic
Programs. The Journal of Logic Programming, 13(2-3):103-179, 1992.

[5] P. Cousot and R. Cousot. Abstract Interpretation Frameworks. Journal of
Logic and Computation, 2(4):511-547, August 1992.

[6] P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Ewvaluation of the
domain Prop. The Journal of Logic Programming, 23(3):237-278, Elsevier
Science 1995.

[7] A. Cortesi, B. Le Charlier, P. Van Hentenryck. Combinations of abstract
domains for logic programming: open product and generic pattern construc-
tion. Science of Computer Programming 38:27-71, Elsevier Science 2000.

[8] B. Le Charlier and P. Van Hentenryck. Ezperimental Evaluation of a
Generic Abstract Interpretation Algorithm for Prolog. ACM Transactions
on Programming Languages and Systems (TOPLAS), 16(1):35-101, Jan-
uary 1994.

[9] B. Le Charlier,S. Rossi, P. Van Hentenryck. Sequence-Based Abstract Se-
mantics of Prolog. Theory and Practice of Logic Programming 2(1):25-84,
Cambridge University Press, January 2002.

(10] B. Le Charlier, C. Leclére, S. Rossi, and A. Cortesi. Automated Behavioural
Verification of Prolog Programs. Proceedings of APPIA-GULP-PRODE97,
Moreno Falaschi, Marisa Navarro, Alberto Policriti editors, Jun. 1997,
Grado (Italy), pp189-200

145



146

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

B. Le Charlier, C. Leclere, S. Rossi, and A. Cortesi. On the Design of an
Automatic Tool for Prolog Program Verification. Proceedings of the Work-
shop on Tools and Environments for (Constraint) Logic Programming97,
Oct. 1997, Port Jefferson (USA)

B. Le Charlier, C. Leclére, S. Rossi, and A. Cortesi. Automated Verification
of Behavioural Properties of Prolog Programs. Proceedings of ASIANO7,
Asian Computing Science Conference (to appear in Springer LNCS), Dec.
1997, Kathmandu, Nepal

B. Le Charlier, C. Leclére, S. Rossi, and A. Cortesi. Automated Verification
of Prolog Programs. Research Paper, Dipartimento di Matematica Pura ed
Applicata, Universita’ degli Studi di Padova, Italy, March 1997.

B. Le Charlier, C. Leclére, S. Rossi, and A. Cortesi. Automated Verification
of Prolog Programs. The Journal of Logic Programming 39:3-42, Elsevier
Science 1999.

D. K. Wilde. A Library for Doing Polyhedral Operations. Technical Re-
port No. 785, IRISA-Institut de Recherche en Informatique et Systémes
Aléatoires, Rennes Cedex-France, 1993.

Automated Verification of Prolog programs: an implementation





