
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

An experiment in agent development using non-monotonic reasoning

Ligny, Thomas; Marlier, Benoît

Award date:
2000

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. Dec. 2021

https://researchportal.unamur.be/en/studentthesis/an-experiment-in-agent-development-using-nonmonotonic-reasoning(19ab99cb-f04b-477f-829f-0a625ec9819b).html

Faculté Universitaires Notre-Dame de la Paix
Institut d'informatique - Rue Grangagnage, 21

SOOONAMUR

An experiment in agent
development using

non-monotonie reasoning

Thomas Ligny and Benoît Marlier

Dissertation presented with the objective to obtain the degree of Master in
Computer Science

Academic year 1999-2000

Promoter : Pierre-Yves Schobbens

Thanks

With much gratitude to Dr Mary-Anne Williams who assisted us in our work and who provided us the
means to accomplish our research in the best way possible. She made our training period in the
University of Newcastle, Australia very enriching and pleasant.

We would also like to thank Dr Pierre-Yves Schobbens for he has given us the opportunity to make a
dissertation on a subject that is very interesting.

Benoit and Thomas

Résumé

Dans ce mémoire, nous faisons le point sur la discipline en plein développement des agents
intelligents. Pour ce faire, nous avons opté pour une approche tant théorique que pratique.
Nous exposons d'abord les principaux concepts relatifs aux agents intelligents et nous
présentons ensuite une application basée sur ces concepts.

Dans un même temps, nous avons voulu revenir aux origines du concept d'agent intelligent en
nous penchant plus spécifiquement sur le rôle de l'intelligence artificielle (IA) dans le
développement des agents intelligents. Pour cela, nous présentons les bases théoriques d'une
technique de l'IA (la logique non-monotone) et nous décrivons la manière dont nous l'avons
intégré dans le raisonnement d'agents de notre application.

L'approche adoptée consiste à partir des besoins d'une application réelle et analyser si le
paradigme des agents est apte à répondre à ces besoins.

Abstract

In this dissertation, we draw up an overview of a discipline in full development, namely the
discipline of Intelligent Agents. We optedfor a theoretical as well as a practical approach in
order to accomplish our objective. First of ail, we present the principal concepts relating to
Intelligent Agents, followed by an application based on those concepts.

At the same time, we wanted to go back to the source of the concept 'Intelligent Agent'. More
specifically, we did this by loqking at the role of Artificial Intelligence (JA) in developing
Intelligent Agents. To achieve this, we discuss the theoretical bases of a technique used in IA
(non-monotonie logic) and we describe how we have integrated this technique in the
reasoning of our agents.

In short, our approach looks at the needs of a real application and analyses whether the
agent paradigm is capable of addressing those needs.

TABLE OF CONTENTS

GENERAL INTRODUCTION 1 --------------------------
PARTI: INTELLIGENT AGENTS AND

NON-MONOTONIC LOGIC: AN OVERVIEW __________ 3

1. Introduction-------------------------------- 5
2. Intelligent Agents ___________________________ 7

2.1 Definition of an agent 7
2.2 Properties of an agent 8

2.2.1 Autonomy 9
2.2.2 Adaptivity 9
2.2.3 Co-operation 9
2.2.4 Other properties 10

2.3 Agent Typology 10
2.3.l Collaborative agents 11
2.3.2 Interface agents 11
2.3 .3 Mobile agents 11
2.3.4 Information/Internet agents 11
2.3.5 Reactive agents 12
2.3 .6 Hybrid agents 12

2.4 Agent Architecture 12
2.4. l Agent internai architecture 13
2.4.2 Multi-Agent System (MAS) architecture 14

2.5 Agent communication components 16
2.5. l Agent Communication Languages 17
2.5.2 Content languages 19
2.5.3 Ontology 21

2.6 Mobile agents 22
2.7 Agent implementation languages 23

2.7.l Characteristics of agent implementation languages 23
2.7.2 Mobile agent language 25

2.8 Applications of Intelligent Agents 26
2.8.1 Electronic Commerce 27
2.8.2 Messaging 29
2.8.3 Adaptive User Interfaces 29
2.8.4 Systems and Network Management 29
2.8.5 Administrative Management 29
2.8.6 Computer supported collaborative work 29
2.8.7 Mobile Access 30
2.8.8 Information Management 30

3. Non-monotonie logic ____________________________ 31
3.1 Introduction 31
3.2. Unsuitability of classical logic for formalising revisable reasoning 32
3.3. Characteristics of non-monotonie logics 33
3.4. Default Logic 33

3.4.1 Syntax and vocabulary 34
3.4.2 Default proof system 35
3.4.3 Extensions 36

3.5 . Belief Revision 38
3.5. l The AGM rationality postulates 40
3.5.2 Relationships between change fonctions 41
3.5 .3 Epistemic entrenchment orderings 41
3.5.4 Implementation of Belief Revision 43
3 .5 .5 Types of Transmutation 44

4. Conclusion 47

PART II: INTELLIGENT A GENTS AND

NON-MONOTONIC LOGIC: AN APPLICATION 49 ------------
1.1 nt r o duc t ion ------------------------------ 51

2. Travel Agents and the travel industry 53
2.1 Industry background 53
2.2 Basic facilities and properties of a travel agent 53
2.3 The actors 55

2.3. l Suppliers / Vendors 55
2.3.2 Distributors 55
2.3 .3 Customers 55

2.4 Possible Scenarios 55
2.4.1 External Vendor provides travellers their own Intelligent Agents 56
2.4.2 Travel Agents develop their own Intelligent Agents 56
2.4.3 Vendors form Alliances and use Intelligent Agents to bypass Travel Agents 57

2.5 Future Evolution 57
2.5 .1 The drawbacks of software travel agents 57
2.5.2 Is there a future for travel agencies? 58

3. Characteristics of our application 59
3.1 Brief description of the application 59
3.2 Tools used to build the application 59
3.3 Features of the agent system 60

3. 3 .1 Properties and typology of the agents 60
3.3.2 Agent architecture and communication language 61
3.3 .3 Artificial intelligence 61

4. An agent oriented language (Jack) 63
4.1 Introduction 63
4.2 Jack and the BDI mode! 63
4.3 Jack : a Java-based Language 64
4.4 Jack programming concepts 65
4.5 Benefits of Jack 67
4.6 Evolution 67

5. AI tools: Vader, Hades, and Saten 69 ----------------------5. l VADER 69
5.2 HADES 70
5.3 SATEN 71

6. Architectures 75 -------------------------------
6. l External architecture 75
6.2 TravelAgent 76

6.2.1 Features of the TravelAgent 76
6.2.2 Jack architecture 79

6.3 CompanyAgent 83
6.3.l Features of the CompanyAgent 83
6.3.2 Jack architecture 84

7. Implementation ____________________________ 87
7.1 Graphical User Interface 87

7. l. l The TraveIAgent interface 87
7. l.2 The Company Agent interface 89

7 .2 Non-monotonie reasoning in our agents 90
7.2.l How do we use BeliefRevision? 90
7 .2.2 How do we use Default Logic? 98

7.3 Example of Jack components 100
7.3 .l An agent: CompanyAgent 100
7.3.2 An event : AskVacancyE 103
7.3.3 A plan: AskVacancyP 103
7.3.4 A database: TicketsCompDB 105
7.3.5 A capability: DefCap 106

8.Conclusion 109

GENERAL CONCLUSION 111 --------------------------
B J B L 1O G RA PH Y 113

GENERAL INTRODUCTION

Big changes are taking place in the area of information supply and dernand. The first big
change, which took place quite a while ago, is related to the form in which information is
available. In the past, paper was the most frequently used media for information, and it still is
very popular right now. However, more and more information is available through electronic
media (mostly on the Internet). Other aspects of information that have changed rapidly in the
last few years are the amount of forms that it is available in, the number of sources and the
ease with which it can be obtained.

The sheer endlessness of the information available through the Internet, which at first glance
looks like its major strength, is at the same time one of its major weaknesses. The amounts of
information that are at your disposai are too vast: information that is being sought is
(probably) available somewhere, but often only parts of it can be retrieved, or sometimes
nothing can be found at all.

This problem has led to the emergence of Intelligent Agents that can replace humans for
treating information more rapidly and in a more efficient way. In fact, agent research has been
going on for about fifteen years before but agents really became a popular word in the
computing press around 1994. During this year several key publications appeared. Currently,
Intelligent Agent is arnong the most rapidly growing areas of research and development in
computer science.

Originally, the Intelligent Agent is a concept that appeared in Artificial Intelligence (AI) but
was quickly taken up by many computer scientists not necessarily working in Al. Indeed, the
concept of agent can be adapted to a lot of systems arid therefore, there actually exists an
important number of research areas that contain the keyword "agent" in their title and that are
not related to AL Finally, we can say that the concept of "Intelligent Agent" is a multi
disciplinary field and regroup several computer demains such as distributed computer
systems, software engineering, conception of user interfaces, artificial intelligence, etc. Even
if obviously, AI is no more in the centre of preoccupation in agent research, the agent field
still off ers an opportunity to apply AI techniques to the "real world".

This evolution lead to different conceptions of what an agent is it can be AI-oriented,
software engineering oriented or a balanced rnix of these conceptions. Bach researcher takes
up the concept for his or her own needs and thereby creates his or her own definition of what
an agent is. Hopefully, the agent paradigm has today clearly matured and some consensus has
been reached to circumscribe the agent's notion.

The success of the agent concept is due to the facilities given by the agent paradigm to
develop complex distributed computing systems. Communication between software entities is
at the heart of such systems and agents provide neat solutions for communications issues.
Agent-oriented techniques have the potential to significantly extend the range of applications
that can feasibly be tackled. Analysing, designing and implementing software as a collection
of interacting agents may represent a promising point of departure for software engineering to
build complex systems. Indeed, applications built upon the agent paradigm already cover a
wide number of areas including electronic commerce and information management, health
care, process control, etc.

1

The goal of this dissertation is double. The first goal of this dissertation aims at verifying
whether implementing agent-based systems is a good point of departure for software
engineering. The first thing to dois to check whether the agent paradigm is actually mature or
not. This implies summarising the concepts related to Intelligent Agents and seeing whether
enough concepts have been defined to build Intelligent Agents. The second chapter of Part I
of our dissertation establishes these theoretical bases.

The second goal is seeing how easy and useful it is to integrate AI techniques in such a
system. Can AI make agents behave more intelligently? We introduce in the third chapter of
Part I the non-monotonie logic that provides a way of dealing with revisable reasoning.

Afterwards, we must confront these two disciplines to the reality of an application. That is
what we do in Part II that focuses on the practical aspects of our dissertation. We present in
that part an application we developed. lt consists of a small multi-agent system that is
endowed with non-monotonie reasoning. Hence, our approach is multi-disciplinary. The
application is built with a software engineering view of the agent paradigm but it integrates
AI techniques (i .e. non-monotonie logic) and uses distributed object fonctions (Java methods).
The aim here is to examine the requirements of a specific application and analyse how the
agent paradigm and the AI provide solutions. This is analysing, designing and implementing
an agent-based application using an agent-oriented tool (called Jack) and some AI tools
(called Vader, Saten, Rades).

At the end of this dissertation, we should be able to assess the opportunity offered by
Intelligent Agents to ease the development of computer systems and to evaluate the place AI
can hold in the agent paradigm.

2

---~--- -----~~------------~

PARTI

INTELLIGENT AGENTS AND NON
MONOTONIC LOGIC : AN OVERVIEW

3

1. Introduction

The areas in which Intelligent Agents technology can be found are getting wider and wider.
Intelligent agents are a popular research object these days in such fields as computer science
but also psychology or sociology. However, they are most intensely studied in the discipline
of distributed systems and Artificial Intelligence. Since many parties use the term "Intelligent
Agent" in many different ways, it has become difficult for users to make a good estimation of
what the possibilities of the agent technology are. Consequently, a lot has been said about
Intelligent Agents but still nobody has corne up with a definition on which everyone agrees.
In the first section of the chapter 2, we give an overview of some of the existing definitions,
based on literature.

In the second section, we single out some properties that can be found in most of the existing
definitions. They constitute basic capabilities that every Intelligent Agent should possess. We
also describe other properties that an agent could have. Next, we classify agents into
categories according to the properties they possess and we draw up a typology of all the
existing agents.

The task of building an agent is not an easy one. Indeed, once the properties the agent should
possess are identified, the way to build it (i.e. the architecture) has to be chosen. Whatever the
choice, the architecture should provide support for the basic properties of the agent. The
fourth section focuses both on the interna} and extemal architectures. Extemal architectures
are necessary to describe the extemal environment of the agent. They are crucial for the
standardisation of communication between agents. We continue by explaining the
components whose goal is to facilitate the inter-agent communication : the ontology, the
content language and the Agent Communication Language (ACL).

Section six focuses on the Mobile Agent technology. Mobile agents are capable of roaming
networks for performing a determined task on behalf of its owner and coming back to the
user's machine after having completed what the user had asked. This technology takes a large
part in the agent research and is very promising. We conclude this first part of our dissertation
by providing an overview of some agent-oriented programming languages and of possible
application domains.

In chapter 3, we introduce non-~onotonic logic because our agent uses this AI technique for
reasoning. By doing so, we hope to build a more 'intelligent' agent that is capable of dealing
with situations of incomplete or inconsistent information. We chose to endow our agent with
Belief Revision and Default Logic capabilities, for they seem to be useful Intelligent Agent
reasoning methods. After a brief introduction of what non-monotony is, we talk about the
unsuitability of classical logic to formalise non-monotonie reasoning. Afterwards, the second
section presents the characteristics of non-monotonie logic. And finally, the third and fourth
sections introduce Belief Revision and Default Logic respectively.

5

J

2. Intelligent Agents

Since the 1980s, the computer community has been talking about Intelligent Agents but there
exists still some difficulty to define the term "agent ". ln the following chapter, we first discuss
different point of views on Intelligent Agents. We then introduce some important concepts
related to Intelligent Agents. We conclude this section by taking a look at the language used
to build an agent and present some domains of application.

2.1 Definition of an agent

Before we can start talking about agents, it is important to understand the meaning of the
concept "agent". Up to now, there is no consensus on the use of a unique definition and the
workers involved in agent research have offered a variety of definitions, each hoping to
explain his or her use of the word 'agent'. These definitions range from the simple to the
lengthy and demanding. Obviously, each of them grew directly out of the set of examples of
agents that the definer had in rnind.

" The MuBot Agent {http://www.crystaliz.com/logi.cware/mutbot.html} "The term agent is used to
represent two orthogonal concepts. The first is the agent's ability for autonomous execution.
The second is the agent's ability to perform domain oriented reasoning. "
(. . .)
The AIMA Agent [Russel and Norvig 1995, page 33} ''An agent is anything that can be
viewed as perceiving its environment through sensors and acting upon that environment
through effectors. "
(. . .)
The Maes Agent [Maes 1995, page 108} "Autonomous agents are computational systems that
inhabit some complex dynamic environment, sense and act autonomously in this environment,
and by doing so realise a set of goals or tasks for which they are designed "
(. . .)
The KidSim [Smith, Cypher and Spohrer 1994 J "Let us define an agent as a persistent
software entity dedicated to a specific purpose. 'Persistent' distinguishes agents from
subroutines; agents have their own ideas about how to accomplish tasks, their own agendas.
'Special purpose' distinguishes them from entire multifunction applications; agents are
typically much smaller. "
(. . .)
The Hayes-Roth Agent [Hayes-Roth 1995} "Intelligent Agents continuously perform three
functions : perception of dynamic conditions in the environment; action to affect conditions in
the environment; and reasoning to interpret perceptions, salve problems, draw inferences,
and determine actions. "
(. . .)
The IBM Agent {http://activist.gpl.ibm.com:81/WhitePaperlptc2.htm} "Intelligent Agents are
software entities that carry out some set of operations on behalf of a user or another program
with some degree of independence or autonomy, and in so doing, employ some knowledge or
representation of the user's goals or desires. "
(. . .)

7

The Wooldridge-Jennings Agent [Wooldridge and Jennings 1995, page 2} " ... a hardware or
(more usually) software-based computer system that enjoys the following properties:

(. . .)

• autonomy: agents operate without the direct intervention of humans or others, and
have some kind of contrai over their actions and internai state;

• social ability: agents interact with other agents (and possibly humans) via some
kind of agent-communication language;

• reactivity: agents perceive their environment, (which may be the physical world, a
user via a graphical user interface, a collection of other agents, the INTERNET, or
perhaps ail of these combined), and respond in a timely fashion to changes that
occur in it;

• pro-activeness: agents do not simply act in response to their environment, they are
able to exhibit goal-directed behaviour by taking the initiative. "

The SodaBot Agent [Michael Caen http://www.ai.mit.edu/sodabot/slideshow/total/POOJ.html}
"Software agents are programs that engage in dialogs [and} negotiate and coordinate
transfer of information. "
(. . .)
The Brustoloni Agent [Brustolini 1991, Franklin 1995, p .265] ''Autonomous agents are
systems capable of auto no mous, purposeful action in the real world. " "1

Clearly, it is extremely difficult to agree on a definition for the concept 'agent'. The question
'what is an agent?' is embarrassing for the agent-based computing community in just the
same way that the question 'what is intelligence?' is embarrassing for the mainstream AI
community. The problem is that although the term is widely used by many people working in
closely related areas, it defies attempts to produce a single universally accepted definition.

There are at least two reasons for this. Firstly, agent researchers do not 'own' this term; it is a
term that is widely used in everyday parlance such as in travel agents, estate agents, etc.
Secondly, even within the software fratemity, the word 'agent' is really an umbrella term for a
heterogeneous body of research and development. The response of some agent researchers to
this lack of definition has been to invent yet some more synonyms, and it is arguable that
these solve anything or just further add to the confusion. So we now have synonyms including
knowbots (i.e. knowledge-based robots), softbots (software robot), taskbots (task-based
robots), userbots, robots, Intelligent Agents, persona! agents, autonomous agents and persona!
assistants.

2.2 Properties of an agent

According tous, none of the definitions above can be regarded as "the good definition" but all
of them contain some pieces of truth. He notion of agent is very flexible and there is no need
to restrict it to one kind of agent. The variety and the flexibility give the agent paradigm its
success. Nevertheless, it is useful to single out some agent properties from all these
definitions in order to reduce the confusion around the notion of agent. These are properties
that make agents different from conventional programs : autonomy, adaptivity and co
operation. Ideally, every agent should exhibit these three primary attributes.

1 ref. [FRANKLIN & GRAESSER 1996, pp. 1-3]

8

2.2.1 Autonomy

Autonomy seems to be central to agents. Autonomy refers to the principle that agents can
operate on their own without the need for human guidance. Every agent should have a
measure of autonomy from its user and act on behalf of this user. Otherwise, it is just a
glorified front-end, irrevocably fixed lock-step to the actions of the user. Agents operate
without the direct intervention of humans or others, and have some kind of control over their
actions and internai states and goals (that the agents have to meet on behalf of the user). An
autonomous agent can be pro-active (or deliberative) and pursue an agenda independently of
its user by acting in a foreseeing goal- or plan-oriented manner rather than acting simply in
response to its environment (reactiveness). This requires aspects of periodic action,
spontaneous execution, and initiative, in that the agent must be able to take preempti ve or
independent actions that will eventually benefit the user. The agent does not simply act in
response to its environment, it is able to exhibit goal-directed behaviour by taking the
initiative.

2.2.2 Adaptivity

The objective of an agent is to enable people to do some tasks better. Since people do not do
the same tasks, and since those people who share the same task do it in different ways, an
agent must be educable in the task at hand as well as in the way itself to do it. ldeally, there
should be components of learning (so the user does not necessarily have to program the agent
explicitly; moreover, certain agents can already leam by ' looking over the user's shoulder)
and of memory (so this education is not lost). The agent has also to be adaptable to changing
environment conditions. lt has to be reactive, in order to be able to respond to changes of the
environment (which may be the physical world, a user via a graphical user interface, a
collection of other agents, the Internet, or perhaps all of these combined) in reasonable time.
A truly useful agent should then be able to adapt its behaviour based on a combination of user
feedback and environmental factors .

2.2.3 Co-operation

The user and the agent are essentially collaborating in constructing a contract. The user
specifies what actions should be performed on his or her behalf, and the agent specifies what
it can do and provides results. This is often best viewed as a two-way conversation, in which
each party may ask questions to verify that both sides are in agreement about what is going
on. But the agent may also co-operate with other agents to carry out more complex tasks than
it can handle itself. Co-operation is just a more specific notion of communication and
interaction. lt can be seen as a positive interaction.

In order to co-operate, agents need to possess the ability to internet with other agents or
humans. For all but the simplest of tasks, we generally need to be assured that the agent
shares our agenda and can carry out the task the way we want it done. This generally requires
a discourse with the agent, a two-way feedback, in which both parties make their intentions
and abilities known, and mutually agree on something resembling a contract about what is to
be done, and by whom. This discourse may be in the form of a single conversation, or a
higher-level discourse in which the user and the agent repeatedly internet, but where both
parties remember previous interactions. We can be more general and mention the notion of
social ability. Agents communicate and interact with the user, the system, and other agents
via some kind of agent-communication language.

9

2.2.4 Other properties

Various other attributes are sometimes discussed in the context of agents. For example,
mohility is the ability of an agent to move from one system to another around an electronic
network to access remote resources or even to meet other agents. Veracity is the assumption
that an agent will not knowingly comrnunicate false information. Introspection is the ability
to examine and self-reflect its own thoughts, ideas, plan, etc. Benevolence is the assumption
that agents do not have conflicting goals, and that every agent will, therefore, always try to do
what is asked. Rationality is the assumption that an agent will act in a way that is optimal for
achieving its goals, and will not act in such a way as to prevent its goals being achieved - at
least insofar as its beliefs permit.

2.3 Agent Typology1

Every agent does not have all of these properties. ldeally, an agent should (but sometimes
doesn 't) exhibit the three primary attributes : autonomy, adaptivity and co-operation. Beyond
this, an agent can be mobile or not, introspective or not, ... We can attempt to place the
existing agents into different agent classes thanks to these attributes. We should note that this
classification is only one proposa} of typology amongst many others. Since there is not one
unique definition of what an 'agent' is on which everyone agrees, there cannot exist one right
classification of the different types of agent. Therefore, the ensuing list below is in some
degree arbitrary, but we believe these types cover most of the existing agent types.

We can classify agents according to the types identified in the schema below, or according to
their roles or other attributes they can possess (e.g. mobile, reactive, ...). However, these
distinctions are not definitive. For example, with collaborating agents, there is more emphasis
on co-operation and autonomy but this does not mean that collaborative agents never learn.

Smart Agents Collaborative Learning Agents

nterface Agent

Collaborative Agents

Figure 1: A partial view ofan agent tvpology2

1 based upon [NW AN A 1996]
2 [NWANA 1996)

10

We do not consider that anything else that lies outside the intersecting areas are agents. Most
expert systems are, for instance, largely autonomous but typically they do not co-operate or
leam.

We do not discuss smart agents and collaborative leaming agents. Smart agents are
autonomous agents capable of leaming and collaborating. Moreover, they are an aspiration of
agent researchers rather than reality. Truly smart agents do not yet exist.
We identify six types of agents :

2.3.l Collaborative agents

Collaborative agents emphasise autonomy and co-operation (thanks to an agent
communication language) in order to perform tasks for their owners. They may leam, but this
aspect is not a major emphasis of their operation. Sorne AI researchers are providing stronger
definitions for such agents, e.g. some attribute mentalistic notions are hereby used, such as
Belief, Desire and Intention (BDI) type agents (we look at BDI more into detail in 2.4.1).

The key properties of these agents are autonomy, social ability and pro-activeness. Hence,
they should be able to act rationally and autonomously in open and time-constrainted multi
agent environments. Most currently implemented collaborative agents do not perform any
complex leaming, though they may or may not perform limited parametric or rote leaming.

2.3.2 Interface agents

Interface agents emphasise autonomy and learning in order to perform tasks for their owners.
They are like persona! assistants who are collaborating with the user (not with other agents as
is the case with collaborative agents) in the same work environment. An explicit agent
communication language is not always required for that kind of collaboration.

Generally, interface agents support and provide assistance, typically to a user, leaming to use
an application or an operating system. They 'watch over the shoulder of the user', make
suggestions to perform some tasks better, etc. They leam to better assist the user by observing
and imitating him/her, by receiving positive and negative feedback from him/her, by receiving
explicit instructions from him/her or sometimes by asking other agents for advice.

2.3.3 Mobile agents

Mobile agents are agents capable of roaming networks (such as Internet), interacting with
foreign hosts, gathering information on behalf of its owner and coming back to the user' s
machine having performed what the user had asked (e.g. managing a telecommunications
network, reserving a flight, ...). They are autonomous and they co-operate (but in a different
way as collaborative agents do). In fact, the general perception of agents is often synonymous
with mobile agent (we go deeper into the subject in section 2.6).

2.3.4 Information/Internet agents

Information agents are tools to help the user manage the explosive growth of information
he/she has to face in these turbulent times. They perform the role of managing, manipulating
or collating information from man y distributed sources.

11

- - - - ------------------------,

There exists a subtle distinction between information agents and some 'information-specific'
interface agents or collaborative agents (e.g. whose duty is filtering a stream of data).
Interface or collaborative agents started out quite distinctly, but with the explosion of the
Internet (and their applicability to it), there is now a significant degree of overlap. This is
inevitable, especially since information agents are defined using different criteria. They are
defined by what they do, in contrast to collaborative or interface agents who are defined -via
their attributes- by what they are. Interface and collaborative agents can, in a sense, be
information agents if they are employed in Internet-based roles.

2.3.5 Reactive agents

Reactive agents represent a special category of agents that do no possess internai, symbolic
models of their environment. They act reactively, i.e. in a stimulus-response manner to the
current state of their environment. Hence, there are no a priori specifications (or plans) of the
behaviour in their set-up.

Many theories, architectures and languages exist for this type of agents. But most
interestingly, these kind of agents are relatively simple and internet with other agents in basic
ways (however, all the interacting agents viewed globally can show some complex patterns of
behaviour). A reactive agent can be seen as a collection of modules that operate autonomously
and are responsible for specific tasks. Communication between the modules is minimised and
is of relatively low-level nature.

Reactive agents tend to operate on representations that are close to raw sensor data, in contrast
to the high-level symbolic representations that are abound in the other types of agents
discussed so far.

2.3.6 Hybrid agents

Since each type of agent has its own strengths and deficiencies, the trick is to maximise the
strengths and minimise the deficiencies. One way of doing this is to adopt a hybrid approach,
by bringing some of the strengths of different paradigms together. Therefore, hybrid agents
are agents whose constitution is a combination of different agent philosophies within a
singular agent.

2.4 Agent Architecture1

With the previous sections, we perceive better what an agent is. In this section, we can thus
analyse how they are built. We will discuss two levels of architecture. The first level of
architecture defines the relationships between the components that constitute the interna!
composition of an agent; we will call this the agent internai architecture. Secondly, we will
take a look at the architecture of the Multi-Agent Systems (MAS), which defines the
relationships and interactions between each of the individual agents. The Multi-Agent
Systems level architecture often can be seen as the co-ordination mechanism to which the
total agent system should conform.

1 based upon [FLORES-MENDES 2000], [BUSETTA & KOTAGIRI 1998],
[HA YZELDEN & BIGHAM 1998) , [OMO 2000)

12

2.4.1 Agent interna} architecture

There are many ways to build an agent and there are as many architectures. In any case, the
agent should provide support for the basic properties of an agent. For example, an agent's
behaviour includes autonomy, reactivity, pro-activeness, social ability (co-operation and
communication), leaming, goal orientation, mobility and so on. A particular agent might not
have all of these properties but might still be considered as an agent.

An approach that has received a great deal of attention is the so-called Belief, Desire,
Intention, (BDI) architecture. The BDI architecture is based on the study of the mental
attitudes.

The beliefs represent the informational state of a BDI agent, what it knows about itself and
the world. Desires or goals are its motivational state, that is, what the agent is trying to
achieve. The intentions represent the deliberative state of the agent, that is, which plans the
agent has chosen for eventual execution. The agent reacts to events that are generated by
modifications to its beliefs, additions of new goals or messages coming from the extemal
world. Intentions are executed one step at the time. A step can query or change the beliefs,
perform actions, suspend the execution until a certain condition is met, and submit new goals.
The operations performed by a step may generate new events which, in tum, may start new
intentions.

1 from [WOOLDRIDGE 1999]

Sensorlnpu1:.--..

Belief Revision Funëtion

Seliefs

Action

-~ Action Output

Figure 2: BeliefDesire-Intention architecture1

13

Based on previous research and practical applications, Rao and Georgeff1 have described a
computational model for a generic software system implementing a BDI agent. Such a system
is an example of event-driven programming. In reaction to an event, for instance a change in
the environment or its own beliefs, a BDI agent adopts an appropriate plan.

Figure 2 shows a BDI architecture. A BDI agent performs four fonctions : A Belief Revision
fonction that generates a new set of beliefs, given some sensor input ; an option generation
fonction that determines the options available to the agent, given the current beliefs and
current intentions ; a filter that generates a new set of intentions given current beliefs, options,
and intentions ; an action selection fonction that determines an action to perform, given
current intentions.

It has been shown that BDI is well suited to modelling certain types of behaviour, such as an
application of standard operational procedures by trained staff. It has been successfolly
adopted in fields as diverse as simulation of military tactics, application of business rules in
workflow, and diagnostics in telecommunications networks.

In summary, BDI is the abstract architecture of a family that allows a high degree of
sensitivity to the context when deciding how to react to changing conditions.

2.4.2 Multi-Agent System (MAS) architecture

The previous section treats the internai architecture of an agent. Since agents act in an
environment that contains other agents and various services, an architecture should also
describe the extemal environment. Such architectures standardise communication between
agents and access to common services.

There are two approaches to build a MAS. Agent system architectures can be language and
platform independent, or they can be based on a particular language or implementation
framework. There are numerous language specific frameworks for implementing agents. The
problem with this approach is that it can be difficult, or even impossible, for agents
implemented using different frameworks to communicate. The language specific approach
can be usefol for implementing custom agent systems, for instance, within a company. For
more general applications, a platform independent architecture is needed.

Recently, several independent research groups started to pursue the standardisation of MAS.
Two of them are the Object Management Group (OMG) and the Foundation for Physical
Agent (FIP A).

1
see also [RAO & GEORGEFF 1995)

14

PIPA is a standardisation approach for a complete architecture for supporting Intelligent
Agents. The PIPA architecture consists of the following concepts :

• Agent: Each agent has an identifier that is unique in the PIPA agent uni verse.
• Agent platform (AP) : A complete agent system consisting of a directory agent, a

management agent and a communication channel agent.
• Directory Facilitator (DF) : . The directory is an agent that provides catalogue

services to the other agents. The agent defines an agent domain and supports the
following actions : register, deregister, search, and modify.

• Agent management System (AMS) : This is an agent that manages the activities
within an agent platform, including creation of agents, deletion of agents, and
migration of an agent to and from other platforms. lt supports the actions authenticate,
register-agent, deregister-agent, and modify-agent.

• Agent Communication Channel (ACC) : The communication language used in the
PIPA architecture is based on the speech act theory, where messages are viewed as
communicative acts intended to perform an action. Communication between agents
necessitates ontologies, a knowledge representation language (KIF) and a
communication language similar to KQML (Knowledge Query and Manipulation
Language; see section 2.5 for more information about Agent Communication
Languages).

PIPA has demonstrated several applications implemented using their architecture and it seems
as if PIPA is an accepted standard for agents.

1 Software

1 Agent 1

Agent Platform

Agent
Directory ACC - AC

Management
,.

Facilitator ~

System ~

1 1 1

1 nternal Platform Message Transport

Figure 3: FIPA-Agent Management ModeP

1 http://www .fîpa .org/
2 from [OBRIEN 1998)

15

- - -----------------------------.

In 1989, a consortium of object vendors grouped together to form the Object Management
Group (OMG). Since then, they have been defining standards and architectures that allow
object components written by different vendors to inter-operate across networks and operating
systems. The specification of the architecture is referred to as the Common Object Request
Broker Architecture (CORBA). Because of some similarities between the concepts of object
and agent, the OMG has created an Agent Working Group with the mission to provide a
forum for identifying and building consensus and convergence in the industry around agent
technology.

Because it is likely that agent technology and object technology specifications will eventually
overlap, it is desirable not to duplicate the specifications. Indeed, both technologies need
namespaces, have lifecycle services, use persistence, address mobility, etc.

An OMG-FIP A Liaison-Project2 was proposed to encourage agent technology standards to
evolve consistently with object technology standards and to further co-ordination between
OMG and FIP A's related work toward an agent technology standard.

2.5 Agent communication components

Agent-to-agent communication is key to realising the potential of the agent paradigm. lndeed,
we have seen that one of the agent's properties is co-operation. Most people agree that this
implies that agents have to communicate and interact with other agents.

However, some say that agents could work together in multiple agent systems (MAS) as a
perfectly co-ordinated team without having to comrnunicate. This would be possible if every
agent had perfect information about the state of the entire system - if every agent knew what
every agent knew, what every agent intended to do, and how everything in the system stood in
relation to everything else in the system. Of course, such perfect knowledge is often
impossible. lndeed, agents have at best partial, possibly incorrect information about the state
of their environment. This is why the agents have to communicate to co-operate.

Agents can use three elements to facilitate inter-agent communication. The first element is an
ontology that is used to understand the semantic of a message content. The second element is
a content language that is used to formalise the knowledge and information. It defines in a
way the syntax of the message content. The third element is an agent-communication
language. Agents use an Agent Communication Language or ACL to transmit information
and knowledge. For example, an ACL specifies the type of message or the receiver of the
message. We will discuss these three elements below.

1 http://www.omg.org/
2 see also [MCCABE 1993),

16

2.5.1 Agent Communication Languages 1

Where agents need to communicate, they must individually understand some agent
communication languages (ACL). An ACL should allow agents to enlist the support of others
to achieve goals, to monitor their execution, to report progress, success, failure, to
acknowledge receipt of messages, to refuse task allocations and to commit to performing
tasks for other agents.

There are two main approaches to design an agent communication language. The first
approach is procedural, where communication is based on executable content. This approach
allows programs to transmit not only individual commands but also entire programs. The
second approach is declarative, where communication is based on declarative statements, such
as definitions or assumptions.

Proprietary ACLs have been chosen as the communication mechanism by most researchers.
This is probably due to their application requirements being specific and due to the lack of
standardised ACL being available. A standardised ACL is essential if agent based network
management systems are going to achieve their integration into legacy systems and inter
operate with future demands for network system upgrades.

One of the more popular agent-languages is the Knowledge Query and Manipulation
Language (KQML). KQML is an evolving standard ACL, being developed as part of the
DARPA Knowledge Sharing Effort (KSE). KQML is a communication language and protocol
for exchanging information and knowledge and most declarative language implementations
are based on illocutionary acts, such as requesting or commanding. Such actions are
commonly called "performatives". At the heart of KQML are more than three dozen
performatives that define the allowed speech acts agents may use. The table below presents
the KQML performatives.

CATEGORY RESERVED PERFORMATIVE NAME
Basic informational performatives Tell, deny, untell, cancel
Basic query performatives Evaluate, reply, ask-if, ask-about, as-one, ask-

all, sorry
Multi-response query performatives Stream-about, stream-all
Basic effector performatives Achieve, unachieve
Generator performatives Standby, ready, next, rest, discard, generator
Capability definition performatives Advertise
Notification performatives Subscribe, monitor
Networking performatives Register, unregister, forward, broadcast, pipe,

break
Facilitation performatives Broker-one, broker-all, recommend-one,

recomrnend-all, recroit-one, recruit-all

1 based upon [NWANA & WOOLDRIDGE 1996), [GENESERETH & KETCHPEL 1994], [FININ & LABROU
1999], [LABROU et al. 1999]

17

- - - ---- --- --- - ------ - -------------~

The KQML language can be viewed as consisting of three layers : the content, message and
communication layers .

The content layer specifies the actual content of the message. This layer contains an
expression written in a language allowing to encode the information. In this context, it is
important to agree on the use of a common language such as KIF (Knowledge Interchange
Format, see 2.5 .2) to support the knowledge sharing. The KQML standard itself has nothing
to say about this. The set of performatives constitutes the message layer. The communication
layer encodes low level communication parameters, such as the identity of the sender and the
recipient.

Communication Layer

Message Layer

Figure 4 : An ahstract view ofthe KOML language

The Foundation for Intelligent Physical Agents (PIPA) has also developed an ACL as well.
Like KQML, FIPA's agent communication language is also based on speech act theory :
messages are actions or communication acts. The FIP A ACL specification consists of a set of
message types and the description of their pragmatics - that is, the effects on the mental
attitudes of the sender and the receiver agents. PIPA ACL is superficially similar to KQML
except for different names for some reserved primitives. Thus, it maintains the KQML
approach of separating the outer language from the inner language. The two languages differ
in the details of their semantics framework. This makes it impossible to corne up with exact
mappings or transformations between KQML performatives and their completely equivalent
PIPA primitives, or vice versa.

18

Examples of KQML messages1

In the following example, the KQML performative is tell. The agent
that is sending the message seeks to informa customer, customer-
2, concerning a quote for performing a service, service-4, in
reply to an earlier request from customer-2, to BT customer
services. The content of the message is expressed in standard
Prolog and the ontology for BT's services domain is assumed.

(tell
content "cost (bt, ser,vice-4, f5677)"
language standard prolog
ontology bt-services-domain
in-reply-to quote service-4
receiver customer-2
sender bt-customer-servièes)

In the next example, the message .is expressed in KIF. The content
of this message says that the torque of abject motorl at
simulation time (sim-time) 5 is 12 kg. It is assumed that the
ontology 'motors' defines the terms torque, sim-time, kgf, and so
on.

(un tell
language KIF
ontology motors
in-reply-to Sl
content (= (val (torque motorl)

12kgf)))
(sim-time 5)) (scalar

The concept of a standard communication language for software agents that is based on
speech acts has found wide appeal. KQML was among the first such ACLs to be developed
and used. Nevertheless, after eight years of experimentation, there are still signs of
immaturity. In general, different KQML implementations cannot inter-operate (but this is
mainly due to a lack of motivation). However, KQML has played an important role in
defining what an ACL is and what the issues are.

2.5.2 Content languages2

As we have said in the previous section, the KQML standard says nothing about the content
layer. The role of the content language is to provide an interlingua for a wide range of
systems. A variety of content languages have been used with ACL's, including Prolog, SQL,
etc. However, the best known work in this area is the ARPA Knowledge-Sharing Effort
(KSE). One of the results is the Knowledge Interchange Format (KIF) that provides an
interlingua for knowledge bases to inter-operate.

1 from [GENESERETH & KETCHPEL 1994]
2 based upon [NW ANA & WOOLDRIDGE 1996], [GENESERETH & KETCHPEL 1994]

19

In other words, as shown on Figure 5, for two agents with different legacy knowledge bases to
inter-operate, both knowledge bases could be translated into KIF that will be the shared
representation language. KIF provides also a common language for reusable knowledge. It is
possible to build library containing knowledge bases written in KIF.

Systeme 1

KIF<->language I translator LIBRARY

KIF<->language Il translator KIF<->language Il translator

Systeme 2

Figure 5 : Knowledge Interchange Formai

KIF is a prefix version of first-order predicate calculus, with various extensions to enhance its
expressiveness. It provides for the encoding of simple data, constraints, negations,
disjunctions, rules, quantified expressions and so forth. KIF also includes an axiomatic
specification of large function and relation vocabulary and a vocabulary for numbers, sets,
and lists.

Sorne KIF software products are available. For example, partial translators exist for a number
of other Knowledge Representation (KR) languages, such as Prolog. Parsers for KIF also
exist which transform KIF strings into C++ or Java objects.

The future of KIF outside the AI-related community remains unclear because it may not be
acceptable to a wider community since it's too logic-oriented. Nevertheless, its expressive
power may be decisive. KIF is up to now the only widely used interlingua for Knowledge
Base systems.

1 from [FININ & LABROU 1999]
2 from [GENESERETH & KETCHPEL 1994]

20

Examples of KIF expression1

KIF provides for the expression of simple data. For example, the
sentences shown below encode 3 tuples in a database. The first
argument in each is the social security number of an individual,
the second argument is the department within wich the individual
works, and the third argument is the individual's salary.

(salary 019-46-9532 widgets 72000)
(salary 021-45-3179 grommets 36000)

More complicated pieces of information can be expressed through
the use of complex terms. For example, the following sentence says
that one chip is larger than another

(> (*(width chipl)
chip2)))

2.5.3 Ontology 1

(length chi pl)) (* (width chip2) (length

An important pre requisite to communicate is using the same concepts. Ontology treats this
issue. In philosophy, it refers to the subject of existence. In computer sciences, the term
ontology is used to indicate a specification of a conceptualisation. An ontology is a
description of the concepts and relationships that can exist for a community of agents.
Practically, an ontology is a specification used for making ontological commitments and an
ontological commitment is an agreement to use a shared vocabulary in a coherent manner.
The concept of ontology is therefore very important in the context of knowledge sharing.
Indeed, without agreement on a particular ontology between the agents, it is impossible to
share information and thus to co-operate. An agent commits to an ontology so that he/she can
communicate about a domain of discourse with other agents. Pragmatically, a common
ontology defines the vocabulary with which queries and assertions are exchanged among
agents. Creating an ontology involves explicitly defining every concept to be represented. For
example, to plan a trip, we need to be aware of ontology concepts such as planes, flights,
airports . . .

Three important aspects to explicit ontologies are the conceptualisation, the vocabulary and
the axiomatisation. Conceptualisation involves the underlying model of the domain in terms
of abjects, attributes and relations. Vocabulary involves assigning symbols or terms to refer to
those abjects, attributes and relations. Axiomatisation involves encoding rules and constraints
that capture significant aspects of the domain model. Consequently, two ontologies may differ
from one another for three different reasons. First they may be based on different
conceptualisations. Secondly, they may be based on the same conceptualisation but use
different vocabularies. Finally, they may differ on how much they attempt to axiomatise the
ontologies.

1 based upon [GRUBER 1993), [NWANA & NDUMU 1999), [FAQUAR et al.]

21

Often, applications define their own limited ontologies for their limited applications. These
ontologies are generally implicit. Thus, the ontology of two different systems would certainly
be different. This is why there are currently efforts to develop explicit ontologies that can be
shared across disparate software developers . Declarative representation in a well-defined
knowledge representation language can be used to build an explicit ontology.

As mentioned in the previous section, KIF can be used to represent reusable knowledge.
Therefore, it can also be used to represent declarative ontologies.

Ontolingua I is another ARP A-sponsored effort towards reusable ontologies. Ontolingua is a
language for building, publishing, and sharing ontologies. Ontolingua statements and axioms
are written in an extended KIF notation and natural language sentence. An "ontolingua
server" has been developed at the University of Stanford. The tool uses an extended
ontolingua language. It makes use of the World Wide Web to enable wide access and provide
users with the ability to publish, browse, create, and edit ontologies stored on the ontology
server. Ontology construction is difficult and time consuming. With the ontolingua server,
users can quickly assemble a new ontology from a library of modules.

There are also several efforts aimed at defining and generating large ontologies. These are
ontologies that are not directed at specific domains. A good example of such an ontology is
WordNet. lt is an on-line lexical database with more than 1.666.000 word forms. WordNet
includes many semantic relationships between words and word senses, and it also contains
several semantic relations including synonymy, antonymy, hyponymy, meronymy and
troponymy.

Works are also made in specific domains. One example is the Unified Medical Language
System. The purpose of the UMLS is to aid the development of systems that help health
professionals and researchers to retrieve and integrate electronic biomedical information from
a variety of sources. The goal is to make it easy for users to link disparate information
systems, including computer-based patient records, bibliographie databases, factual databases,
and expert systems. The UMLS is a complex collection of medical terms and relationships
derived from standard classifications.

However, WordNet and UMLS are not really designed for agent applications but it is possible
to use them to complement further the ontology defined for some agent applications. These
efforts show that the ontology problem is not reserved for agent systems.

Anyway, it is proven that reusable ontologies are becoming increasingly important for tasks
such as information integration and knowledge development.

2.6 Mobile agents2

In section 2.3.3, we have seen a special kind of agents : the mobile agents. We can not close
this chapter without speaking a little bit more about the mobile agents. Indeed, this technology
takes a large part in the agent research and promises a lot. A sign of this is that the public
perception of agents is sometimes synonym with mobile agents.

1 see http://ontolinguia.stanford.edu
2 based upon [HAZELDEN & BIGHAM 1998], [BERNEY]

22

As we have already mentioned, mobile agents are agents capable of roaming networks,
interacting with foreign hosts, gathering information on behalf of their owners and coming
back to the user' s machine having performed what the user had asked. Mobile agent
technology was originally concerned with the ability to move executable code from one
computer to another. The main benefit from adopting this approach was that available
computational resources on another computer could be utilised. Researchers became then
interested in dealing with the idea of moving so called 'intelligence' from one place of
execution to the next.

Using mobile agent technologies can provide some advantages. One of them is that this
technology can reduce network resource utilisation because there is no need to maintain active
processes at two places. However, it still remains the case that passing of messages is often
more efficient than moving an agent from one place to another and, therefore, careful analysis
of the benefits that each approach can provide in a particular application domain, needs to be
made. For agent gathering information, and filtering out unwanted information, it makes
sense for them to be operating on the machine where the datais located.

A major concern with mobile agent technology is the Jack of security on the agent side
relationship. For example, there is considerable concern about users delegating confidential
information (such as credit card details) to their mobile agent and releasing them into an open
network system, where, without proper security considerations, server computers could gain
access to confidential information. There are also concerns on the server side relationship.
Many companies erect firewalls to protect their data from external access of mobile agent
entering the company network. In theory, the mobile agent should not be able to have access
to a host machine and to data structures. Nevertheless, there is always the possibility of
malicious agents containing hostile code.

Another concern about mobile agents is platform incompatibility. Each platform must support
the code format of the agents. An alternative for the code format is virtual machine codes, like
Java byte code. This is the main reason of the success of Java. It is widely accepted because it
provides platform independence for mobile agents. However, it can be more difficult and
complex in some cases to support than an Agent Communication Language (ACL) for static
agents.

2.7 Agent implementation languages1

2. 7 .1 Characteristics of agent implementation languages

To implement an interna! agent-architecture and a MAS-architecture, appropriate languages
are needed. At first glance, it seems that every mature language can be used to develop an
Intelligent Agent. However, the language has to provide some tools to build the agent's
characteristics. Two important functionalities of an agent are communication and knowledge
representation. The knowledge has to be represented in such a way that the communicating
peers understand each other. Advanced agents require some kind of knowledge representation
and processing methods (i.e. for describing ontologies and rules and for doing some reasoning
using an inference machine).

1 based upon [FININ & LABROU 1999], [VERSTEEG & STERLING 1997)

23

- - -------- -------------------------,

Traditional languages are still used to construct agent applications. Typically, object-oriented
languages such as Java or C++ lend themselves more easily for the construction of agent
systems. This is because the concept of an agent is not too distant from the concept of object
and especially from the concept of distributed object. Indeed, distributed objects are
appropriate to build decentralised systems and agent-based systems are also decentralised
systems. Thus, it seems to be natural to build agents with such languages. Moreover, agent
based languages are often inspired from object-based languages, like Java.

In many cases, it is easier to use an agent specific language. Two approaches are necessary to
have a good agent language : an extemal behaviour-oriented approach and an internai
behaviour-oriented approach. A combination of the two approaches yields a good language.

The first approach, based on the distributed computing language, focuses on the
communication abilities of the agents. This type of languages provides strong support for
security and information passing. Communication support is a "must" . There should be a very
easy way to describe information exchange between agents.

The second approach, based on languages coming from the Artificial Intelligence, provides
extended support for knowledge representation and reasoning. Although the behaviour of an
agent can be described using an imperative language, a natural way is to have a rule-based
declarative language. Declarative or functional languages are sometimes more appropriate.

istrib'uted
9mputing

Communication
Oriented agent

Artificial
1 nt~lligence

Internai behaviour
Oriented Agent

Figure 6 : Two approaches : Distributed Computing and Artificial Intelligence1

A lot of languages and frameworks designed specially for developing intelligent software
agents already exist. We can distinguish between two classes of agent implementation
languages : the new programming languages usually based on old languages and add-ons
which offer new libraries or classes for old languages.

There is no "best" language for implementing agents or agent systems. The "best" language is
the one (or are the ones) which suits best for the application to be developed. The current
approaches are emerging from distributed computing and from Artificial Intelligence. Better
and better languages and frameworks will eventually appear, borrowing the best attributes
from both sides.

1 from [FALKENROTH & GRANLUND 1998)

24

In part II, we will describe in detail an agent oriented language called Jack. One important
characteristic of Jack is that it is a Java-based language.

2.7.2 Mobile agent language

Mobile agents have some specific characteristics and they need therefore specific. One of the
characteristics is that mobile agent programs are only able to run on hosts that have an
execution environment that interprets the language they were written in. It is possible for an
agent server to be able to support more than one language, however there are presently many
competing and incompatible types of agent servers, each only capable of interpreting at most
a few languages.

Therefore, in theory, the only necessary condition of a mobile agent language is that an
execution environment on the host supports the language. However, in reality, other
conditions are required for such a language. The language must be able to support agent
migration, communication between agents , access to server resources, security mechanisms,
appropriate efficiency and the ability to run on multiple platforms.

Sorne languages such as Obliq and Telescript have been specifically designed for writing
mobile agents. There are also many mobile agents being written in general purpose languages
extended with a special library. Below is a brief description of some of the languages that
have been used to write mobile agents .

Telescript is a proprietary system developed by General Magic. The Telescript language has
been specifically designed for implementing mobile agents. Telescript is a complete object
oriented language with a syntax in many ways similar to that of C++. Telescript has a library
of built-in classes for writing mobile agents. The Telescript language has commands for agent
migration and inter-agent communication. The Telescript language has had a great influence
on the development of mobile agents and mobile agent language.

Java is a general purpose language. It is an object-oriented language. While Java was not
specifically designed for writing mobile agents, it has most of the necessary capabilities for
mobile agent programming. Java is multi-threaded. Java programs are able to run on any
platform with a Java Virtual Machine interpreter. The Java libraries provide good support for
communication procedures. As a consequence, Java has been used as the basis for many
implementations of mobile agent systems.

One of the Java-based systems is the IBM's Aglets under development by the IBM Research
Centre, in Japan. An Aglet is a mobile agent that is derived from an abstract class called
Aglet. Aglets use an event-driven approach to mobile agents. Each aglet implements a set of
event handler methods that define the aglet's behaviour.

Another system based on Java is Odyssey developed by General Magic. The attempt is to
achieve the functionality of Telescript, using Java.

Oblig is an experimental language under development by the Digital Equipment
Corporation 's Systems Research Centre. Obliq is a lexically scoped, object-based, interpreted
language that supports distributed computation. Obliq has built-in procedures for impo1ting
and exporting procedures and objects between machines. Obliq 's semantics of network

25

computing is fundamentally different from the other languages considered. Whereas other
languages see each computer as independent worlds that can communicate with each other
through networks, Obliq treats the network as a single computer with sites as components.

AgentTcl is a mobile agent system being developed by Dartmouth College. The AgentTcl
language is an extension of the Tool Command Language (Tel), the language extensions add
commands for agent migration and message passing. The extra commands give AgentTcl
scripts mobility capabilities similar to Telescript.

There are currently many competing languages. Telescript is one of the best languages for
implementing mobile agents. But the problem with Telescript is that it is a proprietary
software and that it is a closed standard. Java, on the contrary, is an open specification. An
open standard system that delivers the same functionalities to the user can be expected to gain
a greater market share than a proprietary technology. What is certain is the fact that only a
few languages will gain enough support to enable the vision of mobile agents roarning the
Internet to become reali ty.

2.8 Applications of Intelligent Agents 1

Now that we have drawn up an overview of the agent paradigm, we have a look here at the
way the agent techniques are used in real applications.

Agents can be a useful tool due to the exponential growth of information available on the
Internet. With individuals adding information on the Internet regularly, the influx of data is
difficult to process. Users are beginning to suffer from severe information overload. This
problem is compounded by the fact that speed of access to the Internet is also increasing,
particularly with the development of technologies such as ISDN. With this new technology,
many users will acquire the knowledge they seek in a matter of minutes, yet for the thousands
of users who have yet to upgrade to faster pathways, agents are the smartest way to obtain
valued information .

Sorne agents, which are available now, can save users time by performing repetitive tasks
such as gathering and posting e-mail and checking newsgroups. This type of agents are
relatively simple and are often rule-based scripts. Agents that search for information will
extend this advantage of walking away from the computer and having time to do other things
while your agent searches. Currently, if you need some information, you use a search engine
such as Yahoo or Alta Vista, but this can take you minutes, hours, maybe even days to search
and gather information. With the help of an Intelligent Agent, this time could decrease to a
few minutes. You tell the agent what you want and it will do the job for you.

Moreover, agents will make the Internet and computers easier to use. The rapid progression of
technology has caused the complexity of hardware and software to increase. At the same time,
the decreasing cost of agent technology is allowing access to more people with fewer
computer skills .

The current applications of Intelligent Agents are of a rather experimental and ad hoc nature.
Besides universities and research centres, a considerable number of companies are doing
research in the area of agents. To make sure their research projects will receive further

1 based upon [DO et al.], [BLOCH & SEGEV 1996]

26

financing, many researchers are nowadays focusing on rather basic agent applications, for
these lead to demonstrable results within a definite time.

The current trend in agent developments is to develop modest, low-level applications. Yet,
more advanced and complicated applications are more and more being developed as well. At
this moment, research is mostly being done into separate agents, such as mail agents, news
agents and search agents. This is the first step towards more integrated applications, where
these single, basic agents are used as the building blocks. Combination of basic agents creates
complex structures that are able to perform high-level tasks for users, suppliers and
intermediaries. The interface to this system is through a single agent which delegates sub
tasks and queries to other agents.

The most popular application of Intelligent Agent technology is electronic commerce. But
other interesting applications are arising : messaging, adaptive user interfaces, systems and
network management, administrative management, collaboration, mobile access and
information management.

2.8.1 Electronic Commerce

The Internet is becorning an increasingly important channel for retail commerce as well as for
business-to-business transactions. For sheer convenience and preservation of time, consumers
are looking for suppliers selling products and services on the Internet. Meanwhile, suppliers
are looking for buyers to increase market share. Both consumers and buyers need to automate
handling of their "electronic financial aff airs".

But electronic commerce has to deal with two problems : the too vast amount of information
on the Internet and the lack of a feasible electronic monetary system. This has led to the
relatively slow growth of electronic commerce.

People have speculated that Intelligent Agents will be able to solve these problems. Intelligent
Agents are able to sort through the clutter on the Internet, resulting in the selection of specific
brands, products, and stores. These entities will also be able to speed up the process of
locating items on the Internet and leave users more time to do other, more productive and
enjoyable tasks.

Intelligent Agents can assist in electronic commerce in a number of ways. Agents can "go
shopping" for a user, taking specifications and returning with recommendations of purchases
which meet those specifications. They can act as "salespeople" for sellers by providing
product or service sales advice, and they can help troubleshoot customer problems.

Perwectives for buyers and sel/ers

The Internet is causing a problem for the buyers. The consumer is not able to examine objects
or make comparisons between different products as easily on the Internet when paralleled
with conventional shopping. Products are not placed side by side on a shelf to compare
quality, nor are the sellers located near each other to compare prices. Intelligent Agents can go
searching for products for a consumer by using things such as store locators, brand locators,
category locators, and product locators. They will also be able to query the user's opinions on
ce1tain products . In short, the consumer will need to make certain specifications and the agent
will then find products that match these specifications.

27

The Internet is also causing a problem for the sellers. Buyers cannot be found, and this is the
problem for marketers on the Internet. Intelligent Agents can help to solve this problem by
acting as a virtual salesperson for the company. Sellers will also be able to create
representative agents to provide expert advice, thus helping to address common customer
problems.

Filter Qfjnformation

Consumers are confronted with information overload when they go shopping on the Internet.
Consumers want to be able to find a broad selection when looking for a product. However, the
selection must be edited down to reasonable and manageable proportions. This editing feature
is the job of the Intelligent Agent. Without this editing feature, buying a simple music CD
would be quite an experience: imagine walking into a mall and finding 200 different music
stores!

Decision qgent and demand a_g§nt

Marketing on the Internet will be affected by two types of agents, demand agents and decision
agents. Demand agents work in the interest of the prôvider. These agents are trained with
product knowledge. They represent the products and services and transfer that information to
the decision agent. Decision agents work for the consumers. The consumer trains them to
search for products and services that are represented by the demand agents . They make
recommendations based on the preferences of the consumer. The demand and decision agents
work together. The decision agents "meet" with the demand agents to gather information
requested by the user.

Tbf fYtiJ.r_e_

Intelligent Agents may cause a shift in consumer loyalty. With the increased use of Intelligent
Agents, people will become more brand loyal than store loyal. The store will lose some of its
identity, because it is not a physical environment in which a consumer enters and spends time.

Another big change is that providers will be able to watch their products sold in real-time.
There will not be a long turn-around time to see the effects of advertising and marketing.
Instead of having to market in a conventional way, businesses will see results much faster.
This also means that they will have to react to changes in an accelerated manner. This could
force a company to continually change and update their products and operations.

Consumers will not have to fumble through lists and lists of sites to make purchasing
decisions. Instead they will ask their agent to start searching, walk away, and corne back to
find the information they want. Ultimately, consumers will have their own personally trained
shopper and research assistant, who knows all of their preferences, goals, and information
desires.

28

2.8.2 Messaging

Messaging software is also an area where Intelligent Agents are currently being used. Users
today want the ability to automatically filter, prioritise and organise their e-mail. Intelligent
Agents can facilitate all these fonctions by allowing mail handling rules to be specified ahead
of time, and letting Intelligent Agents operate on behalf of the user according to those rules. lt
can also be possible to have agents deduce these rules by observing a user's behaviour and
trying to find patterns in it. These would be learning agents.

2.8.3 Adaptive User Interfaces

Although the user interface was transformed by the advent of graphical user interfaces, for
many, computers remain difficult to leam and use. As capabilities and applications of
computers improve, the user interface needs to accommodate the increase in complexity. As
user populations grow and diversify, computer interfaces need to learn user habits and
preferences and adapt to individuals.

Interface agents can help with both these problems. Intelligent Agent technology allows
systems to monitor the user's actions, develop models of user abilities, and automatically help
out when problems arise. When combined with speech technology, Intelligent Agents enable
computer interfaces to become more human or more "social" when interacting with human
users.

2.8.4 Systems and Network Management

Systems and network management is one of the earliest application areas to use Intelligent
Agent technology. The movement to client/server computing has intensified the complexity of
systems being managed, especially in the area of LANs, and as network centric computing
becomes more prevalent, this complexity further escalates. Users in this area (primarily
operators and system adrninistrators) need greatly simplified management, in the face of
rising complexity.

For example, Intelligent Agents can help filter and take automatic actions at a higher level of
abstraction, and can even be used to detect and react to patterns in system behaviour.
Furthermore, they can be used to manage large configurations dynamically.

2.8.5 Administrative Management

Administrative management includes both workflow management and areas such as
computer/telephony integration, where processes are defined and then automated. In these
areas, users need not only make processes more efficient, but also reduce the cost of human
agents. Much as in the messaging area, Intelligent Agents can be used to ascertain, then
automate user wishes or business processes.

2.8.6 Computer supported collaborative work

Collaboration is a fast-growing area in which users work together on shared documents, using
persona! video-conferencing, or sharing additional resources through the network. The
common denominators are sharing resources and teamwork. Both of these are driven and
supported by the move to network centric computing. Not only do users in this area need an

29

infrastructure that will allow robust, scaleable sharing of data and computing resources, they
also need other fonctions to help them actually build and manage collaborative teams of
people, and manage their work products.

2.8.7 Mobile Access

As computing becomes more pervasive and network centric computing shifts the focus from
the desktop to the network, users want to be more mobile. Not only do they want to access
network resources from any location, they want to access those resources despite bandwidth
limitations of mobile technology such as wireless communication, and despite network
volatility.

Intelligent Agents which, in this case, reside in the network rather than on the users' persona!
computers, can address these needs by persistently carrying out user requests despite network
disturbances. In addition, agents can process data at its source and ship only compressed
answers to the user, rather than overwhelming the network with large amounts of unprocessed
data.

2.8.8 Information Management

Information management is an area of great act1v1ty, given the rise in popularity of the
Internet and the explosion of data available to users. Here, Intelligent Agents are helping users
not only with search and filtering, but also with categorisation, prioritisation, selective
dissemination, annotation, and collaborative sharing of information and documents.

30

3. Non-monotonie logic

The intelligent agent paradigm is multi-disciplinary and regroups various computer
techniques. Particularly, Artificial Intelligence techniques can be used ta endow the agents
with human-like reasoning. In this chapter, we draw up a quick overview of a particular field
of AI : the non-monotonie !agie. In particular, we present briefly Default Logic and Relief
Revision, the two kinds of non-monotonie !agie we use in the reasoning methods of our
Intelligent Agent.

3.1 Introduction

At the basis of non-monotonie logic lies the idea that most of our reasoning is logically
wrong.

xis a bird ⇒ x canfly

This predicate is true in normal conditions, but not always. Situations can be found where the
antecedent is true but not the conclusion (for example if X is an ostrich). In these 'special'
situations, there is a problem of inconsistency:

xis a bird ⇒ x canfly
x is an os tri ch ⇒ x cannot fly

So, knowing that an ostrich is a bird, what can we conclude about x if x is an ostrich? Can x
fly or not?

Fortunately, the human intelligence has the faculty to elaborate a judicious reasoning when
facing incomplete information. This reasoning is often only plausible and can be revised when
new information is taken into account. We often include into our belief set statements that
have no justification in our initial assumptions beyond the fact that we have no evidence in
our belief set to contradict them. This cannot be formalised by classical logic, which is limited
to correct and unrevisable reasoning.

Most of our reasoning is not infallible. For example, "knowing that most birds can fly and that
Tweety is a bird, I conclude that Tweety can fly". This inference is not correct because it
doesn't take into account possible exceptions. Hence, it is uncertain and can be revised. For
instance, if we know that "Tweety is an ostrich and ostriches are birds that don't fly" , the
assertion "Tweety can fly" has to be retracted. Even though this example may seem simple, it
is hard to formalise by logic.

Numerous domains of Artificial Intelligence may take advantage of a formal theory of
revisable reasoning. The formalisation of some aspects of our elementary faculties of
perception (like the vision, which operates by successive approximations and corrections),
specialised high-level tasks like diagnosis and dialog analysis (because the communication is
often based on implicit information) are some examples.

31

3.2. Unsuitability of classical logic for formalising revisable reasoning

The deductive systems of classical logic are used to formalise valid reasoning. They are not
adapted to formalising uncertain and revisable reasoning.

A formai deductive system of classical logic permits to infer conclusions from premises and,
hence, defines a relation of interoperability between formulas. This relation is called the
"classical inference relation" and is noted 1-. lt has the following properties:

•

•

•

reflexi vity
{p1, ... , Pn, q} 1- q

transitivity
if {p,, ... , Pn} 1- r and {pi, ... , Pn, r} 1-q then {p1, ... , Pn} l-q

monotony
if {p1, ... , Pn} l-q then {p1, ... , Pn, r} 1-q

with p1, ... , Pn, q and r designing formulas of the considered logical language.

Clearly, non-monotonie logic does not possess the property of monotony. By definition, the
formalisation of revisable reasoning cannot be monotonie. Revising a reasoning means
changing the conclusions of that reasoning in presence of new information. Let's say that A is
a set of premises from which the conclusion p is inferred. We can revise that reasoning by
retracting p when a new information q is added to the premises. This means that:

A l-p
A u{q} not 1-p

which is clearly contrary to the definition of monotony.

For building a non-monotonie logic, another inference relation is needed : a non-monotonie
inference relation, which permits to draw conclusions that are not always true.

The relationship between the classical inference relation 1- and the classical inference
operation Cn is :

A 1-x iff x E Cn(A)

In other words, Cn(A) equals {x : A 1- x}, the set of all classical consequences of A.
The property of monotony of classical logic can be expressed as follows :

If B 1- x and B c A then A 1- x

The non-monotonie inference relation is denoted by I~ and the non-monotonie inference
operation by C. The relationship between the relation and the operation is the same as with
the classical inference.

A I~ x iffx E C(A)

In other words, C(A) equals {x: A I~ x), the set of ail non-monotonie consequences of A.

32

3.3. Characteristics of non-monotonie Iogics

Different logics have been developed in order to formalise revisable reasoning. They are
called non-monotonie because conclusions that can be drawn from them can decrease when
the number of their premises increases (see the monotony property above).

From a same set of initial information, different incompatible sets of possible conclusions can
be obtained. This characteristic is called pluri-extensionality and these sets are the extensions.
From a semantic point of view, the conclusions of a revisable reasoning are often simply
consistent. Hence, plausible conclusions, which are not necessarily certain or correct, can be
inferred. And there can exist different plausible conclusions that can be drawn from the same
initial information depending on the 'guesses' made about the incomplete information.

Formalising revisable reasoning requires a formai framework that is flexible enough for
working in presence of incomplete information. Moreover, it needs the sufficient robustness
to enable the modelled reasoning to adjust harmoniously to the evolution of the represented
knowledge (evolution of the domain of the discourse or evolution of the conceptualisation of
this domain).

In this dissertation, we will focus on the two types of non-monotonie logic we used m
developing our agent : Default Logic and Belief Revision.

3.4. Default Logic1

In presence of incomplete information, we sometimes draw conclusions that are only
plausible. We often use laws that are correct in most of the cases, but which admit certain
exceptions. Moreover, we allow ourselves to interpret them as absolutely general. For
example, if Tweety is a bird, we conclude that Tweety fiies, even though we know that there
exist some birds that do not fly. The only case where we wouldn't conclude that Tweety flies
is when there is a belief in our set of beliefs that forbids us to draw that conclusion, i.e. when
that conclusion is inconsistent with our set of beliefs. That kind of reasoning is a default
reasoning. There is a default conclusion that can be drawn if nothing in our set of beliefs
forbids it.

Default Logic formalises such default reasoning via special inference rules. Hence, Default
Logic distinguishes between two kinds of knowledge: usual predicate logic formulas (the
axioms or thefacts) and their inference rules, called defaults.

A default rule has the form :

a:[J

y

which is read as ' If a and if it is consistent to assume /J, then conclude y'.

1 Ali definitions and theorems of this section are taken from [MAREK & TRUSCZYNSKI 1993)

33

For example, coming back to our example of Tweety, we can express the rule that generally
speaking birds fly with the default:

Bird(x): Flies(x)

Flies(x)

which is read as 'If x is a bird and if it is consistent to assume that x flies, then conclude that x
flies'.

The main advantage of a default rule is that it permits to treat all the exceptions without the
need to identify all of them. Trying to formalise the exceptions with classical logic looks like
this:

Bird (x) A -, Broken Wing (x) A -, Ostrich (x) A -, Penguin (x) ⇒ Flies (x)

But that rule is still insufficient because there are still more conceivable reasons for a bird not
to be able to fly. So we would have to list al! the possible reasons in the rule. And what's
more, we would have to establish that all the preconditions of the rule are true before we
could apply it.

Now that we have introduced default logic in an intuitive way, we formalise it by presenting
the syntax and the concepts of default proof system and extension.

3.4.1 Syntax and vocabulary

A default Jhas the form:

a(x): /Jl(x), ... ,/Jn(x)

y(x)

where a(x), /JJ(x), ... , /Jn(x), y(x) are predicate logic formulas, and where n > O.
ais the prerequisite, /J1(x), ... , /Jn(x) the Justifications and y(x) the consequent of the default J.
a(x) can be denoted by pre (0), {{JJ(x), ... , /Jn(x)} by Just (0) and y(x) by cons (J{x))

The syntax used for a prerequisite-free default : a(x) = true (or pre (J{x)) = 0) is noted as
follows:

: /Jl(x), ... ,/Jn(x)

y(x)

A Justification-free default :Just (J{x)) = 0

a(x):

y(x)

A default J is said to be closed iff a(x), /J1(x), ... , /Jn(x) and y(x) do not contain any free
variable. In that case, a(x), /JJ(x) , ... , /Jn(x) and y(x) are simply denoted by a; /31, .. . , /Jn and y.

34

The free variables of a default are interpreted as universally quantified (their reach ex tends to
all the elements of the default). A default that is not closed is open. An open default
represents a general inference schema. An instance of an open default is a closed default
obtained by replacing all the free variables of the open default by terms.

A default theory is a pair (W, D) constituted of a set W of predicate logic formulas (the axioms
or the facts) and a set D of defaults. A default theory is said to be closed iff all the defaults of
D are closed.

3.4.2 Default proof system

De.finition 1 Let D be a set of inference rules. By a rule proof system (or rule system) PC+ D,
we mean the proof system obtained by adding the rules in D to the proof system of
propositional logic. A derivation of a formula rp from a set of formulas Win the system PC +
Dis afinite sequence of formulas fP1, ... , fPn such that:

J. fPn = (p.

2. For every i ~n at least one ofthefollowing conditions holds :
(a) rp; is a substitution instance of an axiom of propositional logic.
(b) {p; E W
(c) For some j, k < i, rp;Jollows from fPJ and fPk by modus ponens.

l'.dD D . . . h f <pji, ... ,<pjk b f D
1, ror some;1, ... , Jk <z, t e rue --- e ongs to .

(f)i

By C/ (W) we denote the set of all the formulas that possess a derivation from Win PC+D.
Sorne simple but useful properties of the operator CnD are given in the following theorem.

Theorem 1 Let D be a set ofinference rules. For every set W cL :

ln other words, CnD (W) is closed under propositional provability and al! the rules in D.

We will provide a characterisation of the operator C/ in the case when D and W are finite. It
provides a finite representation for C/ (W) and is useful in determining whether a formula rp
belongs to CnD (W) or not. To this end, we need to define BD called the base operator.

Definition 2 For a set D of defaults and a theory W put

sD (W) = W u{y : a E Dand aE Cn (W)}.
y

Theorem 2 For every theory W cL and set of rules D :

35

Definition 3 Let D be a set of defaults. By a default proof system (or default system) PC+D
we mean the proof system of propositional logic extended by the set of defaults D. The
concept of a proof in a default proof system PC + D is defined relative to a theory S ç L. An
S-derivation (S-prooj) of a formula (fJ from Win PC + D is a fi.nife sequence (f)1, ... , (f)n such
that (f)n = (fJ and, for every i, 1 5 i 5 n, at least one of the following conditions holds :

J. ({Ji E W
2. (f); is a substitution instance of an axiom of propositional calculus.
3. ({Ji is the result of applying modus ponens to formulas (f)J, (f)kfor some j , k < i.

4
,.,..'h . d·.r,

1
d a(x):/J1(x), ... ,{1(x)

• .1, ere zs a e1 au t = --------
(f}i(x)

such that d ED, a(x) = (f)J(x) for some j < i, and --, /J1(x) fi! S, ... , --, /Jk(x) fi! S.

The theory S is called a context. By CnD,s (W) we denote the set of all the formulas having an
S-proof from Win PC+D.

The notion of a default proof system is a substantial departure from the standard notion of a
proof system. Default systems are endowed with a whole family of consequence operators
parameterised with a context S, while standard proof systems, like rule proof systems, have
only one consequence operator associated with them. This similitude of consequence
operators is a formai reflection of the fact that default rules allow an agent to make
assumptions when full information is not available. Consequently, depending on the
assumptions the agent makes, different belief (consequence) sets can be produced for a theory
W of initial assumptions.

Inference rules can be treated as justification-free defaults and, consequently, a default proof
system can be regarded as a natural generalisation of a rule proof system as will be shown
now.

First, for a set D of defaults, we define

a a : Dm = {-: - ED}.
y y

Theorem 3 Let D be a set of justification-free defaults. For every context S ç L and for every
theory Wc L

In other words, aJI consequence operators associated with the default system PC+ D coïncide
and are equal to the consequence operator of the rule system PC+ Dm.

3.4.3 Extensions

The operational semantics of Default Logic are defined in terms of so-called extensions, sets
of beliefs one may hold about the domain described by the default theory under consideration.
An extension is an ensemble of information that includes all what can be inferred, by classical
logic rules or by defaults. Extensions are obtained by applying defaults as long as possible

36

without running into inconsistencies. It means that if we find out that a default should not
have been applied, we backtrack and try some alternative.

For a given default theory T = (W, D), let rp = (bà, 81, . • .) be a sequence of defaults from D.
There should not be any multiple occurrence in this sequence because that would mean that
we apply a default more than once. This is useless because no additional information would
be gained. One sequence leads to one extension. As there can be different sequences to apply
the defaults, there can be more than one extension for a given theory.

Definition 4 Let (D, W) be a default theory. We say that a theory S is a default extension for
(D, W) if

Extensions can be viewed in two ways. First, they are contexts that determine which
consequence operators in the family { Cn°'5

: Sc L } can be used by an agent to construct
belief sets. At the same time, extensions are exactly the belief sets the agent computes in this
manner.

It follows from definition 4 that the process of finding an extension consists of two phases. In
the first phase we guess the context S. In the second, we check if S satisfies the equation S =
c/·5 (W). The whole process simplifies significantly if all defaults in a default theory are
justification-free. Each such default theory possesses exactly one extension and it can be
found in a constructive manner, without the need to guess a context first.

Theorem 4 Let D be a set ofjustification-free defaults. For every theory W c L, the theory
c/m (W) is the only extension for (D, W).

Definition 5 Given a set of default rules D and a subset S c L, the reduct of D with respect to
S, denoted by Ds, is the set of inference rules dejined as follows :

Ds ={a.· _a_:M_~_1_, ... _,M_"/3,_ D d /J S a S} E an -, J fi! , ... , -, JJn fi! ·
y y

The reduct Ds contains exactly the information needed for constructinfi S-derivations in the
default system PC + D. It allows us to characterise the operator Cn ,s of a default proof
system in terms of the consequence operator of the rule proof system.

Theorem 5 For every context S, for every theory W and for every set of default D,

As corollaries to this theorem, we obtain several useful properties and characterisations of
extensions.

Corollary 1 A theory Sis an extension for a default theory (D, W) if and only if

37

Corollary 2 A theory S is an extension for a default theory (D, W) if and on/y if

The following examples shows how corollary 2 can be used to generate the extensions of a
gi ven default theory.

Example

Let D = { P = -,q , P : -,r } and W = { p}.
r q

We have four candidates for extensions:

S1 = Cn ({p})
S2 = Cn ({p,q})
S3 = Cn ({p, r})
S4 = Cn ({p, q, r})

First, we compute :

Ds1 = (.!!...,f! ... J
r q

Ds2 = (.!!...)
q

Ds3 = {P}
r

Next, we compute:

wsl œ(W)) = {p, q, r} ;,=S1
BDs2 œ(W}) = {p, q} = S2

ws3 œ(W)) = {p, r}= S3
Ws4 œ(W)) = {p};,=S4

Hence, S2 and S3 are extensions for (D, Jf'), while S1 and S4 are not.

3.5. Belief Revision 1

The purpose of Belief Revision is to lay the foundations of principled mechanisms for
modifying a knowledge base in a rational and coherent way. lt is useful for an intelligent
system that has to change its knowledge base when it acquires new information. This is
particularly important when that new information is in conflict with the current knowledge
base.

1 Ali definitions and theorems of this section are taken from [ANTONIOU 1997]

38

Change functions are based on the "Principle of Minimal Change" that states that as much
information should be conserved as is possible in accordance with an underlying preference
relation. The simplest change function is expansion. It is used when there is no conflict at all
and the new information can simply be incorporated in the knowledge base. In order to
incorporate new information that is inconsistent with the knowledge base, the system must
decide what information it is prepared to give up or to revise. The change functions used to
deal with these contradictions are more complex. These are contraction and revision.

Change functions can be described axiomatically using rationality postulates, or
constructive/y using preference relations. The rationality postulates are properties that one
would expect rational change functions to satisfy. They embody the "Principle of Minimal
Change", and act as integrity constraints for change functions. They do not uniquely
determine a change function, rather their purpose is to identify the set of possible new
knowledge bases that rnight result of the Belief Revision. Those postulates are called the
AGMpostulates, from the name of their developers: Alchourron, Gardenfors and Makinson.

In order to single out an individual function, it is usual to make use of a preference relation
such as an epistemic entrenchment ordering that provides the extra-logical information
required to make necessary choices conceming what information should be given up.

Let K be a , -knowledge base composid of the folJowii:+g formulas:

(1} Bird (Tweèty}
(2) Bird (x) => Flies (x}
(3) F_lies (Tweety)

Then cornes ' ~ né:w information~

(4) ,Flies (Tweety}
:,. l·

In order to incorpora te the new , formula that is .irrê'oilsistent wi.th
the -know1~dge base, the systètii - :rti~st _ decide what bi:Êormàti~n i t is
preparé,d <;to .givê tlJ?. How K is,:,_,, changed depend_s ,' 9~{ t~a\ dècision.
Ei thet we drop (2) a:nd (3) and then K becomes : -' ' ' - -

Bird (Tweety}
,Flies (Tweety}

Or we give up (1) and (3) and then K becomes:

Bird (x} => Flies (x)
,Flies (Tweety}

Or we abandon (1), (2) and (3). Then K becomes:

,Flies (Tweety)

39

3.5.1 The AGM rationality postulates

The new knowledge base, built from the old knowledge base and the new information, always
contains this new information. Hence, the only way the knowledge base can become
inconsistent is if the new information is inconsistent. Moreover, changes are minimal, e.g. the
least amount of information is lost and the least amount of information is gained.

We will now discuss the rationality postulates for the 3 main change functions: expansion,
contraction and revision.

Expansion is the simplest change to a knowledge base. lt involves the acceptance of
information without removing any other information in the knowledge base. The expansion of
a theory T with respect to a sentence rp is the logical closure of T and rp. Let's say that Lis a
given language and that KL is the set of all the theories of that language. Then, an expansion
function is a function from KL X L to KL, mapping (T, rp) to r rp where r rp = Cn (lu{ rp}).

Contraction

Contraction of a knowledge base involves the retraction of information. A sentence is
retracted from the knowledge base without adding any new facts. In order for the resulting
system to be closed under logical consequences some other sentences must be given up too.
The difficulty is in determining which sentences should be given up.

A contraction of T with respect to rp in volves the removal of a set of sentences from T so that
rp is no longer implied, provided rp is not a tautology. A contraction function is a function
from KL x L to KL , mapping (T, rp) to T rp which satisfies the following postulates:
For any rp, YE Land any TE KL:

(]) T rpE KL
(2) T rp cT
(3) If rp fE T then Tc T rp
(4) If not 1- rp then rp fE T rp
(5) Tc (T q)+ rp (recovery)
(6) Ifl- rp H ythen T rp = Ty
(7) TrpnTy cTrp .11 r
(8) If rp fE T rp .11 ythen T rp .11 r c T rp

Revision attempts to change a knowledge base as little as possible in order to incorporate new
information. A new sentence that is inconsistent with the knowledge base is added, but in
order to maintain consistency in the resulting knowledge base, some of the old sentences are
deleted.

A revision function is a function from KL x L to KL , mapping (T, rp) to r* rp which satisfies the
following postulates:

40

For any (fJ, yE Land any TE KL:

3.5.2 Relationships between change fonctions

There exist relationships between the different change fonctions. Here are two theorems that
illustrate them. Theorem 6 states that a revision fonction can be expressed in terms of
contraction and expansion fonctions whereas theorem 7 says that a contraction can be
expressed in terms of a revision fonction.

Theorem 6 If- is a contraction function and + the expansion function, then * defined by the
Levi ldentity below defines a revisionfunction.

Theorem 7 If* is a revision function, then - defined by the Harper ldentity below defines a
contraction function.

3.5.3 Epistemic entrenchment orderings

The rationality postulates for contraction and rev1s10n do not provide a mechanism for
defining a particular fonction, they only describe classes of fonctions. For any theory, there
can be a lot of fonctions that satisfy the postulate. So in order to single out a unique one, an
additional structure is necessary : a preference relation such as an epistemic entrenchment
ordering, which is a total pre-order on formulas.

All the sentences in our knowledge base are not of equal value. Sorne have a higher degree of
epistemic entrenchment than others do. This means that they are more important than others
when planning future actions. The degree of entrenchment will be used to choose what belief
to discard when a contraction or a revision is carried out. lt represents the plausibility of a
belief, or the degree of attachment to a belief. When a belief set is revised or contracted, the
sentences that are given up are those having the lowest degree of epistemic entrenchment.

41

Example

Let K be a knowledge base composed of the following
formulas:

(1)

(2)
(3)

Bird (Tweety) of degree 0.9
Plies (Tweety) of degree 0.8

Bird (x) => Plies (x) of degree 0.4

Than cornes a new information:
(4) ,Plies (Tweety) of degree 0.95

As (3) has the lowest rank, it will be given up and K will
become :

Bird (Tweety)
,Plies (Tweety)

The notation "rp S y'' will be used as a shorthand for " y is at least as epistemically entrenched
as rp". The notation "rp < y'', used as a shorthand for " y is epistemically more entrenched than
rp",isdefinedas "(rpSr) /\ -,(ySrp)".

Definition 6 Given a theory T of L , an epistemic entrenchment related ta T is any binary
relation Son L satisfoing the conditions below :

(1) JfrpSyandyS8, then rpS8
(2) If (fJ 1- Y, then (fJ S y
(3) For any (fJ and y, (fJ S (fJ A yor y S (fJ A y
(4) When T ~ -1, rp ~ Tif/ (fJ S y, for ail y E L
(5) If (fJ 5 y for ail rp, then 1- y

(transitivity)
(dominance)
(conjunctiveness)
(minimality)
(maximality)

We just give here the justification for one postulate to show the relationship between these
postulates and the change fonctions : the justification for (2) is that if rp logically entails y, and
either rp or y must be retracted from T, then it will be a smaller change to give up rp and to
retain yrather than to give up y, because then rp must be retracted too.

The two following theorems provide us with a constructive method for building contraction
and revision fonctions from an epistemic entrenchment ordering.

Theorem 8 Let T be a theory of L . For every contraction fonction - for T there exists an
epistemic entrenchment 5 related to T such that (E) below is true for every rp E L.
Conversely, for every epistemic entrenchment ~ related to T, there exists a contraction
fonction - such that (E) is true for every (fJ E L.

(E) T = { {yET :(/J~tpvy} ifnot l-1/J
(fi T otherwise

42

* Theorem 9 Let T be a theory of L . For every revision fonction for T there exists an
epistemic entrenchment S related to T such that (E\ below, is true for every rp E L.
Conversely, for every epistemic entrenchment ::; related to T, there exists a revision fonction *

such that (E*) is true for every rp E L.

(E) r* = { { YE T:-.<p~.<pvy} if notl- -.<p

rp ..L otherwise

With such theorems, it is easy to construct, from a given theory (belief set) and a given new
belief, the theory that forms the belief set after a contraction or a revision.

3.5.4 Implementation of Belief Revision

When one attempts to implement the process of Belief Revision, two major obstacles arise.
The first difficulty arises because an epistemic entrenchment ordering ranks sentences in a
possibly infinite logical theory. It is obvious that ranking an infinite number of sentences
presents a serious representation problem for a computer-based implementation. The fact that
change operators do not propagate an epistemic entrenchment ordering constitutes the second
problem.

Epistemic
Entrenchment zj New

Knowledge
Base

The epistemic entrenchment ordering is lost in the process of change, and as a consequence
the iteration of a change fonction is not naturally supported. In many applications information
systems are bombarded with new information and this makes modelling the iteration of
change essential.

The solution to these two problems is a finite representation of a finitely representable
epistemic entrenchment ordering, a finite partial entrenchment ranking, coupled with the
mechanism of transmutations that revise the ranking and not just the beliefs.

Partial
Entrenchment
Ranking

Partial
Entrenchment
Ranking

Afinite partial entrenchment ranking grades the content of a finite knowledge base according
to its epistemic importance. It maps a finite set of sentences to rational numbers. The higher
the value assigned to a sentence the more strongly believed it is.

43

Definition 7 A finite partial entrenchment ranking is a function E from a finite subset of
sentences into the interval [0, 1 J such that the following conditions are satisfied for ail (fJ E

dom(E):

(]) {yE dom(E) : E((f))~E(y)} not 1- (f)i/(f)is nota tautology
(2) lfl- -,rp, then E((f)) = 0
(3) E((f)) = 1 iff 1- (fJ

These conditions are interpreted like this : (1) states that sentences cannot entai] lower ranked
sentences, (2) says non-beliefs (i.e. inconsistent sentences) are mapped to zero, and (3) states
that tautologies are maximal.

Definition 8 The explicit information content is defined as {(f) E dom(E) : E((f)) >0} and
denoted by exp(E). The implicit information content is defined as Cn(exp(E)) and denoted by
content(E).

By definition of Cn, which is the classical logic closure, exp(E) c content(E).

Definition 9 Let (fJ be a non-tautological sentence. Let E be a finite partial entrenchment
ranking. We define the degree of acceptance of (fJ to be :

D (E
,l {largest j such that { rp E exp(E) : E(rp) ~ j} 1-rpifrp E content(B)

egree , (/J/ =
0 otherwise

With such a definition, it is easy to design an algorithm to calculate the degree of acceptance
of a sentence given the information encoded in a finite partial entrenchment ranking. That
algorithm would attempt to prove this sentence using the sentences assigned the largest value
in the range of E, say n. If it succeeds, the sentence is assigned the degree n. If not the
algorithm has to try to prove it using sentences assigned the next largest degree, say m, as
well as using sentences assigned n. If it succeeds the degree is m, etc.

Transmutations provide a constructive basis for an iterated revision. A (rp, i)-transmutation is
a process that revises a partial entrenchment ranking E to produce a new partial entrenchment
ranking, denoted E*((f), i). lt modifies E by assigning i the degree of acceptance of (fJ such that
content(E*((f), i)) satisfies the AGM postulates. For i > 0, content(E*((f), i)) is a revision, and
for i = 0, it is a contraction.

3.5.5 Types of Transmutation

There exist several types of transmutations. In this dissertation, we just present briefly two of
them : standard adjustment and maxi-adjustment. In the belief revision module of our agent,
we use Maxi-Adjustment because it is more appropriate to the way we want it to behave.

Standard Adjustment

This type of transmutation is based on the standard entrenchment construction :
if (fJ is the new information, y is retained iff degree ((f)) < degree(r) . It imposes an absolute
measure of minimal change.

44

Maxi-adjustment

Spohnian reasons
Definition 10 y is a reason for rp iff raising the epistemic rank of y would raise the epistemic
rank of (f).
If y, rp in exp(E) and if we preserve the proprieties of a partial entrenchment ranking, then y is
a reason for (f) ifJ Y ⇒ (f) > (f) .

Maxi-adjustments specify reasons and during the contraction of rp, we retain y if we cannot
derive that y is a reason for rp. lt adopts a policy of maximal information inertia, i.e.
information stays at its current rank unless there is a reason to change it.

Corrzparison

For standard adjustment, one calculates what has to be retained. What is retained is 'nothing
but what has been found'. For maxi-adjustment, one calculates what has to be given up and
one retains 'everything but what has been found' . Hence, the explicit beliefs obtained via
maxi-adjustment always contain the explicit beliefs of an adjustment.
For example, let' s take the following ranking :

a vb of degree O. 9
a vd of degree O. 5
-c v-b, c, d, e of degree O. 3

If we make a revision with - a, standard adjustment would remove c, -cv-b, and e, because
they cannot be proven from - a, avb, avd. On the contrary, d can and would thus be kept.
Maxi-adjustment, however, would keep e, and removes only -cv-b and c. It would find the
first contradiction at the third rank, and determines that the only subset of the third rank that is
responsible is : {-cv-b, c}, and so these would be the only elements removed.

45

46

4. Conclusion

The first part of this dissertation presents the theoretical basis on which we build our
application. We first examine the current state of the intelligent agent discipline. Then we
expose the theoretical aspects of the non-monotonie logic that our agent made use of to
reason.

Conceming intelligent agent, we have seen that issues such as agent's architecture,
communication or agent-oriented languages have been already well addressed. Indeed,
candidate standards that treat these issues already appear. Standards are of great help, but it
will take quite some time before these are totally efficient, accepted and used. When that
happens, standards will help speed up developments but the lack of a perfect standardisation
is likely to slow down developments in the meantime. In the future, there will be perhaps an
agent protocol on the Internet just as there are protocols for the hypertext transfer or the file
transfer.

Other important issues, such as security, user privacy, and many ethical and juridical issues,
have not yet been addressed and tackled, or only partially. Expectations are that, within
several years, enough of these issues will have been sufficiently dealt with. Hence, much has
still to be done to make the Intelligent Agent technology perfect, or at least more mature ...

During the last couple of years, agents have been the cri tics' "moving target". They have been
incorporated into future doom scenarios, where they are used to spy on Internet users, and
where they tum people into solitary creatures, that live their life inside their own little virtual
reality. Agents were said to be the latest hype, and - as a technique - had not much to offer.
But in the latest years, these people had to change their opinion with the appearing of really
useful applications based on the Intelligent Agents technique. Although this technique is still
young and has received many critics, it looks currently promising. The success is mainly due
to an interesting and powerful aspects of Intelligent Agents : their ability to communicate with
other agents, other applications and - of course - with humans.

Just as the Intelligent Agent technology, the Artificial Intelligence discipline has gone trough
a period of critics and scepticism. Now, techniques such as non-monotonie logic seem to get
mature. Default logic and belief revision permit to formalise revisable reasoning which cannot
be treated by classical logic. It is thus a real breakthrough in the search of imitating the human
reasoning. Though, the technique is still far from being popular compared to the Intelligent
Agent. Maybe the Intelligent Agents have the to address to a larger variety of domains of
application. With the growth of the amount of information available on the Internet,
Intelligent Agents will become more and more indispensable whereas Artificial Intelligence
and non- monotonie logic in particular are more specific to specialised applications that won't
meet directly the same success.

The time seems to have corne to confront these two disciplines to build systems that are as
useful as Intelligent Agents are and that behave as 'intelligently' as AI-based reasoning
permits. Maybe such systems will be the Intelligent Agents of tomorrow .. .

47

48

PART II

INTELLIGENT AGENTS AND NON
MONOTONIC LOGIC : AN APPLICATION

49

50

1.Introduction

In the second part of our dissertation, we proceed with the more concrete side of our
researches. Our initial intention was to build an Intelligent Agent that could use non
monotonie reasoning in order to behave more "intelligently" in some situations. We decided
to use non-monotonie logic, more specifically Belief Revision and Default Logic, as the
reasoning methods of our agent. But it was not easy to find a demain of application where we
could take full advantage of these reasoning techniques. Indeed, there are not a lot of
applications involving non-monotonie logic as reasoning method for Intelligent Agents. After
many hesitations, we finally opted for a travel agent that should be able to find flight tickets
that match the best the preferences expressed by a traveller. Will such agents be used by travel
agencies or directly by the travellers? Will the emergence of these agents mean the
disappearance of travel agencies? These are some of the questions we try to answer in the
chapter 2 that introduces the travel industry and the position Intelligent Agents could hold in
it.

In order to perform its search for the "best ticket", our travel agent should be able to gather the
information needed through directly accessing the airlines ' databases or through
communicating with other Intelligent Agents representing these airlines. We chose the second
solution because it seemed to be more interesting and more powerful. Hence, we had to build
a complete multi-agent system that consists of agents representing the travellers and agents
representing the airlines. The chapter 3 presents the characteristics of this system.

In our application, the inter-agent communication and other functionalities are simplified
through the fact that our agents were developed in the same programming language, namely
Jack, an agent-oriented language based on Java. We discuss it briefly in chapter 4.

Non-monotony is used in two ways by our travel agent. First, Default Logic permits to deal
with incomplete information coming from the Intelligent Agents representing the airlines.
Second, Belief Revision is used to treat changes in the tickets offered by the airlines or in the
preferences of the user. The advantages of using Default Logic in our agent' s reasoning
methods are clear, but it is not that obvious for Belief Revision. Moreover, we did not use
Belief Revision in a classical way, i.e. we did not maintain a consistent belief set by revising
it as soon as new beliefs appear. We used Belief Revision to implement a kind of selection
system. lts goal is to single out a ticket on the basis of its characteristics and of preferences
expressed by the user.

In chapter 5, we introduce three tools we use to deal with non-monotonie reasoning. These
tools are Vader (a theorem prover), Hades (that treats Default Logic) and Saten (that deals
with Belief Revision).

Afterwards, in chapter 6, we describe the extemal architecture of our system as well as the
interna} architecture of the agents that compose it. These agents are of two types : the
TravelAgents which are agents acting on behalf of a traveller and CompanyAgents which
represent the airlines.

51

To close this second part of our dissertation, we focus in chapter 7 on the real implementation.
First, we introduce how the graphical interface of our application looks Iike and explain how
to use it. Next, we discuss the way our TavelAgent uses Default Logic and Belief Revision.
Finally, we show how to build the different abjects that form a Jack agent by analysing the
code of some of them.

To summarise, three steps have to be realised to build our agent system. The first step is
analysing the characteristics of the travel agent (chapters 2 and 3). The second step is
designing a framework (chapter 6) respecting the constraints of the tools (chapters 4 and 5).
Finally, the last step is implementing the application (chapter 7).

52

2. Travel Agents and the travel industry

In this chapter, we present the domain of application we chose for our agent. We present the
travel industry and the role software travel agents can play in it. We will first introduce the
travel industry in general. Afterwards, we explain the properties that a travel agent should
have. We also present the different actors present in this industry and the possible scenarios
involving them. We conclude with a rapid view of what the future of the travel agents could
look like.

2.1 Industry background 1

In many ways, the travel industry is the best example of an industry profoundly transformed
by technology. Historically, this industry has been an early adopter of new technologies, for
instance Computer Reservation Systems (CRS). As technology becomes more pervasive,
traditional consumers begin to use tools formerly reserved for travel professionals. In the case
of CRS, consumers who have access to similar systems through their home computers and
open networks (primarily the Internet) can now take over some fonctions traditionally
performed by travel agents. This should also be combined with the current increased demand
for travel (foreseen to continue). Therefore, it seems to be an extraordinary period of time,
where drastic changes are inevitable.

Faced with this need for change, the travel industry currently relies on an outdated
distribution network, essentially relying- on third parties. In recent years, travel agencies made
use of a specialised technology infrastructure and of specific knowledge, to justify their cost.
New technologies are progressively rendering this infrastructure obsolete as providers begin
to understand how to deliver information directly to their customers, through phone, fax,
electronic mail and increasingly, through multimedia interactive systems. This endangers the
travel agencies, who will need to reposition themselves.

The landscape of the industry as we know it today will profoundly be affected. Sorne players
will disappear, new players will emerge, and all of the current actors will have to change in
order to survive. In which direction, whom, how, and how much are still open questions.
Every organisation currently active in the industry will be affected, from airlines to travel
agencies, from large corporations to small and medium enterprises, and certainly individual
travellers.

2.2 Basic facilities and properties of a travel agent

Obviously, every traveller has at least one point of departure and one point of arrivai (and
maybe a date required for travel) which he/she specifies to the agent. Other attributes can be
necessary to make the selection of flights more suitable to the customer's desires. This would
include : economy class or business class, one-way or retum booking, direct flight or flight
with connecting city, some services that the customer desire in the airplane (e.g. champagne,
television, smoker seat), ...

1 based upon [BLOCH & SEGEV 1996]

53

Once the agent knows what the customer requests, the next obvious step consists in actually
booking all the travel details required. A vailability is the main concem for both the customer
and the agents. This means that every reservation system should allow the user to check for
availability of travel seats.

More complete travel agents should offer other services such as hotel reservation or car hire
as well. A travel agent's life can be made very complicated if he/she has to use separate
unrelated systems to book flight tickets, make hotel arrangements and arrange for car-rentai
agreements. Fortunately, most systems, including Sabre1 integrate these services, thus making
everything more efficient and reliable.

Up to now, we discussed the main features required to make a reservation system work
properly and satisfactorily to meet most customer's demands. However, as more and more up
to-date information can be obtained on-line, these systems can integrate more facilities
allowing one to access this material, such as currency, visa and health information, weather,
tourist attractions, ... The next step would be a complete persona! Intelligent Agent that would
manage the traveller's trips, as well as his/her mail, a personally adapted search engine,
his/her call schedule, ... This agent could even adapt to its user by leaming his/her way of
filtering his/her mail, his/her preferences when he/she searches something on the Web, ...

user

persona!
agent

agent 's
functional ity's

l

Travel

j E-mai 1, news 1

j99ar ch engi nel

j Càl I schedul e I

1 Voice mail 1

•••

Travel services

airlines

car-hire companies

other services

• Weat her for ecast cent er
• Tour i st i nf or mati on cent er
• \li sa & heal th i nf or mati on cent er
• Bank

Figure 7 : What a persona! agent could look like

1 http://www.sabre.com

54

2.3 The actors 1

The travel industry can be analysed using an industry value chain, as shown below in Figure
8. In its simplest form, the industry consists of suppliers (or vendors), distributors, and
customers.

Di stri butors

Travel
.Agents

Customers

Travelers

Figure 8 : The travel industry value chain2

2.3.1 Suppliers / Vendors

Suppliers of travel-related services include transportation and hospitality service providers.
These include airlines, railways, car-rental agencies, cruise lines, hotels, and a collection of
entertainment service providers.

2.3.2 Distributors

Travel agents represent the primary distribution channel in the travel industry. They are
information brokers whose primary purpose is to act as a clearinghouse that brings travel
service suppliers in contact with their customers. Travel agents make money from
commissions on a variety of products (flight, tours, hotel, insurance, ...).

2.3.3 Customers

Customers are travellers, consisting primarily of business and leisure travellers. These two
segments have different needs, different levels of price sensitivity, and exert different
amounts of influence over suppliers and distributors.

2.4 Possible Scenarios3

We will now consider three possible scenarios to see what effect they could have on the
structure of the travel industry. The three scenarios are illustrated in Figure 9.

1 based upon [HEILMANN et al. 1995]
2 from [HEILMANN et al. 1995]
3 based upon [HEILMANN et al. 1995]

55

traveler travel agents travel services vendors

. S:;enar i o 2 ------.

S:;enar io 3

Figure 9 : The three possible scenarios

2.4.1 External Vendor provides travellers their own Intelligent Agents

Our first scenario embodies a system with an agent that belongs to the user and books travel
tickets based on his/her persona} preferences. The agent would be provided by an extemal
vendor who has convinced travel vendors to co-operate.

The agent is owned and paid for by the traveller. He/she uses such an Intelligent Agent as a
service and pays for the search cost as opposed to a percentage of any transaction cost. The
agent is seen as being independent and not linked to a particular vendor as in scenario 3.

Travel service vendors have an incentive to take part, since this alternative allows them to
dispense with the services of a traditional travel agent altogether. lt also allows them to
personalise their services.

2.4.2 Travel Agents develop their own Intelligent Agents

Travellers expect travel agents to represent all vendors as opposed to just one vendor. The
scenario of travel agency as a clearinghouse of travel related services is still a viable business
mode!. In this scenario, the individual travel agents or groups of travel agents own Intelligent
Agents . Cost savings from operations and perhaps a percentage of transaction costs will pay
for the Intelligent Agent.

56

The "United Airlines-Microsoft venture" is an indication of the desire of vendors to by-pass
travel agents. Travel agencies have to acknowledge the threat of vendors automating the
travel agent's fonction and doing away with travel agents. To stay alive, travel agencies will
have to adopt and exploit enabling technologies faster than vendor alliances and travellers do.

2.4.3 Vendors form Alliances and use Intelligent Agents to bypass Travel Agents

The acrimonious relationship between travel agents and vendors shows that vendors view
travel agents as a necessary evil. Given the opportunity, vendors would get rid of travel
agents. Presumably, eliminating travel agents altogether would yield great profits. Vendors of
travel related services are already forming alliances. For example, an airline, a car rentai
agency and a hotel chain will bundle their services and provide a traveller with a group
discount on the package. The car rentai agency will provide a customer with frequent flier
miles on the participating airline to motivate the customer to fly with the airline.

In this model, it is the vendors who own the Intelligent Agents. The traveller in search of
services locates a site from which the Intelligent Agent is triggered. The traveller provides the
criteria for the search and sends the agent on its way. The agent puts together a package from
the alliance and retums the results to the traveller. A percentage of the transaction costs will
cover the cost of the Intelligent Agent.

Unless a traveller owns an Intelligent Agent, this model limits the choice of services to the
alliance that owns the agent employed. A traveller would have to deploy a persona! Intelligent
Agent to a number of alliances in order to choose among different alliances.

2.5 Future Evolution

2.5.1 The drawbacks of software travel agents1

Does this mean that people have to give up the traditional way of booking business and
holiday trips and use the World Wide Web instead? The truth is that existing software agents
are notas effective and that people are not ready to risk it.

Time Consumpfion

When customers know exactly what they want they can make a phone call to their favourite
travel agency and book in a matter of minutes. But if they know exactly what they want they
can also connect to a relevant web site, or even connect to several web sites and compare
ticket prices. The big drawback, though, is that at peak hours, (usually at noon), Internet
access is really slow and it can get quite annoying.

When customers book through human travel agents they usually expect (and receive) good
service. They rely on the agents and can blame them if something goes wrong with the
booking. When booking through software agents, success depends on the customer. If
anything goes wrong, the customer cannot hold anyone else responsible but himself.

1 based upon [MICHAELIDE et al. 1997]

57

_$_µpp_OJJ

Uncertain customers can seek the ad vice of their favourite travel agency regarding where they
should go according to the money they have available and their persona} desires. Uncertain
customers that are seeking advice from software agents on the Web have no hope in finding
any help (at least for the next few years). Maybe that is the main reason why travel agencies
are still necessary

2.5.2 Is there a future for travel agencies?

In the landscape of the software travel agents, travel agencies are probably the most
endangered organisations, since their job is increasingly seen as being replaceable by
technology. Today, travel agencies play multiple mies: information brokers to pass
information from product suppliers to customers, transaction processors to print tickets or
forward money, and advisors to provide value-added information to their customers, assisting
them in their choice of specific products and destinations. The first two of these roles will
increasingly be played by technology, going directly to the customers to provide them with
information and process their transaction needs. Therefore, agencies will have to focus on the
third role, and differentiate this role according to their target market.

Indeed, one may assume that, provided the traveller knows what he/she wants, filling up a
form (with the destination, date, class, .. .) and submitting it is a piece of cake. But does the
customer always know what he/she wants when he/she enters a travel agency? Often,
customers, usually looking for holiday packages, depend on their travel agent to show them
what is available according to their taste and budget. Unfortunately, nowadays, there exists no
software travel agents that are more intelligent, i.e. that are able to interact with the customer
on a more persona} basis. Clearly, the role of a travel agency as intermediary can remain
important for the industry.

58

3. Characteristics of our application

Now that we know what an agent is and what the characteristics of a travel system are, we
can define what kind of agent we built. In this chapter, we will see how the concepts related
with agents are present in our application.

3.1 Brief description of the application

We built a system of agents composed of two kinds of agents : travel agents and company
agents. Travel agents' goal is to buy the ticket matching the best the traveller' s preferences.
The airline companies' agents give all the information the travel agents need to choose a
ticket. We go deeper into the description of our application in chapters 6 and 7.

Since our application is a very simple prototype that is limited to a system of one (or more)
travel agent (s) and three vendors (three airline companies; we did not deal with car rentai,
hotel booking or other services), we cannot classify it in one of the three scenarios. Our small
system could be part of a bigger system that embodies one of the three scenarios presented in
chapter 2.

3.2 Tools used to build the application

To implement our travel agent, we had to make some choices. What programming language
would we use? Were there tools atour disposition, for example to treat non-monotonie logic?
What had to be the features of our agent? What kind of architecture would fit the best? Did
we need to use an Agent Communication Language?

We first had to choose a programming language. Obviously, an agent-oriented language can
be used for developing and running intelligent software agents. Before really starting the
implementation of our agent, we had the opportunity to take part in seminaries introducing the
Jack1 language. lt seemed to be adequate to the type of agent we wanted to develop. Jack is
an agent-oriented language developed by Agent Oriented Pty. Ltd2

• Chapter 4 tells us more
about Jack.

For implementing the modules that treat non-monotonie logic (Belief Revision and Default
Logic), we preferred to make use of available generic tools instead of ad hoc programs that
we could have developed. The tools we chose are Vader (a theorem prover), Saten (for Belief
Revision) and Hades (for Default Logic). They all were developed at the university of
Newcastle, Australia, by the CIN project3

. Chapter 5 gives more details about these tools.

1 http://www.software-agent.com
2 http://www.agent-software.com/home.html
3 http://infosystems.newcastle.edu.au/maryanne/projects/CIN.html

59

3.3 Features of the agent system 1

3.3.1 Properties and typology of the agents

We take a closer look here at the agent system we developed. We mainly focus on the travel
agent as the company agent has a very simple architecture and don't have complex reasoning
methods.

Our travel agent exhibits the three primal attributes of an agent: lt is autonomous. Once it is
created, it doesn 't need human guidance. lt is reactive because it reacts in response to its
environment. For example, it triggers off some actions to respond to a message from another
agent or to a specific behaviour of the user. On the other hand, it is pro-active. Indeed, it acts
in a goal-oriented way thanks to the structure of plans offered by Jack. When our agent has a
goal, it is able to decompose it into sub-goals in order to achieve it.

Our agent is also adaptive, i.e. it behaves differently depending on the environmental
conditions. There are tracks of memory (for example, it remembers all what it has been asked
since its creation) and reactivity to environmental changes. But the agent doesn't have the
capacity of learning because it doesn't really adapt its behaviour to the one of the traveller.

Furthermore, it is capable to co-operate with the user and with other agents. The co-operation
with the user is embodied by the interface of the agent. The user has to specify the task he/she
wants the agent to achieve. Once the agent has performed its task, it wams the user of the
result. The user can then ask another task or modify his/her initial request. Our travel agent
also co-operates with other agents (the company agents) that will help it to achieve its goal,
mainly by providing information. In order to do so, an agent communication language is
necessary. The communication language our agents use is integrated in Java, on which Jack
rests.

Finally, the travel agent has the properties of veracity (it doesn't knowingly communicate
false information), benevolence (it always tries to do what is asked of it because it doesn't
have conflicting goals) and rationality (it acts in a way that is optimal for achieving its
goals). But it is neither introspective (it can't examine and self-reflect its own thoughts, ideas,
plans, ...) nor mobile (it is notable to move to another system trough an electronic network to
access remote resources or to meet other agents). Mobility is a very interesting property but it
was not necessary for our agent. Moreover, Jack is not adapted to the development of that
kind of agent.

Now that we have examined the properties our travel agent possesses, we can conclude that it
ranges in the category of collaborative agents. It can be a persona! agent provided by a
special vendor and owned by the user or by the vendors but it can also be the agent of a travel
agency.

1 this section should be read in parallel with the more theoretical second chapter of part I

60

3.3.2 Agent architecture and communication language

We built the internai architectures of our agents following the BDI architecture. lt is the most
accepted architecture and what's more, the Jack architecture is based on the BDI architecture.
In chapter 6, we will analyse the BDI features of the agents and then build the architecture
following the Jack requirements.

Concerning the architecture of the agent system, we did not use standards developed by the
PIPA or OMG. Our application is targeted at the interna! architecture of the agent. As a
consequence, there are no general services such as a naming service in our systems. Each
agent knows each other agent of the MAS.

However, it is not impossible to extend the actual prototype to a more sophisticated system
using FIP A or OMG standards. Java facilities for distributed objects also offer a strong basis
to build distributed systems. Standard architectures are chosen for wide applications used on
global networks such as the Internet. Specific architectures are chosen for more specific
applications limited to a small group of users.

Concerning the communication, we did not use standard ACL in our application. Jack offers a
good communication language and it is easy to use. Standard ACLs can be really useful for
huge applications but the use of such languages is more complicated.

In the case of large travel systems, it seems that the application will be used by a wide variety
of users. Therefore, standards are appropriated so that each airline company can build its own
agent following some conventions. Consequently, a wide variety of travel agents can be built
using the services of the airline agent and offering information for travellers.

The use of ACL standards is helpful when used with MAS standards. lt is not yet the case
with our application but, once again, it is not impossible to extend it using KQML for
example. Furthermore, if we want to integrate our agents in a wider application (e.g. the
Internet), standards will be needed.

3.3.3 Artificial intelligence

One of the goals of our dissertation is to incorporate complex AI-based reasoning methods in
our agent. Hence, we endowed our agent with non-monotonie reasoning. We have decided to
use Default Logic for completing missing information about the tickets proposed by the
airline companies and Belief Revision for managing the preferences of the traveller. We will
ex plain more in detail how we use these two types of non-monotonie logic in section 7 .2.

61

62

4. An agent oriented language (Jack)

ln the present chapter we describe Jack, the language we used to build our application. Jack
is a commercial product developed by Agent Oriented Software (AOS) based in Melbourne,
Australia. We first see that it is based on the BDJ architecture and Java. Next, we describe the
components of a Jack agent and see the benefits of the Jack language.

4.1 Introduction 1

The goals set by the Jack2 designers were to provide developers with a robust, stable, light
weight product, to satisfy a variety of practical application needs, to ease technology transfer
from research to industry and to enable further applied research.

Because of most organisations already passes and depend upon large legacy software
systems, the Jack Agent has been designed mainly for use as components of larger
environments. Consequently, an agent must co-exist and be visible as simply another abject
by non-agent software. Conversely, a Jack programmer must be allowed to easily access any
other component of a system.

Jack agents are not bound to any specific agent communications language but Jack provides a
native communication infrastructure. Moreover, object-oriented Middle-Ware such as
CORBA (developed by the OMO, see section 2.4.2 of part 1) can be combined with Jack to
salve some communication issues.

Jack has two main features. First, the Jack agent architecture is inspired from the Belief
Desire-lntention (BDI) mode! (see section 2.4.1 of part 1). Secondly, Jack is a Java-based
language. That means that Jack users can use all the tools supplied by Java to build a Jack
agent system.

4.2 Jack and the BDI model

A Jack agent is a "BDI Agent" (cf. section 2.4.1 of part 1). Such agents have beliefs about the
world and desires to satisfy, driving it to form intentions to act. An intention is a commitment
to perform a plan. Beliefs, desires and intentions are called the mental attitudes (or mental
states) of an agent.

The abstract BDI architecture has been implemented in a number of systems. Of these, two
are of particular relevance to Jack since they represent its imrnediate predecessors. The first
generation is typified by the Procedural Reasoning Systems, developed by the SRI

1 this chapter is based upon [BUSETTA et al. 1999], [COBURN 2000]
2 http://www.software-agent.com

63

International in the mid '80s. The second generation systems is dMARS, built in the mid '90s
by the Australian Artificial Intelligence Institute (AAII) in Melbourne. dMARS has been used
as the development platform for a number of technology demonstrator applications, including
simulations of tactical decision making in air operations and air traffic management.

data bases

assert
retract observe

change

events

post select plan

(plan choice)

Figure JO: Jack BDI Execution

plans

handle

A Jack agent has three main types of components : the databases, the plans and the events. As
shown on Figure 10, these Jack components are in close relation with the BDI components
(i.e. the beliefs, desires, and intentions). The agent's beliefs can be asserted or retracted from
the databases, its desires are posted by the events and its intentions are handled by plans.

Clearly, there is a similarity between the Jack BDI architecture and the BDI architecture seen
in section 2.4.2 of part I. Figure 10 describes the Jack BDI execution. First, belief changes
generate new desires. This means that changes in the databases generate the creation of new
events (1). Then, the agent has to choose intentions to satisfy the desires. The selection of
appropriate plans determines the new set of intentions (2). The selected plans are then
executed. The plan's instructions (step intention) will then generate new desires (i.e. generate
an event) and change the beliefs. The plan's instructions can also send messages to other
agents. These messages can change the desires of the agent that receives the message (3).

4.3 Jack: a Java-based Language

A Jack programmer uses Java statements within the specific components of a Jack agent. Jack
currently consists of three main extensions to Java. The first is a set of syntactical additions to
its host language, which can be divided as follows :

• A small number of keywords for the identification of the main components of a Jack
agent. The keywords describe components such as plans, events and agents.

• A set of statements for the declaration of attributes and other characteristics of the
components. This is the information contained in the beliefs or carried by the events.

• A set of statements for the definition of static relationships, i.e. which plan can be
adopted to react to a certain event.

64

• A set of statements for the manipulation of an agent's states. This comprises additions
of new goals, changes of beliefs and interaction with other agents.

The second extension to Java is a compiler that converts the syntactic additions described
above into pure Java.

Finally, the third extension is a set of classes (called the kemel) that provides the required
run-time support to the generated code. This includes :

• the automatic management of concurrency among tasks being pursued in parallel (the
intentions in the BDI terrninology).

• the default behaviour of the agent in reaction to events, failure of actions and tasks,
and so on.

• a native light-weight, high performance communications infrastructure for multi
agent applications. Note that a different communications infrastructure can be
supplied by overriding the appropriate run-time methods.

In summary, the Jack Agent Language (JAL) is a third generation language that follows the
standard Java/object-oriented paradigm, now commonly accepted and understood by software
developers.

The choice to extend Java to create Jack language is judicious. All the advantages of Java are
incorporated automatically in Jack. Indeed, Jack allows access to all Java capabilities,
including multiple threads, possibility running on multiple CPUs, platform independent GUis
and third party libraries. For example, Jack programmers can build distributed object systems
using Java functionalities. Moreover, Jack allows easy integration using standard distributed
object Middle-Ware infrastructure, such as CORBA, RMI, or DCOM. Another important Java
feature that Jack inherits is the portability. Jack agents are capable of running on any system
with Java, from mid-range laptops to high-end multi-CPU Enterprise servers.

We have seen in section 2.7 of the first part that an agent language is often based on object
oriented languages but that they also need to offer some facilities to use Artificial Intelligence
techniques. This is why Jack supports logical variables and cursors for the convenience of AI
programmers. These are particularly helpful when querying the state of an agent's beliefs.
Their semantics are mid-way between logic languages and the SQL language. However,
generally speaking, Jack is much more object-oriented than AI-oriented.

4.4 Jack programming concepts

The Jack Agent Language (JAL) can be categorised as follows : the JAL classes (types), the
JAL declarations (#-declarations) and the Jack reasoning method statements (@-statements).

The classes define functional units within Jack. These functional units are implemented as
Java classes, with their agent-oriented properties embedded within the class as private
methods. There are five pre-defined classes :
• Agent which models the main entities in Jack
• Event which models occurrences of messages to which these agents must be able to

respond. Events may arise extemally from messages from other agents, or intemally as a
consequence of one of the agent's own actions or in response to one of its internai goals .

• Plan which models procedural descriptions of what an agent does to handle a given event.

65

• Database which models an agent's beliefs. Databases represent an agent's belief as first
order relational tuples.

• Capability that models a kind of mini-agent included in an agent. The capabilities provide
a way to structure the agent by providing an independent entity for a particular fonction.
For example, an agent may have the capability to compute a factorial number. Each
capability has his own plans, events and databases. The capability construct allows the
functional components to be reused.

Figure 11 represents the five classes and their mutual relationships. An agent has events,
plans, databases and capabilities. A capability is a kind of mini-agent and, therefore, can have
capabilities, events and databases. Changes in databases and instructions in plans may
generate events. A plan's instruction uses the knowledge contained in the databases.

.,__ "has''

........ ➔ "uses"

ev , nt . .

n l

@a~~seID

Figure 11: Jack programming concepts

Jack files have the following extensions : x.agent (for the agent classes), x.plan (for the plan
classes), x.event (for the event classes), x.db (for the database classes), or x.cap (for the
capability classes). As seen in section 4.3, Jack provides a compiler that transforms these Jack
files into Java files (x.java). Torun the agent software, the Java compiler has to transform the
x.java files into x. class files that can be interpreted by the Java virtual machine.

Declarations are used to specify relationships between classes in a Jack program.
For example :

• #uses plan - is used in agent definitions to specify that an agent includes this plan in
its set of available plans.

• #handles event - is used in agent definitions and plan definitions to identify the event
that an event or plan handles (one plan handles one and only one event).

Reasoning statements are JAL specific statements that can only appear in reasoning methods.
They describe actions that the agent can perform and that are not covered by normal Java.

66

For example :

• @send - sends a message event to another agent.
• @wait Jor - identifies a condition for which the agent should wait until it becomes

true.

Of course, each Jack Agent Language class also offers a number of public methods. For
example, there are three database methods :

• assertO - adds new tuples to an agent's private database relation, or modifies its
existing tuples by supplying updated information.

• retractO - removes tuples from an agent's database relation.
• public int nFactsO - retums the number of facts (tuples) that are currently held in a

given database relation.

4.5 Benefits of Jack

The approach taken by Jack has a number of advantages. The adoption of Java guarantees a
widely available execution environment. Moreover, it is probable that an increasing number
of software components using Java will be available in the next few years.

However, the adoption of an imperative language such as Java means losing some of the
expressive power offered by logic or functional languages. This is partially compensated with
the advantages offered by the intrinsic characteristics of Java, and, therefore, by Jack. For
example, Jack has several interesting aspects for developing a complex distributed system.
Jack has also the advantage of being accessible to a large community of engineers trained in
object-oriented programming.

In summary, Jack constitutes an elegant marriage between the vision of agent research and the
needs of software engineering, bringing the power of agent technology to and enriching the
host language Java.

4.6 Evolution

For developing our application, we used the Jack Intelligent Agent vl.3. In the mean time, a
new version has appeared (v2.0). Jack Intelligent Agents v2.0 include all the agent
programming concepts of Jack vl.3, and has obviously some additions. We will discuss
shortly the most important ones. A first important improvement in the new version is a
graphical development tool for Jack agents. Secondly, Jack v2,0 provides an helpful
documentation injavadoc style. And thirdly, Jack v2.0 provides additional utility classes.

The graphical development tool is entirely written in Java. lt can be viewed as a toolkit that
facilitates the construction of the component parts of an Agent - Capabilities, Plans, Events,
and Databases. These parts can then be used to build the agent you need for a given
application. One of the advantages is that the Jack Development Environment makes it easy
to reuse code, especially via the Capabilities mechanism.

67

However, the changes in the new version are not that important because the philosophy to
build Jack agents remains the same. Nevertheless, it is interesting to know that the product
evolves.

68

5. AI tools: Vader, Harles, and Saten

Ill The UNIVERSITY
~ ~ f_ NEWCASTLE
~ AUS TfhHIA

To develop our applications, we needed tools that deal with non-monotonie logic. We used
Saten and Hades. Saten treats Belief Revision whereas Hades treats Default Logic. Both
Saten and Hades were developed in Java, by the CJN project at the Business Technology
Research Laboratory of the University of Newcastle, Australia. They use an object-oriented
web-basedfirst-order theorem prover, Vader.

5.1 VADER

Vader1 was implemented by the CIN project in 1997. It is believed to be the first theorem
prover fully implemented in 100% pure Java. lt was upgraded to first-order logic in 1998.

~Applet Viewer VaderApp.class fi§~ ft3

tweety_is_a_bi
tweety_ls_a_blrd

Clauses to prove: tweety_ls_an_ostri ch

Consistent

Resulls:

1 pp let started.

Y ou can either ask Vader to verify whether the clauses to prove are consistent with the
axioms (he will then answer 'consistent' or 'inconsistent) or ask it to try to prove the clauses
with the axioms (he will then answer 'proven' or 'not proven ').

1 http://cafe.newcastle .edu.au/vader/

69

5.2 HADES

Hades 1 was developed as an intelligent object-oriented prototype system for Default Logic
with Belief Revision capabilities (by using Saten).

The interface is di vided in two tables, which the user has to fill in : the beliefs (on which one
can use the button Revise' in the same way as in Saten, see section 5.3) and the defaults. The
underlying data structure is a default theory. It is composed of an array of strings (in) for the
beliefs (or facts), an array of default objects (defaults) for the defaults and an array of arrays
of String (extensions) for the extensions.

The class default is composed of a pre (a string representing the precondition or prerequisite),
ajusts (an array of strings representing the justifications) and a cons (a string representing the
consequent).

The main methods of the default theory are :
• addDefault(Default) - inserts a new default in the DefaultTheory. The parameter is the

default to be inserted.
• addFact(String) - inserts a new fact in the DefaultTheory. The parameter is the fact to

be inserted.
• generateO - generates all the extensions and retums them in an array of arrays of

string (extensions).

1 http://infosystems.newcastle.edu.au/webworld/Hades/

70

Obviously, we did not make use of Saten and Hades the way one does on the Web site. We
did not use the interface, we only used the engines undemeath it. We utilised the extraction
engine of Saten and the generation engine of Hades.

5.3 SATEN

Saten1 was also developed in 1997. lt is an intelligent object-oriented prototype system for
theory extraction and revision.

Degree Bel iefs

0.3 tweety_is_bird

0.2 -tweety_can_fly

0.1 lweety_i s_blrd- ►tweety_can_fly

The interface is mainly composed of a table that the user has to fill in with the beliefs and
their degree. In order to insert a new belief in the table (which represents the beliefs set), one
can either use the 'Add' button or the Revise' button. Pushing that button means revising the
beliefs set with the new belief, following the chosen strategy (Standard Adjustment, Maxi
Adjustment, ...). If the 'Add' button is used, the newly formed beliefs set can be inconsistent.
One can then use the 'Extract' button to extract a consistent theory from it. Finally, one can
use the 'Degree' button to ask for the degree the specified belief would have in the beliefs set.

Saten is capable of :

• Theory extraction
• Information integration/fusion
• Iterated revision
• Calculating Spohnian reasons

1 see also http://infosys tems. newcastle.edu.au/webworld/Saten/

71

• Non-monotonie reasoning
• Possibilistic reasoning
• Hypothetical reasoning

In the application we developed, we only made use of two of these capabilities : theory
extraction (i.e. extraction of a consistent subset of formulas from a set of formulas that can be

_ inconsistent) and iterated revision. These are the two main fonctions of Saten. Both of them
are performed on a ranking that the user is expected to provide. Extraction involves the
recovery of a consistent ranking from an inconsistent ranking. Severa} strategies are available
for the process of extraction and revision. These strategies are based on the different types of
transmutations :

• Standard adjustment
• Maxi-adjustment
• Hybrid adjustment
• Global adjustment
• Linear adjustment

In our application, we only use maxi-adjustment.

The data structure at the basis of Saten is the theory base. lt is an array of strings (the beliefs)
coupled with an array of doubles (the ranking of the beliefs). These arrays have the same size
because there is a one-to-one correspondence between them : to a belief (represented by an
element of the array of strings) corresponds a rank (represented by an element of the array of
doubles).

The main methods of the theory base are :

• addBelief(String, double) - inserts a new belief in the TheoryBase. The parameters are
the belief to be inserted and the entrenchment at which to insert it.

• getEnt(String) - gets the ranking associated with a given belief in the TheoryBase. The
parameter is the belief of which we search the ranking.

• contains(String) - determines if a given belief is in the TheoryBase. The parameter is
the belief to be searched for.

• movBelief(String, double) - moves a belief within this TheoryBase. The parameters are
the belief to be moved and the new entrenchment for this belief.

• remBelief(String) - removes any copy of a given belief from the TheoryBase. The
parameter is the belief to be removed.

To make the revision of the TheoryBase, a different object that depends on the strategy is
used. It can be the object Adjust if the strategy is Standard Adjustment, the object MaxiAdj if
the strategy is Maxi-Adjustment, HybridAdj if the strategy is Hybrid Adjustment, ... All these
objects are instances of classes that extend the class Extractor. This constitutes the base class
for the Theory Extraction Engine hierarchy. It allows for Theory Extraction (and hence Belief
Revision) to be applied to TheoryBases. Its main methods are extractTheory (TheoryBase)
and revise (String, double).

72

extractTheory extracts a consistent theory from the current TheoryBase. It uses a clausal form
and a theorem prover (Vader) to get a consistent theory, and then decides which non-clause
form beliefs are provable from this base and at what entrenchment. This becomes the new
TheoryBase.

revise uses the extraction engine to perform a Belief Revision on the current TheoryBase. The
parameters are the belief to be revised and the entrenchment at which to insert this new belief.
Basically, it consists of adding a belief to the TheoryBase and using the method extractTheory
on the new TheoryBase.

Other important methods of the class Extractor are MoveDown and MoveUp. It moves the
nominated belief down/up to a new entrenchment, moving other beliefs as necessary to
maintain the entrenchment property.

73

74

6. Architectures

ln chapter four, we have seen what the components of a Jack agent are. ln this chapter, we
analyse the BDl-features of each agent that composes the system so that we can build a Jack
architecture for each agent. We describe first the interaction between the agents in the
system. Afterwards we analyse the characteristics of each agent in more detail.

6.1 Externat architecture

The travel reservation system is composed of two kinds of agents. "TravelAgents" that buy
tickets for travellers and "Company Agents" that sell tickets for airline companies. The goal of
a TravelAgent is to find the "best ticket" corresponding to the traveller's preferences.

The TravelAgent first asks the traveller for his or her preferences. The traveller has to choose
his/her degree of preference for each criterion (measured on a scale that goes from O to 10).
The preferences concern the price of the ticket, the duration of the flight, having a smoker seat
or not, having a persona} television, etc. Of course, the traveller has also to specify the date on
which he/she wishes to leave, and his/her place of departure and his/her destination.

The task of the TravelAgent is to find the ticket that matches the best the preferences
expressed by the traveller. To this end, the TravelAgent has to communicate with
CompanyAgents. A TravelAgent asks a CompanyAgent information about seats for a flight
linking a specific place of departure to a specific destination. As a reply, CompanyAgents
provide ail the information relating to the tickets the airline company possesses.

Once the TravelAgent has found the "best ticket" for the traveller, it asks the CompanyAgent
if there are vacant seats. If this is the case, the agent books the ticket. If this is not the case,
the agent queues up, waiting for a possible cancellation and another search will be spawn to
find the "second" best ticket. This process will be executed until an available seat is found.

Two causes can modify the selection of the "best ticket". First, each time there is a change in
a ticket's characteristics, the Company Agent sends the changes to the TravelAgents that had
asked information about this kind of ticket. In this way, the TravelAgent can perhaps find a
new "best ticket". Second, travellers can also change their preferences during the reservation
process and thus change the "best ticket" corresponding to their preferences.

The CompanyAgent informs the TravelAgent if former queued tickets are now available. By
doing so, the TravelAgent can cancel already booked tickets. The reservation process ends
some days before departure when time has corne to pay the "best tickets".

As shown on figure 11, our prototype system runs with three CompanyAgents (Virgin, KLM
and Sabena) and two TravelAgents. In our application, each agent is identified by a name and
it suffices to know the agent's name to be able to send a message to an agent.

75

;:, to~::.=,
to change preference••

.. to.C~uJ!:1
traveller 1

Traveller
Agent 1

Traveller
Agent Il

Figure 12: Prototype ofa travel reservation system

6.2 TravelAgent

6.2.1 Features of the TravelAgent

\/lqjln
administra.ter

The most complex agent is the TravelAgent. To build the agent, we have to identify what
kinds of reasoning methods will be used by the agent, which extemal events drive the agent,
which goals the agent can set for itself, which beliefs the agent has and finally, which
functionalities have to be provided by the agent.

Reasoning methods

The particularity of our application is that the TravelAgents use non-monotonie reasoning.
They organise the preferences of the traveller and the information they know about the
possible tickets in the form of a Theory Base (the data structure used in Saten to represent the
belief set) and use Belief Revision to single out the ticket that matches the best the
preferences of the traveller.

Default Logic is also used to deal with incomplete data corning from the CompanyAgents.
They can forget, for instance, to tell about the presence of smoker seats on a flight, or maybe
they just do not tell it because it seems to them that it is implicit.

76

ny agen
llation of
other tr

sub-goal 1
Ask for tickets

Figure 13: Externat events and Sub-goals ofthe TravelAgent

External events

As shown on Figure 13, the TravelAgent can receive extemal events from the traveller and
from Company Agents. The traveller can induce two kinds of events by modifying the criteria
of the trip (e.g. the destination) or by changing his or her preferences (e.g. he/she changes
his/her mind about the fact of being served champagne). The Company Agent can also induce
two kinds of events by informing the TravelAgent about changes of a ticket's characteristics
(e.g. the disappearing of smoker seats on a flight) or about a ticket's cancellation from other
travellers.

Goals of Jhe Trave!Agent

The main goal of a TravelAgent is to find and to book the "best ticket" according to the
preferences of a traveller. The main goal can, of course, be divided in sub-goals. The
successive achievements of sub-goals characterise the progress of the main goal.

We can divide the main goal in seven sub-goals:
First, once the search is started, the agent has to ask the CompanyAgents which tickets match
with the traveller's desire (sub-goal 1). Secondly, the agent has to complete the information
provided by the CompanyAgents using the Default Logic (sub-goal 2). Thirdly, the agent has
to single out the ticket matching the best with the traveller's preferences thanks to a selection
system based upon the Belief Revision technique (sub-goal 3). Fourth, the agent asks the
CompanyAgent (that provides the "best ticket") if there are vacant seats for the "best ticket"

77

(sub-goal 4). If this is the case, the agent books the ticket (sub-goal 5). If not, the agent queues
up, waiting for a possible cancellation (sub-goal 6) and another search is spawn to find the
"second" best ticket (go back to sub-goal 3). Finally, when the laps of time to pay the ticket is
over, the agent pays and the process ends (sub-goal 7).

The four extemal events may restart the process from a sub-goal. If the traveller changes the
trip's criteria (e.g. the place of departure) the whole process has to be started all over again. If
an agent company changes a ticket's characteristics, the agent has to recalculate the default
characteristics. If a traveller changes his or her preferences, the agent has to recalculate the
"best ticket". Finally, if a company has a cancellation for a ticket for which the TravelAgent
queues up, the agent books the ticket.

The beliefs of a TravelAgent concem all the data that an agent has to know to achieve each
sub-goal. We will look more into detail at each sub-goal below.
• To ask for tickets (i.e. sub-goal 1), the agent has to know the trip's criteria and the name of

each Company Agent, so that they can communicate.
• To complete rnissing information (i.e. sub-goal 2), the agent has to know the information

on the tickets sent by the CompanyAgents.
• To find the "best ticket" (i.e. sub-goal 3), the agent has to know ail the characteristics of

every ticket.
• To ask if there are vacant seats for the "best ticket" (i.e. sub-goal 4), the agent has to know

which is the "best ticket" and it also has to know the name of the CompanyAgent that
provides this "best ticket".

• To book the "best ticket" or to queue (i.e. sub-goal 5-6), the agent has to know which is
the "best ticket" and if there are vacant seats left. The name of the Company Agent is once
again needed to book the "best ticket" or to queue.

• Finally, to achieve sub-goal seven, i.e. paying the last "best ticket", the agent has to know
which is the "best ticket" having at least one available seat and it needs to know when it's
time to close the process.

Functionalities

To implement the agent, we have to define ail the fonctionalities the agent has to provide.
These fonctionalities define which fonctions are needed to achieve the sub-goals. Now that
we have decomposed the goal into sub-goals, it is easier to specify which fonctions are
needed to achieve the main goal. We have defined seven groups of fonctionalities for the
TravelAgent.

First, the agent has to be able to communicate with the traveller and with the CompanyAgent
since the agent has to be informed when an extemal event occurs. As a consequence, two
kinds of fonctionalities are needed: one that regroups fonctions that perrnits communication
with the traveller and another that regroups fonctions that allow to communicate with other
agents in order to ask if there are vacant seats or in order to receive information about tickets
for example.

The agent has also to be able to use non-monotonie logic. This means that the agent uses
Default Logic and Belief Revision. Therefore three groups of fonctionalities are needed: one

78

to use Saten (Belief Revision), another to use Rades (Default Logic) and yet another to
transform the data into logic expressionss adapted to the belief revision treatment.

Then, Functions allowing to book and queue are regrouped in another functionality.

Finally, another faculty that can be useful as well, is the faculty that allows memorisation of
all the research executed by an agent so that the agent never executes twice the same process.
Thus, each time the traveller modifies the trip's criteria, the result is memorised with all the
parameters.

6.2.2 Jack architecture

Now that we have analysed the main features of the TravelAgent, we can begin distinguishing
between the different components of a Jack agent. As we have already mentioned (chapter 4),
a Jack agent has five kinds of components : the agent itself, the capabilities, the databases, the
events and the plans. On Figure 14, we can see how these capabilities are co-ordinated to
achieve the sub-goals.

Capp,bilities

A capability will be built for each group of functions except for the communication between
the agent and the traveller. A Graphical User Interface (GUI) will cover this functionality.

Therefore, a TravelAgent has fi ve capabilities and an interface :

• Communication regroups all the functionalities to communicate with a Company Agent.
• De/Cap uses Rades to complete missing information.
• TreatDataCap takes care of the form of the formulas that will be used in the Br capability.
• Br uses Saten to find the "best ticket" by using Belief Revision.
• BookingCap manages all the queued and booked tickets.
• History remembers all the previous research made by the agent.

flq1J/i

Each plan of the capabilities will correspond to each function provided by the capabilities.
See Annexe 1 for an explanation of the contents of all the plans.

lr]_t§r.[a_c.§.

The graphical interface, used to communcate with the user, has six different frames (for more
details see 7.1) : lntroW, CriteriasW, ResultW, TheoryBaseW, DefaultW, WaitW CoordinW
co-ordinates these frames.

79

The external events have already been identified previously. They are:

• AnalyseCriteriasE is generated each time there are changes in the preferences of the trip's
criteria of the traveller. These events are generated by the GUI and handled by an agent's
plan that is not part of a capability.

• ChgeTicketE is sent by a CompanyAgent when there are changes in a ticket's
characteristics. This event is handled by the communication capability.

• CancellationE indicates that some travellers have cancelled their reservation for tickets for
which the agent queues. This event is also handled by the communication capability.

The agent will co-ordinate all the capabilities so that each sub-goal will be correctly achieved.
Sorne internai events will occur to announce the end of a capability's task. Figure 14 shows
the relation between the events and the capabilities.
Finally, we can distinguish between ten internai events that the agent handles :

• NewCriteriasE occurs if the traveller changes the trip's criteria.
• ChgeCriteriasE occurs if the traveller changes his/her preferences.
• ChgeGenCriteriasE occurs if it is the first time the traveller asks for this trip.
• TreatedE occurs if a sirnilar research has already been made.
• TreatTicketE states that the agent possesses all the information about the tickets available.

The treatment of these data can begin ..
• DefaultE states that the agent possesses information about each available ticket and that

characteristics about the tickets have to be completed by the DefaultCap capability.
• JnitRulesE states that all rnissing information concerning the ticket has been completed

and that the Br capability can begin to search the "best ticket" .
• BookingE states that the "best ticket" is known by the agent and that the communication

capability can ask the Company Agent if there are vacant seats.
• ComReplyVacancyE states that the agent knows if there are available seats for the best

tickets.
• RemoveTickets occurs if the agent has to start a search all over again because there are no

available seats for the "best ticket".

The TravelAgent sends also external events to Company Agents. They are:

• AskTicketE announces that the agent asks the CompanyAgents if they possess tickets
corresponding to given criteria.

• AskVacancyE announces that the agent asks the CompanyAgent if there are vacant seats
for a ticket.

• BookE announces a CompanyAgent that the TravelAgent wants to book a ticket.
• QueueE announces a Company Agent that the TravelAgent wishes to queue for a ticket.
• CancelE announces that the TravelAgent wants to cancel a reservation.

These are the most important events but there are, of course, other events that occur in order
to co-ordinate the plan within the capabilities. For a better comprehension, we can see how
the most important events are issued on Figure 14.

80

Databases

Databases will correspond to each kind of beliefs described previously.
There are six kinds of beliefs and, as a consequence, the agent has at least six databases.

• dbGenCriterias stores the trip's criteria (departure, destination).
• dbCriterias stores the preferences of the traveller (smoker seat, business class, ...).
• dbSociale stores the name of the Company Agents (i.e. the airlines) of our system.
• dbTickets stores the information about the tickets received from the Company Agents.
• dbBooked stores the ticket that the TravelAgent books.
• dbQueued stores the tickets that the TravelAgent queues.

Of course, the TravelAgent will also use other databases to store the results calculated by the
capabilities such as dbRules that stores all the formulas representing the characteristics of the
tickets. These other data do not store new beliefs but store the same beliefs in other forms.
They are:

• dbRules stores the formulas representing the characteristics of the tickets.

• dbCriteres2 stores the criteria ordered according to the preferences of the user (after
transformation -due to the problem of quantification- of the data contained in dbCriterias).

• TicketBest stores the best ticket that has been singled out by the search .

• dbHistoric stores the requests (general criteria + preferences criteria) that have already
been done.

• dbHistoricResult stores the result of the searches corresponding to the requests stored in
dbHistoric.

• dbTickets2 stores the tickets and their characteristics (after the transformation -from
dbTickets- due to the problem of quantification).

General schema

Annexe 2 presents 4 schemas describing more in detail the architecture of our agent system:

• lnterconnection between capabilities, plans, events and databases : general view
• Interconnection between capabilities, plans, events and databases : the posting of the

events
• Interconnection between capabilities, plans, events and databases : the treatment of the

events
• Interconnection between capabilities, plans, events and databases the access to the

data bases

81

Commrncat,on Cap
Change ticket's char.

Communication Cap
Cancellation of tickets

AnalyseCriteriasP
Record former results

..,_G'\
sù" ~ r,ç;:::=~~;:--;ç;:-1-------I~ kTickets Commnication Cap
L-~A~s~k2s.!.fo~r ~til;:.ck~e~t~s:.......t"'1-----r~

tian------~~-=-----

~ , _____________________ .;;;;;;;_,~-<e>

Figure 14: How the capabilities are co-ordinated to achieve the sub-goals

82

6.3 CompanyAgent

6.3.1 Features of the Company Agent

The CompanyAgent is less complex than the TravelAgent, and hence its architecture is
simple. To build the CompanyAgent, we follow the same procedure as for the TravelAgent :
we have to identify the kinds of reasoning methods that will be used by the agent, the extemal
events that drive the agent, the goals the agent can set for itself, the beliefs the agent has and
finally, the functionalities that have to be provided by the agent.

Reasoni11g method

As we have already said, the CompanyAgent is relatively simple in our application.
Therefore, the agent doesn't need to use complex reasoning methods. The CompanyAgent
doesn 't use non-monotonie logic techniques and, as a result, doesn 't use Rades and Saten.

External events

As Figure 15 shows, the extemal events may corne from the TravelAgent or from the
company administrator. The TravelAgent may ask for information about tickets, make a
cancellation, book a ticket or queue and ask if there are vacant seats. The administrator may
change characteristics of tickets and, of course, has access to all the information that the
CompanyAgent possesses.

The main goal of a CompanyAgent is to provide services so that the TravelAgent can possess
all the information to choose a ticket and so that it can book the ticket. The sub-goals are
"giving ticket's characteristics" (sub-goall) and "managing reservations" (sub-goal2). The
agent has also a sub-goal that updates beliefs about tickets when the company administrator
changes some ticket features and that wams the TravelAgents of any change in a ticket's
characteristics to TravelAgents (sub-goal3).

Tbf!_b_eJLeA

The beliefs of a Company Agent concem all the data that an agent has to know to achieve each
sub-goal. We will take a doser look at each sub-goal now.

To give a ticket's characteristics (sub-goall), the agent has to know the ticket's characteristics
and the name of the TravelAgent that asks the information. To give information on vacant
seats, the Company Agent has to know the number of reservations and the number of available
seats for each kind of ticket. To manage the reservation (sub-goal 2), the agent has to know
the name of the TravelAgents that had booked or queued for a ticket. To announce any change
in a ticket's characteristics (sub-goal3), the CompanyAgent has to know which TravelAgent
had asked information for this kind of ticket and it has to know what are the changes in the
ticket's characteristics.

83

Functionalities

There are a few functions that the agent has to possess to achieve the sub-goals.
Consequently, we will not regroup functions in the same way as we did with the TravelAgent.
We can distinguish between some functions that are needed to achieve the sub-goals :

For sub-goall (i.e. give ticket's characteristics) :
• send general information to a TravelAgent
• send information about vacant seats

For sub-goal2 (i.e. manage reservation) :
• manage booked tickets
• manage queued tickets
• manage the cancellation of a ticket
• tell a TravelAgent that another TravelAgent has cancelled a reservation

For sub-goal3 (i.e. manage updating)
• remove a ticket from the beliefs and send the changes of a ticket's characteristics to the

TravelAgents
• update the characteristics of a ticket and send the changes of a ticket's characteristics to

the TravelAgents

6.3 .2 Jack architecture

Now that we know what are the main features of the CompanyAgent, we can begin
distinguishing between the different components of a Jack agent. This agent is very simple
and there is no need to group a plan into capabilities. In other words, there is no capability in
our Company Agent. We go on by defining what are the plans, the events and the databases.

flq71s_

A plan will correspond to each function described above. The functions for sub-goal2 are not
implemented. Four plans will be implemented :

• AskTicketP treats a demand of information about a ticket.
• AskVacancy treats a demand of information about vacant seats.
• UpdateP updates the databases if the administrator has made some changes and sends the

changes to some TravelAgents.
• RemoveP removes some tickets on the administrator's demand and sends the changes to

some TravelAgents.

See Annexe 1 for an explanation of these plans.

The external events have already been identified previously. A CompanyAgent handles four
extemal events. They are:

• AskTicketE announces that a TravelAgent asks tickets corresponding to general criteria.

84

• AskVacancyE announces that a TravelAgent asks if there are vacant seats for a ticket.
• UpdateE announces that the administrator has made some changes in the tickets '

characteristics.
• RemoveE announces that the administrator has removed a ticket from the proposition.
• BookE announces that a TravelAgent wishes to book a ticket.
• QueueE announces that a TravelAgent wants to queue for a ticket.
• CancelE announces that a TravelAgent cancels its reservation for a ticket .

The Company Agent sends some events to the TravelAgent. They are:

• AllTicketsE tells the TravelAgent that the CompanyAgent has sent all its tickets
(corresponding to the general criteria specified by the user).

• ReplyVacancy replies a Company Agent whether or not there are vacant seats for a ticket.
• ChgeTicketE is sent by a CompanyAgent when there are changes in ticket characteristics.

This event is handled by the communication capability.
• CancellationE indicates that some travellers have cancelled their reservation for tickets.

There are no relevant interna} events in a Company Agent because the structure of the agent is
too simple.

Databases

The database corresponds to the agent's beliefs.

• dbTicketsComp contains all the information about a ticket (the departure, arriva}, vacancy
seats, duration of the trip, etc.).

• dbCalls contains the names of TravelAgents that asked for information and the content of
the request (i.e. departure and arriva} of the trip).

• dbbook contains all the reservations made for the tickets of the company.
• dbqueue contains ail the names of the TravelAgents that are waiting for some kind of

ticket.

A graphical interface will be used to communicate with the company administrator. Only one
frame composes the GUI. lt is called CompanyAgentW

85

UpdateE

BookE

QueueE

~--_,------

skTicketP t--~

:s--a-_.MV""'skVacancyPt------~

ookP

s-------------1 Cancel P 1----1~ cancellation

Figure 15: The plans and the events ofa CompanyAgent

86

7. Implementation

We discuss in this chapter the implementation of our agents. We begin by describing the
interface created for each agent. Second, we explain how we use non-monotonie logic and
finally, we present some examples of Jack components of our agents.

7.1 Graphical User Interface

In this section, we will first talk about the Graphical User Interfaces. This is an important
aspect of an agent since it constitutes the visible part of it. The traveller has, in a way, a
privileged link with his/her persona} agent and hence the attention given to the GUI can be
decisive.

The design mies used for other application interfaces have always to be respected. lt is not
because the programming approach is different that we can forget the design rigor.
Nevertheless, particular attention has to be paid to an agent's interface in order to respect the
agent's properties such as knowing the individual it is assisting.

Designing a good user interface was not our main preoccupation. lt was, however, necessary
to reflect correctly our agent's capabilities. While designing the GUI of the TravelAgent, we
encountered two kinds of problems. The first one is the fact that the traveller needs to
understand correctly what the agent can do. The second problem concems the fact that the
traveller has to be able to express easily his or her preferences. To design the GUI of the
CompanyAgent, our only preoccupation was to be able to view and to change easily the data
contained in the agent.

Since Jack and Java are compatible, the GUis are written in Java.

7 .1.1 The TravelAgent interface

The Trave!Agent GUI is composed of four frames. The first one is just a frame with a button
"Tickets search" which is used to initialise the agent.

The second frame gives the traveller the opportunity to fill in the criteria of the trip (i.e.
departure, destination and date) and his/her persona} preferences. Is the price of the ticket the
only criterion for his/her choice? Will he or she accept to pay more if the flight takes less
time? Does he/she mind if he/she can't smoke in the airplane? Below, all the attributes that are
used as a characteristic of a ticket and as criterion of a traveller are listed along with their
meaning.

Attributes used as a characteristic of a ticket :

• Price (integer) : the price of the ticket
• Length (double): the length (intime) of the flight
• Smoker (Boolean) : is positive if the ticket can correspond to a smoker seat in the

airplane
• Champagne (Boolean) : is positive if the ticket corresponds to a flight during which the

traveller will be served champagne

87

• Business (Boolean): is positive if the ticket is a business class ticket
• TV (Boolean) : is positive if the ticket corresponds to a flight in an airplane in which

there are persona! televisions

Attributes used as criterion :

• Price (dou hie) : the degree of importance attached to the price of the ticket
• Length (double) : the degree of importance attached to the length of the flight
• Smoker (double) : the degree of importance attached to the fact that the ticket

corresponds to a smoker seat
• Champagne (double) : the degree of importance attached to the fact that champagne is

served during the flight corresponding to the ticket
• Business (double) : the degree of importance attached to the fact that the ticket is a

business class ticket
• TV (double) : the degree of importance attached to the fact that there are persona!

televisions in the airplane corresponding to the ticket

Preferences.:· ·1

smoker

Auslnoss

Le.nÙm

WAIT.. .

Queue llckets io 1

Vir tn Îdate Lcham ... !t11

1 --- L

OK ,'

Figure 16: The series of the TravelAgent's GU/s

88

When the traveller pushes on the "OK" button, the task of the TravelAgent is to find the ticket
that matches the best the preferences expressed by the traveller. When the best ticket is found,
the agent looks for a vacancy for the chosen flight. If there is a seat vacant, the agent books it,
otherwise it queues for that ticket and looks for another best ticket.

When the agent has one ticket booked, it gives the results with the last frame. The traveller
can view the booked and queued tickets with all their features. From this frame, the traveller
can have access to the criteria frame. So, he can restart a new search.

7 .1.2 The CompanyAgent interface

There exists only one frame for the CompanyAgent. This frame allows the company to
perform four operations (view features of a ticket, update the ticket 's characteristics, remove a
ticket, add a new ticket). Bach operation can be performed using the tree buttons contained in
the frame.

To view the features of a ticket, the ticket has to be selected in the list and the "Get" button
has to be clicked upon. The features will appear on the left side of the frame. If the traveller
wants to change the characteristics of a ticket, he has to view first the ticket's feature. After
modifying some fields on the left side of the frame, clicking on the "Update" button, will
record the change. The operation can also consist in removing a ticket, the traveller then has
to select the ticket in the list and press the "Remove" button.

In order to add a ticket, one has to fill the empty text fields before pushing the "Update"
button.

Paris S dne

champagne ·• . ,·
· tele·

smoker

1
' UPDATE-'►

1

----+--------<

• bus_lness , \ ::=~,-
,prlce . . •

length

vacancies

Information ...

Figure 17: The CompanyAgent's GUI

89

7.2 Non-monotonie reasoning in our agents

7.2.1 How do we use Belief Revision?

We use Belief Revision in two different ways. The first way is a degenerated use of Belief
Revision. Normally, one has a belief set and revising these beliefs means adding a new belief
and then extracting a consistent theory (in such a way that sets how to treat the
inconsistencies) from the enlarged belief set. We make use of the Belief Revision principles,
not to really revise a belief set because we do not always maintain a consistent belief set. In
our application, we fill a data structure that we consider as our belief set, and only when it
contains all the elements desired (characteristics of the tickets, preferences of the user, etc.),
we extract a consistent theory from it. Our method for the selection of the best ticket rests on
this kind of use of Belief Revision. All the knowledge about the tickets and the preferences
form the belief set and the selection take the form of an extraction of a consistent theory from
this belief set.

We also use Belief Revision in a more classical way. This time the belief set is really revised
with changes in the beliefs. Indeed, imagine the case of a traveller who uses our Intelligent
Agent to buy the flight ticket that matches the best his preferences. He or she changes his or
her mind concerning his/her preferences when the ticket is already found. Using Belief
Revision avoids that the Intelligent Agent spawns the whole treatment from scratch. Only the
elements of its belief set concerned would be changed. In this case, the extraction of a
consistent theory can be executed to single out one ticket.

We present here how the extraction of a consistent theory from the belief set of the agent can
lead to the selection of the best ticket. The tool we used to manage the belief set and the
extractions is Saten. The data structure on which it is constructed is the TheoryBase. It
represents the set of beliefs of the agent (the TravelAgent in our case) organised according to
their rank. These are mainly beliefs about the preferences of the traveller and the tickets
proposed by the different airlines.

The ranking of Jhe beliefs

First, an OR-formula expresses the constraint that one of the tickets has to be chosen. It has
the form 'ticket] lticket2lticket3 ... 'and will be necessary to treat the inconsistencies at the time
of extraction. This formula has the highest rank (we choose 0.9999) since this constraint
represents the goal of the search.

Something else that cannot be given up when a contradiction appears, are the characteristics
of the tickets. Indeed, the characteristics of the tickets are given, they have to be seen as true
facts rather than as beliefs. So we decided to give them the rank 0.9998.

Next corne the criteria, ranked between 0.9 and 0.1. Their rank depends on the preferences
specified by the traveller. For example, if the traveller classifies his or her preferences in such
a way that 'champagne' is assigned a rank 0.9 and 'smoker' a rank 0.4, the TravelAgent must
be convinced that the traveller attaches more importance to the fact that champagne will be
served on board of the plane than that he/she will be given a smoker seat.

90

Finally, we decided to put the name of the tickets at the bottom of the TheoryBase. They are
assigned the lowest rank (0.0001). They are the first thing that the agent will get rid off when
there will be an inconsistency. It can be interpreted as follows : before starting the extraction
of a consistent theory from the TheoryBase, the TravelAgent beliefs very weakly that the
tickets will be chosen. It knows for sure that one of them will be singled out (the OR-formula
is assigned the rank 0.9999) but it does not know which one. So it admits the possibility that
'ticket!' will be chosen as well as the possibility that 'ticket2' or 'ticket3' will be chosen. It
does not belief in these formulas strongly, it just admits the possibility of their veracity.

In order for the whole thing to work, we had to put the characteristics of the tickets under the
form of rules of the following type "ticket->attribute". Indeed, this represents the only way
inconsistencies can appear and the best ticket can be singled out. For example, when using
such a system, we can have :

(1) ticketl->champagne
(2) ticket2->-champagne
(3) champagne
(4) ticketl
(5) ticket2

one characteristic of ticketl
one characteristic of ticket2

one traveller's preference
one candidate ticket
one candidate ticket

If these five formulas represent a belief set, two kinds of inconsistencies can be found. First,
(2) contradicts (3) if (5) is true (i .e. it is kept in the belief set). Indeed, "ticket2->-champagne"
coupled with "ticket2" would imply "-champagne" which is exactly the inverse of
"champagne".

The second type of inconsistency can appear if we use the contra-position of the formulas
representing the characteristics of the tickets. In our example, the contra-position of (1) and
(2) would be :

(lb) -champagne-> -ticketl
(2b) champagne-> -ticket2

If we confront them with "champagne" (3), there is a contradiction between (2b) and (5).
More explanations conceming the way it works will be given later on.

Below, we list simplified example of our TheoryBase (before extraction) in the case of 2
tickets proposed.

91

Example of our TheoryBase (before extraction) in the case of 2
tickets

ticketllticket2 0.9999

ticketl->champagne 0.9998
ticketl->goodprice 0.9998
ticketl->-smoker 0.9998
ticket2->-champagne 0.9998
ticket2->goodprice 0.9998
ticket2->smoker 0.9998

goodprice 0.9
champagne 0.7
smoker 0.4

ticketl 0.0001
ticket2 0.0001

How is executed the extraction from this TheoryBase? The first question that has to be asked
is "Are there any inconsistencies ?". The answer is "yes". If we use the contraposition of the
formulas ranked at 0.9998, we obtain :

-champagne ->-ticketl
-goodprice -> -ticketl
smoker - > -ticketl
champagne-> -ticket2
-goodprice -> -ticket2
-smoker -> -ticket2

Coupled with the formulas representing the criteria, we have

smoker
smoker->-ticketl

champagne
champagne->-ticket2

It appears that both ticketl and ticket2 have to be negated. This is impossible, however, since
the highest ranked formula ticketllticket2 that constrains one of the 2 tickets has to be true.
So, in order to get rid off the inconsistency, one or more formulas have to be given up: either
the OR-formula, or one formula representing the tickets' characteristics, or one of the criteria,
or one ticket. Of course, we would like to abandon one of the tickets, which has the lowest
rank. But it is not sufficient because we do not know which one to give up. As a consequence,
we have to climb up in the hierarchy and we have to take a look at the criteria. By so doing,

92

we see that 'smoker' is ranked lower than 'champagne' and thus we will give up 'smoker' .
Clearly, this means that 'ticketl' which is 'champagne' but not 'smoker' is preferred to 'ticket2'
which is 'smoker' but not 'champagne'. However, dropping 'smoker' is not enough to get rid
off the inconsistency because the following formulas still constrain one ticket to be dropped.

-champagne-> -ticketl
-goodprice -> -ticketl
-goodprice -> -ticket2
-smoker -> -ticket2

As 'champagne' has not been abandoned, 'champagne->-ticket2' obliges us to choose 'ticket2'
as the ticket to give up.

Hence, after extraction, our TheoryBase looks like :

ticket1Jticket2 0.9999

ticketl->champagne 0.9998
ticketl->goodprice 0.9998
ticketl->-smoker 0.9998
ticket2->-champagne 0.9998
ticket2->goodprice 0.9998
ticket2->smoker 0.9998

goodprice 0.9
champagne 0.7

ticket2 0.0001

Apart from the OR-formula and the characteristics of the tickets, what remains is the best
ticket (ticketl) and the criteria that it fulfils ('goodprice' and 'champagne').

93

The pJoblem ef 012timisation

In the previous example, it was obvious that the best ticket was 'ticketl' because the criterion
that it did not possess ('smoker) was less important (i.e. lower ranked). But it is not always
that simple.

Another example of our TheoryBase

ticketljticket2

ticketl->-champagne
ticketl->goodprice
ticketl->-smoker
ticket2->champagne
ticket2->-goodprice
ticket2->smoker

goodprice
champagne
smoker

ticketl
ticket2

0.9999

0.9998
0.9998
0.9998
0.9998
0.9998
0.9998

0.9
0.7
0.4

0.0001
0.0001

If we consider the TheoryBase above, we see that 'ticketl' possesses the most important
criterion for the traveller ('goodprice) but that it does not have the two other criteria. 'ticket2'
does not have the characteristic 'goodprice' but it does possess the two others. Which ticket do
we have to choose?

We have the opinion that, 'ticket2' should be chosen. Indeed, the goal of the TravelAgent
should be to optimise the traveller's satisfaction, according to the preferences he/she
expresses. In this case, we can say that fulfilling the criterion 'goodprice' has a weight of 0.9,
while fulfilling the criteria 'champagne' and 'smoker' has a weight of 0.7 + 0.4 = 1.1 ! Clearly,
it embodies the principle of Minimal Change that should always be satisfied in Belief
Revision, at least if we consider the minimality in terms of cumulated ranks. The problem is
that we did not have the adequate Extractor at our disposition. Saten doesn 't possess an
Extractor that is able to realise such an optimisation. The more suitable Extractor that Saten
proposes is Maxi-Adjustment. In the example discussed, Maxi-Adjustment chooses 'ticketl'
because it satisfies the highest ranked criterion. If ever the two tickets satisfy the highest
ranked criterion the same way (i.e. they both fulfil it or they both do not fulfil it), then the way
they satisfy the second highest ranked criterion is analysed. If the two tickets are still tied, the
third highest ranked criterion is analysed, and so on.

94

The_pfoblem Qf-12erfect eguality

Now, we will look. at an example where two tickets seem to satisfy the traveller equally. Let's
consider the TheoryBase listed below.

Example of our TheoryBase

ticketl l ticket2 0.9999

ticketl->-champagne 0. 9998
ticketl->goodprice 0 .9998
ticketl->smoker 0.9998
ticket2->champagne 0.9998
ticket2->goodprice 0.9998
ticket2->-smoker 0.9998

goodprice 0.9
champagne 0.4
smoker 0.4

ticketl 0 . 0001
ticket2 0.0001

Both 'ticketl ' and 'ticket2' fulfil the most important criterion ('goodprice') and both fulfil
another one, respectively 'smoker' and 'champagne', ranked at the same degree! So, which one
has to be kept and which one has to be given up? The more logical answer would be 'none'.
That's why we used the Maxi Adjustment preferably to Standard Adjustment. In this kind of
situation, Maxi Adjustment keeps both tickets while Standard Adjustment removes both of
them. In fact, the two tickets have to be kept but one of them will be chosen at random to be
booked. If there is no vacancy for that ticket, another search (without that ticket) will be
spawned and the ticket found will be the other one.

The_pfoblem of the guantifis:ations

A problem appears when we have to deal with quantitative attributes of the tickets (i.e. the
price of the ticket and the length of the flight in our application) even when our TheoryBase
works only with Boolean formulas . Up to now, in our examples, we used extremely
simplified formulas like 'goodprice'. But we cannot stop there. The main difficulty is to
establish a correspondence between the quantitative criteria and the quantitative attributes of
the tickets. If we simply write the quantification under the form of a Boolean expressing the
exact quantification (e.g. 'pricels5000'), the correspondence is impossible to make because
there should then exist a huge list of criteria representing ail the possible prices (e.g.
'pricels5000', 'pricels5001', 'pricels5002', . . .). Practically, this is too difficult to implement.

The solution to thi s problem is using intervals. The price to pay is the loss of accuracy. In the
list of the tickets' characteristics, instead of a precise formula like 'ticketl ->pricels5000', there

95

will be a formula of the type 'ticketl->price2' expressing that the considered price is situated
in the second interval, according to the prices of all the proposed tickets.

But how are the intervals calculated The problem of the price of the tickets has to be
examined. We consider the higher bound as the price of the cheapest ticket and the lower
bound as the price of the most expensive ticket. The interval between these two bounds is
divided by 5 to obtain 5 intervals of the same size. If one wants to gain accuracy, one can use
more than 5 intervals but then the time of computation will suffer from it. A compromise has
to be found. Let' s have a look at an example wi th 3 tickets.

Example

ticketl costs S000F
ticket2 costs 5410F
ticket3 costs 7000F

The lower bound is
The higher bound is

The intervals are :
pricel from
price2 from
price3 from
price4 from
priceS from

S000F
7000F

S000F
5401F
5801F
6201F
6601F

And the formulas are
ticketl->pricel
ticket2->price2
ticket3->price5

to 5400F
to 5800F
to 6200F
to 6600F
to 7000F

Obviously, using such intervals is quite arbitrary. Two tickets that differ slightly, say several
francs, can be classified in 2 different intervals, what could incite the agent to choose cheaper
one if the price is the first criterion for the traveller, even if the more expensive one has other
characteristics that are of interest for the traveller. What happens if in the previous example a
new ticket, 'ticket4' costs 5395F, is added? Even if this ticket is only 15F cheaper than
'ticket2 ', it fallss in another interval ('price3).

In order for the whole TheoryBase to work, a subtlety has to be found. When the traveller
gives a degree of preference to a quantifiable criterion, it doesn't give birth to one formula but
to 5 formulas. For example, if the criterion 'price' is assigned the degree 0.9, this will create
the following formulas :

pricel of degree 1.0 * 0.9 = 0.9
price2 of degree 0.8 * 0.9 = 0.72
price3 of degree 0.6 * 0.9 = 0.54
pricel of degree 0.4 * 0.9 = 0.32
pricel of degree 0.2 * 0.9 = 0.18

96

In parallel, something has to be done with the formulas representing the characteristics of the
tickets. For a given ticket, there must be as many formulas as there are categories. A positive
formula and 4 negative ones. Coming back to our example, the 'ticket!' 's characteristics
formulas will be :

ticketl -> pricel
ticketl -> -price2
ticketl -> -price3
ticketl -> -price4
ticketl - > -price5

Let's now illustrate this with an example of two tickets and 3 intervals of prices. For more
clarity, we will limit ourselves to the formulas concerning the price of the tickets.

ticketl costs S000F and will be classified
(pricel)
ticket2 costs 6000F and will be classified
(price3)

This will give the following TheoryBase:

ticketllticket2 0.9999

ticketl->pricel 0.9998
ticketl->-price20.9998
ticketl->-price30.9998
ticket2->-price10.9998
ticket2->-price20.9998
ticket2->price3 0.9998

pricel 0.9
price2 0.72
price3 0.54

ticketl 0.0001
ticket2 0.0001

in the first interval

in the first interval

In order to extract a consistent theory from this TheoryBase, some formulas have to be given
up. Again, we make use of the contra-position of the tickets' characteristics formulas.

-pricel -> -ticketl
price2 -> -ticketl
price3 -> -ticketl
pricel -> -ticket2
price2 - > -ticket2
- price3 - > -ticke t2

97

First, whatever the ticket that will be chosen, the formula 'price2' must be given up. The
reason lies in the two contraposition formulas 'price2->-ticketl' and 'price2->-ticket2' that
constrain the two tickets to be given up, what is inconsistent with the OR-formula.
Afterwards, 'price3' and 'ticket2' will be given up to 'price2' and 'ticket!' because 'price3' is
lower ranked than 'price2'.

For an example of a complete and more realistic TheoryBase (before and after extraction), see
Annexe 4.

The analysis of the TheoryBase @J!r extraction

Once the extraction is made, the agent has to analyse the TheoryBase to see what the
remaining ticket (i.e. the best ticket) is and what its characteristics are.

First, it has to retrieve the number of the "best ticket" which is normally in the last position in
the TheoryBase. Then, it has to consider the characteristics of that ticket. But all the
information about the ticket is not explicitly in the TheoryBase. The negative attributes must
be deducted from the absence of the corresponding positive attributes in the TheoryBase. For
example, if "champagne" has disappeared from the TheoryBase, it means that the chosen
ticket has the attribute "-champagne".

An analysis of the TheoryBase (after extraction) represented in Annexe 4 follows :

THE BEST TICKET IS ticketl
HERE ARE THE DETAILS OF THIS TICKET

pricel
business
lengthS

FIT.LING OF THE NEGATIVE FIELDS .
CHAMP : -champagne
TV : -tv
SMO : -smoker
BUSI : business
PRICE : pricel
LENGTH : lengthS

7.2.2 How do we use Default Logic?

Our TravelAgent is able to treat Default Logic thanks to Rades. The main data structure of
that tool is the DefaultTheory. lt is composed of an array of strings (in) for the beliefs (or
facts), an array of default abjects (defaults) for the defaults and an array of arrays of String
(extensions) for the extensions.

98

The facts are composed of information about the traveller's preferences and the tickets.
Remember that, for the purpose of the treatment by the Belief Revision module, the
information about the tickets are under the form of a rule of the type "ticket->arrtibute".

Here are the default rules we used. They can be of two types. The first type of rules are those
with a negative consequent.

For example, for i ranging from 1 to the number of tickets proposed :

"","-(ticket"+i+"->business)&-(ticket"+i+"->champagne)"

"ticket"+i+"->-champagne"

which is read : If it is consistent to assume "-(ticket"+i+"->business)&-(ticket"+i+"
>champagne)", then conclude "ticket"+i+"->-champagne".
More intuitively, it means that normally, in non business class, no champagne is served on
board.

The other default rules of this type are :

"", " - (ticket" +i+ "->business) &- (ticket" +i+" ->tv) "

"ticket"+i+"->-tv"

"","-(ticket"+i+"->business)&-(ticket"+i+"->smoker)"

"ticket"+i+"->-smoker"

The second type of mies are those with a positive consequent. For example,

"(ticket"+i+"->business) ", "- (ticket"+i+"->-champagne)"

"ticket"+i+"->champagne"

which is read : If "(ticket"+i+"->business)" and if it is consistent to assume "-(ticket"+i+"->
champagne)" , then conclude "ticket"+i+"->-champagne".
More intuitively, it means that normally, in business or unknown class, champagne is served
on board.

99

The other default rules of this type are :

" (ticket" +i+" ->business) ", " - (ticket" +i+" -> - tv) "

"ticket"+i+"->tv"

"(ticket"+i+"->business) ", "- (ticket"+i+"->-smoker)"

"ticket"+i+"->smoker"

See Annexe 5 for an example of default theory.

7.3 Example of Jack components

In this section, we take a closer look at the code of our agents and we show how to build the
Jack abjects forming the agents. In chapter 4, we have described the different entities of a
Jack agent. We present in this section an example of code for each type of entity. First, we
present four components of the CompanyAgent : the Agent itself, an Event (AskVacancyE),
the corresponding Plan (AskVacancyP) and a Database (TicketsCompDB). Finally, we
describe a Capability of the TravelAgent (De/Cap) . For more explanation of the code of all
the plans, see Annexe 1.

7.3 .1 An agent: CompanyAgent

The code of the "CompanyAgent" declares which databases the agent uses, which events it
sends or receives and which plans it can execute. The code contains also the methods of the
agent.

Declaration o/Jhe agent "CompanyÂfil!nt"

The first thing to do when building an entity "Agent" is declaring it. ''Agent" is a JAL
keyword used to introduce an agent definition. "CompanyAgent" is the name of our agent.
"extends Agent" plays the same role as in Java; it indicates that the agent being defined
inherits from a JAL base class called "Agent" . "implements AGENTComp" states that that
agent implements a given Java interface.

public agent Company Agent extends Agent implements AGENTComp {

Jack statements jdatabase.,_ events.i. _pjans)

Next, we have to specify the databases the agent uses. These statements describe to which
database the agent has access. Bach database definition provides a database relation that the
agent can use to express and store information. "TicketCompDB" defines the type of the
database relation, whereas "dbMyTickets" is the name used to identify the instance of the
relation. The adjective "private" means that the agent has private access to the database
relation "dbMyTickets". This means that the agent has its own copy of the relation, which it
can read and modify independently of all the other agents, even those of the same agent class.

100

A database relation can be declared "private", "agent" (shared with all the agents of the agent
class) or "global" (shared with ail the agents of all the agent classes).

#private database TicketsCompDB dbMyTickets() ;
#private database DBCalls dbCalls();

The declaration of the events the agent handles or posts are as follows:

"#handles event" statements identify the events which the agent will attempt to respond if
they arise. By handling an event, the agent claims to have at least one plan available that it
can execute when this event arises.

#handles event AskTicketE;
#handles event AskVacancyE;

"#posts event" statements describe the event that the agent can post intemally (to be handled
by other plans). For example, "JnitDataCompanyE" is the narne of the event and "data" is a
local variable that will be used to reference that event when it will be posted.

#posts event lnitDataCompanyE data;
#posts event GetE getE;
#posts event UpdateE updateE;
#posts event RemoveE removeE;
#posts event Fil/TableE fil/;

The "#uses" statements conclude the JAL declarations. The "#uses plan" statements identify
the plans that the agent can execute to handle all the events that we just declared. The string
that follows "plan" in the statement is the narne of the plan. This means that all the instances
of the agents have access to the specified plan.

#uses plan lnitoataCompanyP;
#uses plan AskTicketP;
#uses plan AskVacancyP;
#uses plan Get P;
#uses plan UpdateP;
#uses plan RemoveP;
#uses plan Fil/TableP;

Java statements

Now that the JAL statements have been written, we have to specify some Java statements.
The two following lines of code declare two variables local to the agent.

private String name;
private Companylnterface interfac;

After the declarations, the methods of the agent have to be written down.
The "CompanyAgent" method creates the agent:

public CompanyAgent(String s, Companylnterface J)
{ ... }

101

The "search" method below is used to send a "data" event. "postEventAndWait" is similar to
"postEvent", except that, instead of posting the event asynchronously, it is posted
synchronously. The agent still sends the event in a separate task, but it has to wait until this
event has been treated. "data" is the "reference name" that has been given to an occurrence of
the event "InitDataCompanyE". "Jill" is the "posting name" in the declaration of the event
"lnitDataCornpanyE". Posting that event means calling the execution of the plan
("InitDataCompanyP" in this case) that handles it.

public void search()
{ postEventAndWait(data.fi/1());}

"getName" is a method, used when one wants to access the name of the agent. This way of
doing is better than directly accessing the variable "name". Indeed, it is always better tolet the
variables of the agent pri vate and to allow their access via a ''public" method.

public String getName()
{ return(name); }

The method "getHardware" enables the access to the interface of the agent.

public Companylnterface getHardware()
{ return interfac; }

"getTicket" is a method called from the interface when one wants to display the characteristics
of a selected ticket.

public void getTicket(int i)
{ postEventAndWait(getE.post(i));}

This method ("updateTicket") is also called from the interface, when ticket changes are
specified. i, dep, dest, c, t, s, b, p, h and v are the arguments of the event. These arguments
must have been declared in the definition of the event "UpdateE".

public void update Ticket(int i, String dep, String dest, String c,
String t, String s, String b,int p, double h,int v)

{ postEventAndWait(updateE.post(i,dep,dest,c,t,s,b,p,h, v)J; }

The method "removeTicket" is used to remove a ticket from the company's database instead of
updating it (as in the previous method).

public void remove Ticket(int i)
{ postEventAndWait(removeE.post(i)); }

Finally, the method ''fiilT' is called when one wants to fil) the tables of the interface with the
tickets contained in the company's database.

public void fil/T()
{ postEventAndWait(fi/1.post()J;}

}

102

7.3.2 An event: AskVacancyE

The event code specifies which arguments are sent with the events and the methods that allow
to send the event.

Declaration ofJhe event ''AskVacancy!'

The "AskVacancyE" event is a "message" event. A "message" event is an event that is sent
extemally by an agent to another agent, in this case, by a TravelAgent to a CompanyAgent. lt
embodies the question "Is there a vacancy for the ticket X". The declaration of the event
"AskVacancy E" is the name and "MessageEvent" the base class it extends.

event AskVacancyE extends MessageEvent {

Declaration of yariable

Sorne declarations of variables that compose the event are as follows:

public String dep,dest,ch,tv,sm,bu;
public int pri;
public double /en;

Posting method

After this has been done, one has to declare the event's posting method. This means one has
to describe how the event is constructed and then posted.

J}gsjy

#posted as post(String depar, String destin, String champ, String telev, String smok, String
busin,int price,doub/e /ength)

The body of the event consists of the assignation of the values given in the parameters of the
posting method to the variables of the event.

{ dep = depar;
dest = destin;
ch= champ;
tv = telev;
sm = smok;
bu= busin;
pri = price;
/en = /ength;}

7.3.3 A plan : AskVacancyP

The plan code specifies which events it sends or posts and which databases it accesses. The
plan's body specifies the treatment executed in response to an event.

103

Declaration of Jhe pjan _''Ask VacancyP"

"AskVacancyP" is a plan of the Company Agent that corresponds to the event "AskVacancyE".
lt answers to a TravelAgent that asked whether there is vacancy for a certain ticket.
"AskVacancyP" is the name and "Plan" the base class it extends.

plan AskVacancyP extends Plan {

Jack statements fevents and database)

Most #-declarations are optional in a plan definition, the "#handles event" declaration,
however, is mandatory. lt specifies the event the plan handles, "AskVacancyE" in this case.
Whenever an instance of this event occurs, the agent triggers "AskVacancyP".

#handles event AskVacancyE ask;

The "#modifies database" declaration identifies a database relation the plan modifies. lt
means that the plan will use the database relation's base methods "assertO" and "retractO" .

#modifies database TicketsCompDB dbMyTickets;

The following declaration indicates that the plan reqmres a particular Java interface
("AGENTComp") when it is executed.

#uses agent implementing AGENTComp agen;

The "#sends event" declaration identifies the events that the plan can post externally (i.e. to
other agents). The event that will be sent must be of the type "message event".

#sends event ReplyVacancyE reply;

l}gg,y

Now that the JAL declarations are dealt with, we proceed with the real content of the plan.
The "body0" method is the top-level reasoning method of Jack and is always executed
whenever the plan is executed. lt is just like the "mainO" method in Java.

body()
{

The following declaration initialises the variable "inter/' by assigning it the interface (in
which the plan will write something) by invoking the method "getHardware" of the agent.
The two others ex tract the name of the agent that sends the message event "AskTicketE" from
its address. lndeed, the address of an agent is of the type "Loca!Name@Porta!Name" where
"Loca!Name" is the name that identifies the agent at a given portal on the remote agent
communications network (e.g. "Sabena"). "Porta!Name" is the name of the portal to which the
agent listens and which it uses to communicate with other agents on the remote agent
communication network. "ind' is assigned the index of the character "@" in the full address
and "agency" is assigned the sub-string before that character (i.e. the "Loca!Name") .

104

Companylnterface interf = agen.getHardware();
int ind = ask.from.indexOf("@');
String agency = ask.from.substring(0,ind);

The line "Logical int i, vacancy" declares the variables i and vacancy as Logical int. Logical
variables follow the semantic behaviour of variables from logic programming languages such
as Prolog, that can be unified. An unbound logical variable is a variable whose value is still
unknown to the agent, whereas a bound logical variable is a variable whose value has been
determined.

In this case, the agent wants to find the value of the field vacancy of the database relation
"dbMyTickets". lt uses the "get" method that is defined in the database relation that tells the
agent how the database will be accessed to unify these two variables with the value they have
in the tuple. The tuple represents an element of the database relation and is characterised by
the attributes of "ask", the message event containing the characteristics of the tickets for
which the question of vacancy is asked.

Logica/ int i, vacancy;
dbMyTickets. get(i, ask. dep, ask. dest, ask. ch, ask. tv, ask. sm, ask. bu, ask.pri, ask. len, vacancy);

The instruction hereunder calls the method "info" of the interface "inter/' and displays the
message "send tickets to AgencyName".

interf.info("send tickets to "+ agency);

The following lines represent the sending of the answer to the TravelAgent that issued the
initial request. The two first lines deal with the conversion of the "logical Boolean vacancy"
into a "Boolean (vacant)". "@send' is a JAL-statement that is used to send a message event to
another agent from within a reasoning method (remember that "body0" is a reasoning
method). Like the "@post" statement, it uses one of the message event's own posting methods
("post" in this case). Note that the reply consists not only of the Boolean but also of the
characteristics of the tickets (contained in the received message event "ask") so that the
TravelAgent that will receive the reply will know to which ticket the reply corresponds.

Boo/ean vacant = fa/se;
if (vacancy.as_int()>0) vacant= true;
@send(agency, rep/y.post(ask. ch, ask. tv, ask. sm, ask. bu, ask.pri, ask. len, vacant));

7.3.4 A database: TicketsCompDB

The database code con tains the fields of the database and the specification of the methods that
allow accessing the data.

Declaration o/Jhe database "TicketsCompDB"

"TicketsCompDB" is the database of the CompanyAgent that contains all its tickets.
"TicketCompDB" represents a "ClosedWorld' relation. A "ClosedWorld' relation assumes
that the agent is operating in a closed world. This means that it assumes that every tuple the
relation can express is stored in the database as being either true or false at ail times. On the
contrary, "OpenWorld" relations mode! knowledge and beliefs as they are experienced by

105

most people in the real world : some things may be known to be true, others known to be false
and still others unknown.

database TicketsCompOB extends ClosedWorld {

Fields' declaration

The different fields of the beliefs that will be stored in the database are declared as follows.
"Index" is a "key field'', i.e. it uniquely identifies the object or entity to which the tuple refers.

#key field int index;
#value field String departure;
#value field String destination;
#value field String champ;
#value field String TV;
#value field String smoker;
#value field String business;
#value field int price;
#value field double length;
#value field int vacancy;

Once a database relation has been defined and tuples have been added to the database, the
agent will need to access these data. It does so by performing a query on the relation. The four
following "#indexed query" statements describe the way queries to the database are executed.
Their parameters are either defined as normal members (i.e. input parameters) or logical
members (i .e. output members that have to be unified). For example, the first of these
statements indicates that the database can be queried by specifying only the number (i) of the
tuple in the index. The parameters defined as logical members will then be unified with the
values in the fields of that tuple.

#indexed query get(int i, logical String dep, logical String dest,logical String c, logical String t ,
logical Strings, logical String b, logical int p, logical double h, logical int v);

#indexed query get(logical int i, String dep, String dest,logical String c, logical String t , logical
String s, logical String b, logical int p, logical double h, logical int v);

#indexed query get(logical int i, String dep, String dest, String c, String t , String s, String b,int
p,double h, logical int v);

#indexed query get(logical int i, String dep, String dest, String c, String t , String s, String
b,logical int p,logical double h, logical int v);
}

7.3.5 A capability: DefCap

The code of a capability looks like an agent. The code declares databases the agent use, which
events it sends or receives and which plans it can execute. The code contains also the methods
of the capability.

106

Capabili!Y declaration

"De/Cap" is a capability of the Trave!Agent. It gathers the plans that implement the default
reasomng.

capability DefCap extends Capability {

Java statements

First, we define a DefaultTheory (the data structure of Rades, see chapter 5) that is specific to
this capability.

public DefaultTheory dt = new DefaultTheory();

Jack statements jevents,...plan and database§)_

As in the Agent's definition, we have to declare the events the capability will treat when they
will arise and the corresponding plans.

#handles external event DefaultE;
#handles event lnitDTE;
#handles event CalculateExtE;

#uses plan DefaultP;
#uses plan lnitDTP;
#uses plan CalculateExtP;

Next, we have to specify the databases of the agent that will be accessed in the plans of the
capability.

#imports database RulesDB dbRules();
#imports database TicketsDB dbTickets();
#imports data base TicketsDB2 db Tickets2();
#imports database DefaultsDB dbDefaults();

And finally, we define two methods of the capability. These are a method to access the
Default Theory and a method to assign it a content.

public DefaultTheory getTheory()
{ return dt; }

public void setTheory(DefaultTheory dtRules)
{ dt=dtRules; }
}

107

108

8.Conclusion

When we look back at our research experience, we can say that building an agent with the
existing tools can be achieved without too much difficulty. lndeed, we found that Jack, the
agent-oriented programming language we used in our application, is not much more
complicated than a classical language such as Pascal or C. However, we are aware of the fact
that building complex and efficient distributed systems is never easy but that an agent
oriented approach allows to tackle such systems with more ease.

Integrating more complex modules based on Artificial Intelligence, and non-monotonie
reasoning obviously may complicate the process. Thanks to the tools currently available, it is
made possible to build an agent, or even a multi-agent system. In our application, we
encountered not that many difficulties in integrating functionalities based on non-monotonie
logic into our agent. Maybe the most difficult thing was finding domains of application where
Artificial Intelligence could help Intelligent Agents to act more efficiently. lt took us quite
some time to find out how Belief Revision can be adapted to the TravelAgent reasoning.

Apparently, the Intelligent Agent technology is already well present, but most of the agents
developed still have more or less basic reasoning methods. Most of them are closer to
software agents than to Intelligent Agents. What we tried to do was including Default Logic
and Belief Revision in the reasoning methods of our agents and analysing the efficiency of
these techniques.

Unfortunately, we encountered one of the problems of Al-based Intelligent Agents, that is the
computational power it may require. The aim of using a belief set and a system of selection
based on Belief Revision was to copy the human methods of reasoning. But, because of the
slowness of the tools we used to implement the non-monotonie logic modules, the processing
times can be very long, event though the application is working with very small databases.
Nevertheless, this could be powerful some day, but given the limits of the current
computational power, our system is unusable because of its slowness. Our application is just a
prototype, we did not intend to build a ready-to-use Intelligent Agent. With more efficient
tools atour disposition, the problem could be solved. For example, time of processing could
easily be gained by using logical programming languages such as Prolog.

109

110

- ---- --- ------------

GENERAL CONCLUSION

In the first part of our dissertation, we discussed the theoretical basis of Intelligent Agents'
technology and non-monotonie logic. The aim of this part is to understand the main concepts
related to the exciting field of Intelligent Agents and to understand an AI technique (non
monotonic logic) that can be used to give a sense to the word intelligent in "Intelligent
Agent" .

This part shows that there is a great diversity in agents research and, therefore, in the notion
of agent. However some consensus can be found and several concepts related to Intelligent
Agents are now well defined. Particularly, elegant solutions have been found for issues such
as agents' architectures, agents' communication and agents' languages. Sorne candidate
standards appear also but are not yet widely used.

Conceming non-monotonie logic, we present the theoretical aspects of this technique. Non
monotonie concepts are now well understood and defined by the AI community. lt provides a
way to irnitate human reasoning better and better. It remains now to build real applications
using among others the agent paradigm.

In the second part, we state that it is currently possible to build an agent-based application
using agent-oriented tools and AI techniques. The objective of this partis to analyse the needs
of the application, then to design a framework using agent concepts and finally to build the
application using specific tools.

Our application proves that agents can be a significant technology for software engineering.
This implies that AI is not central any more for the agent paradigm, although the idea of agent
cornes from the AI community. The word agent knows a large acceptation nowadays and it is
currently possible to build agents without using AI techniques. In these cases, it is more
appropriate to use the term "software agent" than Intelligent Agent. AI may always give a
sense to "intelligent" in Intelligent Agent and the agent paradigm remains an attractive field to
build AI applications.

We demonstrate that the agent concept is nearly at a mature stage of development and that the
widespread acceptance of the concept implies that agents have a significant future . Now that
most concepts are defined, it is time to address the practical issues surrounding the
development of systems that use the agent technology. Research will be forced to tackle real
problems. Therefore, it is interesting to build real applications (as we did in part two) in order
to find a balance between theoretical concepts and practical issues.

lndeed, a rift may appear between commercial, simple and efficient Intelligent Agents in
which the public is really interested and more complex Al-based agents that do not always
fulfil real needs. Users will be the ultimate test of an agent's success. They will also drive
Intelligent Agents' development. This is something that seems to be certain. What is uncertain
is whether users will discover, use and adopt agents ail by themselves, or whether they will
just start using them because they are incorporated into a majority of applications.

111

There exists already evidence of greater market sector segmentation into clear application
focused areas. Where there are financial imperatives, the research will follow. However, it
seems to be important to have a better understanding of the situations in which agent solutions
are appropriate because the temptation to see agents everywhere is big.

Anyway, from the current situation it cannot be easily deduced which path future
developments will follow. There is not yet massive supply of agents or agent-based
applications, but what can be seen is that large software and hardware companies, such as
IBM, Microsoft and Sun Microsystems, are busy studying and developing agents (or agent
like techniques) and applications.

Intelligent Agents won 't take a long time to make themselves known and soon they will be
indispensable, especially on the Internet. The growing popularity of the Internet, but also the
problems many people encounter when searching for or when offering information or services
on it, will only increase the possible number of applications or application areas : the Internet
is an ideal environment for agents as they are (or can be) well adapted toits uncertainty, and
are better at dealing with the lnternet's complexity and extensiveness.

Intelligent Agents will be the compulsory intermediaries to work on the Internet and AI will
maybe help them to act as 'intelligently' as a human would do. In a further future, we can
imagine that every company and maybe every individual will be represented on the Internet
by his or her Intelligent Agent that, thanks to AI-based reasoning methods, would behave
really 'intelligently', e.g. they would leam as much as possible of who its owner is : his/her
habits , his/her knowledge, his/her way of communication, his/her circle of relations, ... All
these agents will complete the landscape of the Internet to form the virtual world of
information. There already exist the virtual highways of information. Now, one can add
agents to put on them. This helps the human kind in its search of speeding up the treatment of
information even more. lt is already a good thing to have the highways of information but
their advantages cannot be fully appreciated if human agents (who are too slow for this virtual
speedy world) are driving on them.

The agent-technique is still very young. lt will take a lot of trial and error, and a lot of
experimenting to make it mature. This is exactly the stage in which we are right now, and thus
we cannot expect agents to be already advanced and (nearly) perfect. Developments may not
have achieved perfect agents yet, but they certainly have made enough progress to make
agents more than just a hype.

112

BIBLIOGRAPHY

Books

► ANTONIOU (G.), Non-monotonie Reasoning, ed. The MIT Press, Cambridge,
Massachusetts, London, En gland, 1997.

► BRADSHAW (J.), Software Agents, AAAI Pressffhe MIT Press, 1997. Introduction
available at http://www.cs.umbc.edu/agents/introduction/01-Bradshaw .pdf

► GARDENFORS (P.) (edited by), Belief Revision, in Cambridge Tracts m Theoretical
Computer Science, ed. Cambridge University Press, n°29, 1992.

► GRÉGOIRE (E.), Logiques non-monotones et intelligence artificielle, coll. Langue,
Raisonnement, Calcul, ed. Hermes, Paris, 1990.

► MAREK (V.W.), TRUSZCZYNSKI (M.), Non-monotonie Logic, Context-Dependant
Reasoning, Springer-Verlag, Berlin Heidelberg 1993.

► MÜLLER (J.P.), The Design of Intelligent Agents: A Layered Approach, Lecture Notes in
Artificial Intelligence, 1996, Springer.

► NWANA (H.), AZARMI (N.), Software Agents and Safi Computing : Towards Enhancing
Machine Intelligence, Lecture Notes in Artificial Intelligence, 1998, Springer.

► WEISS (G.), SEN (S.) , Adaptation and Learning in Mufti-Agent Systems, Lecture Notes in
Artificial Intelligence, 1996, Springer-Verlag.

► WOOLDRIDGE (M.), JENNINGS (N.), Agent Theories, Architectures, and Languages,
Lecture Notes in Artificial Intelligence, 1996, Springer.

Papers

► BASAWARAJ (P.), "Agents and Agent technologies : An overview", 1998. Available at
http://www.darmstadt.gmd.de/~patil/agent report.html

► BERNEY (B .), "Software Agents A review", Manchester. Available at
http://www.doc.mmu.ac. uk/ST AFF/B .Bemey/research/ag-rev .htm

► BLOCH (M.), SEGEV (A.), "The Impact of Electronic Commerce on the Travel lndustry, An
Analysis Methodology and Case Study", Berkeley, 1996. Available at
http://www.stem.nyu.edu/~mbloch/docs/travel/travel.htm

113

► BUSETTA (P.), KOTAGIRI (R.), "An Architecture for mobile BDI Agents in Applied
computing", in Symposium on applied computing (SAC 98), 1998, pp 445-452. Available
at http://www.cs.mu.OZ.AU/~paolo/TOMAS/sac98.ps

► BUSETTA (P.), RôNNQUIST (R.), HODGSON (A.), LUCAS (A.), "JACK Intelligent Agents
Components for Intelligent Agents in Java", AgentLink News Letter, 1999. Available at
http :/ /www.agent-software.com/whi tepaper/html/w hitepaper.html

► COBURN (M.), "JACK User Guide Agent Oriented Software Pty. Ltd." , release 2.1, 2000.
A vailable at http://www.agent-software.com/docs/jack/html/

► DICKISON (1.), "Agent Standards", in Helwett-Packard Technical Report HPL-97-156,
Hew lett-Packard Laboratories, Bristol. A vailable at
http :// agents.hp 1. hp .com/papers/ actcc%20paper. ps

► Do (O.) , MARCH (E.), RICH (J.) and WOLFF (T.), "Intelligent Agents & the Internet,
Effects on electronic commerce and marketing". Available at http://mrmac
jr.scs .unr.edu/odie/paper.htm

► FALKENROTH (E.) and GRANLUND (R.), "Notes in Intelligent Software Agents :
Introduction", courses held by the La bora tory for Intelligent Information Systems
(IISLAB) Linkë>pings universitet 1998. A vailable at
http://www.ida.liu.se/labs/iislab/courses/ Agents/paper/chapter 1.html

► FAQUHAR (A.), FIKES (R.) and RICE (J.), "The ontolinguia Server : a tool for collaborative
Ontology Construction". A vailable at http://ontolinguia.stanford.edu/

► FININ (T.), LABROU (Y.), Tutorial on "Agent Communication Languages", University of
MaryLand Baltimore County, First International Symposium on Agent Systems and
Applications and the Third International Symposium on Mobile Agents, California,
US.A, 1999. Available at http://www.csee.umbc.edu/~finin/papers/asama99tutoria1.shtml

► FLORES-MENDEZ (R.), "Towards a standardisation of Multi-Agent System Frameworks",
2000. Available at http://www.acm.org/crossroads/xrds5-4/multiagent.html

► FRANKLIN (S.), GRAESSER (A.), "Is it an Agent, or just a Program? : A Taxonomy for
Autonomous Agents", in Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Language, Springer-Verlag, 1996. A vailable at
http://www.eurecom.fr/~diana/bib/FG96/main.htm1

► GENESERETH (M.), KETCHPEL (S.), Software Agents. Communications of the ACM, 37
(7), July 1994, pp48-53. Available at
http://ai .about.com/compute/ai/gi/dynamic/offsite.htm?site=http://logic.stanford.edu/shari
ng/papers/agents.ps

► GILBERT and APARICIO, "The Role of Intelligent Agents in the Information Infrastructure" ,
IBM, United States, 1995. Available at
http://acti vist.gpl .i bm.com: 8 l/WhitePaper/ptc2.htm

114

► GRUBER (T.), "What is an ontology?", 1993
ksl.stanford.edu/kst/what-is-an-ontology.html

Available at http://www-

► HAYZELDEN (A.), BIGHAM (J.), "Agent Technology in Communication Systems : An
overview", in Knowledge Engineering Review, London, 1998. Available at
http://agents.umbc.edu/cgi-bin/raw?url=http://www.agentcom.org/papers/ker-99.pdf

► HEILMANN (K.), KlliANYA (D.), LIGHT (A.) and MUSEMBWA (P.), "Intelligent Agents : A
technology and business application analysis", 1995. Available at http://www.mines.u
nancy.fr/~gueniffe/CoursEMN/l31/heilmann/heilmann.html

► HENDLER (J.), "Is There an Intelligent Agent in Your Future?", Macmillan Publishers Ltd
1999. A vailable at http://helix.nature.com/webmatters/agents/agents.html

► HERMANS (B.), "Intelligent Software Agents on the Internet : An Inventory of Currently
Offered Functionality in the Information Society and a Prediction of (near) Future
Developments", 1997. Available at http://www.firstmonday.dk/issues/issue2 3/ch 123/

► LABR0U (Y.), FININ (T.) and PENG (Y.), "The current landscape of Agent Communication
Languages" in Intelligent Systems, Vol. 14, No. 2, IEEE Computer Society, March/April
1999. Available at
http://www.cs.umbc.edu/ ~jklabrou/publications/ieeelntelligentS y stems 1999 .pdf

► LIU (W.), WILLIAMS (M.-A.), "A framework for Multi-Agent Belief Revision, Part II: A
Layered Model and Shared Knowledge Structure", in Linkoping Electronic Articles in
Computer and Information Science. Available at http://www.ida.liu.se/ext/epa/cis/ufn-
00/03/tcover.html

► MAES (P.), GUTTMAN (R.) and MüUKAS (A.), "Agents that Buy and Sell: Transforming
Commerce as we Know lt'', Communications of the ACM, 1999, Cambridge. Available at
http://mas.cs.umass.edu/~aseltine/791S/maes.agents that buy.pdf

► McCABE (F.G.), "Liaison Proposai OMG-FIPA", OMG Document # liaison/93-03-03.
Available at http://www.objs.com/isig/omg-fipa-liaison-4.html

► MICHAELIDES (A.), M0RAITAKIS (N.) and ÜE0RGALIDES (G.), "Intelligent Software
Agents in Travel Reservation Systems", London, 1997. Available at http://www
dse.doc.ic .ac.uk/~nd/surprise 97 /joumal/vol4/nml

► NATHAN (P.X.), GARNER (R.G.), "The evolution of Intelligent Agents on the Web", 1997.
Available at http://www.robitron.com/paperl 5.html

► NWANA (H.), "Software Agent : An overview", in TheKnowledge Engineering Review
Journal, vol. II, n°3 , pp.1-40, Cambridge University Press, 1996. Available at
http:l/193.113.209.147 /projects/agents/publish/papers/agentreview .htm

► NWANA (H.), NDUMU (D.), "A perspective on Software Agent Research", in The
Knowledge Engineering Review, Vol 14, No 2, lpswitch, 1999. Available at
http://agents.umbc.edu/introduction/hn-dn-ker99.html

115

► NWANA (H.), WüüLDRIDGE (M.), "Software Agent Technologies", 1996. Available at
http://www. labs. bt.com/projects/agents/publish/papers/sat report.html

► ÜBJECT MANAGEMENT GROUP, "Agent Technology Green Paper", Frarningham, 2000.
Available at www.iti.upv.es/iti/i+d/mirrors/ftp.omg.org/pub/docs/ec/00-04-01 .txt

► O'BRIEN (P.) (edited by), "Agent Management", in Agent Management FIPA '98 Draft
Specification : Parti, FIPA-Foundation for Intelligent Physical Agents, Geneva,
Switzerland, 1998. Available athttp://www.cselt.it/fipa/spec/fipa98/fipa98.htm

► RAO (A.S.) AND GEORGEFF (M.P.), "BDI agents: From theory to practice", Technical
Report 56, Australian Artificial Intelligence Institute, Melbourne, Australia, 1995.

► VERSTEEG (S.), STERLING (L.). "Languages for mobile agents", Thesis at Melbourne
University, 1997. A vailable at http://www.es.mu.oz.au/ ~scv /thesis.html

► WILLIAMS (M-A.), WILLIAMS (D.), "A Belief Revision System For the World Web",
Newcastle, Australia. A vailable at http:/ /u2.newcastle.edu.au/webworld/ai-internet.html

► WOOLDRIDGE (M.), "Intelligent Agents", in Multiagent Systems, ed. by Weiss, MIT Press
Cambridge, Massachussetts, 1999, pp. 27-77.

► WüüLDRIDGE (M.), JENNINGS (N.), "Agent-Oriented Software Engineering", in Handbook
of Agent Technology, ed. J. Bradshaw AAAI/MIT Press, 2000. A vailable at
http://www.ecs.soton.ac. uk/ ~nrj/ download-files/ agt-handbook.pdf

116

Annexes

List of Annexes

Annex 1 : Description of the content of the plans of TravelAgent and
Company Agent

Annex 2 : lnterconnection between capabilities, plans, events and
databases:

- General view
- The posting of the events
- The treatment of the events
- The access to the databases

Annex 3 : A survey of agent construction tools

Annex 4 : An example of TheoryBase

- An example of TheoryBase before extraction
- The same theoryBase after extraction

Annex 5 : An example of DefaultTheory

Annex 1 : Description of the content of the
plans of Trave/Agent and CompanyAgent

The TravelAgent' s plans

The DefCaD capability's plans

The DefCap capability treats default reasoning. It contains 3 plans: DefaultP, lnitDTP and
CalculateExtP.

DefaultP

DefaultP is a kind of coordinator of the capability. It triggers off the 2 other plans (by posting
the adequate events).

lnitDTP

lnitDTP initializes the Default Theory, which is the data structure defined in HADES. It is
composed of an array of strings (in) for the beliefs (or facts), an array of default objects
(defaults) for the defaults and an array of arrays of String (extensions) for the extensions.
The class default is composed of a pre (a string representing the precondition or prerequisite),
ajusts (an array of strings representing the justifications) and a cons (a string representing the
consequent).

First, it creates a new Default Theory.

dtRules = new DefaultTheory0;

Than, it fills the Default Theory with rules representing the information about the tickets
transforrned (by the TreatData capability) into rules in order for the extensions to be
calculated.

For example, if the first ticket ('ticketl) is a business class ticket, there will be a rule :
ticket 1 -> business

Here is how it fills the Default Theory with these rules :

for(int i=l;i<=dbRules.nFacts0;i++)
{
logical String str ;
dbRules.get(i,str);
if (str. as_ string0 .indexOJ("-> '') ! =-1)

{
dtRules. addF act(str. as_ string0);
}

}

lt than fills the Default Theory with the default rules (that were stored in the database
dbDefaults). Remember that a default rule is a data structure composed of a prernise,
justifications and a consequent.

for(int j = 1,j< =dbDefaults.nFacts0 ,j+ +)
{

logical String sl,s2,s3;
Default d = new DefaultO;
dbDefaults.get(j,sl,s2,s3);
dpre = sl.as_stringO;
dJusts.append(s2.as _stringO);
dcons = s3.as_string0;
dtRules.addDefault(d);
}

ClaculateExtP

This is the plan that calculates the extensions.

It generates the extensions and store them in an array of arrays of strings. dtRules is the
Default Theory that was created in the plan InitDTP.

String_ Array _ Array extens = new String_ Array _ ArrayO;
extens = dtRules.generateO;

It inserts in the database dbRules those formulas of the extensions that are not in dbRules yet.

For (int l=0; l<extens.modO;+ +l}
{
for (int j = 1 ;j< =extens.at(l).modO; + + j)

{

}

logical int ind;
Cursor presence = (dbRules.get(ind,extens.at(l).at(j-J)));
if (!presence)
{
dbRules.assert(dbRules.nFactsO + J,extens.at(l).at(j-1)) ;

The Br capability's plans

This capability contains the plans Analyse TEP, /nitRulesP, /nitCriteriasP, ChgeCriteriasP,
ExtractP, RemoveTicketP and ReviseP.

lnitRules

This is a plan that initializes the TheoryBase, i.e. that fills it with the beliefs. In our
TheoryBase, the beliefs are the criteria's (stored in the dbCriteres2) which represent the
preferences of the user and the rules (stored in the dbRules) which represent the
characteristics of the tickets. This plans has to fùl the TheoryBase with the rules.
When an element is added in the TheoryBase, it must be assigned a rank (this is the second
argument of the method addBelief). This rank depends on the type of rule. The OR-formula
will be assigned the highest rank (0.9999). The rules of type 'ticketl->ehampagne' will
receive a rank a little bit weaker (0.9998), but stronger than the ranks of the criteria's (see
/nitCriteriasP). And the simple rules of type 'ticket2' will have the lowest rank (0.0001).

TheoryBase tb = cap.getTheoryO

for (int i=l; i<=dbRules.nFacts0; i+ +}
{

logica/ String rule;
dbRules.get(i,rule);
if (!tb.contains(rule.as _string0))

{
if (rule.as_string0.length0 == 7) Il EX: ticket2

{
tb. addBelief(rule. as_ string0, O.0001);
}

if (rule. as_ string0. indexOf("l 'ï ! = -1) Il EX: ticket 11 ticlœt2
{
tb. addBelief(rule. as _string0, O. 9999);

}
if (rule.as _string0. indexOf("> 'ï ! = -1) Il EX: ticlœtl->champagne

{
tb.addBelief(rule. as_ string0, O. 9998);
}

}
}

InitCriterias

This is another plan that initializes the TheoryBase. Whereas InitRules fills the TheoryBase
with the rules, InitCriterias fills it with the criteria. These criteria's have the form:
champagne0.5. The ranking assigned depends on the preferences expressed by the user. They
are higher than 0.0001 and lower than 0.9998.

TheoryBase tb = cap.getTheory0;
for (int i=l; i<=dbCriteres2.nFacts0; i++}

{

}

logical String belief;
logical double ranking;
dbCriteres2.get(i, belief, ranking);
tb.addBelief(belief as _string0,ranking.as _ double0);

It also posts the event that will trigger off the plan ExtractP.

@subtask(extr.post0);

Finally, it analyses the TheoryBase to get the remaining ticket.

@subtask(anal.post0);

ExtractP

This is the plan that extracts a consistent theory from the TheoryBase. It uses the object
Extractor of SATEN in order to achieve its goal. ExractP is used at the first search for tickets,
i.e. when the agent bas to fill its TheoryBase with ail the preferences of the users and all the

characteristics of the different tickets. It is clear that it wouldn't be adequate to revise (i.e.
inserting + extracting) the TheoryBase with each of the new elements inserted. On the
contrary, if-later the user changes his mind about his preferences or if a characteristic of one
ticket changes, the TheoryBase can be revised with the change. The ReviseP would be
suitable for that kind of situation.

TheoryBase th= cap.getTheory0;
getExtractor(th). extractTheory(th);

tb is the TheoryBase. GetExtractor is a reasoning method (a kind of procedure in Jack) that
will orient the extraction to one of the possible Extractor (Standard Adjustment, Maxi
Adjustment, Hybrid Adjustment, ...). In our application, we will always use Maxi
Adjustment.

ReviseP

This is the same plan as the plan ExtractP except that it uses the method revise of the chosen
Extractor instead of the method extract.

TheoryBase th = cap.getTheory0;
getExtractor(th).revise(ev.at,ev.rank);

AnalyseTBP

Once the extraction is made, one has to analyze the TheoryBase to see what the remaining
ticket (i.e. the best ticket) is and what its characteristics ·are.

TheoryBase th = cap.getTheory0;

lt retrieves the number of the best ticket which is normally in last position in the TheoryBase.

String tic = th.heliefs.at(th.beliefs.mod0-1);
int numTicket = Integer. valueOf(tic.suhstring(6, 7)).intValue0;

All the information about the ticket is not explicitly in the TheoryBase. The agent has to
deduce the negative attributes (which are not explicitly in the TheoryBase after the
extraction).

Finally, the plan posts the event BookingE that will trigger off the plan BookingP.

@post(book.post0);

Remove TicketP

When there is no vacancy for the best ticket found, the agent has to remove this ticket and
spawn the search again to find the second best ticket.

TheoryBase th = cap.getTheory0;

Here is how the plan takes the number of the best ticket that will be removed

/ogical int numTicket,numPass;
logical String str;
TicketBest.get(TicketBest.nFactsO,numTicket,numPass,str);

Removing the best ticket means rewriting the OR-formula (which is at the first position in the
TheoryBase) without this ticket.

tb.beliefs.stableRemove(O);
tb. rankings. stableRemove(O);

String disjunction = "";
for (int j = 1 ;j< =db Tickets2. nFactsO ;j+ +)
{

logical int ind,pass;
logical String str;
if (!(TicketBest.get(ind,j,pass,str))) disjunction=disjunction + "ticket"+}+ "I ";

}
tb. beliefs. setAt(disjunction, 0);
tb.rankings.setAt(0.9999, O);

Now the best ticket has been removed, one can post the event ExtractE to spawn the
extraction ...

@subtask(extr.postO);

... and post the event Analyse TEE to start the analysis of the TheoryBase that will single out
the new best ticket.

@subtask(anal.postO);

ChgeCriteriasP

This plan is used when the user decides to change his preferences and spawn a new search.
Every new criteria (stored in the database dbCriterias) is moved in the TheoryBase according
to its new ranking.

TheoryBase tb = cap.getTheoryO;

for (int i=J; i<=dbCriterias.nFactsO; i++)
{
logical String belief;
logical double ranking;
dbCriterias.get(i, belief. ranking);
tb.movBelief(beliefas _stringO, ranking.as _ doubleO);
}

Than, as usual, one posts the plan ExtractP to spawn the extraction

@subtask(extr.postO);

And finally, we spawn the analysis of the TheoryBase to retrieve the best ticket and its
characteristics.

@,subtask(analys.postO);

The BookingCap Capability's plans

This capability is used to book -if some vacancy is found- the best ticket. It contains 2 plans :
BookingP and ComReplyVacancyP.

BookingP

The plan has to find which company issued the best ticket found. In order to achieve that, it
searches in the database dbTicket2 which company corresponds to the characteristics of the
ticket.

logical int i;
/ogica/ String company;
db Ticlœts2.get(i, champ, tv,smo, bus,price, /ength, company);

Once the company is found, the agent asks it - via the communication capability - for vacancy

@post(comm.post(company.as _ stringO,dep.as _ stringO,dest.as _ stringO,
champ.as_ stringO, tv.as _stringO,smo.as _ string 0, bus.as_ string0,price. as _intO,
/ength.as _ doubleO));

ComReplyVacancyP

This plan has to treat the response of the company that has been asked whether or not there
was vacancy for the chosen ticket.

If its answer is positive, the ticket is booked,

dbBoolœd.assert(dbBooked.nFactsO+],ch.as _stringO, tv.as _stringO,
sm.as _ stringO, bu. as_ stringO, comm2.p, comm2. l, comm2. co);

On the contrary, if there is no vacancy, the ticket is queued. It means that the agent is
candidate for a ticket that could be freed by the cancellation of a booking.

dbQueued.assert(dbQueued.nFactsO + 1, ch.as_ string 0, tv.as _stringO,sm.as _ stringO,
bu. as_ stringO, comm2.p, comm2. l,comm2. co);

In that case, another search is spawned -via the plan RemoveTicketP- to look for another
ticket (because waiting for the cancellation of a booking is too hazardous).

@,subtask(remove.postO);

The TreatDataCap Capability's plans

The TreatDataCap capability cares for the format of the formulas that will be inserted in the
TheoryBase. It contains 3 plans: TransformationP, TreatCrtiterP and TreatTiclœtsP.

TransformationP

It creates, with each characteristic of a ticket, a rule of the form 'ticketl->business' and inserts
it in the database dbRules.

for(int i= 1 ;i< =db Tickets2.nFactsO ;i+ +)
{
logical String ch, t, sm, bu,pri, !en, comp;
dbTickets2.get(i,ch,t,sm,bu,pri,len,comp);

if (ch.as_ stringQ. lengthO ! =O)dbRules.assert(dbRules.nFactsO + 1, "ticket" + i
+ "->" + ch.as _stringO);
if (t.as_stringQ.lengthO!=O)dbRules.assert(dbRules.nFactsO+ 1, "ticket" + i +
"-> " + t.as_string0);
if (sm.as_stringQ.lengthO!=O)dbRules.assert(dbRules.nFactsO+ 1, "ticket" + i
+ "-> " + sm.as_stringO);
if (bu.as _stringQ.lengthO !=O)dbRules.assert(dbRules.nFactsO+ 1, "ticket" + i
+ "-> " + bu.as_stringO);
}

In the case of the price and the length, which are quantitative adjectives, another treatment has
to be done. This has been explained in a previous section.
It also forms the OR-formula, based on the number of tickets proposed. For example, if the
user is looking for a flight from Brussels to Sydney on the first of January, and if 4 flights are
proposed by the different companies, the OR-formula would be 'ticketllticket21ticket31ticket4'

It than adds the formed formula in dbRules.

dbRules. assert(dbRules. nF actsO + 1, disjunction);

And, finally, it inserts the names of the different tickets in dbRules .

for (intj=l,j<=dbTickets2.nFactsO;J++)
{
dbRules.assert(dbRules.nFactsO + 1, "ticket"+));
}

TreatCriterP

This plan transforms the quantitative criteria's into 5 derived criteria's (see the How does our
TheoryBase work' section). dbCriteres contains the 'pure' criteria's while dbCriteres2 contains
the transformed criteria's. The non quantitative criteria's are just recopied from dbCriteres to
dbCriteres2.

for (int i= l;i<=dbCriteres.nFactsQ;i++)
{
logical String name;

logica/ double rank;
dbCriteres.get(i,name,rank);

if (name.as _stringO = = ''price" 1 name.as _ stringO = = "length '')
11 quantitative criteria's
{
dbCriteres2.assert(dbCriteres2.nFactsO + J,name.as _ stringO +
"l ", (J. 0) *rank.as _ doubleO);
dbCriteres2.assert(dbCriteres2.nFactsO+l,name.as_stringO+
"2",(0.8)*rank.as doubleO);
dbCriteres2.assert(dbCriteres2.nFactsO+ l,name.as _ stringO +
"3",(0.6)*rank.as_doubleO);
dbCriteres2.assert(dbCriteres2.nFactsO + J,name.as _ stringO +
"4", (O. 4) *rank.as _ doubleOJ;
dbCriteres2.assert(dbCriteres2.nFactsO + l,name.as _ stringO +
"5",(0.2)*rank.as_doubleO);
}
Il non quantitative criteria's

else dbCriteres2.assert(dbCriteres2.nFactsO + l,name.as _stringO ,
rank.as doubleO);
}

For example, if the content of dbCriteres is :
champagne 0.9
price 0.8
smoker0.2

Then dbCriteres2 will be filled with :
champagne 0.9
pricel 0.8
price2 0.64
price3 0.48
price4 0.32
smoker 0.2
price5 0.16

TreatTicketsP

This plan delimitates the intervals for the quantitative characteristics of the tickets (i.e. the
price of the tickets and the length of the flight) in order to transform them into boolean
criteria's (see the How do we use belief revision ?' at section 6.1.2. ?????). First, it calculates
the higher and lower bounds among the proposed tickets. Here is the code corresponding to
the treatment of the price.

int bestPrice = 99999;
int worstPrice = O;

for (int i=l; i<=dbTickets.nFactsQ;i++)
{
logica/ String sl,s2,s3,s4;
logical int price;

logical String company;

dbTickets.get(i,sl,s2,s3,s4,price,length, company);
if (price.as_intO <= bestPrice) bestPrice = price.as_intO;
if (price.as_intO >= worstPrice) worstPrice = price.as_intO;
}

Than, it <livides the space between the lower and higher bounds into 5 intervals of the same
size.

int priceBoundl 2 = bestPrice + (worstPrice - bestPrice)/8;
int priceBound23 = priceBoundl2 + (worstPrice - bestPrice)/4;
int priceBound34 = priceBound23 + (worstPrice - bestPrice)/4;
int priceBound45 = priceBound34 + (worstPrice - bestPrice)/4;

And finally, it classifies each ticket into one of the intervals and gives it the corresponding
attribute.

for (int j = J; j < =db Tickets.nFactsO ;j+ +)
{
logical String sl,s2,s3,s4;
logical int price;
logical double length;
logical String company;

String priceString;

db Tickets.get(j, s 1, s2, s3, s4,price, length, company);

if (price.as_intO <= priceBoundl2} priceString = ''pricel";
if (price. as _intO > = priceBoundl 2

&price.as_intO <= priceBound23) priceString = ''price2";
if (price. as _intO > = priceBound2 3

&price.as_intO <= priceBound34) priceString = ''price3";
if (price.as _intO > = priceBound34

&price.as_intO <= priceBound45) priceString = ''price4";
if (price.as_intO >= priceBound45) priceString = ''price5";

dbTickets2.assert(j,sl.as _stringQ,s2.as _string0,s3.as _ stringQ,s4.as _stringO,
priceString, lengthString, company.as _stringO);

}

The Communication capability's plans

The Communication capability gathers ail the plans of the TravelAgent that are involved in
the communication between the TravelAgents and the Company Agents. It contains the
following plans: ChgeGenCriteriasP, ReceiveTicketsP, AllTicketsP, ComAskVacancyP,
ReplyVacancyP and ChgeTicketP.

ChgeGenCriteriasP

It is the first plan used in the 'call for tickets' process. It sends the asking for tickets
(corresponding to the general criteria's) to the different Company Agents.

logical String dep, dest;
dbGenera/Criterias.get(1, dep, dest);

for (int i=J; i<=dbSociale.nFacts0; i++)
{
logical String company;
dbSocia/e.get{i, company);
@flend(company.as _string0,ask.asked(dep.as _ string0,dest.as _ string0));
}

Than, the Company Agents reply by sending the tickets they propose and a 'closure' message.
The tickets are treated by the ReceiveTicketsP and the closure messages by the AllTicketsP.

Receive TicketsP

The Company Agents send their tickets in the MessageEvent ReceiveTicketsE. So, for each
ticket sent, a plan ReceiveTicketsP is triggered off. First, the plan extracts the name of the
company from the address of the sender of the message (containing the ticket).

int ind = tic.from. indexOJ("@'');
String company = tic.from. substring(O, ind);

Indeed, it needs the name of the company that issued the ticket to store it in the database
dbTickets (that will contain ail the tickets among which the best ticket will be singled out).

db Tickets. assert(db Tickets. nF acts0 + 1, tic. ch, tic. tv, tic. sm, tic. bu, tic.pr, tic. le, company);

AllTicketsP

Each tùne a 'closure' message is sent to the TravelAgent, the plan AllTicketsP is executed. The
plan has to count the number of messages received to know whether ail the Company Agents
have sent ail their tickets. In order to count the number of occurrences of the plan (i.e. the
number of AllTicketsE sent) , we need a static counter, so that it won't be reinitialized each
tùne the plan is executed.

static int i=O;

The first instruction of the body of the plan is incrementing that counter.

i++ ;

If the plan has been executed as man y tùnes as there are Company Agents, the treatment of the
tickets received can begin.

if (i==3)
{

}

@subtask(data..fi/lDBsOJ;
@subtask(tick. classifO);
@subtask(tra. transfO);
@subtask(defa.de/0);
@subtask(initR.postOJ;
@subtask(initC.postO);

ComAskVacancvP

This plan is executed when the best ticket is found and the TravelAgent asks the concemed
Company Agent if there are seats available for the flight that corresponds to that ticket. The
asking has the form of a MessageEvent containing all the characteristics of the tickets, so that
the Company Agent can retrieve it in its database.

@send(comm.com,ask.post(comm.dep,comm.dest,comm.ch,comm. tv,comm.sm,
comm. bu, comm.pri,comm. len));

ComReplyVacancv

This is just the plan that is in charge with receiving the answer of the Company Agent
conceming the question of vacancy. If this answer is positive, the ticket is booked.

dbBookedassert(dbBoolœdnFactsO+],ch.as _stringO, tv.as _ stringO,sm.as _ stringO,
bu.as_stringO,comm2.p,comm2.l,comm2.co);

If it is negative, the ticket is queued ...

dbQueuedassert(dbQueued.nFactsO +],ch.as_ stringO, tv.as _ stringO,sm.as _ stringO,
bu.as _stringO, comm2.p, comm2. l, comm2. co);

... and another search without the ticket that has been queued is spawned.

@subtask(remove.postOJ;

Change TicketsP

ChangeTicketsP handles the events ChangeTicketsE sent by a CompanyAgent.
Company Agents send such messages when a change occurs in their database. These agents
keep track of the kind of tickets that the TravelAgents have asked them. Hence, if for
example, the price of a ticket for a flight from Brussels to Paris changes, only the
TravelAgents that have asked tickets from Brussels to Paris will be warned. In fact, the
change in the Company Agents' database can be of three types : a change of characteristics of
a ticket (an update), the removal of a ticket or the apparition of a new ticket.

If the operation is an update, the MessageEvent ChangeTicketsE contains ail the new
characteristics of the ticket as weil as ail its old characteristics. These old characteristics are

necessary for the TravelAgent to find in its database the track of the ticket that has to be
updated. If the operation is an addition of a new ticket, ail the fields representing the old
characteristiès are set to "" while if it is a removal of a ticket, these are the new characteristics
that will be set to "".

First, it bas to extract the name of the company from the address of the agent that sent the
MessageEvent .

int ind = changejrom. indexOJ("@'');
String company = changejrom.substring(0, ind);

With the name of the company found coupled with the old characteristics of the ticket
contained in the MessageEvent, the agent will look whether the ticket is already in the
database db Tickets.

dbTickets.get(num,change.c2,change.t2,change.s2,change.b2,change.p2,
change. /2, company))

If the ticket is present in the database, the operation is an update or a removal. Else, it is a
addition of a new ticket. Anyway, the adequate operation is executed on the database
dbTickets.

Finally, the whole treatment of the new datais triggered off, i.e. transforming into rules of
type 'ticket->attribute', updating the DefaultTheory in order to eventually obtain other
extensions, revising the content of the TheoryBase, ...

The History capability's plans

Event though we didn't have the tirne to irnplement completely this capability, we explain
here what was its goal. The History capability is airned to save tirne when the user issues a
request that bas already been made. In that case, the result of the request is just taken from the
dbHistoricResult and there is no use to spawn a complete search. The plans used are SaveP
and DeleteP.

SaveP

This plan must be called each tirne a result of a search is obtained, i.e. a booking of a queuing
of a ticket. The initial request (the general criteria's and the normal criteria's) are stored in the
dbHistoric whereas the result of the search corresponding to these parameters are saved in the
dbHistoricResult. A special field is used to differentiate the queued tickets and the booked
ticket in the dbHistoricResult. Remember that to a search correspond zero, one or more
queued tickets while there can't be more than one booked ticket.

Here is how the booked ticket is stored.

num3 = dbHistoricResult.nFactsO;
dbBookedget(J, c, tv, sm, b,p,h, comp);
dbHistoricResult. assert(num3 + 1, num 1 + 1, c. as_ stringO, tv. as_ stringO, sm. as_ stringO,

b.as_stringQ,p.as_intO,h.as_doubleO,èomp.as_stringO, ''Booked'') ;

And here is how the queued tickets are stored.

num3 = dbHistoricResu/t.nFactsO;
for(int i=l;i<=dbQueuednFactsO;i++)
{
dbQueuedget(i,c2,t2,s2,b2,p2,h2,comp2);
dbHistoricResult.assert(num3+i,numl+l,c2.as_string0,t2.as_string0,s2.as_string0,

b2.as _string0,p2.as _int0,h2.as _ double0,comp2.as _stringO, "Queued");
}

DeleteP

This plan is used to reinitialize the two historical databases, i.e. dbHistoric and
dbHistoricResu/t. It is necessary when a ticket change occurs in the database of one
CompanyAgent, at least if that change involves a ticket that has been requested by a
TravelAgent. In that case, the saved results associated with the saved requests are distorted.
Indeed, with the change of characteristic of one ticket, the result of the search could be
different.

The other plans

Next to ail these plans classified in capabilities, there are some plans of the TravelAgent that
can't be attached to any capabilities. These are pure 'logistic' plans which don't have crucial
fonctions. These plans are: lnitDatabasesP, NewCriteriasP, Fil/CriteresP, ViewP,
JnitSocialeDBP, AnalyseCriteriasP and EmptyBookQueueP.

JnitDatabasesP

This is the plan that initializes the database dbDefaults. Each default rule is repeated (with the
number of the ticket in the rule) as man y times as there are tickets in db Tickets. If we limit
ourselves to the first default rule, the code is :

for (int i=l;i<=dbTickets.nFactsO;i++)
{
dbDefau/ts.assert((6*(i-1)) + 1, "", "-(ticket"+i+ "->business)
&-(ticket"+i+ "->champagne)", "ticket"+i+ "->-champagne'');
}

NewCriteriasP

It handles the event NewCriteriasE that cornes from the interface. That event contains the
general criteria's (i.e. the departure and destination) specified by the user. AU the plan has to
do is filling the database dbGenera/Criterias with these criteria 's.

dbGenera/Criterias. as sert(dbGenera!Criterias. nF actsO + 1, cri. dep, cri.des);

Fil!CriteresP

This plan has quite the same function as NewCriteriasP but this one fills the database
dbCriteres with the 6 criteria's ordered by the user. The first field of dbCriteres is the name of

the criteria and the second one is the degree of preference that the user has associated with
that criteria. ..

dbCriteres.assert(J, "champagne "Jill. c);
dbCriteres.assert(2, "tv"fill.t);
dbCriteres.assert(3, "smoker"fill.s);
dbCriteres.assert(4, "business"fill. b);
dbCriteres.assert(5, ''price "fill.p);
dbCriteres. assert(6, "length "fill. l);

This is the plan that is spawned when the View button of the interface containing the results
of the search is pressed. lt takes the booked or queued tickets (according to the selection of
the user) from the corresponding databases and displays the information on the screen.
For example, here is the code for the booked ticket (if there is one) :

dbBookedget(J, ca, te,sm, bu,p,h, comp);
interf. view Tickets(0, comp. as_ stringO, "date", ca.as _stringO, te. as_ stringO,
sm.as _stringO, bu.as _stringO,String. valueOJ(p.as _intOJ. toStringO,
String. valueOf(h.as _ doubleO). toStringO);

JnitSocialeDBP

This very simple plan fi.ils the database dbSociale with the names of the different airlines.

dbSociale. assert(J, "Virgin '');
dbSociale.assert(2, ''KIM'');
dbSociale. assert(3, "Sabena '');

AnalyseCriteriasP

This plan is called by the interface when all the criteria's have been specified. In order to go
on with the treatment of these data, the agent has to know if the criteria's are the first specified
or if the user has already spawned a search and wants now to modify the criteria's. Indeed, in
the first case, the normal procedure must be followed (i.e. forming rules, filling the
TheoryBase, ...). In the second case, the only thing to dois revising the belief concerning the
criteria's. At least if the modifications involve preference criteria's. Indeed, if the general
criteria's (departure, destination) have changed, the agent has to start from scratch and ask
other tickets to the Company Agents.

EmptyBookQueueP

This plan is spawned when the agent wants to empty the databases dbBooked, dbQueued and
TicketBest.

The CompanyAgent's plans

The CompanyAgent is less complex than the TravelAgent and hence has less plans. Here are
the plans it uses : JnitDataCompanyP, FillTableP, AskTicketP, AskVacancyP, GetP, UpdateP,

RemoveP. The two first plans are used for the initialization of the tickets database and of the
corresponding interface. AskTicketP and AskVacancyP concern the communication with the
Trave/Agerits. AskTicketP sends tickets to the TravelAgent while AskVacancyP tells that
TravelAgent whether or not there is vacancy for a given ticket. Finally, GetP, UpdateP and
RemoveP are used when a change occurs in the tickets database of the CompayAgent. These
three plans are called from the interface because the administrator of the dbMyTiclœts has to
introduce the changes via the interface.

lnitDataCompanyP

This is a plan used by the Company Agents to fill their database of tickets (dbMyTikets) once
these agents are created. In order to fill the databases with different tickets for each
Company Agent even though an occurrence of the same plan is used by these
Company Agents, a condition on the name of the agent that executes the plan is used.

String name = compano.getNameO;

Now, the database can be filled according to that name. For example, we put 3 tickets in the
database of the Sabena airline.

if (name = = "Sabena '')
{

}

dbMyTickets.assert(l, "Brussel", "Amsterdam", "champagne","", "smoker",
"business", 7000, 7.2,0);

dbMyTickets assert(.'2 ''London" "Paris" "-chamnaane" "-tv" "" "-business" . ' ' ' r· o·-- ' ' ' '
8200,2.0,10);

dbMyTickets.assert(3, "Paris", "Sydney","",'"', "-smolœr", "-business",6000,5.0,2);

Once this is done, the plan posts the event that will trigger off the plan FillTableP.

@mbtask(fill.postO);

FillTableP

The only thing the plan does is filling the tables of the interface of the agent with the data
contained in the database dbMyTickets.

AskTicketP

This plan handles the AskTicketE that has been sent by a TravelAgent (which is looking for
tickets corresponding to the general criteria's specified by its user). lt replies by sending to the
TravelAgent that issued the request ail the tickets he has in his database that corresponds to
the general criteria's contained in the MessageEvent AskTicketE.

for (Cursor cur = dbMyTickets.get(i,asking.departu, asking.destinati,
sl,s2,s3,s4,in,d, v);cur.nextO;)
{
@send(company, recei.received(sl.as ~ stringO,s2.as _ stringO,

s3.as _ stringQ,s4.as _stringO, in.as _intQ,das _ doubleO));

}

And to conclude the transmission, it sends a 'closure' message that tells the TravelAgent that
he has finished to send his tickets.

@send(company, all.endO);

Let's note that the request of the TravelAgent is recorded in the database dbCalls, which is a
database of the Company Agent. That database is useful when a characteristic of a ticket has
changed. Indeed, the CompanyAgent has to know which TravelAgents have asked him the
ticket that has been changed in order to warn them of the change.

dbCalls.assert(dbCal/s.nFactsO + J,asking.departu,asking.destinati, company);

AskVacancyP

In this plan, the CompanyAgent answers to a TravelAgent that has asked him whether there
was vacancy for a determined ticket. The first thing to do for the Company Agent is looking in
his database the content of the field 'vacancy' of the ticket specified in the event
AskVacancyE.

dbMyTickets.get(i,ask.dep,ask.dest,ask.ch,ask.tv,ask.sm,ask.bu,ask.pri,
ask. len, vacancy);

~

Than, it sends his reply to the TravelAgent that issued the MessageEvent AskVacancyE.

@send(company,reply.post(ask.ch,ask. tv,ask.sm,ask. bu,ask.pri,ask. len, vacant));

The plan GetP is triggered off from the interface. It searches the selected ticket (its number is
specified in the event GetE) in the database dbMyTickets and displays its characteristics in the
text fields of the interface.

RemoveP

First it sends to the TravelAgents interested by this ticket (i.e. that have requested it sooner) a
MessageEvent ChgeTicketE containing the new characteristics (i.e. empty strings) and the old
characteristics. See the section 2.6.1. (????) "How do we use beliefrevision ?" for deeper
explanations.

@send(comp.as _stringO, chge Ticket.post("",ch.as _ stringO,
1111,tv.as_stringO, 1111,sm.as_stringO,
"",bu.as _stringO, 0,pr.as _intO, O. 0,/h.as _ doubleO));

Than, it removes the tickets from the database dbMyTickets.

And finally, it fills the tables of the interface by invoking the plan Fil!TableP.

@subtask(ftll.postO);

UpdateP

As in RemoveP, it sends a MessageEvent ChgeTicketE to the TravelAgents. In this case of an
update, the new characteristics are not empty, but are those that has been specified in the text
fields.

@send(comp.as _ stringO, chge Ticket.post(event.ch, ch.as _stringO,
event.tv,tv.as_stringO,event.sm,sm.as_stringO,
event. bu, bu. as_ stringO, event.pr,pr. as _intO, event. lh, lh.as _ doubleO));

It also records the changes in dbMyTickets.

dbMyTickets.assert(event. in, event.depa, event.desti, event. ch, event. tv, event. sm,
event. bu, event.pr, event. lh, event. va);

And finally, it spawns the fùling of the table of the interface.

@subtask(ftll.postO);

Annex 2 : lnterconnection between capabilities,
plans, events and databases

lnterconnection between capabilities, plans, events and
databases : General view

bas pLJ\NS , 1 lnilOalabasesP 1 eveNTS
1 1

TRAVEL-AGENT
NewCriteriasP

r

bas 1 FillCrit,:resP 1
~

1
1 1

" ~
ViewP ~

1 lnitSoc:ialeDBP \

bas 1 AnalyscCriteriasP 1 ~
bas ~pABILITIES

1 ~ 1

~
V

' ~
1 Communication ll

0 ATABAsE5 ~ Plans ~
'l' 1~1

f dbsociale 7 1 R=iveTtcketsP 1
~

1 All'l'icketsP 1 ~
1 ComAskVacan9:P 1

ÔbGencriteria~

1 R.epiYVacancyP 1

1 ChReTiclœtP 1 ~
\. .)

f dboefault 7 , lL~5 ~
De!Cap

JAVA ~
f 7

Plans o~
dbTickets

1 DeJàultP 1 ~
1 JnilDTP 1

,Events 1 CalculateExtP 1 ~

~ f- dbRules 7 -
C__mitUŒJ ~

f dbcri teres ==, (TrealOa1aCap D uses

~
·~ Plans

1 TreatrtcketsP 1 ~
f dbCriteres2 7 1 l'realCritP 1

1 TransfmmationP 1

f dbTickets2 =, ~
~

1 lJ Br N

\ Plans A

1 f dbCri t erias =, CbgeCrilaia<P ~
ReviseP 1
Ex!ractP 1

f TicketBest =, AnalyseTBP 1 ~
RemoveT!ClœtP 1

lni!RnresP 1 ~
f dbHi storic =, lnitCriteriasP 1

'Even,

f dbHi storicRe-===i
\.~~~ 1

~

BookingCap Th ISeS

Plans
~

•
1 BookinRP 1 ~
1 ComRq,lyVmyP 1

f 7 dbQueued

(History (L. Plans
~

f -==,
li

dbBooked
1 SaveP 1

- 1 DeleteP 1 ~
\.) \.: ~

lnterconnection between capabilities, plans, events and
databases : The posting of the events

P19r' A~N~S~=-</
1 lnilDllalwsP 1

...

1 NewCrik:ria&P 1

1 FillCrileesP 1

1 v.,..p 1

1 lnitSocialeDBP 1

1 . . 1

1~P1 l

cAPABILITIES ,

'~==~,i--- -~ ~ / Ir. A /

~atioo l~ ✓
lcbgeQ>tC~ I

1
1/:~~
~ewCriteriasEJ

-L FillCritereE ~

,,-------~~
TRAVEL-AGENT •

<_ ViewE ~v"" ~
<_~BE~~ ,__ __ _.J

~teriasE~

~

~

R.cœiveTw:lœtsÊ:)"

1 Company-AGENT l

1 R=iveTicketsP 1 ,

ADTldœlsPJ-t v----+-+--+--- f dbSOciale =, Com.AskV-P
1

1 ReplyVacancyP 1

1 ChgeTicketP 1

('
De!Cap 1:~-

'

/

HADES
JAVA

OBJECT

Events , \ Plans
rr======:;--,

DeliwltP 1

lnillJl'P 1

teExlE ~ 1/1
V' 1

Giiv l CalculateExtP 1

TreatOataCap uses
'-------.... Plans

1 Treafl'icketsP j
1 TreatCrilP j
1 TransformalionP)

Br ~~ ~~
~
Plans

f

/ ~
[BookmgCap C ~ Plans / //

-•D fv
Ccmllq,lyVacaxp' =v

A

History
1 ·· - Plans -~

t SaveP 1

1 DeleteP 1

~

1
'

~ TreatCriterE-

~ C:JigeCriterias

~~
1/

/ r- K InitRules

r---.. '" s:::, Ini1Criœrias0

-1 dbGencri teri as 1

f dbDefault -==,

f dbTi ckets =,

f dbRules 7
f dbcriteres J

f dbcriteres2 7

f dbTickets2 "7

f dbCriteMas4

f Ti cketBest 7

f-dbHistoric :=,

f dbQueued =,
F· dbBooked =,

lnterconnection between capabilities, plans, events and
databases : The treatment of the events

/ , ~ J~\IENTS
1 TRAVEL-AGENT pi ANS

....
~

1 lnilDatabasesP 1 '- ~ 1 NcwCritaiasP 1
s_., NewCrileria.sY,

1 1 FiDCriten:sP
FillCritaeE ..,._

1 ViewP 1

1 lnilSocialeDBP 1 ViewE ::>
1 AnalyseCrit,ria 1-

-,._ InilSocialDBE J
1-~~
rnes ~ -- ~ -· ·û

cAPfi , ~ .,-, _ -.....__
// ,, ' Communication I l -~ \ Plans

oATABASES .. - I"'<

~ ' R.eceiveTIClœtsl' E dbSociale :J AJITiclœtsP AJITiclœlsE
ComAsk.VacancvP ~

CTbGencMteM aJ
1>...JvV.,.,..,.,.,P

~~ ..,,_ - Vo,;ancy

f'.ltoeTicketP r--

r--:::: ~Vacancy E dbDefaul t :J
\ r

De!Cap

\
HADES
JAVA I'"'--< CbgeTu:lœtE J

E dbTi ckets J OBJECT

Events Plans ~ DeJiwltE

~culateF-xtE_> H DeliwltP
,..~

~ 1 - .. lnitlJTP

lnitIJIB y /
1 CalculateExtP 1 E :J dbRules

0reatTJCkelsE

~
~

E dbCri teres :J
(TreatDataCap n~ Plans

1

~reatCàlerE

1 f dbCMteres2]
TreatTicketsP

TreatCrilP 1
1 Tran.sfonnationP 1 Thmsfoanati~

E dbCMte Mas:J

~® ~
K c:bgeCrit,.rias Br

OBJECT

f Ticketsest]
IA:__~eTiclœtE ...J

Plans ..
1 CbgeCrileriasP

,.:;-
--=:: InitRulcs > E dbHistoric J)4' ~ • ReviseP -•i::v1111fo ~- ExtractP --

G bHi stori cRe7 (ReviseE> ~ An,h,.,TBP
- lnitCriteriasQ

1 1 RemoveTicketP ~ V 1 lnitRnlesP 1

,l~ 1 lnitCriteriasP 1

è'. c~ f dbTi ckets2 l 1
BookingCap

Plans - ~ BookingE _> -1 Bookinl'!P] ... -
C dbgueued J 1 ComRq,lyV""""YP 1 ~" eplyVacan

/

~ E dbBooked l Hislory Plans -ses
~

SaveP ,..
" - DelcteP DeleteE _>

'\. ~

lnterconnection between capabilities, plans, events and
databases : The access to the databases

\.

r------------------bas ____ _

bas
pl.ANS

lnilDalabasesP i , ~

1 TRAVEL-AGENT bas " ,_ _____ _....
NewCriteriasl' 1

FillCriteresP 1

ViewP 1

bas

r , dbsociale I/ -

F========-"·/ 1 dbGencriterias 1

/

bas

cAPABILITIES
/

, , Communication n

lnitSocialeDBP 1

AnalyseCrileriasP 1

l'.mptJBoolQua, 1

\ Plans
I ,...._,.._Critl:riasP j

1 R.eœiveTiclœlsP 1

1 AimclœlsP i
1 ComAsk:VacancyP i
1 Rq,lyVacancyP 1

1 ChgeTicl<etP 1
....,

r

1

dbDefau l t 1 - i--_

db,k,tt, , ~
HAD~

~ rr- dbCriteres

~ ._ ~ ~~ -r==========~ ,~ \~=~~~a;n~s~!!-1:-' u ~ r--_ r I Delà j dbRules

f dbRules 1
f dbCri teres 7

dbcri teres2 1

1 ---- . ~ r _ i--- ::::--1
:==== = "'"1 i-- L
I CalculateExtP

, ,Events

r TrealDataCap 0~ . Plans
H~Trcam~,~-~p71+---l-...l---l

TreatCntP

Tmnsfoo:natiooP L... L

c-r===========:t~ , • \. - r:::::::: !"--1
lJ Br

...... f-==..c;.=db:Tl:· c:ke:ts:2:::,-::::::::~l------W-'--J._:vr====:::;--~ ~ ,-._ '---, ~ r---..
dbCriterias 1) ~ / F dbTickets2 =i

1

F
L1 L---++--t---riM-

\ Plans
... c~-"-"-'-P

1 RcviseP

1 Ex1ractP

Ticketsest :=J l==~~ ~=!
AnolvseTBP

RcmoveTicl<etP I
lnitRulesP

1 lnitCritcriasP

t-

, • ...__ _ __,/1 r--- ... t--1 1

'Even,.,- H ,, -TicketBest 1

1/
V

..____ BookingCap lt-..... l,_,...-A~
1 --- .Y~-- Plans -~ -----,.~r====~~:::-=:i...-? - -

RnnlcinoP n--H---'--
\ ____ +e:==::=11-l ComRq,lyVaca,cyP ~ b--_ ----- w 1

T

f dbHistoric ÎI◄-~~--, -------- r History Ou... Plans - •
J -dbBooked 1

r dbHistoricRe--;.. -
1 - SaveP

C.

DeletcP 1

t , dbQueued 1
\.

Annex 3 : A survey of -agent construction tools

Commercial Products

! 1 \ I__J __J : :
1 l -~~---------,

AgentBuilder® :Brief AgentBuilder® IReticular Systems, Java Integrated Agent and Agency
:Summarv Site Inc. p~yel<>p111,~11tI~nvir()n1:11~11~

AgenTalk Brief A!mnTalk Site NTT USP Multi-agent Coordination
•summarv Protocols ;,

Agentx :~ Aoentx Site International Java Agent Development
'Sununarv Knowledge IEnvironment

Systems

Aglets :Brief Aglets Site IBM Japan Java Mobile Agents
:sununarv ·····-· ··· -····· ····

Concordia :Brief Concordia Site Mitsubishi Electric =Java Mobile Agents
SUilllllarv

DirectIA SDK ,Brief DirectIA SDK MASAGroup =c++ Adaptive Agents
isummarv Site

Gossip IBrier Gossio Site Tryllian •Java Mobile Agents
Summarv

····· ······ -·-··

Grasshopper IBrief Grasshonner Site IKV++ Java Mobile Agents
,Summarv

iGENTM ,Brief .= iGEN.-M Site cm Systems C/C++ Cognitive Agent Toolkit
;Summarv

Intelligent Agent :~ Intelligent Agent Bits & Pixels Java Agent Development Tool

[F~c;t()ry " .Sununarv F<actorv Site
······-····· ····---

Intelligent Agent •Brief Intelligent Agent Bits & Pixels Java Agent Library
l.,îl>rary Sununarv ibrarv Site

······ ········ ··· ········ · ··

JACK Intelligent Brief JACK Intelfürent Agent Oriented JACK Agent Development
Agents :Summarv A1wnts Site Software Pty. Ltd. Agent Environment

Language

JAM •Brief JAM Site Intelligent Java Agent Architecture
.summarv Reasoning Systems

Jumping Beans •Brief Jumoin!! Beans Ad Astra Java Mobile Components
Summarv Sile f.:11gin_~~rn.:g,)11_c:'.,

LiveAgent 'Brief I iveA1rnnt Site Alcatel Java Internet Agent Construction
=Summarv

MadKit :Brief MadKit Site Madkit Java, Multiagent Development Tool
,Summarv Development Scheme,

Group Jess

Microsoft Agent :)1!:@ Microsoft Agent Microsoft Active X Interface creatures
Sununarv Site Corporat~()n " .

Network Query •Brief Network Ouer_y NQL Solutions Programming Language
I,,a11gu<1:ge . ' Summarv 1,,llllguage Sit~

Pathwalker 'Brief Pathwalker Site Fujitsu Java Agent-oriented programming
:summarv library

Swarm ' Brief Swarm Site Swarm Objective Multiagent Simulation
:summarv Development C, Java

Group

UMPRS •Brief UMPRS Sile Intelligent C++ Agent Architecture
Summarv

. ··············· ···· ·
~easC>ning Systellls

!Via: Versatile .Brief Via Sile Kinetoscope Java Agent Building Blocks
Intelligent Agents ,Summarv

Voyager :Brief Vova!:'.er Site Object Space Java Agent-Enhanced ORB
Summarv

Academic and Research Projects

l l i 1 1 J
... :·········-······i·························· ' ..•......... L L ·-·····----· ... -
Agent Bmlding Shell Bnef ABS Site Umverstty of Toronto = COOrdinauon Age t c tectur
(ABS) Swnma [Language

rv .(COOL)

Agent Factory Brief ~ University College · Smalltalk-80 Agent Prototyping
Summa Factorv Site Dublin, Ireland IEnvironment
rv ··········· ·······•···· ····· ···•······

D'Agents fukf D'Agents Dartmouth University IR.etrieval, Organization, and •
Summa ~ Presentation
rv

Agent Tel Brief A11:entTCL Dartmouth University Tel Mobile Agents
Summa ~
rv

Architecture type- ~ ADE Site University of Potsdam •Java Platform and Application
based Development Summa Dept. of Computer lndependent Agent
Environment (ADE) U' Science Development Environment

Professorship of
Software Engineering
TAXT

Bee-gent Brief Bee-!œnt Toshiba Corporation Java Software Development
Summa Site Systems and Software Framework
rv Research Laboratories

Bond Distributed Brief Bond Site Purdue University ' Java Agent Framework
Object System Summa

:rv
Cable Brief Cable Site Logica Corporation .Agent System Architecture

Summa • Definition

~ •Language,
C++

DECAF Agent !1Œ.f DECAF University of Delaware •Java Agent Framework
!Framework Swnma ~
. ···-~- ····- ·

dMARS Brief dMARS Australian Artificial 1 C, C++ Agent-oriented Developmenr
Summa Site Intelligence Institute Ltd. • and lmplementation
rv ~nyiro111:11~nt

IEXCALIBUR fü:@ IEXCALIBU GMD First, Autonomous Agent
Summa ~ - Technical University of Architecture in a Complex
[Y Berlin Computer Game

[Environment

GenA ~ GenA Site CRIM •GenA Mobile agent platform
Summa
rv

Gypsy Brief Gvnsv Site Technical University of •Java Mobile Agents
Summa !Vienna
rv

Hive ~ Hive Site ribe Media Lab •Java Toolkit for Building
Summa Massachusetts lnstitute Distributed Systems

.. D'. . ···· · ·· · ··· .. -· -- ()f.'_f.t!<::~11()~()gy ····· 1 -

InfoSleuth Brief InforSleutb MCC •Java Collaborating agent
Summa Site environment
rv

l11f()spid.t!f.~. fü:.© Infosoiders _ lJ.11iv.er.~ity __ ()f C:<l.lif()_rI~ia ..• un_kll:()\\/11 f\d.<tptiye Distributed

Summa filtç San Diego - Computer Information Agents
rv Science Dept.

JADE Brief JADE Site CSELT S.p.A., Java Multiagent Framework
Summa University of Parma
!'Y

.... ·······-·-·· ---·· ········ ··. ·•···

JAFMAS Brief JAFMAS University of Cincinnati • Java Multiagent Framework
Summa Sile
rv

JATLite Brief JATLite Stanford University •Java Java Packages for
Summa Site Multiagents
[Y

JATLiteBean Brief JATLiteBea University of Otago •Java JavaBean Component
Summa n Site
rv

TIAC Brief TIAC Site Technische Universitat •Java Agent Architecture
Summa Berlin
rv

. ·· ·········--- -·-- ···· ····· ··· ·· · ... , ----·-·· · ···············-- -----······· .

Kasbah fukf Kasbah Site Massachusetts Institute •unknown Agent-mediated Electronic
Summa of Technology Commerce
rv

KLAIM Brief KLAIM Universita' Di Firenze •Klaim Kemel Language for Agent
Summa Site Interaction and Mobility
[Y

Knowbot® System Brief Knowbot CNRI Python Mobile Agents
Software Summa ~

rv
Mobiware Middleware Brief Mobiware Columbia University •Java Mobile Networking
Toolkit Summa Site Environment

!'Y ····· ·-·-

MOLE Brief MOLE Site University of Stuttgart :Java Mobile Agents
Summa
rY

Multi-Agent Modeling Brief MAMLSîtc Central European MAML Programming Language
Language (MAML) Summa University

rv

MultiAgent Systems Brief MAST Site Technical University of C++ Multiple Heterogeneous
Tool (MAST) Somma Madrid Agents

P.'. --·· ······ .. ········ ··· · ·· ······· ·· ···· .. ······· · ······ · · ····· ·····

Open Agent Brief Onen A2:ent SRI International C,C++, Agent Framework
Architecture™ Summa Architecture Prolog, Perl,

0: Site psp,}ay~ ··········"·" · ·••'-

ProcessLink Bricf ProcessLink Stanford University unknown Agent-based Framework
Summa Site
rv

RETSINA Brief RETSINA Carnegie Mellon Communicating Agents
Summa ~ University
rv

Social Interaction Brief SIF Site DFKl (German Research Java Multi-agent System Toolkil
framework (SIF) Summa Institute for AI)

rY ··········

Sodabot Brief .S....Qdabot MIT Artificial unknown Software Agent User-
Summa füJ~ Intelligence Lab environment and
rv

......... ÇQnStrt1c~i9n _Sys~en1
SOMA (Secure and Brief SOMA Site University of Bologna Java Agent Programming
Open Mobile Agent) Summa Environment

ry

TeamBots

TuCSoN

Zeus

Brief TeamBots e Robotics Institute , Java
Carnegie Mellon
Universit

Universita di Bologna

British
elecommunications
abs ·· ··········

·Java

.. ·················.
Multiagent Mobile Robotics

Model For the Coordination
of Internet Agents :

Agent Building Environmen(

·········-······ ·········

Annexe 4 : An example of TheoryBase

An example of TheorvBase before extraction

ticketllticket21ticket3 0.9999

ticketl->-smoker 0.9998
ticketl->-tv 0.9998
ticketl->business 0.9998
ticketl->-champagne 0.9998
ticket2->smoker 0.9998
ticket2->tv 0.9998
ticket2->business 0.9998
ticket2->-champagne 0.9998
ticket3->smoker 0.9998
ticket3->-tv 0.9998
ticket3->-champagne 0.9998
ticket3->business
ticket 1->-length 1
ticket 1->-length 2
ticketl->-length 3
ticketl->-length 4
ticketl->length 5
ticket2->length 1
ticket2->-length 2
ticket2->-length 3
ticket2->-length 4
ticket2->-length 5
ticket3->-length 1
ticket3->length 2
ticket3->-length 3
ticket3->-length 4
ticket3->-length5
ticketl->pricel
ticket 1->-price2
ticketl->-price3
ticketl->-price4
ticket 1->-price5
ticket2->-price 1
ticket2->price2
ticket2->-price3
ticket2->-price4
ticket2->-price5
ticket3->-price 1
ticket3->-price2
ticket3->-price3
ticket3->-price4
ticket3->price5

pricel
lengthl

0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998

0.9
0.8

price2 0.72
length2 0.64
smoker 0.6
price3 0.54
length3 0.48
tv 0.4
price4 0.36
length4 0.32
business 0.3
champagne 0.2
price5 0.18
length5 0.16

ticketl 0.0001
ticket2 0.0001
ticket3 0.0001

---------------------- ----- - - - - - - ~ ~ - -

The same TheoryBase after extraction

ticketl lticket21ticket3 0.9999

ticketl->-smoker 0.9998
ticketl->-tv 0.9998
ticketl->business 0.9998
ticketl->-champagne 0.9998
ticket2->smoker 0.9998
ticket2->tv 0.9998
ticket2->business 0.9998
ticket2->-champagne 0.9998
ticket3->smoker 0.9998
ticket3->-tv 0.9998
ticket3->-champagne 0.9998
ticket3->business
ticket 1->-length 1
ticketl->-length 2
ticketl->-length 3
ticket 1->-length 4
ticketl->length 5
ticket2->length 1
ticket2->-length 2
ticket2->-length 3
ticket2->-length 4
ticket2->-length 5
ticket3->-length 1
ticket3->length 2
ticket3->-length 3
ticket3->-length 4
ticket3->-length5
ticket 1->price 1
ticketl->-price2
ticket 1->-price3
ticket 1->-price4
ticket 1->-price5
ticket2->-pricel
ticket2->price2
ticket2->-price3
ticket2->-price4
ticket2->-price5
ticket3->-price 1
ticket3->-price2
ticket3->-price3
ticket3->-price4
ticket3->price5

price l

0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998
0.9998

0.9

business
length5

ticketl

0.3
0.16

0.0001

----------- -- -

---- - - - --------

Annexe 5 : An example of DefaultTheory

An example o(default theory

ticket 1->-champagne
ticketl->business
ticket 1->price 1
ticket 1->-price2
ticket 1->-price3
ticket 1->-price4
ticketl->-price5
ticketl->-lengthl
ticket 1->-length2
ticketl->-length3
ticket 1->-length4
ticketl->length5
ticket2->Champagne
ticket2->-tv
ticket2->smoker
ticket2->-business
ticket2->-pricel
ticket2->-price2
ticket2->-price3
ticket2->-price4
ticket2->price5
ticket2->lengthl
ticket2->-length2
ticket2->-length3
ticket2->-length4
ticket2->-length5

-(ticket 1->business)&-(ticket! ->champagne)ticket 1->-champagne
-(ticketl->business)&-(ticketl->tv)ticketl->-tv
-(ticketl->business)&-(ticketl->smoker)ticketl->-smoker
(ticketl->business)-(ticketl->-champagne)ticketl->champagne
(ticketl->business)-(ticketl->-tv)ticketl->tv
(ticket 1->business)-(ticket 1->-smoker)ticket 1->smoker

-(ticket2->business)&-(ticket2->champagne)ticket2->-champagne
-(ticket2->business)&-(ticket2->tv)ticket2->-tv
-(ticket2->business)&-(ticket2->smoker)ticket2->-smoker
(ticket2->business)-(ticket2->-champagne)ticket2->champagne
(ticket2->business)-(ticket2->-tv)ticket2->tv
(ticket2->business)-(ticket2->-smoker)ticket2->smoker

