
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Sonification of time-dependent data

Demoulin, Christophe; Schöller, Olivier

Award date:
2001

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. May. 2021

https://researchportal.unamur.be/en/studentthesis/sonification-of-timedependent-data(377d0e42-481c-42e1-9b7e-2ebaee37c379).html

Facultés Universitaires Notre-Dame de la Paix, Namur

Institut d'Informatique

Année Académique 2000-2001

SONIFICATION OF

TIME-DEPENDENT DATA

Christophe Demoulin

Olivier Scholler

Mémoire présenté en vue de l'obtention du grade de Maître
en Informatique

Abstract

Bonification is the process of transforming visual information into sound.
This dissertation focus es more particularly on the problem of representing
time-dependent data with sound. This kind of data often requires some pre­
processing be/ore any sonification mapping can be applied. Pitch-based map­
ping can then be executed on the data, and possibly enhanced with additional
sonification techniques, such as slope indicators and extreme values detec­
tors.

Two applications are developed in order to ease the sonification process
of two-dimensional and three-dimensional data. Finally, an online ques­
tionnaire is presented for each application, by which the chosen sonification
methods are evaluated.

Keywords: Sound, Sonification, Time-dependent data, MIDI.

Résumé

La sonification est le processus de transformation d'informations visuelles
en son. Ce mémoire se concentre plus particulièrement sur le problème de
la représentation de données temporelles par le son. Ce type de données
nécessite souvent un pré-traitement avant qu'une quelconque transforma­
tion sonore puisse être appliquée. La transformation basée sur la fréquence
peut alors être exécutée sur les données, et éventuellement enrichie par des
techniques additionnelles de sonification, telles que des indicateurs de pente
et des détecteurs de valeurs extrêmes.

Deux applications sont développées dans le but de faciliter le processus
de sonification de données bi-dimensionnelles et tri-dimensionnelles. Fina­
lement, un questionnaire en ligne est présenté pour chaque application, à
partir duquel les méthodes de sonification sélectionnées sont évaluées.

Mots-clés : Son, Sonification, Données temporelles, MIDI.

Acknowledgements

First of all, we would like to thank our supervisor, Monique Noirhomme­
Fraiture, for being there for us when we needed her. Despite the personal
problems she went through, her door was always open and we were always
welcome.

We would also like to thank our training course master, James L. Alty, for
all his help during our three months stay at the Loughborough University.
When we arrived, he had recently been promoted dean of the Faculty of
Science, leaving him even less time than before. Nevertheless, we were able
to corne together on a few occasions. We particularly remember the first
one, where we underwent a musical test for over half an hour, unfortunately
without much success . ..

Our gratitude also goes to the people who have answered the question­
naires and provided us with constructive and critical feedback for our appli­
cations. We know it required a fair amount of time and energy, but we can
assure them that every single answer has been taken into account, and has
contributed to the final results.

We want to thank all the people who have helped us during the making
of this report. The technical problems were often solved via the Internet,
which again has proven to be an invaluable source of help and information.
The moral support was principally provided by Jennifer and Julie, who kept
us focused and motivated all along the writing process. As for all the other
persans who have helped and supported us, we sincerely thank them and
hope they will recognize themselves.

Last but not least, we would like to thank each other for all the support,
feedback and assistance we exchanged during the last couple of months.
Working so closely with another persan for so long can sometimes be tire­
some and laborious, but even at difficult times we managed to forget our
divergences and let our friendship prevail.

Contents

List of Figures V

1 Introduction 1

2 Sound and Sonification 3

2.1 Introduction 3

2.2 Basic overview of sound 3

2.2.1 Definition of sound . 3

2.2.2 Sound attributes 4

2.3 Data sonification 5

2.3.1 Sonification: definition and types 5

2.3.2 Advantages 7

2.3.3 Limitations 8

2.3.4 Examples 9

2.4 Conclusion ... 11

3 Preprocessing time-dependent data 13

3.1 Introduction 13

3.2 Time-dependent data . 13

3.2.1 Time series 13

3.2.2 Components 14

3.3 Extreme values .. . 15

3.3.1 Outliers and mistakes 15

3.3.2 Detecting outliers . 16

3.3.3 Notifying outliers . 19

3.4 Smoothing 19

3.4.1 Objectives

3.5

3.4.2 Smoothing techniques

Conclusion

4 Pitch-based rnapping

4.1 Introduction

4.2 Mapping methods

4.2.1 Linear mapping.

4.2.2 Chromatic scale mapping

4.3 From mapping to sound

4.4 Improving the sonification

4.4.1 Slope indicator

4.4.2 Panning

4.4.3 Extrema values

4.5 Conclusion

5 Sound irnplernentation

5.1 Introduction

5.2 A vailable sound formats

5.2.1 Sampled sounds

5.2.2 MIDI

5.3 Choosing the right format

5.4 MIDI and Java

5.4.1 The Java Sound API .

5.4.2 The MIDI package ..

5.4.3 Implementation issues

5.5 Conclusion

6 SoundChart

6.1 Introduction .

6.2 Description

6.3 Data management

6.3.1 SoundChart file format

6.3.2 Main chart panel .

li

19

19

20

21

21

21

21

22

22

23

23

24

25

26

27

27

27

27

28

30

31

31

32

34

37

39

39

39

40

40

41

6.4 Preprocessing 42

6.4.1 Smoothing methods 42

6.4.2 Algorithms panel 43

6.5 Sonification 44

6.5.1 Extreme values 44

6.5 .2 Pitch-based mapping . 45

6.5.3 Sonification panel 48

6.6 Conclusion 50

7 SoundChart3D 51

7.1 Introduction. 51

7.2 Description 51

7.3 Data management 51

7.3.1 The scene panel 52

7.3.2 The edition panel . 54

7.3.3 The view panel 54

7.4 Sonification 55

7.4.1 The MIDI settings panel . 55

7.4.2 The sonification type panel 56

7.5 Conclusion 57

8 Experimentation 61

8.1 Introduction . . 61

8.2 The questionnaire 61

8.2.1 SoundChart . 62

8.2.2 SoundChart3D 67

8.3 Results analysis . . 73

8.3.1 The sample 73

8.3.2 SoundChart . 74

8.3.3 SoundChart3D 79

8.3.4 Musical skill influence 83

8.3.5 Field of activity influence 85

8.4 Conclusion 86

Ill

9 Conclusion 87

Bibliography 91

A SoundChart3D file format 95

A.l File structure 95

A.2 Example . .. 95

B Questionnaire answers 99

C Source code 117

C.l SoundChart hierarchy 117

C.2 SoundChart3D hierarchy . 117

C.3 Code listings 118

IV

List of Figures

2.1 Two periodic waveforms

3.1 Example of multiplicative seasonality .

3.2 The box plot method ..

3.3 Three outlier situations

3.4 Grubbs' critical value table

4

15

17

18

18

. 4.1 Linear vs. chromatic scale mapping 23

5.1 Structure of a MIDI sequence 33

6.1 Main Chart panel. 41

6.2 Algorithms panel . 44

6.3 Five data values mapped with a 200 ms interval . 46

6.4 Sonification panel 49

6.5 Additional sonification options 50

7.1 The SoundChart3D main window . 52

7.2 A row of 9 PolySounds but 10 points . 53

7.3 Additional sonification options 56

7.4 Horizontal travelling 57

7.5 Vertical travelling . 58

7.6 Diagonal travelling 58

8.1 SoundChart application test , question 1 64

8.2 SoundChart application test, question 2 65

8.3 SoundChart application test, question 3 65

8.4 SoundChart application test, question 4 66

V

8.5 The 3D graph related to question 1 . 70

8.6 The 3D graph related to question 2 . 71

8.7 The 3D graph related to question 3 . 72

8.8 Average appreciation of each 2D sonification technique . 78

8.9 Average appreciation of each 3D sonification technique . 82

C.l SoundChart class hierarchy . . 118

C.2 SoundChart3D class hierarchy. 119

VI

Chapter 1

Introduction

Since the dawn of computer science, the interaction between humans and
computers has been merely visual. While the first computer terminals,
equipped with monochrome screens and alphanumerical keyboards, provided
limited modalities of interaction with the computer, most recent devices al­
low to display texts and pictures in several millions of colours and high
resolution, to quickly render two-dimensional and three-dimensional graphs
and to print them out on paper. This predilection of visual representation of
data to the detriment of sonic representation exposes an explicit lack since
the human treats both visual and sonic information simultaneously in the
real world. From this observation is born the sonification, a new emerging
field of research, which closes a gap between the usually complex visual com­
puter displays and the very poor acoustic interface to the user. Sonification,
sometimes synonymous with auralization, is an audio counterpart to visual­
ization. By using audio rather than visual enhancements, the main goal of
sonification is to provide more information while shifting additional cogni­
tive load to a different modality. However, sonification alone can also be a
useful technique for presenting information to visually impaired individuals.

The objective of the present dissertation is to study in which way sound
can represent data, in particular time-dependent data, which are values
varying with time, like a stock value on the exchange market or the audi­
ence of a television channel. As sonification still remains a recent field of
research, the aim is to find, implement and evaluate efficient techniques to
translate time-dependent data into sound, while maintaining the underlying
characteristics of the time series.

Conceptually, the dissertation is divided into three parts. The first
part offers a theoretical background related to the whole process of time­
dependent data sonification. The second part introduces two Java applica­
tions that we have developed in order to sonify two-dimensional and three­
dimensional charts. Finally, the last part gives an evaluation of the soni-

1

1. Introduction

fication techniques implemented in both applications, based on an on-line
questionnaire.

Chapter 2 off ers a theoretical overview of the concepts of sound and soni­
fication. Both the advantages and limitations of sonification are described
as well as some examples of existing implementations.

Chapter 3 focuses on time-dependent data series in a sonification context.
Preprocessing techniques are described to filter out errors and noise from
the data set. The chapter explains how undesired or unnecessary values are
removed and how the remaining ones are prepared for sonification.

Chapter 4 describes the most widely used technique for the sonification of
time-dependent data, the pitch-based mapping. From this technique, several
other features are introduced and explained to enhance the sonification.

At this point of the dissertation, the reader has acquired a theoretical
knowledge of the sonification as well as the available techniques to translate
time-dependent data into sound. However, before putting into practice the
theory exposed in previous chapters, it is important to consider some crucial
aspects of sound implementation. Thus, chapter 5 provides some guidelines
when developing a sonification application, in particular when using the Java
Sound API.

Chapter 6 and 7 describe respectively the two Java applications that we
have developed, SoundChart and SoundChart3D. Each chapter explains how
the whole process of sonification was implemented, from the preprocessing of
data to the sonification techniques themselves. The SoundChart application
provides tools for the sonification of two-dimensional time-dependent data
while SoundChart3D gives a sanie representation of three-dimensional data.

As sonification is not necessarily straightforward or intuitive, an experi­
mentation of time-dependent data sonification, based on both applications,
is given in chapter 8. An Internet Web site, including two questionnaires,
was created to get an evaluation of the sonification techniques implemented
in SoundChart and SoundChart3D. The chapter describes each question,
comments the results and draws conclusions about the efficiency and the
practical use of time-dependent data sonification.

Conclusions of the present dissertation are to be found in Chapter 9.

2

Chapter 2

Sound and Sonification

2.1 Introduction

The purpose of this chapter is to get the reader used to the concepts of sound
and sonification. First of all, we briefly introduce the definition of sound and
its main attributes. Secondly, we explain the notion of sonification and we
give different types of sonification techniques. The main advantages and
limitations of sonification are then described as well as some examples of
existing implementations.

2.2 Basic overv1ew of sound

2.2.1 Definition of sound

A sound is the sensation of pressure variations in the air caused by a vibrat­
ing source [MR95], like a violin, an automobile horn, or a barking <log. They
all produce vibrations that disturb the air in such a way that sound waves
are produced. These waves travel out in all directions, expanding from the
source of the sound. If the waves happen to reach someone's ear, they set
up vibrations that are perceived as sound [Com98].

The pattern of variations in the air over time determines the waveform of
a sound. Figure 2.1 shows two sample, sinusoïdal waveforms. In both cases,
the Y-axis represents pressure, and the X-axis represents time. The measure
of pressure is the amplitude of the sound. If the waveform is composed of
a repeating pattern, as these waveforms are, they are said to be periodic,
and the smallest repeating pattern is a cycle [MR95]. The frequency of a
waveform is the number of repeating cycles of change in air pressure that
occur in one unit of time, usually a second. It is expressed in Hertz (Hz)
or cycles per second (cps). Complex sounds are made up of many pure

3

2.2. Basic overview of sound 2. Sound and Sonification

Pressure

+

Period

Figure 2.1: Two periodic waveforms

tones of different frequencies. The waveform depicted by the dashed line
has a frequency twice that of the other. The range of human hearing varies
from individual to individual, but normally falls between 20 Hz and 20,000
Hz. For convenience, this range is divided into three rough bands: high
frequencies (between about 5 kHz and 20 kHz), mid frequencies (between
about 200 Hz and 5 kHz) and low frequencies (between about 20 Hz and
200 Hz).

2.2.2 Sound attributes

Although there are only a relatively small number of sound characteristics,
they can be manipulated to produce a rich set of sounds. Typically, four
main characteristics are distinguished: pitch, loudness, timbre and location.

The perceived pitch of a sound is just the ear's response to frequency
and for most practical purposes the pitch is just the frequency. A high pitch
sound corresponds to a high frequency and a low pitch sound corresponds to
a low frequency. Amazingly, many people, especially those who have been
musically trained, are capable of detecting a difference in frequency between
two separate sounds which is as little as 2 Hz. When two sounds with
a frequency difference greater than 7 Hz are played simultaneously, most
people are capable of detecting the presence of a complex wave pattern

4

2. Sound and Sonification 2.3. Data sonification

resulting from the interference and superposition of the two sound waves
[Henül].

The loudness and intensity of a sound refers to the amplitude of the sound
and is specified in decibels (dB). While the intensity of a sound is a very
objective quantity which can be measured with sensitive instrumentation,
the loudness of a sound is more of a subjective response which will vary with
a number of factors. The same sound will not be perceived to have the same
loudness to all individuals. Despite the distinction between intensity and
loudness, it is safe to state that the more intense sounds will be perceived
to be the loudest sounds [Henül].

Timbre or quality is equivalent to the waveform of a sound. It is timbre
that determines whether one hears a trumpet or a piano, even if the pitch
is the same [MR95]. Timbre is then a general term for the distinguishable
characteristics of a tone.

Location (also called localization or spatialization) is the perception of
a sound source's placement. Indeed, the perception of a sound is greatly
affected by the direction and position of the corresponding sound source, as
well as by the environmental acoustics.

2.3 Data sonification

2.3.1 Sonification: definition and types

Sonification can be defined as an auditory representation of data [Anr99].
It is often used in combination with visualization techniques in order to
reveal data properties not easily rendered by visual graphies. It is also a
useful technique for presenting information to blind or visually impaired
individuals [ARV97] , and for displaying data to users whose visual attention
must be devoted elsewhere [FBT96].

Data sonification finds application in many fields of research. According
to their proper needs and objectives, these fields require a specific sanie inte­
gration into their projects. Therefore several sonification methods have been
developed. Commonly six types of sonification techniques are distinguished
[Her99].

Alarm signais

The first applications of acoustic signals in human-computer interfaces have
been alarm signals. The signal reaches the user even if (s)he is occupied
with other things. The simplest data sonification is clone in a regular PC
speaker: the BIOS announces the state of the hardware acoustically. Alarm

5

2.3. Data sonification 2. Sound and Sonification

signais are mainly used in high-tech domains where the user is confronted
with a huge amount of visual information (e.g. in airplane cockpits and
nuclear plants). Alarms are usually triggered to indicate that an ab normal
program behaviour or an error has occurred. However, they are rather poor
for complete presentation of complex data.

A uralization

The auralization method translates the data itself to amplitude values of the
waveform. It is applicable if the data itself is a time series, e.g. values from
a dynamic system like seismic data. This sonification and related forms are
quite useful to monitor large data sets in strongly compressed time.

Earcons

Earcons have been proposed by Blattner et al. Earcons are simple tonal
combinations or arbitrary acoustic patterns whose meaning must be learned
by the user, and .which can be combined to build non-verbal messages of
a higher complexity and meaning. There is no intuitive link between the
sound and what it represents, as earcons are mainly abstract sanie events.
The disadvantage is the learning effort and the limited range of application
fields [BWE93].

Auditory icons

Auditory icons use recordings of real-world sounds to signal events. These
sounds are used in a metaphorical sense, making the learning effort less
difficult. Indeed, real-world sounds, if selected correctly, can carry lots of
intrinsic meaning because of our experience with them. For example, filling
a bottle with water produces a commonly known sound evolution, which
might be applied to a "state of download - meter" sonification. However,
real-world sounds can be confusing as they don't mean the same thing to
all people.

Parameter mapping

Parameter mapping is a kind of sanie scatter plot . For each data record an
acoustic event is generated as data attributes are mapped to sound param­
eters such as pitch, loudness , timbre, time stamp, etc. Parameter mapping
is the richest method to present high dimensional data, but the dimension­
ality is limited to the number of sound parameters. Furthermore, there is
no unique way of mapping between attributes and parameters. The listener
therefore requires some learning time to get acquainted to a chosen mapping.

6

2. Sound and Soni.ication 2.3. Data soni.ication

Model-based sonification

Model-based sonification partly overcomes the drawbacks of parameter map­
ping. It uses the viewpoint that sound is better characterized by its sound
source and the sound generating processes than by isolated attributes of the
sound signal like pitch or envelope shape [HHR0l]. The idea is to take the
way that we use sound in our natural environment as a model for the usage
in data sonification. Our auditory system is well-optimized for the inter­
pretation of sounds occurring in our physical environment. Model-based
sonification tries to build a sonification interface similar to the physical
model, where objects only produce sound when they are excited by the
user. Thus sound is an important feedback which communicates properties
of the material. Before building such a sonification model, one needs to
identify dynamical elements of the data set, provide a recipe for the dynam­
ics, and specify the types of allowable interactions. The main advantages of
this approach are as follows [HHR0l]:

• Sonification models need only a few parameters (given in the model
definition) whose meaning is intuitively understood and that remain
the same independent of the data under consideration.

• Properly designed models can be applied to arbitrary high-dimensional
data. As the data is implicitly encoded into sound there is no need for
prior feature selection or dimension reduction.

• Interaction with a sounding object by excitation is something human
users are familiar with and find more natural, so they will find the
interface more pleasing.

2.3.2 Advantages

Hearing being very different from vision, the auditory channel has many
advantages over the visual channel. Here are the major ones distinguished
by G. Kramer [Kra94].

The first advantage is that sound can be integrated without interfering
with the visual display. Therefore, whatever the amount of data displayed,
the user does not become overloaded by the addition of sound. The workload
can even be reduced as sharing between two sensory modalities (e.g. hearing
and sight) may be superior to sharing within a single modality [NF00].

Unlike vision, hearing is non-directional. One doesn 't need to have his
head or body pointed toward something in order to hear it. This means
that sound has an advantage for signais that appear infrequently: you don't
have to be glued to a display, waiting for the thing to appear. This way,

7

2.3. Data sonifi.cation 2. Sound and Sonifi.cation

sound has a better response time than visual representations and allows
rapid detecting and alerting when monitoring high stress situations [Anr99].

Another advantage is the facility to notice variations in a sound. When
looking right at the screen, the user could miss something, especially if it
appears only briefly. It 's much more difficult to miss a change in a sound.
Human hearing is particularly sensitive to temporal changes in sounds. We
notice very fine alterations to continuous sounds, and we can pick out the
changes from a complex array of information.

Adding sound to visual representations offers additional dimensionality.
Indeed, using sound provides up to seven dimensions by taking advantage of
the available sound attributes [CBL95]. Therefore, when the same complex
information is presented in a visually or auditory form, the latter requires
significantly less effort to interpret .

In addition, some characteristics of visual and auditory displays are pre­
sented in table 2.1.

The message length in auditory displays is usually shorter than in vi­
sual displays. While graphical displays can be very visually loaded, data
sonification has to be quite short in order to be effective and easily inter­
preted. Earcons for example consist only of a couple of notes to ease the
user's learning process.

Although data sonification can be very useful, sound often conveys less
information than graphical data. Consequently, the info rate of auditory
displays is limited.

As already stated, the non-directionality of sound allows an immediate
response of the user, even if he is not looking at the signal's source (directed
attention is not required). Moreover, changes in sound are more quickly
detected than visual changes, as our visual sense has a rather small area of
high focus. for example, while typing a text with a wordprocessor, the user
doesn't notice the time display being updated every minute at the bottom
right corner of the screen. This wouldn't be the case if a sound was played
every minute (although it would be quite annoying) .

Placing a sound source at a particular three-dimensional location as
heard through stereo headphones is difficult and the perception of eleva­
tion of a sound source is relatively poor . However, the one-dimensional
mapping offered by stereo balance can augment visualizations by providing
locational eues [MR95].

2.3.3 Limitations

While there are many advantages to using sound for data display, there are
also disadvantages that must not be ignored [Wil96].

8

2. Sound and Sonifi.cation 2.3. Data sonifi.cation

Characteristic Auditory Visual
message length short long
info rate low high
response immediate later
attention-getting good limited
directed attention not required required
localization limited good

Table 2.1: Auditory vs. visual displays

The most important disadvantage is that a human ear cannot ignore
auditory stimuli. Unlike the human eye, the ear cannot ignore the stimuli
by simply moving its focus or closing its eyelid. This can cause severe
problems as users are easily disturbed by sounds coming from other users
[Anr99]. Consequently, auditory displays are frequently disabled by users
due to an increase in frustration and subjective workload.

Sonifications that produce chaotic and unmusical sounds, while they may
still be useful, can be hard to listen to. Auditory fatigue may reduce the
ability of a listener to recognize the information conveyed by a sonification.

Just as in graphical displays one abject can mask another, so can one
sound mask another. A predominating timbre, or volume differences be­
tween data streams, may render a portion of the sonification undetectable.
Moreover, some sound properties may make others undetectable. For exam­
ple, if the duration of a note is too short, we may not be able to perceive its
pitch.

2.3.4 Examples

As already stated, sonification is a way to provide information to visually
impaired individuals, using sound instead of visualization. But sonification
can also be used to extend human-computer interaction, using sound in
addition to visual display. This section briefly describes some examples
where sound replaces or improves visual representations.

Soundtrack

The Soundtrack project is a word processor with an auditory interface pro­
posed by Edwards in 1989 [Edw89]. This kind of interface is useful for visu­
ally impaired persans, but also for sighted persans when the screen becomes
visually overloaded. The Soundtrack interface uses both speech and non­
speech sounds. The screen is divided into areas corresponding to different

9

2.3. Data sonifi.cation 2. Sound and Sonifi.cation

menus. When the mouse pointer goes over one of these areas, a character­
istic sound is played, notifying the user of the pointer location. If the user
wants more information, he can click on the area and the title is dictated
by a speech synthesizer.

The SonicFinder

The SonicFinder is a sonic interface developed by Bill Gaver in 1989 [Gav89).
This interface adds auditory eues to the graphical Finder environment on
the Macintosh. It uses sound in a way that reflects how it is used in the
everyday world. Thus, dragging a file icon with the mouse sounds like
dragging something along the floor, and dropping an icon into the trashcan
sounds like dropping a large object into a metal trashcan. Moreover, thanks
to SonicFinder, the user is able to determine the type of an object (e.g. an
application, disk or file folder) and its size, as small objects have high-pitched
sounds and large ones are low-pitched.

WebMelody

The WebMelody project is a novel technique developed by italian researchers
to monitor the behaviour of a World Wide Web server by associating sounds
to events describing the server activity [BCS+oo). This sonification tech­
nique is an efficient solution to allow on-line monitoring of large amount
of log data that are available. The webmaster is able to monitor the cor­
rect functioning of the WWW server in real time without interfering with
other activities. Indeed, the webmaster can perceive the server behaviour
as "background music" as he is executing other tasks at the same time.
Moreover, this real-time information can quickly redirect the focus of the
webmaster to the problem whenever needed so that he can take appropriate
actions.

CAITLIN

The CAITLIN project, developed by Paul Vickers, aims to determine whether
musical auralizations of Pascal programs can usefully assist the novice pro­
grammer with debugging [Vic99, VA96]. CAITLIN musically auralizes pro­
grams written in Turbo Pascal and presents the user with an integrated
environment for carrying out auralization, compilation and running of pro­
grams. Auralization is done at the construct level. A WHILE loop is aural­
ized in one way and REPEAT, FOR, CASE, IF ... THEN ... ELSE and WITH
constructs in others. The user may select, for each construct, the nature of

10

2. Sound and Sonification 2.4. Conclusion

the auralization to be applied. Music helps novice programmers with locat­
ing errors in their code but might also be used to assist visually impaired
programmers.

2.4 Conclusion

In conclusion, data sonification can significantly increase the bandwidth of
human-computer interfaces. Sound properties, as described in this chapter,
o:ffer interesting ways of communicating and interacting with the computer.
Moreover, by explaining some techniques of sonification, some examples of
systems implementing them, as well as some of its advantages and disad­
vantages, it has been shown that sonification remains an interesting field
of research. Making our listening capabilities usable can extend visual dis­
plays and ultimately even replace them. Sound, alone or in combination
with visual imaging techniques, o:ffers a powerful means of transmitting in­
formation.

11

Chapter 3

Preprocessing
time-dependent data

3.1 Introduction

Bèfore sonification can be applied, the raw data set must be treated in order
to remove undesired or unnecessary values, and to prepare the remaining
ones for sonification. This chapter covers the preprocessing techniques that
allow time-dependent data to be sonified. After a small introduction to the
concepts of time series, we present the problems caused by extreme values
and the ways to detect them, as well as the main smoothing methods used
to filter out errors and noise from the data set.

3.2 Time-dependent data

3.2.1 Time series

Time-dependent data is a time series, i.e. a sequence of observations which
are ordered in time. Each time stamp is associated with a data value.
The data values are time-dependent, while time is the independent variable.
Time series are best displayed in a scatter plot. The series value is plotted
on the vertical axis and time on the horizontal axis. There are two kinds of
time series [EM97]:

Continuous time series There is an observation at every instant of time,
e.g. lie detectors and electrocardiograms.

Discrete time series There is an observation at (usually regularly) spaced
intervals, e.g. weekly share prices.

13

3.2. Time-dependent data 3. Preprocessing time-dependent data

They will not be distinguished in this dissertation, as they are quite sim­
ilar and share the same characteristics. Moreover, the preprocessing and
sonification techniques further discussed can be applied to both of them.

3.2.2 Components

There are two main goals of time series analysis: (a) identifying the nature
of the phenomenon represented by the sequence of observations, and (b)
predicting future values of the time series variable (forecasting) [Staül]. It
is assumed that the data consist of a systematic pattern (usually a set of
identifiable components) and random noise (error) which usually makes the
pattern difficult to identify. Smoothing and filtering techniques are then used
in order to make the pattern more perceptible. Both of the above-mentioned
goals require that this pattern is identified, which is achieved by analysing
the components that make up the pattern. Most time series patterns can
be described in terms of two basic components: trend and seasonality.

Trend

Trend is a long term movement in a time series. It is the underlying direction
(an upward or downward tendency) and rate of change in a time series,
when allowance has been made for the other components. A simple way of
detecting trend in seasonal data is to take averages over a certain period.
If these averages change with time there is evidence of a trend in the series
[EM97].

There are no proven automatic techniques to identify trend components
in the time series data. However, as long as the trend is monotonous (con­
sistently increasing or decreasing), that part of data analysis is typically not
very difficult. If the time series data contain considerable error, then the
first step in the process of trend identification is smoothing [Staül].

Seasonality

Seasonality may have a formally similar nature to the trend component, but
it repeats itself in systematic intervals over time. Usually it describes any
regular fluctuations with a period of less than one year (e.g. unemployment
figures and average daily rainfall).

It is formally defined as correlational dependency of order k between
each i th element of the series and the (i - k) th element. It is measured by
autocorrelation, i.e. a correlation between the two terms. If the measure­
ment error is not too large, seasonality can be visually identified in the series
as a pattern that repeats every k elements [Staül] .

14

3. Preprocessing time-dependent data 3.3. Extreme values

~ ;ailA" All(S_G
t.iontt,fy puun tol>I• (ln 111Xh)

700 .---'
1- ·'....,'---,------,-----~--.IW

tr!........,..~-----~~. -,- ~~!__..___,__~ ff!- ~.....,_.~___. o

l!ii- ! tilt

Figure 3.1: Example of multiplicative seasonality

Multiplicative seasonality

The multiplicative seasonality pattern indicates that the relative amplitude
of seasonal changes is constant over time, and thus related to the trend. A
classic example of multiplicative seasonality is illustrated in figure 3.1. It
represents monthly international airline passenger totals (measured in thou­
sands) in twelve consecutive years from 1949 to 1960. The trend is almost
linear, indicating that the airline industry enjoyed a steady growth over
the years (approximately 4 times more passengers travelled in 1960 than in
1949). At the same time, the seasonal component shows that more people
travel du.ring holidays then du.ring any other time of the year . Moreover,
the multiplicative seasonality component becomes quite evident, as the am­
plitude of the seasonal changes increases with the overall trend.

3.3 Extreme values

3.3.1 Outliers and mistakes

When analysing time-dependent data, one may find a particular value that
is unusually large or small relative to the others. Such a value is called an
extreme value or an outlier, terms that are usually not defined rigorously
[Une00]. What happens to outliers depends how the outlier achieved its
unusual value. If it is due to a mistake, like an experimental error or an
error while entering the data, it should be discarded, since including an
erroneous value in the analyses will give invalid results. This is especially
true for sonification applications, where the slightest oddity in the signal
will be noticed. If the unusual value is due to chance it should be kept in

15

3.3. Extreme values 3. Preprocessing time-dependent data

the analysis, as it is a correct value and cornes from the same population as
the others.

3.3.2 Detecting outliers

By their informal definition, outliers are characterized by their distance from
other observations. But how distant does an observation need to become
before it is classed as an outlier? Below are described three of the most
widely used statistical methods for detecting extreme values [Une00].

Z-score method

In a z-score test, the mean and standard deviation of the entire data set are
used to obtain a z-score for each data point, according to following formula:

Using Chebyshev's theorem, it has been stated that an observation with a
z-score greater than three should be labelled as an outlier.

Chebyshev's theorem For any positive constant k, the probability that
a random variable will take_ on a value within k standard deviations of the
mean is at least l - -b.
Although this method is extremely simple and easy to implement, it is not a
reliable way of labelling outliers since both the mean and standard deviation
are effected by the outliers.

Box plot method

The box plot method uses a graphical representation of the data set to label
outliers. The median and the lower and upper quartiles of the data set
are needed in order to build the plot. The median is the middle value in
the ordered data set, which creates two halves. Each half can be further
subdivided to give quarters, that define the lower and upper quartiles. Here
are the steps to follow in constructing a box plot.

1. Calculate the median M, lower and upper quartiles, QL and Qu, and
the interquartile range, IQR = Qu - QL, for the data set.

2. Construct a box with QL and Qu located at the lower corners. The
base width will then be equal to IQR. Draw a vertical line inside the
box to locate the median M.

16

3. Preprocessing time-dependent data 3.3. Extreme values

Outer fence Inner fence Jnner fence Outer fence

1..5'" IQR l.5'"1QR 15*IQR 1..5 • IQR

Figure 3.2: The box plot method

3. Construct two sets of limits on the box plot: inner fences are located a
distance of l.5*IQR below QL and above Qu; outer fences are located
a distance of 3 * IQR below QL and above Qu (see figure 3.2).

Using this box plot, it becomes very easy to locate possible outliers. Ob­
servations that fall between the inner and outer fences are suspect outliers.
Observations that fall outside the outer fences are highly suspect outliers.

Grubbs' method

Grubbs' method is composed of three different tests, each one for detecting a
particular type of outlier. While the first test looks for single extreme values
(figure 3.3a), the other tests look for pairs of extreme values, i.e. outliers
that are masking each other (see figure 3.3b and 3.3c) [Bur98].

Before the three tests can be applied, the data needs to be arranged
in ascending order. The test values are then computed using the following
formulae:

G3=l-((n-3) s~-2)
(n - 1) s2

where Xi is the suspected single outlier i.e. the value furthest away from the
mean, Xn and x1 are the most extreme values (since the data is ordered),
and Sn-2 is the standard deviation for the data set excluding the suspected
pair of outlier values i.e. the pair of values furthest away from the mean.

If the test values (G1 , G2 , G3) are greater than the critical value obtained
from the table at figure 3.4, then the extreme value(s) are unlikely to have
occurred by chance at the stated confidence level [Bur98].

17

3.3. Extreme values 3. Preprocessing time-dependent data

Outl ier Outlier

+ .:.11. or .1.u. +
(a) 1 •

Outlier Outlier

+ .1.11 • +
(b) • •

Outliers Outlicrs

(c) + + .:.u. or ,1,IL + + • • • •
Figure 3.3: Three outlier situations

95% confidence 1evel 99% confidence level
t1 G, G2 Û3 G, G2 Û 3

3 1 · 153 2 · 00 -- 1 · 155 2 · 00
4 1 · 463 2 · 43 0 · 9992 1 · 492 2 · 44 1 · 0000
5 1 · 672 2 · 75 O · 9817 1 · 749 2 · 80 0 · 9965
6 1 · 822 3 · 01 0 · 9436 1 · 944 3 · 10 O · 9814
7 1 · 938 3 · 22 0 · 8980 2 · 097 3 · 34 0 · 9560
8 2 · 032 3 · 40 0 · 8.522 2 · 221 3 · 54 0 · 9250
9 2 · 110 3 · 55 O · 8091 2 · 323 3 · 72 O · 8918
10 2 · 176 3 · 68 0 · 7695 2 · 410 3 · 88 0 · 8586
12 2 · 285 3 · 91 0 · 7004 2 · 550 4 · 13 0 · 7957
13 2 · 331 4 · 00 0 · 6705 2 · 607 4 · 24 0 · 7667
15 2 · 409 4 · 17 0 · 6182 2 · 705 4 · 43 0 · 7141
20 2 · 557 4 · 49 0 · 5196 2 · 884 4 · 79 0 · 6091
25 2 · 663 4 · 73 0 · 4505 3 · 009 5 · 03 0 · 5320
30 2 · 745 4 · 89 0 · 3992 3 · 103 5 · 19 0 · 4732
35 2 · 811 5 · 026 0 · 3595 3 · 178 5 · 326 0 · 4270
40 2 · 866 5 · 150 0 · 3276 3 · 240 5 ·450 0 · 3896
50 2 · 956 5 · 350 0 · 2797 3 · 336 5 · 650 0 · 3328
60 3 · 025 5 · 500 0 · 2450 3 · 411 5 · 800 0 · 2914
70 3 · 082 5 · 638 0 · 2187 3 · 471 5 · 938 0 · 2599
80 3 · 130 5 · 730 0 · 1979 3 · 521 6 · 030 0 · 2350
90 3 · 171 5 · 820 0 · 1810 3 · 563 6 · 120 0 · 2147
100 3 · 207 5 · 900 0 · 1671 3 · 600 6 · 200 0 · 1980
110 3 · 239 5 · 968 0 · 1553 3 · 632 6 · 268 0 · 1838
120 3 · 267 6 · 030 0 · 1452 3 · 662 6 · 330 0 · 1716
130 3 · 294 6 · 086 0 · 1364 3 · 688 6 · 386 0 · 16 11
140 3 · 318 6 · 137 0 · 1288 3 · 712 6 · 437 0 · 1519

Figure 3.4: Grubbs' critical value table

18

3. Preprocessing time-dependent data 3.4. Smoothing

3.3.3 Notifying outliers

If the extreme value is due to chance, it should be kept and added to the
sonification. As this value represents a rare event, it could even be sonified
as such, e.g. with an alarm signal or another unmistakable sound. Unfor­
tunately, using this kind of signals often prevents the user from hearing the
outlier's value, because at that time the signal is the center of attention and
keeps the ear away from other sonic information.

If the outlier is due to a mistake, it could still be added to the sonification,
since it may be worth knowing that the time series contains an error.

In both cases, even if the unusual value is mapped like a normal one, the
resulting sound will be out of the ordinary and noticed by the user.

3.4 Smoothing

3.4.1 Objectîves

Time-dependent data often contains random short term fluctuations. Since
the main goal of sonification is to give a clearer view of the long term be­
haviour of a series, these random variations need to be filtered out. Smooth­
ing techniques are used to reduce these irregularities. In some time series,
seasonal variation is so strong it obscures any trends or cycles which are very
important for the understanding of the process being observed. Smoothing
can remove seasonality and makes long term fluctuations in the series stand
out more clearly [EM97].

3.4.2 Smoothing techniques

Moving averages

Moving averages range among the most popular smoothing techniques for
the preprocessing of time series. A moving average is a form of average
which has been adjusted to allow for seasonal or cyclical components of a
time series [EM97]. It replaces each element of the series by either the simple
or weighted average of p surrounding elements, where p is the length of the
smoothing window. For example, the formula of the simple moving average
is

1 p - 1

µn = - L Xn - i,
p i= O

where µn represents the new value being computed and p represents the
length of the smoothing window.

19

3.5. Conclusion 3. Preprocessing time-dependent data

Running medians

Running medians smoothing is a technique analogous to that used for mov­
ing averages. The running median is calculated by finding the median of all
the values in a neighbourhood of µn. Like a moving average, the running
medians makes a trend clearer by reducing the effects of other fluctuations.
However, it is more robust than a moving average, because it is least likely
to be affected by erroneous data points.

Diff erencing

Differencing is a popular and effective method for removing trends from
time series. The first difference of a time series µt, written Dµt, is defined
by the transformation D µt = µt - µt- l · Higher-order differences are defined
by repeated application. Thus the second difference D 2 µt is defined by
D 2µt = D(Dµt) = Dµt - Dµt-1 = µt - 2µt-l + µt-2· In general, the effect
of a polynomial of degree k can be reduced to a constant by differencing k
times [Wan00].

3.5 Conclusion

When the preprocessing step is over, the extreme values have been identified
and taken care of, while the smoothing methods have removed the short term
fluctuations that would obscure the sonification. The ti:rpe-dependent data
values are now ready to be sonified.

20

Chapter 4

Pitch-based mapping

4.1 Introduction

As we have seen, parameter mapping is the most widely used sonification
technique for time-dependent data. Indeed, the possibility to freely combine
and mix up sound attributes makes it the richest method for the presentation
of high dimensional data. This chapter describes the main mapping tech­
nique used for parameter mapping, known &:13 pitch-based mapping. This
type of mapping is very easy to prod uce, and is often used as the starting
point for complex sonification techniques.

4.2 Mapping methods

Pitch-based mapping represents numerical data by tones at specific frequen­
cies. These frequencies typically have a lower and upper limit, as the human
ear has trouble perceiving too low frequencies, and can be irritated or even
damaged by too high frequencies. While it seems quite reasonable to map
big values to high frequencies and small values to low frequencies, there
are several ways to convert data values to a given frequency range. The two
common mapping methods are linear mapping and chromatic scale mapping
[Sah99].

4.2.1 Linear mapping

Linear pitch-based mapping is quite straightforward. Data values have a
linear correspondence to frequency. Thus, if the variable y1 is twice the
value of Y2, the frequency of Y1 will be twice the frequency of Y2 (when
taking into account their respective ranges). Linearly mapping a value y to

21

4.3. From mapping to sound 4. Pitch-based mapping

a frequency f is accomplished by the relation

Y-Ymin

Ymax -Ymin

f - fmin

fmax - fmin'

where Ymax and Ymin are the maximum and minimum data values to be
mapped, and !max and !min span the desired frequency range. Thus, the
resulting linearly mapped frequency is given by

f f (f f) Y - Ymin = min + max - min
Ymax - Ymin

4.2.2 Chromatic scale mapping

Chromatic scale mapping, also called logarithmic mapping, maps the data
points to actual notes of the chromatic scale. Thus the resulting pitch val­
ues share a relationship found in musical instruments. For more information
concerning the chromatic scale, we refer to [PBOl]. The formula for con­
verting a value y to a frequency f is

Y-Ymin
_ . (fmax) Ymax-Ymin

f-fmm -
1

. ·
min

Figure 4.1 shows the mapping results of an arbitrary graph using both
mapping methods. The graph formed by the linearly mapped values has
exactly the same shape as the original graph, since the linearly mapped
values and the original graph's values are proportionally the same. The
chromatic scale graph is not proportional to the original one. Indeed, the
frequencies corresponding to the top and bottom values are quite similar,
but the middle ones are very distant from each other. In practice, it is hard
to tell which one is better, but the chromatic scale mapping usually sounds
a little better.

4.3 From mapping to sound

Pitch-based mapping transforms the initial data values to frequency values,
which are then used to create notes and eventually produce sound. There
are many ways to create and assemble these notes, each one resulting in a
unique sound signal. Besicles the desired frequency range, other parameters
can greatly affect the sonification.

Timbre Whether using a single instrument or more, changing the timbre
obviously influences the signal, and thus the possible interpretation,
to a great extend.

22

4. Pitch-based mapping 4.4. Improving the sonification

1-+-- Llnear mapplng--- c nromatlc scale mapp1nij

..,
"' "'
lime

Figure 4.1: Linear vs . chromatic scale mapping

Time stamp Every sonification process needs some sort of timing method
to assemble the notes in a realistic and efficient way. The simplest tirn­
ing method is to choose a fixed interval as the time duration between
consecutive notes.

Loudness The loudness or amplitude of a note is more of a subjective factor
and has a limited influence on the signal.

4.4 lmproving the sonification

Pitch-based mapping, using a linear or chromatic scale method, is typically
the initial mapping technique for time-dependent data. While the created
signal sounds already quite convincing, several features can be added to
improve the sonification.

4.4.1 Slope indicator

Using only the basic pitch-based mapping method, it is di:fficult to tell when
a graph is linearly increasing (e.g. Y= X), and when there is some curvature
to the graph (e.g. Y= X 2). For this reason, sound can be added to alert the

23

4.4. lmproving the sonifi.cation 4. Pitch-based mapping

listener to the slope and curvature of the graph [Sah98]. The first derivative
of the initial data represents the slope and is defined by

dY
dX.

Generally a series of drum beats are used to indicate this slope value (the
greater the slope, the more frequent the beat). In addition, it is possible to
indicate the curvature of the graph by varying the pitch of the drum beat.
The curvature represents the change in the slope and is defined by

The drum beat should have at least three different pitch levels, as the graph
can be bowl shaped (curvature > 0) , hill shaped (curvature < 0) or linear
(curvature = 0).

When using slope indicators, the importance of smoothing becomes more
evident. Indeed, a typical time-dependent data graph contains a lot of small
fluctuations, which would cause the slope to be highly irregular. By using
smoothing methods, the slope variations are minimalized, resulting in a
better sonification.

4.4.2 Panning

Panning is a form of sound localization, and relies on intensity variations
between adjacent speakers to achieve the desired spatial localization. When
the sonification involves multiple different signais, panning can help to dif­
ferentiate them more easily by playing every signal at a different spatial
location.

Stereo panning is the most common type of panning and involves a single
pair of speakers. By varying the level of otherwise identical signais played
from this pair of speakers, stereo panning can alter the perceived laterality of
an audio source [SSC99]. Besides being used for sonifying multiple signais,
it is typically used as a duration indicator of the signal. The signal starts on
the left speaker , and gradually moves to the right one. Thus, at the end of
the signal only the right speaker is playing. This mechanism enables the user
to hear the progression (and thus the duration) of the signal. For example,
when both speakers are playing at the same intensity, the user knows that
half of the signal is over , and that the other half is still to corne.

A crucial problem of stereo mapping is the location of the listener with
respect to the speakers. While the best location is equidistant from the
speakers positioned symmetrically in front of the listener, the perceived di­
rection changes quite easily as the user starts to move around. For example,

24

4. Pitch-based mapping 4.4. Improving the sonification

a duration indicator would be useless if the listener is sitting too far away
from the speakers.

The ability to generate an accurate spatial simulation using loudspeak­
ers increases dramatically as the number of speakers used in the display
increases. With an infinite number of speakers around the listener, one
would simply play the desired signal from the speaker at the desired loca­
tion of the source to achieve a perfect reproduction. Therefore, panning
between multiple pairs of speakers (for instance, speakers arrayed in front of
and behind the listener) is often used to improve spatial simulations using
loudspeakers [SSC99).

4.4.3 Extrema values

Although extrema values can be outliers, and outliers can be extrema values
(they often are), outliers (extreme values) and extrema values are two dif­
ferent concepts. Extrema values are maximum and minimum values, which
can be absolute or local. If the time-dependent data begins at time t0 and
ends at time tn, an extrema value at time chas the following properties:

Absolute (global) maximum Yc ~ Yi, with to :S i :S tn

Absolute (global) minimum Yc :S Yi, with to :Si :S tn

Local (relative) maximum Yc ~ Yi, when i is near c, with to :Si :S tn

Local (relative) minimum Yc :S Yi , when i is near c, with to :S i :S tn
(Near c implies all i in a chosen interval containing c)

There are several methods for sonifying extrema values. One could rep­
resent each type of extrema value by an distinct sound, and simply play
this sound when the signal reaches a maximum or minimum value. But
this sonification method prevents the user from hearing the extrema's value.
Moreover, if for example two local maximum values are detected, it is im­
possible to hear whether they have the same value or not, since they are
represented by the exact same sound. A possible solution would be to vary
the sound's frequency in fonction of the extrema's value, thus allowing to
differentiate two different values.

Another sonification method makes use of a speech synthesizer, which
converts numerical values to their spoken sonic counterpart. These numeri­
cal values can be either the time values at which an extrema point occurred
(on X-axis) , or the corresponding data values (on Y-axis). This method
is also useful if the user is interested in the actual numeric values of data
elements around a maximum or minimum point .

25

4.5. Conclusion 4. Pitch-based mapping

4.5 Conclusion

Parameter mapping is a rich and relatively unexplored technique for rep­
resenting single and multi-dimensional data. The ability to combine more
than a dozen sound parameters in lots of different ways leads to an abun­
dance of possible sonifications. While this seems like an obvious advantage,
it can cause some difficulties, as the plurality of choices makes it very tricky
to find the best solution to a sonification problem. Moreover, the lack of
sonification standards and research on the subject prevents one from easily
identifying the optimal solution, and forces him to carry out some laborious
experiments.

26

Chapter 5

Sound implementation

5.1 Introduction

When implementing a sonification application, it is important to select the
best sound format for the demanded task. Depending on the type of sonifi­
cation, several parameters can have an influence on the chosen format. For
example, one can choose to sonify data in real-time or not. This crucial
choice will have a major impact on the performance and possibilities of the
chosen sonification.

This chapter starts with an overview of the available sound formats. It
then introduces the critical parameters that assist the designer in selecting
the best format for a particular sonification. The last section is much more
concrete as it discusses the implementation of MIDI using Java. It particu­
larly focuses on some implementation issues that could arise when using the
Java Sound API.

5.2 Available sound formats

5.2.1 Sampled sounds

Sampled sounds are the most widely used of all the available sound types.
Typically they have been digitally recorded by a sampling technique, but
they can also be computed (possibly at run time) . The sampled sound
data consist of a bit by bit recording of a sound, by sampling and storing
the intensity of the soundwave at frequent time intervals. The sampling
rate determines the sound quality. For example, audio CDs are recorded
using a 44 kHz sampling rate, which means that the soundwave is sampled
over 40, 000 times a second, producing very high quality sound. The main

27

5.2. A va.ilable sound formats 5. Sound implementa.tion

advantage of sampled sounds is that they can describe a wide variety of
sounds, such as speech or special sound effects.

Generally the recordings are stored in WAV files, so named for their file
extension. Because the soundwaves need to be sampled frequently to obtain
good quality audio, the sampling procedure generates a great deal of data.
Thus the resulting files are usually very large, especially when the recorded
sound is quite complex. About 16K to 48K of storage space is needed for
every second of sound, even if there is "no" sound. The amount of storage
space needed depends on the sampling rate, and whether the sample is
recorded in stereo or not [Sch97]. Often complex compression techniques
are used to reduce the file size.

WAV files are digitally stored sound samples. When playing them on
a sound card, the sound reproduced is deemed to be "authentic" as long
as the sound card can reproduce the sample in the original resolution, i.e.
at the same sampling rate. The sample sound files contain the complete
sound information, so they are not depending on the synthesizer ability of
the sound card [Sch97].

5.2.2 MIDI

MIDI stands for Musical Instrument Digital Interface. It is a standard for
specifying how a computer should play digital instruments. A computer
plays sound via a synthesizer on the sound card. Simply stated, MIDI
information tells a synthesizer when to start and stop playing a specific note
[Lip89]. Moreover, the MIDI standard contains instructions for specifying
the parameters of a note, such as volume, instrument, etc.

MIDI files do not transmit sound. They transmit instructions that tell
the synthesizer what notes to play, how to play them and at what time. The
synthesizer uses previously stored sound sequences to produce the requested
notes. MIDI files contain data that are merely player instructions for the
synthesizer. Therefore the sound quality depends totally on your sound
card's synthesizer capability. While with MIDI instructions the timing and
volume is strictly the same, the sound quality depends entirely on the tonal
quality of the synthesizer sequences that are used to play them [Sch97].

In order to make MIDI files more compatible, the General MIDI speci­
fication was created. It primarily defines a standard set of 128 instruments
(called programs) , and gives them an associated number. For example, it
was decided that program number 1 on all synthesizers should be the sound
of an Acoustic Grand Piano. In this way, no matter what MIDI synthesizer
is used, switching to program number 1 always plays some sort of Acoustic
Grand Piano. Because General MIDI does not specify how each instrument

28

5. Sound implementation 5.2. A vailable sound formats

should be synthesized, the quality of the sound is still dictated by that of
the hardware.

The great advantage of MIDI over sampled sound is that it only requires
a fraction of the information. Because MIDI files only contain instructions
on how to generate sound, and not the sound itself, the information is very
compact. This causes MIDI files to have a very small size. ln fact, normal
MIDI files are always shorter than any sampled sound file.

MIDI messages

The basis for MIDI communication is the byte. Each MIDI instruction has
a specific byte sequence. The first byte is the status byte, which tells the
MIDI device what fonction to perform. Depending on the status byte, a
number of different byte patterns will follow. For example, the Note On
status byte tells the MIDI device to begin sounding a note. Two additional
bytes are required: a pitch byte, which tells the MIDI device which note to
play, and a velocity byte, which tells the device how loud to play the note
[Lip89).

MIDI channels

MIDI channels make it possible for instruments in a MIDI system to play a
unique part of a more complex composition. Each channel carries a different
part of the final sound and corresponds to a single instrument. Therefore
the MIDI messages sent to a channel will be processed using this channel's
instrument . MIDI operates on 16 different channels, numbered O through 15.
MIDI messages that apply to a specific channel are called Channel Messages
and the channel number is included in the status byte for these messages.
For example, a Note On status byte always includes the channel on which
the specified note should be played, i.e. what instrument should be used
to play the note. System messages are not channel specific, and no channel
number is indicated in their status bytes. MIDI files are mainly composed
of the following messages:

Note On The Note On message tells the synthesizer to start playing a note.
Two additional bytes specify the pitch and velocity value of the note.
The note is played using the instrument of the channel specified in the
status byte.

Note Off The command to stop playing a note is not specified in the Note
On message. Instead there is a separate Note Off command. The
two additional bytes have the same fonctions as the Note On bytes.
However the Note Off velocity information is normally ignored.

29

5.3. Choosing the right format 5. Sound implementation

Program Change The Program Change message is used to specify the
type of instrument which should be used to play sounds on a given
channel. This message needs only one data byte which specifies the
new pro gram number.

Control Change MIDI Control Change messages are used to control a
wide variety of fonctions in a synthesizer. Control Change messages,
like other MIDI Channel Messages, only affect the channel number in­
dicated in the status byte. The Control Change status byte is followed
by one data byte indicating the "controller number", and a second byte
which specifies the "control value". The controller number identifies
which fonction of the synthesizer is to be controlled by the message,
and the control value forms the parameter of the fonction. For exam­
ple, the controller number 10 is used to change the panning settings,
and the control value represents the new panning value (e.g. a num­
ber between O and 127 where O means everything on the left and 127
everything on the right speaker).

5.3 Choosing the right format

The selection of best sound format for a sonification application is based on
the application purposes and the implementation context. While sampled
sounds and MIDI may be used in parallel, a sound system created with a
single format offers a much easier implementation and management of the
system.

The first thing to consider should be storage space. If the application is
executed on a system with limited storage capacities, the amount of possible
sampled sound files will be restricted. This is especially true for Internet­
based applications, where the produced sound quality depends on the com­
munication speed. Compared with WAV files, MIDI files take considerably
less time to load and the sound quality only depends on the presented sound
card.

Another essential point is the type of sonification that the application
needs. For example, auditory icons use recordings of real-world sounds, and
are thus perfectly suited for sampled sounds. One more area where sampled
sounds are very popular is speech synthesis, since the very own nature of
MIDI makes it inappropriate for speech or other special sound effects. On
the other hand, MIDI allows one to easily edit and alter sounds, e.g. by
modifying the playback speed and the pitch of the notes independently.
This is particularly helpfol when using the parameter mapping sonification,
which demands a lot of tweaking and testing before finding the optimal
solution.

30

5. Sound implementation 5.4. MIDI and Java

If the desired sound quality is very high, MIDI could cause some prob­
lems, as the same MIDI file may sound quite different on several sound
systems. Sampled sound though almost guaranties that the musical output
will correspond to the recorded version. However, modern sound cards now
generally provide high quality sound and the pre-recorded instruments on
the MIDI synthesizer are improving. This minimizes the risk of having an
application sound totally different on two sound systems.

Last but not least, the implementation context must be considered.
Whether using sampled sounds or MIDI, playing an existing sound file is
quite straightforward. The problems arise when real-time sounds need to be
created. WAV files are particularly hard to generate in real-time, as they
require a lot of expertise and specialized software. Creating real-time MIDI
is much more feasible, although time management can be tricky. Indeed,
creating and sending a MIDI message to a synthesizer is quite easy, but it
requires the programmer to handle time intervals between messages, since
upon receiving a message the synthesizer instantly performs the requested
action.

5.4 MIDI and Java

5.4.1 The Java Sound API

Before the release of Java 2, sound support was the main weakness of Java,
that supported only 8-bit, 8-kHz audio and an extremely limited range of
file types. All that has changed with the incorporation of the Java Sound
engine in Java 2. Another step forward has been taken with the beta release
of Java 2 version 1.3, which exposes the Java Sound API. Java Sound can
be made available to earlier Java 1.x platforms through the use of the Java
Media Framework 2.0. The Sound API provided by version 1.3 of the Java
2 Platform offers low-level support for capturing, processing, and playing
back sampled audio and MIDI data. Java Sound is a 16-bit, 48-kHz sound
synthesis engine that supports a wide variety of file types [Hob00].

Java Sound provides low-level audio support for Java with a very high
degree of control over audio-specific functionalities. It is not meant to fonc­
tion as a standalone application environment, but as a set of interfaces upon
which applications can be built such as audio editors, MIDI sequencers,
games, etc [Anr99].

The Java Sound API provides support for both sampled sound and MIDI.
These two formats are completely disconnected in the API specification, as
they are provided in separate packages. The Java Sound API consists of
four packages:

31

5.4. MIDI and Java

javax.media.sound.sampled
javax.media.sound.midi
javax.media.sound.sampled.spi
javax.media.sound.midi.spi

5. Sound implementation

The first two packages provide interfaces supporting sampled audio and
MIDI sequencing and synthesis; the .spi packages provide service providers
with abstract interfaces to enable the installation of custom components
[Hob00]. This dissertation will focus on the second package, since the pa­
rameter mapping sonification technique primarily uses the MIDI sound for­
mat.

5.4.2 The MIDI package

The j avax. media. sound. midi package is dedicated to MIDI. It provides
all the classes and interfaces to play back, modify and create MIDI data.
The package has been conceived with the MIDI file format in mind. Indeed,
almost every MIDI notion has a corresponding Java Sound class or interface.
For example, just as the sound card synthesizer plays messages from a MIDI
file, the Synthesizer interface is used to process MIDI messages, which are
represented by the MidiMessage class.

Messages

MidiMessage is the base class for MIDI messages. It is an abstract class that
represents a "raw" MIDI message, with no timing information. MidiMessage
is divided into three subclasses:

• The ShortMessage class represents the most frequent messages, like
Note On, Note Off and Program Change. They have at most two data
bytes following the status byte.

• The SysexMessage abjects represent MIDI system exclusive messages.
They are used to configure devices, and transfer digital information
such as sample files between devices.

• A MetaMessage is a MidiMessage that is not meaningful to synthe­
sizers, but that can be stored in a MIDI file and interpreted by a
sequencer program. There are meta-events for such information as
lyrics, copyrights, tempo indications, etc.

32

5. Sound implementation

1

1 Mes, ... 1 T , ,1 .__I ---~

. Event

Track

♦

♦

♦

5.4. MIDI and Java

♦ ♦ ♦

Sequence

Figure 5.1: Structure of a MIDI sequence

Events

MIDI events are essentially MIDI messages with some timing information.
A MidiEvent object contains a MIDI message and a corresponding time­
stamp expressed in ticks. The duration of a tick is specified by the timing
information contained in the MIDI sequence. A Sequence can be read from
a standard MIDI file or created from scratch by combining tracks made up
of events. A Track is an independent stream of MIDI events that can be
stored along with other tracks in a MIDI sequence. The MIDI specification
allows only 16 channels of MIDI data, but tracks are a way to get around
this limitation. A Sequence object can contain any number of tracks, each
containing its own stream of up to 16 channels of MIDI data [Javüüa]. Thus
sequences contain tracks, which contain events, which contain messages.
This is illustrated in figure 5.1.

Devices

MIDI devices can send or receive MIDI events. The MidiDevice inter­
face serves as a base interface for common devices such as synthesizers and
sequencers. In order to exchange MIDI events , devices typically also imple­
ment the Transmi tter or Recei ver interface.

A sequencer is a device used to play back, create and edit MIDI se­
quences. To this end, sequencers use receivers to capture data and transmit­
ters to send it. The Sequencer interface includes methods for the following
basic operations [Javüüa]:

33

5.4. MIDI and Java 5. Sound implementation

• Obtaining a sequence from MIDI file data

• Starting and stopping playback

• Moving to an arbitrary position in the sequence

• Changing the tempo (speed) of playback

• Editing the data by adding or deleting individual MIDI events or entire
tracks

A synthesizer generates sound. The sound is actually produced through
a set of MIDI channels controlled by the Synthesizer object. Many synthe­
sizers support Recei vers, through which MIDI events can be delivered to
the synthesizer. In such cases, the synthesizer typically responds by sending
a corresponding message to the appropriate MidiChannel , or by processing
the event itself if the event is not channel specific [Javüüa].

The Synthesizer class also provides methods for manipulating sound­
banks and instruments. An Instrument represents the specific sound played
by a MidiChannel object, by specifying how the sound should be synthe­
sized (i.e. how to create the audio signal). A soundbank is a collection of
instruments, organized by bank and pro gram number. These two elements
forma Patch object that is used to select a specific instrument. Although a
default soundbank is present, it is possible to modify the Soundbank object
by reading a new soundbank file.

5.4.3 lmplementation issues

While the concepts of sequencer and synthesizer are relatively easy to under­
stand, it is much harder to comprehend how these objects can be combined
to produce sound. A synthesizer generates sound, with or without a se­
quencer. Individual notes can be sent directly to the synthesizer, or it can
obtain a sequence of notes via a sequencer.

To decide whether to use a sequencer or not, one must first select the
appropriate timing method. MIDI messages can be created and sent in real­
time, or they can be part of an existing sequence that will be sent to the
synthesizer at some later time. Generally, real-time sonifications are much
easier to implement as they do not use sequencers. In both cases, sending
notes to the synthesizer often requires a precise scheduling of the messages
containing these notes. As previously shown, this is done through the use of
time stamps, but the implementation of time stamps within the Java Sound
API is quite intricate.

34

5. Sound implementation 5.4. MIDI and Java

When to use a sequencer

When implementing a MIDI-based sonification, one needs to determine
whether the MIDI messages will be created in real-time or not. Real-time
sonification is often used when the MIDI events are generated by the user,
i.e. a MIDI event corresponds to a specific action from the user. In such
cases, the MIDI messages are sent directly to the synthesizer, without using a
sequencer. This is quite logical, considering that sequencers play sequences,
and that no sequence is present at this point. For example, let us consider a
program that lets the user play notes by clicking on an onscreen piano key­
board. When the program gets a mouse-down event, it immediately sends
the appropriate Note On message to the synthesizer [Jav00b].

As MIDI events are contained in sequences, real-time sonification makes
no use of MidiEvent objects. Instead, MidiMessage objects are sent to the
synthesizer's Recei ver object, along with a time-stamp argument. This
may seem strange, since messages sent to the synthesizer are supposed to
be handled immediately, but this kind of time stamp is only used for fine­
tuning the timing. It is designed to help compensate for latencies introduced
by the operating system or by the application program [J av00b]. The time
value is expressed in microseconds and represents the time elapsed since the
device that owns the receiver was opened (e.g. the Synthesizer object).
This value must be close to the present time, or the receiving device might
not be able to schedule the message correctly. A message whose time stamp
is very far in the future will not be handled correctly, and certainly not if
its time stamp is in the past. It is up to the device to decide how to handle
time stamps that are too far off in the future or are in the past. However,
most of the time a value of -1 is used, which means that the device will
simply try to respond to the message as soon as possible.

If an application program wanted to create a queue of MIDI messages for
an entire piece of music ahead of time (instead of creating each message in
response to a real-time event), it would have to be very careful to schedule
each MidiMessage for nearly the right time [Jav00b] . Fortunately a program
can add a sequencer to the synthesizer and let the Sequencer object manage
the queue of MIDI messages. This requires the messages to be coupled
with "true" time stamps to form MIDI events. The sequencer actually
plays the Sequence containing these MidiEvent objects. It takes care of
scheduling and sending the messages, i.e. playing the music with the correct
timing. Generally, sequencers are used for playing data from MIDI files, and
whenever the application program permits dynamic alterations of the MIDI
signal (e.g. changing playback speed, rewinding or moving to particular
points in the sequence).

35

5.4. MIDI and Java 5. Sound implementation

Duration of a tick

MIDI uses two kinds of time stamps. Time stamps expressed in microsec­
onds are used by a device's receiver along with a MIDI message to correct
processing latency. The second kind of time stamps are encapsulated to­
gether with MIDI messages in a MidiEvent. In this case, the timing is
expressed in abstract units called ticks.

The duration of a tick varies between sequences, but usually not within
a sequence. The size of a tick is given in one of two types of units:

• Pulses per quarter note, abbreviated as PPQ.

• Ticks per frame, also known as the SMPTE time code (a standard
adopted by the Society of Motion Picture and Television Engineers).

The main difference is that PPQ units use relative time and SMPTE absolute
time. Representations of absolute time follow hours, minutes and seconds
just like a watch. Therefore absolute time is always the same and cannot
be speeded up or slowed clown. Relative time is a reference to a musical
piece that has an inner tempo. For example, a composition may take three
minutes to perform at a tempo of 80 bpm (beats per minute), but would
take only a minute and a half if the tempo was increas~d to 160 bpm.

If the unit is PPQ, the size of a tick is expressed as a fraction of a quarter
note, which is a relative time value. A quarter note is a musical duration
value that often corresponds to one beat of the music. The duration of a
quarter note is dependent on the tempo, which can vary during the course
of the music if the sequence contains tempo-change events [Jav00b].

On the other hand, SMPTE units measure absolute time, and the no­
tion of tempo is inapplicable. There are actually four different SMPTE
conventions available, which refer to the number of motion-picture frames
per second. The number of frames per second can be 24, 25, 29.97, or 30.
With SMPTE time code, the size of a tick is expressed as a fraction of a
frame [Jav00b] .

Concretely, an application program usually needs to convert standard
time values (expressed in seconds) to ticks (expressed in PPQ or SMPTE
units). This conversion is trivial once the duration of a tick is computed.
The following formulae calculate the number of ticks per second:

t · k p S d l . tempolnBeatsPerMinute
ic s er econ = reso ution *

60

ticksPerSecond = resolution * f ramesPerSecond

where resolution is an arbitrary value representing the number of pulses
per quarter note if the division type is PPQ, or per SMPTE frame if the

36

5. Sound implementation 5.5. Conclusion

division type is one of the SMPTE conventions. The size of a tick is then
easily computed with this formula:

1
tickSizelnSeconds = . k p S d tic s er econ

To convert a standard time value (given in seconds) to a time-stamp, one
would simply <livide the time value by the tick size to obtain the corre­
sponding number of ticks. For example, using the PPQ time code with
a resolution of 100 pulses per quarter note, and knowing that the default
tempo is 120 bpm, the conversion of 200 milliseconds (0.2 seconds) needs
following calculations:

120
ticksPerSecond = 100 *

60
= 200

1
tickSizelnSeconds =

200
= 0.005

numberO JTicks = /~~
5

= 40.

Thus, at the previously stated resolution and tempo, 200 milliseconds are
equivalent to 40 ticks.

A last remark concerns the difference between time stamps contained in
standard MIDI files and MidiEvent objects. The tick values contained in
MidiEvent objects measure cumulative time, rather than delta time. In a
standard MIDI file, each event's timing information measures the amount
of time elapsed since the start of the previous event in the sequence. This
is called delta time. But in the Java Sound API, the ticks represent the
previous event's time value plus the delta value. In other words, in the Java
Sound API the timing value for each event is always greater than that of
the previous event in the sequence (or equal, if they occur simultaneously).
Each event 's timing value measures the time elapsed since the beginning of
the sequence [Jav00b].

In conclusion, a sequence can either use PPQ or one of the SMPTE
units. However, since SMPTE units are unaffected by tempo variations, it
is impossible to dynamically change the playback speed of a sequence with
a SMPTE-based time code. Therefore most MIDI sequences use the PPQ
relative timing code.

5.5 Conclusion

Sampled sounds are best suited to sonifications that require natural or spe­
cial sound effects, like alarm signals, earcons and auditory icons. On the

37

5.5. Conclusion 5. Sound implementation

other hand, parameter mappings (especially pitch-based sonifications) pre­
fer the MIDI sound format. While both file formats are relatively easy to
play back, it is much more feasible to create or modify a MID file than a
WAV file. Once the particular implementation issues have been overcome,
MIDI offers much more possibilities to implement the best possible sonifica­
tion.

38

Chapter 6

SoundChart

6.1 Introduction

The opening chapters of this dissertation have introduced the concepts of
sound, sonification and time-dependent data. While the chapter on pitch­
based mapping covered the most widely used sonification technique, the next
one reviewed the available sound formats, more particularly the MIDI for­
mat. In order to validate or criticize our findings, two application programs
were developed. This chapter covers the first one, called SoundChart.

6.2 Description

SoundChart is a stand-alone Java application providing tools for the soni­
fication of time-dependent two-dimensional data. The purpose of the ap­
plication is to support the designer through the whole sonification process,
from data display and preprocessing to the sonification procedure itself.

From now on, a designer will designate a person who uses the application
and sets the sonification parameters. Users or listeners represent end-users
of the application, who listen to the signals generated by a designer. Since
sonification is a technique that can replace or support visual information,
users do not necessarily need to be using SoundChart. For instance, the
sound signal can be created by a designer using SoundChart and then sent
to one or more users through some network.

The sonification process is achieved by following three successive steps,
each one corresponding to a panel in the application. These three panels
are described in the next sections.

39

6.3. Data management 6. SoundChart

6.3 Data management

The first step for any sonification process is to select the data that will be
used. The data obviously need to correspond to the specific requirements
of the application. In this case, SoundChart needs two-dimensional data for
the representation of time-dependent series.

6.3.1 SoundChart file format

SoundChart has its own file format for two-dimensional data. It is a very
simple, text-based format, with no predefined file extension. This means
that any file can be opened with a text editor and arranged for usage in
SoundChart. A SoundChart file contains an unlimited number of lines, each
line representing a two-dimensional point, which simply consists in an X
and Y value separated by a special character "I". The X value represents
the independent time value, while the Y value represents the corresponding
dependent data value. Both values are floating point numbers and can be
negative.

Each couple is supposed to represent a single point in the time series.
Time values are usually ordered in chronological way, but SoundChart does
not impose this restriction. The arrangement of the X values in the file
itself is left to the designer. Moreover, if the file contains two data points
occurring at the same time (i.e. they have the same X value), SoundChart
only considers the last one in the file to be valid. For example, the two
following file contents result in exactly the same data.

010.0
11-0.5
211. 75
310.2
411
512.3

114.7
010.0
310.2
211. 75
411
512.3
11-0.5

While some time series are continuous, most of them contain discrete
time data, i.e. observations at usually regularly spaced intervals. Sound­
Chart only works with discrete time series, and accepts any interval size
between two consecutive time values, as long as this size is constant over
time. For instance, the interval size could be expressed in days (e.g. daily
rainfall) , months (e.g. monthly profits), or even years (e.g. crime figures).
Of course these time values need to be given as numerical values, but no par­
ticular format is imposed. For example, the time series ((50.0112), (50.0214),
(50.0310) , (50.0413)) is perfectly valid.

40

6. SoundChart 6.3. Data management

49,02

◄ 8,S
1.0 1a.es Jl.71 6U 2 98.1' 112.0 l

Figure 6.1: Main Chart panel

6.3.2 Main chart panel

The first SoundChart panel is called the "Main Chart" panel, as it enables to
load a time series and then display it graphically on a chart . This time series
forms the main component of the application, as every possible soni:fi.cation
will be derived from it. An example of the Main Chart panel is displayed at
figure 6.1.

Once the SoundChart file has been chosen or created, it becomes possible
to import it into SoundChart. However, this is not compulsory, as data
values can be manually added to the data set by using the speci:fi.ed text:fi.elds.
This way one could build a complete time series without loading any data
from a file. The designer can also delete or modify existing data points.

Whenever the designer is satisfied with the present data, he can ask
SoundChart to display the associated two-dimensional chart . The scale is
automatically computed by the application so that the chart :fi.ts in a single
screen and remains understandable . The designer has only access to a couple
of parameters, namely the number of values per axis and their decimal point
precision.

At this point, it is important to specify that the graphical representation
is only intended to help the designer during the sonification process and

41

6.4. Preprocessing 6. SoundChart

should be considered as an optional part of the application.

6 .4 Preprocessing

Once the data has been selected, the second step of the sonification pro­
cess is to prepare the data for sonification. Raw time series always contain
random fluctuations that have to be filtered out . SoundChart does this
by using moving average smoothing techniques. The preprocessing step in
SoundChart does not handle extreme values, as this is clone by the third
and biggest step in the process, namely the sonification procedure.

6.4.1 Smoothing methods

SoundChart uses three different smoothing methods, all based on the mov­
ing average. Their names are the linear, exponential and weighted moving
average. It is almost impossible to designate the best one, since the efficency
of a moving average greatly depends on the present data and the size of the
smoothing window. However, in practise the linear moving average proves
to be the most effective one.

Linear Moving A ver age

The linear moving average is the most common moving average type. The
smoothing amount is defined by an order p, which defines the length of the
smoothing window. The formula of the linear moving average is

Since every µn is computed using the p - l previous values of the corre­
sponding x value, the first point of the new linear moving average data set
starts at the pth time index. The optimal order p is impossible to predict,
but is generally very small compared to the total number of data points .

Exponential Moving Average

An exponential moving average is calculated by applying a percentage of
today's data value to yesterday's moving average value. The exponential
percentage e can be linked with a time period p, according to this formula:

2
e=--.

p+l

42

6. SoundChart 6.4. Preprocessing

Again, this time period is usually very small compared to the total number
of data points. If p is too large, e will be too small, and the exponential
moving average data set will almost be similar to the original data set. Most
of the time a percentage value around 10% gives a good result. The new
data set is then computed with the following formula:

µn = (l - e)µn-l + eXn -

The advantage of an exponential moving average is that the new time series
has exactly the same length as the original one, since no values other than
Xn are needed to compute µn.

Weighted Moving Average

A weighted moving average is designed to put more weight on recent data
and less weight on past data. Like the other moving averages, it uses some
sort of smoothing window, called the coefficient. A weighted moving average
with coefficient c is computed with the following formula:

· I:f,;:t((c - i)Xn-d
µn = '°'c-1(_ •)

L..,i=O C i

A weight is assigned to each data value in the smoothing window, so that the
more recent values have larger weights. Thus the value Xn has a much greater
weight then the value Xn-c+l, which means that Xn-c+I is less important in
the computation of µn.

As usual, the coefficient c is only a fraction of the total number of data
points. Moreover, the c - 1 previous values of Xn are used to calculate µn,
resulting in a shorter time series.

6.4.2 Algorithms panel

The second SoundChart panel, called the "Algorithms" panel, lets the de­
signer choose between three smoothing algorithms. There are three param­
eters that he can change, one for each algorithm. These are the order of the
linear moving average, the exponential percentage, and the coefficient of the
weighted moving average.

When the designer chooses to display any of these methods , the cor­
responding time series is computed and displayed on top of the existing
chart(s). For instance, figure 6.2 shows an example of the algorithms panel
where all the available charts have been drawn. The red chart is the original
one, and the linear, exponential and weighted moving averages correspond
to the blue, yellow and green charts, respectively. As expected, the blue
and green charts start a little later than the other ones, indicating that the
linear and weighted moving averages have less data values.

43

6.5. Sonification

48.8
10 1'1.8$ 32.71 48.57

6. SoundChart

16deExf'O"--..-~ J flldo~--..-- J

e.- .c :2 eo.2e 915.14 112.0 ' ---- ------- _......,

Figure 6.2: Algorithms panel

6.5 Sonification

The third and final step of the sonification process is of course the sonifica­
tion itself. This is the most complex part , as a lot of sonification techniques
are available to the designer, but none of them is very well documented. For
this reason, SoundChart offers several sonification methods, which all have
a couple of pararneters that can be adapted to suit the designer's require­
ments .

6.5.1 Extreme values

Before any sonification can be applied, SoundChart needs to test the original
time series for possible outliers. Whatever time series is chosen for sonifi­
cation, existing outliers only appear in the original data, since the moving
average data sets contain smoothed versions of the data. Therefore the
detection method is always applied to the original time series.

SoundChart uses the z-score method to detect extreme values, and does
not differentiate outliers that are due to errors and ones due to chance. They
are both treated as extreme values and sonified as such. Once a data value

44

6. SoundChart 6.5. Sonifi.cation

has been identified as an outlier, SoundChart stores its corresponding time
value and keeps it ready for the ultimate sonification.

6.5.2 Pitch-based mapping

SoundChart uses parameter mapping for its sonification, more precisely
pitch-based mapping. The data values from the chosen time series are
mapped to frequencies, by using linear as well as chromatic scale mappings.
These mappings use the maximum and minimum data values from the cho­
sen time series, and a frequency range given by the designer. It is important
to note that the calculation of these upper and lower bounds is clone without
taking into account the identified outliers, since the distribution of frequency
values would otherwise be falsified by an incorrect maximum or minimum
data value.

MIDI implementation

SoundChàrt was created using Java, and uses the MIDI package of the
Java Sound API. Because the designer or the user is able to dynamically
change the auditory signal, for example by pausing or forwarding the signal,
SoundChart does not permit real-time sonification. The MIDI sequence
is constructed prior to the actual playback. When the designer starts the
sonification, the whole sequence is computed and then sent to the MIDI
sequencer for playback. However, this process happens so quickly that the
user gets an impression of real-time sequencing.

SoundChart constructs sequences composed of a single track and makes
use of only three channels. The first channel is used for the actual data values
(i.e. their mapped frequencies), while the others are used for enhancements
to the sonification. All the messages used in SoundChart are ShortMessage
objects. The sequence starts with three Program Change messages, which
are used to select an initial instrument for each channel. Actually no other
Program Changes will occur, so these instruments will be used all along the
sonification. The rest of the sequence contains mostly simple Note On and
Note Off messages, from which the majority belongs to the first channel.

The time stamps associated with these Note On and Note Off messages
are based on a constant note interval, selected by the designer and expressed
in milliseconds (ms) . SoundChart uses the assumption that all time values
occur at regularly spaced intervals. Therefore a constant note interval is
used to separate two consecutive notes in the sequence. For example, let us
consider five consecutive data values, as shown in figure 6.3. Using a 200 ms
interval, the first MidiMessage (corresponding to the first value) will have a
time stamp of O ms, the second one a time stamp of 200 ms, and so on until

45

6.5. SoniE.cation 6. SoundChart

4,5

1
4

~

freq(U) 0 ms - -
3,5

gi 3 freq(3) 200 ms
::,

2,5 J ➔➔➔
Il:) 2 freq(l) 400 ms
ÎIÏ

1,5 Q
,' freq(4) 600 ms -

0,5

0 1 freq(2 5) 800 ms

2 3 4 5

Time MIDI Sequence

Figure 6.3: Five data values mapped with a 200 ms interval

the last one, which will have a time stamp of 800 ms. The notes are clearly
separated by a 200 ms interval.

A musical note is in fact represented by two MIDI messages. One is used
to start playing the note (Note On) , the other to stop playing the note (Note
Off). The duration between these two messages represents the length of the
note. Although SoundChart uses discrete time series, the sonification will be
better perceived by the user if a continuous sound is produced. Therefore,
SoundChart stops playing a note exactly when the next one is started. Thus
the Note Off message of a note always coïncides with the following note's
Note On message (except for the last note).

Every message is encapsulated into a MIDI event, together with its time
stamp. A MidiEvent abject is created using the following four components:

• The channel on which the message is going to be played. If this mes­
sage represents a note (and not a Control Change for example), the
channel defines which instrument will be used to play the note, i.e.
the instrument indicated by the initial Program Change message cor­
responding to this particular channel.

• The status byte of the message, indicating which MIDI command the
event represents.

• One or two additional data bytes (depending on the status byte), which
contain the parameters for the MIDI command.

• The time stamp of the message, given in milliseconds but converted to
ticks to suit the Java Sound API. In SoundChart, ticks are represented
in PPQ units, thus depending on the tempo.

46

6. SoundChart 6.5. Sonification

The first channel is used for playing the frequencies corresponding to
the chosen time series. In its most basic form, SoundChart uses only two
messages for this sonification, namely Note On and Note Off messages. The
MidiMessage objects representing these messages are very similar, as only
the status byte tells them apart. They both have the same frequency and
velocity values, which .form the two additional required data bytes of the
object. SoundChart simply uses the highest possible velocity (127), which
gives optimal results.

The second channel is used for notifying extreme values. While Sound­
Chart is creating MidiEvent objects and adding them to the current se­
quence, it also checks the list of identified outliers. If the value being pro­
cessed is part of the list, the event is not added to the sequence. Instead,
SoundChart creates a new MidiEvent object that represents an alarm sig­
nal. The alarm uses a MIDI instrument like the other notes, that can be
changed by the desginer. An alarm signal therefore also consists of a Note
On and Note Off message, but the corresponding MidiMessage objects are
sent to the second. channel, i.e. using the specified alarm instrument. The
interval between the two messages is set to 300 ms, meaning that alarm
notes· have a duration of 300 ms.

Sonification improvements

The first improvement is to add a slope indicator to the signal, by the use
of drum beats. Because variating the pitch of the drum beats would ask too
much efforts from the listener, SoundChart uses a constant pitch value for
the drum beats. This value is set to 60 (knowing that O is the minimum and
127 the maximum pitch), in order to be clearly audible without interfering
with the main notes.

At each data point, SoundChart calculates the slope by using the pre­
ceding data point. Depending on the slope's value, it then adds a certain
amount of MIDI messages to the current sequence, each message couple
(Note On, Note Off) representing a single drum beat. The corresponding
MidiMessage objects are sent to the third channel, which again uses aspe­
cific instrument specified by the designer. The duration of a drum beat is
set to 250 ms.

SoundChart also allows using stereo panning, to obtain some sort of pro­
gression indicator. Changing the intensity level of the speakers is achieved
by a single Control Change message. The first additional data byte is set to
10, which is the value for panning control, and the second one to the desired
panning value. This value must lie between O and 127, with O meaning all
output to the left speaker, and 127 to the right speaker. At every data point,
SoundChart adds such a Control Message to the sequence, representing the

47

6.5. Sonification 6. SoundChart

current percentage of the time data that has been processed. For example, a
panning value of 38 indicates that 30% of the sequence has been played. The
panning messages are sent to the first and third channel only, since outlier
signals are usually quite rare and do not belong to the "normal" signal.

Putting it all together

When the designer starts the sonification, the MIDI sequence corresponding
to the chosen time series is computed with the selected parameters. The
next few steps summarize the sequence creation process.

l. The original time series is analysed and every extreme value is identi­
fied.

2. Three Program Change messages are added to the sequence, one for
each channel. The specified instruments are chosen by the designer.

3. For each data point from the chosen time series, SoundChart executes
the following actions:

• A note frequency is calculated based on the given frequency range,
using linear or chromatic scale mapping.

• If the data point has been previously identified as an outlier,
an alarm signal is added to the sequence (a Note On, Note Off
couple).

• Otherwise, three messages are added to the sequence. First a pan­
ning Control Change message is calculated based on the current
data point 's index. Then the two main messages representing the
note frequency are added. The interval specified by the designer
is used to set the duration of the note, i.e. the difference between
the Note Off and Note On messages.

• Drum beats are added to the sequence. The number of inserted
messages depends on the slope value. The higher the slope, the
more drum beats are added.

6.5.3 Sonification panel

The third SoundChart panel is called the "Sonification" panel. The de­
signer has access to several options that determine how the sequences are
constructed. As shown in figure 6.4, the available MIDI settings are:

• The main MIDI program, which represents the instrument that will
be used on the first channel.

48

6. SoundChart 6.5. SoniB.cation

l llllill•
1 -.,

1

.. ...,,.,

lllnPilch:

r -"""''

11 2.0

Figure 6.4: Sonification panel

• The interval between two consecutive notes.

• The minimum and maximum pitch values used for the linear and chro-
matic scale mappings.

Figure 6.5 shows some additional parameters. The designer can choose
whether or not to detect extreme values, to play drum beats , and to use
stereo panning. Moreover, he can change the instruments used for notifying
outliers and for playing drum beats.

The right portion of the panel presents the time series available for soni­
fi.cation. Furthermore, the designer can select which mapping type will be
used for mapping the selected time data to frequencies . The rest of the panel
contains the sequence's slider and its command buttons. The seven buttons
have standard meanings. Going from left to right , there is a button to reset
the sequence to the beginning, rewind the sequence, play the sequence at
the current position, pause the sequence, stop the sequence, forward the
sequence and finally advance all through the end of the sequence.

The designer or the user starts the sequence by pressing the play button.
Actually, the sequence is computed when the play button is pressed, but this
happens so quickly that it seems as if the sequence already existed. Once
the sequence starts playing, the slider follows its progression. This is also

49

6.6. Conclusion

,- ... ·-·
1

D Doioa ..,,

l
' WarttilGJ)foYI'

L~~-

1 r.a1Si~
DrotnfW'ot:p'",kK

1--~- - --- ~-

Figure 6.5: Additional sonification options

6. SoundCbart

indicated by a vertical line on the chart. When the sequence is stopped, it
is possible to move the slider to any desired position. The vertical line then
follows the indicated position, which can be useful to place the slider at a
very particular point in the series.

It is important to remember that all this visual information should just
be considered as an aid to the user. Because we are not familiar with
auditory interfaces, some fonctions that could be implemented with sound
are handled in a graphical way. For instance, the series of buttons controlling
a sequence could be replaced by a speech recognition technique responding
to the user's voice. Even all the options described above could be selected
using this method, enabling the user to choose and change an option in a
very natural way. This obviously requires some serious implementation and
testing, but there are several software packages available that are able to do
that.

6.6 Conclusion

The SoundChart application program allows the sonification of time-dependent
data series. It is certainly not perfect, but it definitely illustrates and im­
plements some of the best techniques to sonify two-dimensional data.

50

Chapter 7

SoundChart3D

7 .1 Introduction

The previous chapter has described our first application, SoundChart, which
offers the sonification of two-dimensional data. The goal was to translate a
typical graph with X and Y-axis into music while keeping the main char­
acteristics and trends from the chart. Satisfied with the results, we have
developed a second application, providing this time the sonification of three­
dimensional (3D) data. This application is called SoundChart3D. The aim
was this time to translate a 3D graph into sound without using specific 3D
audio hardware, that means using only two speakers.

7 .2 Description

SoundChart3D is a stand-alone Java application providing a complete tool
set for the creation, edition and sonification of three-dimensional data. The
purpose of the application is to support the designer through the whole soni­
fication process, from the design and display of 3D graphs to the sonification
itself.

7.3 Data management

SoundChart3D provides easy and powerful tools for creating and displaying
3D charts. While the scene panel contains the data management tools such
as loading, saving or conceiving a 3D graph base, the edition panel allows
the designer to edit and modify any part of an existing 3D chart. Lastly, the
view panel supplies means for displaying the chart according to the designer's

51

7.3. Data management 7. SoundChart3D

Pot,,S<M.r~ l'llflll!f

CIJO!<ln•es: xt~,5-J V~ Lêi.s., set

... - - _.._.... -- -- --

Figure 7.1: The SoundChart3D main window

needs. The main window of SoundChart3D, containing the panels previously
narned, is shown in figure 7.1.

7.3.1 The scene panel

Once the application is launched, only two actions in the scene panel are
available to the designer, which are creating a new 3D scene or loading a
previously saved scene from a file.

If the designer wants to create his own 3D graph from scratch, Sound­
Chart3D will automatically build a scene base according to three parame­
ters. Before explaining the creation of a scene itself, let us introduce the
most important abject handled by SoundChart3D, the PolySound. The
PolySound is a main structural unit whose members contain all the infor­
mation needed for the creation, the modification and the sonification of a
3D scene. A single PolySound can be considered as a four-sided polygon, a
quadrilateral. As opposite sides are equal and parallel, PolySounds can even
be extended to parallelograrns. Thus , a PolySound is defined by four points,
themselves defined by three coordinates in space: x, y and z. The 3D engine
of SoundChart3D has been developed with the Java 3D API provided by
Sun. The coordinate system of the Java 3D virtual universe is right-handed.

52

7. SoundChart3D 7.3. Data management

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

Figure 7.2: A row of 9 PolySounds but 10 points

The X-axis is positive to the right, the Y-axis is positive up, and the Z-axis
is positive toward the viewer, with all units in meters [Jav99). In addition
to these parameters providing information about the shape and the location
of a PolySound, other visual parameters are available such as the colour and
the appearance. Now that the notion of PolySound has been introduced,
the three parameters given during the conception of a new 3D scene are
described below:

N umber of rows The number of rows indicates the number of PolySounds
to be created along the Z-axis. As already stated, the main graphical
unit in SoundChart3D is the PolySound which contains four points.
As adjacent PolySounds share some points, if the designer decides to
create a scene with nine PolySounds per row, each row will contain ten
points, as shown in figure 7.2. This distinction between PolySounds
and points will reveal its importance during the sonification process.

Number of columns The number of columns indicates the number of
PolySounds to be created along the X -axis. The same remark about
PolySounds and points can be formulated.

Initial height The initial height parameter represents the initial height of
the 3D scene base and can take a positive or a negative value. All the
points will then be created at this height.

When all the parameters have been set , SoundChart creates a scene base ac­
cording to the chosen values. The base is composed of a matrix of PolySounds,
parallel to the X and Z-axis and placed at the same given height, expressed
in meters . The designer can now modify the shape of the chart according
to bis needs, using the tools provided by the edit ion panel.

Once a 3D graph is built, the designer has the possibility to save bis
work to a file and to load it at a later time. SoundChart3D makes use of its
own file format which is quite simple and based on text files. Each line in
the file represents the height (i.e. the y-value) of the four points composing
a single PolySound, separated by a special character "I". An example of a
valid SoundChart3D file is available in appendix A.

53

7.3. Data management 7. SoundChart3D

7.3.2 The edition panel

The edition panel allows the designer to modify any part of a 3D scene.
Using the mouse, he can click on a PolySound to select it. Once selected,
four pink squares appear on each corner of the PolySound, meaning that the
whole parallelogram is selected and the coordinates of its gravity center are
displayed. The height of the gravity center is the only variable available for
modification, as x and z values have been set with the number of rows and
columns. This variable is computed by the following formula:

Gy= (Ply+ P2y + P3y + P4y).
4

where Gy is the y coordinate of the gravity center and Ply , ... , P4y repre­
sent the y coordinate of each PolySound's point. If the designer updates the
value of this variable, every four points will be increased by the difference
between the new value and the old one. Of course, the difference may be
negative, resulting in a pulling down of all the points. However, the designer
has the opportunity to select a precise point of the PolySound. This is clone
by clicking with the mouse on one of the four pink squares. This point se­
lection is very handful for fine tuning the scene since the designer can pick
each point one by one and give it a specific height according to his needs.

7.3.3 The view panel

The 3D graph is displayed in the view panel. The view contains the X, Y
and Z-axis, the maximum values along each axis and finally the graph itself.
Severa! tools are offered for displaying the scene from the desired viewpoint.

Translation The translation tool lets the designer control the translation
(on X and Y-axis) of the scene via a mouse drag motion with the right
mouse button.

Rotation The rotation tool lets the designer control the rotation of the
scene via the left mouse button.

Zoom The zoom tool lets the designer control the Z-axis translation of the
scene via a mouse drag motion with the wheel mouse button. If the
mouse is not equipped with a wheel, the zoom can be applied by using
the left mouse button while pressing the Alt key.

Colouring The 3D graph is automatically coloured when modifications oc­
cur. The range of colours takes place between light-green and brown
and depends on the height of each PolySound. Indeed, just as a to­
pographie map, while lower PolySounds take a green colour, higher
PolySounds tend towards a dark-yellow, brown colour.

54

7. SoundChart3D 7.4. Sonification

Shading The shading mode can be chosen by the designer by pushing the
F3 key. Two modes are available:

• Flat - shaded: This shading model does not interpolate colours
across the PolySound. Thus, the PolySound is drawn with a
single colour and the colour of one point of the PolySound is
duplicated across all the other points.

• Gouraud-shaded: This shading model smoothly interpolates the
colour at each point across the PolySound. Thus, the PolySound
is drawn with many different colours and the colour at each point
is treated individually.

Rasterization The designer can change the rendering primitive of the
scene by pushing the F4 key. This tool defines how the PolySounds
are drawn: as points, outlines, or filled.

7.4 Sonification

Even if SoundChart3D provides a complete tool set for the creation and
. visualization of 3D charts, the main goal of the application remains the
sonification of the three-dimensional data represented by these charts. Thus,
SoundChart3D supplies different tools and sonification techniques to achieve
this objective. SoundChart3D uses basically the same pitch-based sonifica­
tion procedure as SoundChart to translate data into sound. The sonification
is made by "cutting into slides" the three-dimensional graph in order to de­
crease the dimensionality of the data. This way, the initial 3D graph is
divided into several 2D graphs which are travelled and auralized one by one.
For each 2D graph, the beat drums mapping, inherited from the Sound­
Chart application, can enhance the pitch-based sonification. However, an­
other sonification technique suited to three-dimensional graphs is also im­
plemented. This technique, called the end of line notification, can enhance
the sonification by adding a specific sound which indicates the end of a slide.
Thus , it becomes easier to identify each slide during the sonification process.

All the tools related to the sonification procedure are placed in two
panels. The MIDI settings panel contains all the parameters and settings for
the sonification, while the sonification type panel provides a simple sequence
player and three sonification techniques for "slide cutting" the 3D graph.

7.4.1 The MIDI settings panel

The MIDI settings panel offers several options that determine how the se­
quences are constructed. As shown in figure 7.1, the available MIDI settings
are:

55

7.4. SoniE.cation

~Somfocdlloo ophons . ;;:4i

End of line pro!}l<lm:

0 Pl~ drum beats

Drum program:

J 113 Tlnkle Bell

7. SoundChart3D

Figure 7.3: Additional sonification options

• The main MIDI program, which represents the instrument that will
be used on the :first channel.

• The interval between two consecutive notes.

• The minimum and maximum pitch values used for the linear and chro-
matic scale mappings.

Figure 7.3 shows some additional parameters. The designer can choose
whether or not to notify end of lines, and to play drum beats. Moreover, he
can change the instruments used for notifying end of lines and for playing
drum beats.

7.4.2 The sonification type panel

The sonification type panel allows to choose one of the three sonification
techniques proposed in the application. Each of them consists of a travelling
way which actually defines the way the 3D chart is eut into 2D charts:

Horizontal travelling The 3D graph is eut horizontally along the X-axis.
The sonification starts from the origin of the chart (i.e. the three
axis's intersection) and processes each line along the X-axis, one at
a time. The parallel purple arrows in figure 7.4 represent the path
followed by the sonification in the graph while the orange arrow shows
the processing order for each line.

Vertical travelling The 3D graph is eut vertically along the Z-axis. The
sonification starts from the origin of the chart and processes each line
along the Z-axis, one at a time. According to the shape of the 3D

56

7. SoundChart3D 7.5. Conclusion

Figure 7.4: Horizontal travelling

graph, the use of horizontal or vertical travellings can radically change
the sonification of the graph. Like in the horizontal travelling, the ar­
rows in figure 7.5 show the sonification path for the vertical travelling.

Diagonal travelling The 3D graph is eut diagonally. The diagonal trav­
elling provides information on the length of the auditive signal. The
sonification starts from the origin of the chart and processes each line
diagonally, from the Z-axis to the X-axis , one at a time. At the
beginning of the sonification, the slides are quite short so the sound
produced is short as well. But while travelling diagonally through
the graph, the slides increase progressively and reach their maximum
length at about the middle of the graph. At this point , the auditive
signal is the longest. After that, the slides decrease the same way they
have increased until the end of the graph. The diagonal travelling is
represented by the arrows in figure 7.6.

Furthermore, as in SoundChart , the designer can select between linear
or chromatic mapping for the way the data are mapped to frequencies. The
rest of the panel contains three command buttons to play, pause or stop the
sequence.

7.5 Conclusion

The SoundChart3D application program allows the sonification of three­
dimensional time-dependent data series. Like its brother SoundChart , it

57

7.5. Conclusion 7. SoundChart3D

Figure 7.5: Vertical travelling

Figure 7.6: Diagonal travelling

58

7. SoundChart3D 7.5. Conclusion

can certainly be improved, but it definitely illustrates how 3D data can be
translated into sound.

59

Chapter 8

Experimentation

8.1 Introduction

The purpose of the experimentation is to determine how the sonification
of two-dimensional and three-dimensional graphs can support or be an al­
tfrnative to visually displayed graphs. As the data sonification technique
asks a learning effort before getting used to, it becomes interesting to mea­
sure the degree of learning needed to handle data sonification as well as
the relationship with the musical experience level of the user. Moreover,
the sonification is very subjective since there are potentially an infinity of
available data-to-sound mappings.

For all these reasons, an Internet Web site was created where SoundChart
and SoundChart3D are presented and can be evaluated by the visitor. The
site contains two questionnaires, one for each application, which are divided
into two parts. The first series of questions forms a skill test where the
ability to understand the sonification proposed is measured. The second
part contains a series of more subjective questions, asking the subject his
preferences between different MIDI instruments and sonification techniques.
The site is available from http://users.skynet.be/sonification.

8.2 The questionnaire

The object of the questionnaire is to compare the ability of users to answer
questions about data presented in an aural form. Two types of question­
naires have been conceived. The first one concerns the SoundChart appli­
cation which uses 2D data sonification , while the second one involves the
SoundChart3D application and 3D data sonification.

The sonified data are only available in the MP3 sound file format which
is a compressed WAV file format . Since both applications use MIDI instru-

61

8.2. The questionnaire 8. Experimentation

ments to sonify the data, the use of WAV files may seem odd. Moreover,
while MID files are small (about 2 Kb) and can be downloaded quickly, MP3
files are larger (about 150 Kb) and take a longer time to load. Nevertheless,
the use of MP3 files instead of MID files presents a major advantage. Indeed,
it is important to remember than MID files contain only instructions for the
synthesizer of the sound card and thus, the sound produced when these in­
structions are treated is hardware-dependent. According to the quality of
the sound card, the sound heard may be very different from one user to the
other, which raises a major issue for the results analysis.

8.2.1 SoundChart

This test is divided into several parts. The first part collects personal in­
formation and musical experience of the subject. The second part provides
some pre-requirements for the sonification and the last part is the applica­
tion test itself.

Persona! information

First, subjects are asked to give persona! information (name, first name,
age, gender, title/position, field of activity and e-mail address) which are
used to identify the subject and to validate the answers. Next, the musical
experience is evaluated with some questions such as the instrument played
by the subject and the practicing period. The subject has also to evaluate his
own musical level experience, going from "no experience" to "expert". This
information allows to receive some indication on the subject's background
and training.

Pre-requirements

Before the test begins, a short explanation about the different sonification
techniques used in SoundChart is given in order to get the subject used to
auditory graphs. The pre-requirements provide a common basis for under­
standing the sonification used in the application. As described in the chap­
ter on SoundChart, four different sonification techniques are implemented
in SoundChart: pitch-based mapping, beat drums mapping, stereo panning
and extreme values detection. Each of them is briefly described and at least
one example is given. The examples show a graphical representation of the
data, followed by the corresponding sound file.

• Pitch-based mapping: Two graphs are represented graphically to il­
lustrate the pitch-based mapping. The first graph draws the equation
Y = X and shows the subject a positive slope sonification. The sound

62

8. Experimentation 8.2. The questionnaire

heard is a series of notes with an increasing pitch. The second graph,
representing the equation Y = -X + a, shows a negative slope which
is perceived as a series of notes with a linearly decreasing slope.

• Beat drums mapping: In order to reveal the difference between two
positive or negative slopes, the equations Y = X and Y = X 2 are
represented visually and acoustically. While the beat drums in the first
graph appear at a regular rate, their rhythm increases progressively in
the second one.

• Stereo panning: One example is illustrated to show the relevance of
stereo panning. A common graph is displayed and the corresponding
sound is progressively played more by the right speaker and less by
the left speaker as the graph is covered.

• Extreme values detection: The given example shows how an ex­
treme value is sonified. A graph containing an extreme value is drawn
and the corresponding sound indicates when this value occurs.

Once the pre-requirements are assimilated and understood, the subject is
ready to answer the SoundChart application test.

The application test

The main goal of the application test is to evaluate the efficiency and the un­
derstanding of the sonification techniques performed by SoundChart. How­
ever, the test also contains subjective questions where the musical preference
of the listener is considered. The "skill" part of the test consists of a set
of questions related to authentic time series, coming from Rob Hyndman's
time series data library [Hyn). For each question, the subject must specify
the number of times he listened to the signal before answering the question.
The results of the test will be analysed in a further section. The whole test
is divided into 8 questions which are described below:

l. The sonification represents the annual sheep population in England
and Wales between 1867 and 1939.

• Were there more sheeps in 1867 than in 1939 ?

• In your opinion, in about which year did the sheep populat ion
reach the minimum ?

Descript i on: Beat drums and stereo mapping are added to enhance
the pitch-based sonification. The evolution of the annual sheep pop­
ulation during this period is shown in figure 8.1, where the red line
represents the original graph and the blue one the chart of the linear

63

8.2. The questionnaire 8. Experimentation

2081,.?7

lt8t~ I

1895.•I

180U4

170U3

111f.72

1&2.Ul

,,auo

UJl.0 '-----------------------'-'-'-~------
18870 Ît31 0

Figure 8.1: The annual sheep population in England and Wales between
1867 and 1939

moving average. The graph shows the correct answers for both ques­
tions. It clearly indicates that there were more sheeps in 1867 than in
1939 and the minimum was reached in 1920. While correctly answer­
ing these questions with the graph is quite easy, using only sound is
not as evident. The results analysis will indicate how the sonifi.cation
performed by SoundChart allows the perception of a global trend in a
graph as well as the localization of a specific point .

2. The sonification represents the daily morning temperature of an adult
woman during two months.

• In your opinion, did she have fever during the period ?

• If yes, during how many days ?

Description: For this question, the soni:fication includes all the op­
t ional soni:fication techniques: beat drums mapping, stereo panning
and extreme values detection. The time series is represented graph­
ically in figure 8.2. The peak in the chart shows clearly that the
woman had fever during 2 or 3 days. These days of fever are detected
as extreme values during the sonifi.cation process and the correspond­
ing alarm sounds are played. The results analysis will show how the
extreme values detection is understood by the subject.

3. The sonification represents the monthly electricity production in Aus­
tralia between January 1956 and August 1995.

• Is the electricity production in Australia lower in 1956 than in
1995?

• How would you categorize the evolution of electricity production
in A ustralia ? Linear or exponential ?

64

8. Experime11tation 8.2. The questionnaire

38.1

3792

37.75

37.51!

27.U

37.23

'7.00

31.H

l671

30.5<

3831

30.2

Figure 8.2: The daily morning temperature of an adult woman during two
months

15359.Dj
1•01t1

m"'·'f
11.512.1

10129.0

9U7SJ

,egs-31

&Jll.09

5100.81

ll18Sf

253127

Figure 8.3: The monthly electricity production in Australia between January
1956 and August 1995

• Is the evolution of electricity production in Australia character-
ized by a seasonal trend ?

Description: Only stereo panning is added to the pitch-based sonifi­
cation. The chart of the time series is represented in figure 8.3. While
observing the figure, it appears that the chart is defined by two char­
acteristics. Firstly, as shown by the linear moving average represented
by the blue line, the general trend of the chart is linear. Secondly, the
evolution of the electricity production is characterized by a seasonal
trend, as shown by the peeks situated in a regular way along the chart.
The aim of this question is to discover if the seasonal trend is detected
by the listener and if the perception of the general trend is affected by
this seasonal movement.

4. The sonification represents the monthly Minneapolis public drunken­
ness intakes between January 1966 and July 1978 {151 months}.

65

8.2. The questionnaire 8. Experimentation

,.,..
823.0

751.0

1790

ao,.o
53S.O

0 30

,111 .0

lHl.0

175.0

103.0

Figure 8.4: The monthly Minneapolis public drunkenness intakes between
January 1966 and July 1978 (151 months)

• Were there more intakes in 1966 than in 1978 ?

• Is the evolution of public drunkenness intakes linear ?

Description: The time series is only sonified using the pitch-based
mapping and is represented by the chart in figure 8.4. The chart il­
lustrates that there were less intakes in 1978 than in 1966. Moreover,
the linear moving average shows a break in the evolution of intakes at
about the middle of the period. The number of intakes has strongly
decreased in a short time, which tends to say that the evolution of
public drunkenness intakes in not linear. The result analysis will indi­
cate how the sudden pitch decrease due to the break is perceived and
interpreted by the subject.

5. These sonifications represent the same data but with different MIDI
instruments for the pitch mapping. Listen to each of them and give a
mark between O {the worst) and 10 {the best). You may give the same
mark to different instruments.

• Acoustic grand

• Steel String guitar

• Violin

• SynthStrings 2

• Pan Flute

Description: This subjective question allows to know the subject's
preferences about the instrument chosen for the pitch-based sonifi­
cation. The instruments proposed are very different by nature and
belong to a specific MIDI group such as piano, guitar or solo string
group.

66

8. Experimentation 8.2. The questionnaire

6. These sonifications represent the same data but with different MIDI
instruments for the beat drums mapping. Listen to each of them and
give a mark between O (the worst) and 10 (the best). You may give the
same mark to diff erent instruments.

• Celesta

• Slap Bass 1

• Timpani

• Tinkle bell

• Woodblock

Description: This is the same question as the previous one but this
time the instruments for the beat drums mapping are evaluated.

7. Bonification is a mean to convey information using sound. But how
would you qualify these different sonification techniques about their
utility and their efficiency ?

• The pitch mapping

• The beat drums mapping

• The stereo mapping

• The extreme values detection

• The sonification in general

Description: The four adjectives proposed are: useless, sometimes
useful, always useful and essential. For this question, the subject has
to give his opinion about these different sonification techniques. The
evaluation criteria are the utility of the technique compared to the
visual representation as well as its efficiency in relation to the precision
of the information transmitted by the sound.

8. Please tell us what you think about our project, our applications, this
web page, or anything else that cames to mind. We welcome any feed­
back, comments or suggestions.

Descriptionn: The comments and suggestions collected by the sub­
ject may concern the sonification techniques but also some advice or
feedback on the application. The most interesting suggestions will be
expressed in the results analysis section.

8.2.2 SoundChart3D

The test related to SoundChart3D follows the same layout as the Sound­
Chart test, respectively persona! information, pre-requirements and the ap­
plication test.

67

8.2. The questionnaire 8. Experimentation

Personal information

The same information than in the SoundChart test is collected form the
subject: name, first name, age, gender, title/position, field of activity, e­
mail address and an evaluation of the musical knowledge.

Pre-requirements

Before the test begins, the subject learns how the sonification of three­
dimensional graphs is made in SoundChart3D. The pre-requirements provide
a common basis for understanding the sonification used in the application.
As described in the chapter on SoundChart3D, the sonification is made by
"cutting into slides" the 3D graph in order to decrease the dimensionality of
the data. This way, the resulting 2D graphs are travelled and auralized one
by one. The pre-requirements introduce and explain the different techniques
available in SoundChart3D to perform the sonification: the horizontal, ver­
tical and diagonal travelling, the end of line mapping and the beat drums
mapping. Each technique is briefly described and one example is given.
The examples show a graphical representation of the data, followed by the
corresponding sound file.

• Horizontal travelling: A symmetric 3D graph on a l0xlO scene
(i.e. a grid of 10 on 10 PolySounds) is represented graphically. The
corresponding sonification gets the subject used to the horizontal trav­
elling.

• Vertical travelling: The 3D graph illustrated is built on a 15x5
scene. This graph allows to understand the difference between the
horizontal and vertical travelling when the graph is not symmetric.
Indeed, according to the shape of the 3D graph, the use of horizontal
or vertical travellings can radically change the sonification of the graph.

• Diagonal travelling: The diagonal travelling is represented by a
3D graph on a l0xl0 scene. At the beginning, the sound produced by
the sonification of each slide is quite short. But while travelling diag­
onally through the graph, the length of the auditive signal increases
progressively and reaches its maximum at about the middle of the
graph. After that, the length of the sound decreases the same way it
has increased until the end of the graph.

• End of line mapping: One example is given to explain the end of
line mapping. A sound is played at the end of each slide during the
sonification process, allowing a better distinction of each slide.

68

8. Experimentation 8.2. The questionnaire

• Beat drums mapping: The example illustrates the relevance of beat
drums mapping. A common 3D graph is displayed and the rhythm of
beat drums in the corresponding sonification represents the intensity
of the slope in each slide.

Once the pre-requirements are assimilated and understood, the subject is
ready to answer the SoundChart3D application test.

The application test

Just like for the SoundChart application, the test contains two parts. The
first part evaluates the efficiency and the understanding of the sonification
techniques used in SoundChart3D with a series of questions related to fictive
3D data. For each question, the subject must specify the number of times
he listened to the sonified data before answering the question. The results
of the test will be analysed in a further section. The whole test is divided
into 6 questions which are described below:

l. A 3D graph containing two bumps (i.e. some data with Y values
greater than Y values of their neighbourhood and thus looking like a
bump) has been sonified. The selected mapping is the vertical travelling
and the sonification starts from the bottom right corner. Considering
the grid below, that means that the sonification starts from the bottom
right case and travels from bottom to top.

• If this 3x3 grid represents the graph, where are these two bumps
located ?

• Do they have the same height ?

Description: The 3D graph is sonified using the classical pitch-based
sonification and the vertical travelling. The end of line mapping is
added to enhance the distinction of each slide. The 3D graph is shown
in figure 8.5. The goal of the first question is to correctly place the two
bumps by clicking into a grid of 3x3 checkboxes. This grid represents
a partition of the scene into 9 parts (north, west, south-west, etc.).
The graph quickly shows the correct answers. The two bumps have
the same height and are located to the south and the north-west of
the scene. While correctly answering these questions with the graph
is quite easy, using only sound is pretty difficult and asks a lot of
concentration. The results analysis will indicate how the sonification
performed by SoundChart3D allows the localization of some specific
parts of a graph.

2. A 3D graph containing two bumps has been sonified. The selected
mapping is the horizontal travelling and the sonification starts from

69

8.2. The questionnaire 8. Experimentation

Figure 8.5: The 3D graph related to question 1

the bottom right corner. Considering the grid below, that means that
the sonification starls from the bottom right case and travels fmm right
to left.

• If this 3x3 grid represents the graph, where are these two burnps
located?

• Do they have the same height ?

Description: Like the previous question, the graph is sonified using
the pitch-based sonification and the end of line mapping. However,
the sonification is made according to the horizontal travelling. The
3D graph is shown in figure 8.6. The goal is always to find out the
location of the two bumps. While observing the figure, it appears that
the two burnps have not the same height and are placed to the east
and south-east of the scene.

3. A 3D graph containing two bumps has been sonified. The selected
mapping is the diagonal travelling and the sonification starls from the
bottom right corner. Considering the grid below, that means that the
sonification starts from the bottom right case and travels diagonally
from right to left.

• If this 3x3 grid represents the graph, where are these two bumps

70

8. Experimentation 8.2. The questionnaire

Figure 8.6: The 3D graph related to question 2

located?

• Do they have the same height ?

Description: The pitch-based sonification and the end of line map­
ping are still used for this question but the graph is covered by the
diagonal travelling. The 3D graph is shown in figure 8.7. The two
bumps have the same height and are situated to the north-west and
south-west of the scene. The results analysis will indicate how the
diagonal travelling is perceived and understood by the subject.

4. Give a mark between O {the worst) and 10 {the best) for each travelling
type. You may give the same mark to different travellings.

• Vertical travelling

• Horizontal travelling

• Diagonal travelling

Description: This subjective question allows to know the subject's
preferences about the travelling chosen for the sonification.

5. Bonification is a mean to convey information using sound. But how
would yov. qv.alify these different sonification techniques about their
v.tility and their efficiency ?

71

8.2. The questionnaire 8. Experimentation

Figure 8. 7: The 3D graph related to question 3

• The pitch mapping

• The beat drums mapping

• The end of line notification

• The 3D sonification in general

Description: The four adjectives proposed are: useless, sometimes
useful, always useful and essential. For this question, the subject has
to give his opinion about these different sonification techniques. The
evaluation criteria are the utility of the technique compared to the
visual representation as well as its efficiency in relation to the precision
of the information transmitted by the sound.

6. Please tell us what you think about our project, our applications, this
web page, or anything else that cornes to mind. We welcome any feed­
back, comments or suggestions.

Descriptionn: The comments and suggestions collected by the sub­
ject may concern the sonification techniques but also some advice or
feedback on the application. The most interesting suggestions will be
expressed in the results analysis section.

72

8. Experimentation 8.3. Results analysis

8.3 Results analysis

The results analysis will reveal how the sonification techniques proposed
by the two applications, SoundChart and SoundChart3D, are perceived and
understood. From these results, conclusions will be drawn to determine how
the sonification of two-dimensional and three-dimensional data can support
or even replace visually displayed graphs.

8.3.1 The sample

The sample represents the people who have answered questionnaires related
to SoundChart or SoundChart3D. As some individuals have only answered
the SoundChart questionnaire, the number of answers is not the same for
both applications. Indeed, 23 answers were collected for the SoundChart
test and 18 answers for the test related to SoundChart3D. It is important to
note that only data from subjects who answered all questions in each test
have been used.

The first stage in the results analysis is to study some characteristics of
the sample, namely the field of activity and the musical knowledge of the
subjects. For this analysis, data from the 23 persans are taken into account.

Cross table 8.1 below represents, in rows, the proportion of people work­
ing in different fields of activity and, in columns, their musical experience
level.

None Novice Average Competent Expert Totals
Computer 6 (27 %) 2 (9 %) 1 (4 %) 2 (9 %) 0 (0 %) 11 (49 %)

Economies 4 (18 %) 2 (9 %) 0 (0 %) 0 (0 %) 0 (0 %) 6 (27 %)

Sciences 1 (4 %) 0 (0 %) 1 (4 %) 0 (0 %) 1 (4 %) 3 (12 %)

Health 0 (0 %) 0 (0 %) 1 (4 %) 0 (0 %) 0 (0 %) 1 (4 %)

Logistics 1 (4 %) 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 1 (4 %)

Others 1 (4 %) 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 1 (4 %)

j Totals 1 13 (57 %) 14 (18 %) 1 3 (12 %) 1 2 (9 %) 1 1 (4 %) Il 23 (100 %)

Table 8.1: The sample population ranged by field of activity and musical
experience level

The majority of the sample characterizes people working in the computer
science area and having a limited musical experience or no experience at all.
Further sections will consider the relationship between these two factors and
the final results.

73

8.3. Results analysis 8. Experimentation

8.3.2 SoundChart

For each question, the proportion of correct and wrong answers is given, as
well as the average number of hearings before answering. A short analysis
comments the results.

1. The sonification represents the annual sheep population in England
and Wales between 1867 and 1939.

• Were there more sheeps in 1867 than in 1939 ? Answer : Yes.

Correct answers I Wrong answers
17 (74 %) 1 5 (22 %)

1 No idea
1 1 (4 %)

1

1

• In your opinion, in about which year did the sheep population
reach the minimum? Answer: 1920.

Answers N umber of answers
Before 1909 2 (8 %)
Between 1909 and 1919 5 (22 %)

--------t--...,.--~--:-:----------1
1920 3 (13 %)
Between 1921 and 1931 9 (39 %)

--------t---~---------1
After 1931 4 (18 %)

• Average number of hearings before answering : 3.

Analysis: The 74 per cent of correct answers for the first question
reveal that the sonification performed by SoundChart allows quite ef­
ficiently to perceive a global trend in the series. The second question
is a little more tricky as it asks to identify a precise point in the time
series. The impossibility to clearly isolate temporal units makes it very
difficult to locate a precise year in the series. While the correct an­
swer is 1920, answers given in a 10 years bracket remain satisfactory,
which leads to another 74 per cent of more or less correct answers.
In average, subjects have listened 3 times to the sonification before
answering, which seems quite normal.

2. The sonification represents the daily morning temperature of an adult
woman during two months.

• In your opinion, did she have fever during the period ? Answer
: Yes.

74

8. Experimentation 8.3. Results analysis

1 Correct answers
1 23 (100 %)

1 Wrong answers No idea
-----+----~-------i

1 0 (0 %) 0 (0 %)
---'-----'---'-----'----~

• If yes, during how many days? Answer : 3.

Answers N umber of answers
Less than 2 2 (8 %)
2 6 (27 %)
3 5 (22 %)
4 2 (8 %)
More than 4 8 (35 %)

• Average number of hearings before answering : 2.

Analysis: This question allows to know how extreme values detection
is understood by the subjects. The perfect score for the first question
shows that the sound played to sonify extreme values is clearly rec­
ognized and interpreted. However, the results for the second question
are quite surprising. While 2, 3, or 4 days of fever may be considered
as correct answers and represent about half of the answers, the 35 per
cent of answers for more than 4 days remain astonishing. It seems
that some subjects do not associate each alarm sound to one day of
fever, and pay more attention to the pitch mapping when answering
the question. The average number of hearings before answering is 2,
probably one audition for each question.

3. The sonification represents the monthly electricity production in A us­
tralia between January 1956 and August 1995.

• Is the electricity production in Australia lower in 1956 than in
1995 ? Answer : Yes.

Correct answers Wrong answers No idea
22 (96 %) 1 (4 %) 0 (0 %)

• How would you categorize the evolution of electricity production
in Australia ? Linear or exponential ? Answer : Linear.

Correct answers Wrong answers No idea
12 (52 %) 11 (48 %) 0 (0 %)

• Is the evolution of electricity production in Australia character­
ized by a seasonal trend ? Answer : Yes.

75

8.3. Results analysis 8. Experimentation

Correct answers Wrong answers No idea
16 (70 %) 6 (26 %) 1 (4 %)

• Average number of hearings before answering: 2.

Analysis: The aim of this question is to discover if the seasonal trend
is detected by the listener and if the perception of the general trend
is affected by this seasonal movement. The excellent results for the
first question confirm that the global evolution of the time series is
correctly perceived by the subjects during the sonification. However,
the second question presents mixed results, where there are almost as
much correct answers as wrong answers. Thus, it seems that the only
use of pitch-based mapping is sufficient to transmit the evolution of the
series, but not enough to correctly characterize this evolution. This
conclusion shows the relevance of the beat drums mapping to transmit
acoustical changes in the slope. Indeed, only the stereo panning was
added to the pitch-based sonification and it can be stated that the use
of the beat drums mapping would most probably lead to better results
for tbis question. However, this lack of beat drums mapping allows
to clearly perceive the pitch-based mapping, without being overloaded
by additional sounds. Probably due to this fact, results for the third
question are qui te good, even if the seasonal trend was hard to detect.
In average, subjects have listened 2 times to the sonification before
answering, which is qui te low considering the three questions proposed.

4. The sonification represents the monthly Minneapolis public drunken­
ness intakes between January 1966 and July 1978 (151 months).

• Were there more intakes in 1966 than in 1978 ? Answer : Yes.

Correct answers Wrong answers No idea
20 (87 %) 2 (9 %) 1 (4 %)

• Is the evolution of public drunkenness intakes linear ? Answer
No.

Correct answers Wrong answers No idea
19 (83 %) 3 (13 %) 1 (4 %)

• Average number of hearings before answering : 2.

Analysis: The results for the first question are not surprising and
meet the previous results about the detection of a global trend in a
time series . 87 per cent of the subjects have correctly answered the

76

8. Experimentation 8.3. Results analysis

question. For the second question, the results show that 83 per cent of
the sample have detected the sudden pitch decrease due to the break in
the evolution of intakes at about the middle of the period. The average
number of hearings before answering is 2, probably one audition for
each question.

5. These sonifications represent the same data but with different MIDI
instruments for the pitch mapping. Listen to each of them and give a
mark between O (the worst) and 10 (the best) . You may give the same
mark to different instruments.

• The table below represents the average score (on 10) given by the
sample population to each MIDI instrument.

MIDI Instrum ent A ver age score
Acoustic gran d 7.5
Steel String g uitar 7.0
Violin 7.3
SynthStrings 2 5.5
Pan Flute 6.5

Analysis: The results give the subject's preferences about the in­
strument chosen for the pitch-based sonification. The Acoustic grand,
Steel String guitar and Violin are commonly preferred by the sample.
Surprisingly, the SynthStrings 2 has received the worst score despite
the fact it was employed in every sonification during the test.

6. These sonifications represent the same data but with different MIDI
instruments for the beat drums mapping. Listen to each of them and
give a mark between O (the worst) and 10 (the best). You may give the
same mark to different instruments.

• The table below represents the average score (on 10) given by the
sample population to each MIDI instrument.

MIDI Instrument Average score
-------+---~--------!

Celesta 5.0
Slap Bass 1 5.5
Timpani 6.1
Tinkle bell 2 6.3
Woodblock 6.5

77

8.3. Results analysis 8. Experimentation

Analysis: The results give the subject's preferences about the instru­
ment chosen for the beat drums sonification. The Woodblock instru­
ment retains the preference of the sample, followed by the Tinkle bell
and Timpani instrument. This last one was used in every beat drums
mapping during the questionnaires.

7. Bonification is a mean to convey information using sound. But how
would you qualify these different sonification techniques about their
utility and their efficiency ?

Figure 8.8 below represents the global appreciation of each sonification
technique.

Essential

A/Ways useful

Sometimes useful

Useless
Pitch-based

rnapping
Beat drums

mapping
Stereo

mapping
Extreme values Sonification

detection in general

Figure 8.8: Average appreciation of each 2D sonification technique

As pitch-based mapping is the heart of time-dependent data sonifica­
tion, it is normal that subjects consider this technique as always useful.
Beat drums mapping and stereo mapping remain additional features
to enhance the pitch-based mapping and are considered as sometimes
useful. However, most of the subjects regard the extreme values de­
tection as an important and always useful feature of the sonification.

8. Please tell us what you think about our project, our applications, this
web page, or anything else that cames to mind. We welcome any f eed­
back, comments or suggestions.

The most interesting suggestions collected by the subjects are picked
up below with a brief description of their author:

78

8. Experimentation 8.3. Results analysis

• Great job! lt's clear and pretty well explained. The idea of
the stereo mapping according to the length of the graph is very
useful. I was wondering : instead of using the stereo mapping to
represent the length, maybe it could be possible to use the stereo
to represent two different sets of data at the same time ? [Nicolas
Vanderavero, student in computer science]

• Interesting study. Might be useful in the future or for less devel­
oped people (blinds) or high tech developments (Formula One).
[Pierre de Samer, cotton trading employee]

• It might be useful for people who would like to use it frequently
and for evaluating the same kind of data. Otherwise you could
never use it as sole guidance because you wouldn't know if the
data are important with big changes or small with only little
changes. But I think it works quite well. [Nicolas Scholler,
economist]

• What is possible to do with sounds, especially as a translation of
visual information, has astonished me. [Aurelia De Pauw, student
in biology]

• These tests allowed me to confirm that my memory is more visual
than auditive. Indeed, while a graph allows me to quickly answer
a question, the only use of sonification asks me 2 or 3 hearings
before answering. [Quentin Dallons, student in computer science]

• I find instruments with marked variations (like the piano), where
each note is clearly perceived, more suited to determine values
variations than instruments with continue variations (like the vi­
olin), where the passage between notes is less marked. In my
opinion, these marked variations allow to better perceive the vari­
ations in sound frequency, and thus to determine easier the gen­
eral trend of the symbolized curves. [Alain Dallons, pharmacist]

8.3.3 SoundChart3D

1. A 3D graph containing two bumps {i.e. some data with Y values
greater than Y values of their neighbourhood and thus looking like a
bump) has been sonified. The mapping selected is the vertical travelling
and the sonification starts from the bottom right corner. Considering
the grid below, that means that the sonification starts from the bottom
right case and travels from bottom to top.

• If this 3x3 grid represents the graph, where are these two bumps
located ? Answer : North-West and South.

79

8.3. Results analysis 8. Experimentation

Answers N umber of answers
Both bumps correctly placed 4 (22 %)
One bump correctly placed 6 (33 %)
No bump correctly placed 8 (45 %)

• Do they have the same height ? Answer : Yes.

Correct answers Wrong answers No idea
11 (62 %) 4 (22 %) 3 (16 %)

• A ver age number of hearings before answering : 4.

Analysis: The results for the first question clearly indicate that 3D
sonification performed by SoundChart3D is notas evident as 2D soni­
fication. The results contain a majority of wrong answers, where no
single bump has been placed correctly. Only 22 per cent of the sample
have succeeded in correctly placing the two bumps on the grid, and
one third of the sample has found one of both bumps. 3D soni:6.cation
requests a lot of concentration and numerous playbacks of the sound
file become necessary in order to detect the bumps. However, Sound­
Chart3D seems quite efficient to communicate height values, since 62
per cent of the sample have correctly compared the height of the two
bumps. In average, subjects has listened 4 times to the sonification
before answering, which seems to be the minimum to answer all ques­
tions.

2. A 3D graph containing two bumps has been sonified. The mapping
selected is the horizontal travelling and the sonification starts /rom the
bottom right corner. Considering the grid below, that means that the
sonification starts /rom the bottom right case and travels from right to
left.

• If this 3x3 grid represents the graph, where are these two bumps
located? Answer : East and South-East .

Answers N umber of answers
Both bumps correctly placed 4 (22 %)
One bump correctly placed 6 (33 %)
No bump correctly placed 8 (45 %)

• Do they have the same height ? Answer : No.

Correct answers Wrong answers No idea
12 (67 %) 33 (0 %) 0 (0 %)

80

8. Experimentation 8.3. Results analysis

• Average number of hearings before answering : 3.

Analysis: The results are almost the same as for the previous question
and always contain a majority of wrong answers for the first question.
The vertical travelling is as tricky as the horizontal travelling. Once
again, comparing the bump's heights gives better results with 67 per
cent of correct answers. The average number of hearings before an­
swering is 3, probably two auditions to detect bath bumps and one
audition for the second question.

3. A 3D graph containing two bumps has been sonified. Th e mapping
selected is the diagonal travelling and the sonification starts from the
bottom right corner. Considering the grid below, that means that the
sonification starts from the bottom right case and travels diagonally
from right to lejt.

• If this 3x3 grid represents the graph, where are these two bumps
located? Answer: North-West and South-West .

Answers N umber of answers
Bath bumps correctly placed 1 (6 %)
One bump correctly placed 11 (61 %)
No bump correctly placed 6 (33 %)

• Do they have the same height ? Answer : Yes.

Correct answers Wrong answers No idea
10 (56 %) 6 (33 %) 2 (11 %)

• Average number of hearings before answering : 3.

Analysis: The diagonal travelling used for this question radically
changes the sonification of the 3D chart. This difference is found in
the results where this time 61 per cent of the sample has successfully
placed one bump on the grid. However, only 1 subject has placed both
bumps correctly, which indicates the difficulty of the diagonal travel­
ling. Indeed, this travelling method is less natural than the horizontal
and vertical travelling and asks more concentration and training be­
fore getting used to. As usual, the majority of the subjects, 56 per
cent, have correctly compared the height of the two proposed bumps.

4. Cive a mark between O (the worst) and 10 (th e best) for each travelling
type. You may give the same mark to diff erent travellings.

81

8.3. Results analysis 8. Experimentation

• The table below represents the average score (on 10) given by the
sample population to each travelling type.

Travelling type Average score
Vertical travelling 5.9
Horizontal travelling 5.6
Diagonal travelling 4.6

Analysis: The results give the subject's preferences about the trav­
elling type chosen for the sonification. The scores are not very high
and reflect the diffi.culty of 3D sonification in general. The diagonal
travelling is considered by the sample to be the least efficient of the
three methods.

5. Bonification is a mean to convey information using sound. But how
would you qualify these different sonification techniques about their
utility and their efficiency ?

Figure 8.9 represents the global appreciation of each sonification tech­
nique.

Essentia/

A/ways useful

Sometimes usefu/

Useless
Pitch-based

mapping
Beat drums

mapping
End of line
notification

3D sonification
ingeneral

Figure 8.9: Average appreciation of each 3D sonification technique

Like in the 2D sonification, the pitch-based mapping is the main tech­
nique of 3D data sonification. However, subjects consider this tech­
nique as less useful than 2D sonification, which reflects the difficulty
and relative inefficiency of the method. Beat drums mapping is still
considered as sometimes useful. However, most of the subjects regard

82

1
1
1

8. Experimentation 8.3. Results analysis

the end of line notification as the most important technique in 3D soni­
fication. This result cornes from the fact that end of line sonification
is an essential feature to identify each slide during the travelling.

6. Please tell us what you think about our project, our applications, this
web page, or anything else that cornes to mind. W e welcome any feed­
back, comments or suggestions.

The most interesting suggestions collected by the subjects are picked
up below with a brief description of their author:

• It is very difficult to map the data trends to the sound. One
needs a large concentration to be able to determine the tendency
of the data. [Adolphe Nahimana, researcher in computer science]

• Well, 3D sonification is a little more tricky than 2D sonification.
The end of line notification is an essential feature, especially in the
diagonal travelling. Without this, I would be totally lost in the
graph. 3D requires more attention to hear than 2D sonification.
When I listen to a 2D sonification, I don't need to do any effort
to know what the graph looks like. But with 3D sonification I
must concentrate only on the sound and I try to "recreate" the
original graph in my mind. So, I think that 3D sonification needs
too much concentration to be used when the user is doing another
task. It is not something you "just listen to" without paying too
much attention toit. For this reason, I don't like the beat drums
mapping: it's too complex to handle so many information at the
same time. [Nicolas Vanderavero, student in computer science]

• The use of 3D is more difficult to represent mentally. It would
require a longer time of learning. The choice of one instrument
for the X, another one for the Y and a third for the Z could be
considered. [Alain Dallons, pharmacist]

• I don't think that even for trained users of the sonification, it is
possible to concentrate on three different types of sound mixed
together. Certainly not when you use the sonification as a tool
for gaining time. [Nicolas Scholler, economist]

• It could be useful to choose a different sound to represent the
"end-of-line" of the middle diagonal to locate it better. [Xavier
Martin, student in computer science]

8.3.4 Musical skill influence

An interesting relat ionship to study is the relation between results performed
by the subjects and their musical experience level. It would be quite natural

83

8.3. Results analysis 8. Experimentation

to think that users with some musical background have some facilities to
detect variations in music, and thus are able to handle more quickly and
easily the sonification techniques proposed in the test. In order to find out
the existence of such a relationship, results from both questionnaires will
be divided into two different groups, namely the subjects with no musical
experience and subjects with musical background.

SoundChart

The table below represents the average results for the questionnaire related
to SoundChart according to the musical level. The musical background sam­
ple contains subjects with a novice, competent, average and expert musical
experience level. The SoundChart test contained 9 questions and each ques­
tion has the same importance. To ease the interpretation, average results
have been written in percentages.

Musical level of the subjects Average score
--"----1---~-'C...-.---------<

Musical background 76 %
-----------------<

No experience 66 %

As it was supposed, subjects with musical experience perform, in average,
better than subjects with no experience at all. However, an average score
of 66 per cent, instead of the 76 per cent for trained subjects, proves that
the sonification of time-dependent data remains a valuable tool accessible
to any individual, with or without preliminary musical experience.

SoundChart3D

The SoundChart3D test also contained 9 questions with the same impor­
tance. The table below shows the results in percentages.

Musical level of the subjects Average score
----t---,----'----------1

Musical background 40 %
-----+------------<

No experience 42 %

As sonification of three-dimensional data is quite difficult and requires a
lot of concentration, the musical experience of subjects is no longer an ad­
vantage. Both scores are almost equal and reveal the inefficiency of the
techniques performed by SoundChart3D.

84

8. Experimentation 8.3. Results analysis

8.3.5 Field of activity influence

A second factor which is worth to study is the influence of the field of activity
on the results performed by the subjects. Notwithstanding the main part
of the subjects working in the computer science area, it would be quite
natural to consider that it is not significant for the results as answering both
questionnaires is not eased by a specific knowledge in this area. In order to
find out the existence of such a relationship, results from both questionnaires
will be divided into two different groups, namely the subjects related to the
computer science field of activity and subjects from others areas.

SoundChart

The table below represents the average results for the questionnaire related
to SoundChart according to the field of activity. Each question has the same
importance and average results have been written in percentages.

Field of activity of the subjects Average score ·
--~-----'------'-----+--~

Computer science 72 %
,-----------;

Others 69 %

As it was supposed, subjects from the computer science field of activity do
not perform better than subjects from others fields. Both scores are quite
good and prove that the sonification of time-dependent data is accessible to
individuals from any field of activity.

SoundChart3D

The table below shows the results in percentages for the SoundChart3D test.

Field of activity of the subjects Average score
------------'-----+--~

Computer science 41 %
----------<

Others 40 %

Understanding the sonification techniques of SoundChart3D is not eased
by some experience or knowledge in the computer science area. Both scores
show once again the difficulty to handle the techniques performed by the
application.

85

8.4. Conclusion 8. Experimentation

8.4 Conclusion

Observational studies cannot provide conclusive answers about the efficiency
of data sonification since the population can differ in significant ways. More­
over, the present sample was too small to draw any decisive conclusions
about the experimented sonification. However, this study provides impor­
tant dues which are worthy of analysis.

Basically, the results obtained during the experimentation shows that
sound can be very effective as a medium for presenting information in addi­
tion to visually displayed data.

The SoundChart test revealed that the sonification of two-dimensional
time-dependent data can give excellent results, whatever the musical train­
ing of the user. The auditory feedback provided by SoundChart is a valuable
tool for supporting or even replacing the visual chart when analysing time
series.

Considering the results from the SoundChart3D test, it can be stated
that handling the sonification of three-dimensional data performed by Sound­
Chart3D is a difficult task, maybe because even graphically displayed 3D
graphs are harder to understand than 2D ones. The evaluation of this ap­
plication suggests that the approach is viable, but that it is difficult to use
and requires some intensive concentration, preventing the user from doing
another task while listening to the sound. Due to this fact, SoundChart3D
can not efficiently support the visualization and is certainly not an alter­
native to it. However, 3D sonification could remain a useful technique for
visually impaired individuals.

86

Chapter 9

Conclusion

The objective of the dissertation, as stated in the introduction, was to study
in which way sound could represent time-dependent data. In this recent and
relatively unexplored field of research called sonification, we have found,
implemented and evaluated several techniques throughout this report to
translate time-dependent data into sound.

In the first chapter, we showed how sound properties could offer some
new and interesting ways of communicating and interacting with the com­
puter. The numerous advantages proper to sound, despite some drawbacks,
yielded to consider the sonification as a first-class technique when presenting
the information to a different modality than the usual visualization. More­
over, the plurality and the diversity of existing implementations presented in
the chapter allowed to realize the many possibilities offered by sonification.

However, while sonification could be applied in a quite straightforward
way to any data set, the particular context of time-dependent data makes
some preliminary preprocessing of the data necessary. Thus, we described
how statistical methods could pave the way for further sonification, by fil­
tering undesired values from the data set and removing the short term fluc­
tuations that would obscure the sonification.

Once the time-dependent data ready for the sonification process, we got
to the heart of the matter by presenting the most widely used sonification
technique for time-dependent data, namely the pitch-based mapping. Start­
ing form this technique, we searched and found more complex and original
mappings to improve the sonification, such as the slope indicator and the
stereo panning.

Before starting to implement our findings about sonification techniques,
the choice of the right sound format was an important issue. While sampled
sounds, such as WAV files, fit better to sonifications that require natural
or special sound effects, the MIDI sound format is more suited to time-

87

9. Conclusion

dependent data sonification, notably because of the ease to create or modify
MID files and the support provided by the Java Sound API.

Two Java applications were developed to illustrate the sonification of
time-dependent data. Our first application, SoundChart, provides tools
for the sonification of two-dimensional time-dependent data while our sec­
ond, SoundChart3D, is able to perform a sanie representation of three­
dimensional data. Thanks to the numerous tools available, both applica­
tions allowed us to search and find out the right techniques and parameters
in order to sonify time-dependent data in the best possible way.

Developing two sonification applications was interesting but not suffi­
cient. Indeed, sonification is not necessarily straightforward or intuitive and
asks a learning effort before getting used to. Moreover, as sonification makes
use of music features, the choice of the right parameters or instruments re­
mains very subjective and depends on musical preferences of the user. For
all these reasons, we created an Internet Web site where SoundChart and
SoundChart3D were presented and can be evaluated by the visitor. The
results analysis allowed us to measure the degree of learning needed to han­
dle data sonification as well as the relationship with the musical experience
level of the user.

The results obtained during the experimentation support the conclusions
drawn form previous studies, stating that sound can be very effective as a
medium for presenting information in addition to visually displayed data.

In the particular context of time-dependent data sonification, while the
results are encouraging and suggest that auditory feedback of two-dimensional
data may improve or even substitute the information provided by a visual
chart, the results collected from the SoundChart3D questionnaire reveal
that three-dimensional data sonification is not an evident thing. 3D soni­
fication is more tricky and requires more attention than 2D sonification.
Consequently, it becomes impossible to do another task while listening to
the sound, which suppresses one of the major benefits of data sonification.
Due to the high level of concentration needed, it can be stated that the 3D
sonification, as performed by SoundChart3D, can not efficiently support the
visualization and certainly not replace it, but it could be useful for visually
impaired individuals.

The sonification of time-dependent data, especially two-dimensional data,
finds many application fields. Globally, sound can be a used as a graphies
replacement wherever visual information cannot be used . For example, the
automobile sector could use sonification to inform drivers about the status
of their car. However, even if a display unit is present, sound can represent
a rich addition. For instance, whenever an interface suffers from graphi­
cal overload, sound could be added to diminish its complexity. The mobile
phones sector represents a good example, since the screen on a mobile phone

88

9. Conclusion

is usually too small to display large amounts of information.

Naturally, there are some purposes where our sonification techniques are
not totally adequate. Users can acquire and understand the general trend
of a time series but if they need to know a precise value at a given time,
non-speech audio may not provide the information they need.

In conclusion, sonification remains an interesting and promising field of
research. The sonification applied to time-dependent data off ers a new per­
spective on how to treat and analyse data, and the possibilities of mapping
techniques seem only limited by the creativity.

89

Bibliography

[Anr99] Koen Anrijs, The use of sound in 3d representations of symbolic
abjects, Master's thesis, Facultés Universitaires Notre-Dame de la
Paix, Namur, 1999.

[ARV97] James L. Alty, Dimitrios Rigas, and Paul Vickers, Using music
as a communication medium, Proceedings of CHI'97, 1997.

[Bcs+oo] Maria Barra, Tania Cillo, Antonio De Santis, Umberto Ferraro
Petrillo, Alberto Negro, and Vittorio Scarano, Webmelody: Boni­
fication of web servers, Dipartimento di lnformatica ed Appli­
cazioni, Università di Salerno, Baronissi (Salerno) 84081 - Italy,
2000, Available from http://isis.dia.unisa.it/SONIFICATION/.

[Bur98] Shaun Burke, Missing values, outliers, robust statistics and non­
parametric methods, VAM Bulletin (1998), no. 19, 22- 27.

[BWE93] Stephen A. Brewster, Peter C. Wright, and Alistair D. N. Ed­
wards, An evaluation of earcons for use in auditory human­
computer interfaces, Proceedings of InterCHI'93, 1993.

[CBL95] Stéphane Conversy and Michel Beaudouin-Lafon, Le son dans les
applications interactives, Laboratoire de Recherche en Informa­
tique, Université de Paris-Sud, 1995.

[Com98] Compton's encyclopedia online v3.0, The
ing Company, Inc., 1998, Available
http://www.comptons.com/encyclopedia.

Learn­
from

[Edw89] Alistair D. N. Edwards, Soundtrack: An auditory interface for
blind users, 1989.

[EM97] Valerie J. Easton and John H. McColl,
Statistics glossary, 1997, A vailable from
http://www.stats.gla.ac. uk/steps/ glossary /time_series.html.

91

[FBT96] John H. Flowers, Dion C. Buhman, and Kimberly D. Turnage,
Data sonification from the desktop: Should sound be part of stan­
dard data analysis software?, The Proceedings of ICAD'96 In­
ternational Conference on Auditory Display, Department of Psy­
chology, University of Nebraska, Lincoln, 1996.

[Gav89] William W. Gaver, The sonicfinder: An interface that uses au­
ditory icons, In Proceedings of CHI'89 Conference on Human
Factors in Computing Systems, volume 4, pages 67-94, 1989.

[Hen0l] Tom Henderson, The physics classroom, Lesson 2: Sound
properties and their perception, 1996-2001, Available from
http://www.glenbrook.k12.i1.us/gbssci/phys/C1ass/BBoard.html.

[Her99] Thomas Hermann, Data exploration by sonification,
1999, Available from http://www.techfak.uni- biele-
feld.de/techfak/ags/ni/projects / datamining/datamin_e.htm.

[HHR0l] T. Hermann, M. H. Hansen, and H. Ritter, Bonification of markov
chain monte carlo simulations, Proceedings of the ICAD 2001 In­
ternational Conference on Auditory Display, 2001 , Available from
http://cm.bell-labs.com/who/cocteau/papers/pdf/mcmc.pdf.

[Hob00] John Maxwell Hobbs, Introduction to the java sound api, Earth­
Web Networking and Communication, 1999-2000, Available from
http://softwaredev.earthweb.com/java/sdjop/archives/.

[Hyn] Rob Hyndman, Time series data library,
from http://www-personal.buseco.monash.edu.au/
man/TSDL/index.htm.

Available
hynd-

[Jav99] Getting started with the java 3d api, Sun Microsystems, 1999.

[Jav00a] Java 2 sdk, standard edition documentation, Sun Microsystems,
1995-2000.

[Jav00b] Javasound api programmer's guide, Sun Microsystems, 2000.

[Kra94] Gregory Kramer, An introduction to auditory display, Audi­
tory Display: Sonification, Audification , and Auditory Interfaces,
Santa Fe Institute Studies in the Sciences of Complexity, 1994.

[Lip89] Eric Lipscomb, How much for just the midi, North Texas
Computing Center Newsletter (1989) , Available from
http://www.harmony-central.com/MIDI/Doc/intro.html.

92

[MR95] Tara M. Madhyastha and Daniel A. Reed, Data
sonification: Do you see what I hear?, IEEE Soft-
ware 12 (1995), no. 2, 45- 56, Available from
http://citeseer.nj.nec.com/madhyastha95data.html.

[NF00] Monique Noirhomme-Fraiture, Multimedia support for complex
multidimensional data mining, Proceedings of the International
Workshop on Multimedia Data Mining (MDM/KDD'2000), in
conjunction with ACM SIGKDD conference, Boston, USA, 2000.

[PB0l] Bryan Pardo and William P. Birmingham, The chordal anal­
ysis of tonal music, Electrical Engineering and Computer Sci­
ence Department, University of Michigan, 2001, Available from
http://www-personal.umich.edu/ bryanp/ .

[Sah98] Steven C. Sahyun, Auditory vs. visual graph test, Physics
Department, Oregon State University, 1998, Available from
http://www.physics.orst.edu/ sahyun/ survey /.

[Sah99] ___ A comparison of auditory and visual graphs
for use in physics and mathematics, Ph.D. the-
sis, Oregon State University, 1999, Available from
http://www.physics.orst.edu/ sahyun/thesis/.

[Sch97] . Wolfgang W. Scherer, Mid versus wav €1 ra, which sound files to
use in web pages, midi-LOOPs, W-Music & Arts, 1997, Available
from http://www.midiloops.com/midvswav.htm.

[SSC99] Russell D. Shilling and Barbara Shinn-Cunningham,

[Sta0l]

[Une00]

[VA96]

[Vic99]

Virtual auditory displays, Handbook of Virtual
Environment Technology, 1999, A vailable from
http://vehand.engr.ucf.edu/handbook/Chapters/ VECHAPTER4a.html.

Electronic statistics textbook, 2001, A vailable
http://www.statsoft.com/textbook/stathome.html.

Unesco training of computer specialists,
ers and users, 1999-2000, A vailable
http: / /203.162. 7.85 /unescocourse/index.htm.

from

train­
from

Paul Vickers and James L. Alty, Caitlin: A musical program au­
ralisation tool to assist novice programmers with debugging, Pro­
ceedings of ICAD '96, 1996.

Paul Vickers, Caitlin: Implementation of a musical program au­
ralisation system to study the effects on debugging tasks as per­
form ed by novice pascal programmers, Ph.D. thesis, Loughbor-

93

ough University, Dept. of Computer Science, 1999, Available from
http://www.cms.livjm.ac.uk/caitlin/.

(Wan00] Yong Wang, Physiology time series analysis, Bioinformatics Re­
search Center, Medical College of Wisconsin, 2000, Available
from http: //brc.mcw.edu/PTs/ .

(Wil96] Catherine M. Wilson, Listen: A data sonification toolkit, Master's
thesis, University of California, Santa Cruz, 1996.

94

Appendix A

SoundChart3D file format

A.1 File structure

SoundChart3D uses its own file format for storing three-dimensional graphs.
No specific extension is needed, as long as the file structure is valid. A valid
SoundChart3D file contains some header information before the actual .3D
values. The first information is the text string "SOUNDCHART 3D file",
followed by the "BEGIN" string. The end of a SoundChart3D file is marked
by a corresponding "END" string. The header also contains the information
needed to construct the graph base, namely the number of rows, the number
of columns and the initial height (in that order). The number of rows and
columns must be integer values, but the initial height can be a floating point
number.

Next follow the actual 3D data. Each line in the file represents the height
(i.e. the y-value) of the four points composing a single PolySound, separated
by a special character "I". The end of a line is marked with the same special
character. The four values are floating point numbers . Knowing the number
of rows and columns, SoundChart3D can compute the number of PolySounds
that will .compose the graph, thus knowing how many lines the file should
contain. For example, a graph containing 10 rows and 5 columns requires
(5 x 10) = 50 PolySounds.

A.2 Example

The following file represents a valid SoundChart3D file. The graph contains
15 rows, 5 columns and has an initial height of 2. Thus the file has (15 x
5) = 75 lines of data, each one representing a single PolySound. Since most
of the PolySounds share the same extremities, several lines contain the same
data (i.e. they represent the same three-dimensional value).

95

A.2. Example

SOUNDCHART 3D file
BEGIN
15
5
2

2.012.012.0 2.0
1.011.012.0 2.0
1.011.011.0 1.0
2.012.011.0 1.0
2.012.012.0 2.0
2.012.012.0 2.0
1.012.012.0 2.0
1.012.012.0 1.0
2.012.012.0 1.0
2.012.012.0 2.0
2.012.012.0 2.0
2.013.012.0 2.0
2.013.013.0 2.0
2.012.0 3.0 2.0
2.012.0 2.0 2.0
2.012.0 2.0 2.0
3.013.0 2.0 2.0
3.013 . 0 3.0 3.0
2.012.0 3.0 3.0
2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0
3.0 5.0 2.0 2.0
3.0 5.0 5.0 3.0
2.0 2.0 5.0 3.0
2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0
5.0 5.0 2.0 2.0
5.0 5.0 5.0 5.0
2.0 2.0 5.0 5.0
2.0 2 .0 2.0 2.0
2.0 2 .0 2.0 2.0
5.013 . 0 2.0 2 . 0
5.013.0 3.0 5.0
2.012.0 3.0 5.0
2.012.0 2.0 2.0
2.012.0 2.0 2.0
3.010.0 2.0 2 . 0
3.010.0 0.0 3 . 0
2.012.0 0.0 3.0

A. SoundChart3D file format

96

A. SoundChart3D file format

2.012.012.012.0
2.012 . 012.012 . 0
0.010.012.012.0
0.010.010.010.0
2.012.010.0 0.0
2.012.012.0 2.0
2.012.012.0 2.0
0.011.012.0 2.0
0.011.011.0 0.0
2.012.011.0 0.0
2.012.012.0 2.0
2.012.012.0 2.0
1.011.012.0 2.0
1.011.011.0 1.0
2.012.011.0 1.0
2.012.012.0 2.0
2.012.012.0 2.0
1.012.012.0 2.0
1.012.012.0 1.0
2.012 . 012.0 1.0

.2.012.012.0 2.0
2.012.012.0 2.0
2.014.012.0 2.01
2 . 014.014.0 2.0
2.012.014.0 2.0
2 .012.012.0 2.0
2 .012.012.0 2 .0
4 . 013.012.0 2.0
4.0l3.0l3.0l4.0
2.012.013.014.0
2.012.012.012.0
2.012.012.012.0
3.012.012.012.0
3.012.012.013.0
2.012.012.013.0
2.012.012.012.0
END

A.2. Example

97

Appendix B

Questionnaire answers

The following pages show the charts containing the answers to the Sound­
Chart and SoundChart3D questionnaires. As stated in chapter 8, we re­
ceived 23 answers for the SoundChart test and 18 answers for the Sound­
Chart3D test.

99

B. Questionnaire answers

SoundChart Test
Name Noir homme Martin

First name Monique Xavier
Age 22

Gender Female Male
Ti tle /position Doctor student

Field of activity Statistics computer science
e-mail mno@info.fundp.ac.be xmartin@info.fundp.ac. be

instrument played ? NO NO
which one?

For how many years ?
Musical experience level Competent No experience

Question la - Yes Yes Yes
Question lb - 1920 1930 1925

Question le 3 5
Question 2a - Yes Yes Yes

Question 2b - 3 2 1
Question 2c 2 1

Question 3a - True True True
Question 3b - Linear Exponential Exponential

Question 3c - True True No idea
Question 3d 2 1

Question 4a - Yes Yes Yes
Question 4b - False True False

Question 4c 2 1
Acoustic Grand 8 5

Steel String guitar 7 4
Violin 7 6

SynthStrings 2 6 9
Pan Flute 5 7

Drum Celesta 8 6
Slap Bass 1 5 3

Timpani 5 7
Tinkle bell 5 6
Woodblock 8 9

Pitch mapping Always useful Essential
Beat drums mapping Sometimes useful Sometimes useful

Stereo mapping Useless Sometimes useful
Extreme values detection Essential Essential

Sonification in general Always useful Always useful
Results : / 9 7 6

100

B. Questionnaire answers

Vanderavero Stephane
Nicolas Nicoll

22 23
Male Male

Student Master in computer science
Computer Science (Intrusion Detection) Telecom

nvandera@info.fundp.ac.be stephane.nicoll@mail.be
YES NO

Piano
10

Novice No experience
Yes Yes

1930 1930
3 1

Yes Yes
4 2
2 2

True True
Linear Linear

True False
1 1

Yes Yes
False False

3 1
9 10
6 10
4 8

10 6
5 8
8 6
2 5
4 8
8 6

10 7
Essential Essential

Sometimes useful Sometimes useful
Essential Sometimes useful

Always useful Essential
Always useful Sometimes useful

9 8

101

B. Questionnaire answers

Bontemps HO DESOMER
Yves Kwai Sung pierre

23 36 25
Male Male Male

Master in computer science employee EMPLOYEE
computing COTTON TRADING

ybontemp@info.fundp.ac. be ksh@bvdep.com beeboske@yahoo.com
NO NO NO

No experience No experience Novice
Yes Yes No

1930 1930 1920
1 2 2

Yes Yes Yes
3 2 2
1 4 2

True True True
Exponential Exponential Linear

True True True
1 3 1

Yes Yes Yes
False No idea False

1 3 1
7 10 8
6 10 3
8 8 5
9 9 6
0 10 7
0 10 6
0 10 3
0 9 4
4 9 2
6 10 8

Sometimes useful Always useful Always useful
Sometimes useful Always useful Always useful

Useless Essential Essential
Always useful Always useful Essential

Sometimes useful Essential Always useful
8 7 8

102

B. Questionnaire answers

De Pauw Dallons Panneels
Aurélia Quentin Pascal

21 23 28
Female Male Male

Miss Mr.
student Student in Computer Sciences computer science

aurelia_depauw@yahoo.fr qdallons@info.fundp.ac. be pepouille@skynet.be
NO NO NO

No experience Novice No experience
Yes Yes Yes

1930 1867 1920
4 4 2

Yes Yes Yes
6 3 5
5 5 2

Thue Thue False
Exponential Exponential Linear

Thue Thue Thue
3 3 2

Yes Yes Yes
False False Thue

4 3 2
8 7 5
5 10 8
4 8 10
7 1 0
7 5 4

5 5
5 8 8
4 7 6
3 6 4
4 10 2

Always useful Essential Sometimes useful
Sometimes useful Essential Useless

Always useful Sometimes useful Useless
Sometimes useful Always useful Sometimes useful

Useless Sometimes useful Somet imes useful
7 7 7

103

B. Questionnaire answers

Dallons DALLONS Weltens
Roxane ALAIN Michel

21 48 41
Female Male Male
student PHARMACIEN operator

economy SANTE logistic
e980313@fundp.ac .be alain.dallons@skynet.be michel. weltens@brutele.be

NO YES NO
piano

10
Novice Average abilities No experience

Yes Yes No idea
1920 1933 1903

2 4 4
Yes Yes Yes

2 5 7
2 3 0

True True True
Exponential Exponential Exponential

True True True
4 3 8

Yes Yès No idea
False False False

2 2 1
10 10 6

7 9 8
10 7 8

7 5 1
6 9 10

7 7 3
6 9 6
9 8 6
9 9 8
6 8

Sometimes useful Sometimes useful Sometimes useful
Sometimes useful Sometimes useful Sometimes useful
Sometimes useful Essential Sometimes useful
Sometimes useful Always useful Always useful

Useless Sometimes useful Sometimes useful
8 8 4

104

B. Questionnaire answers

Schêiller Mairiaux
Nicolas Aubry

21 32
Male Male

Licencié en sciences économiques accountant
economics finances

nicscholler@hotmail.com aubry. mairiaux@tiscalinet.be
NO NO

No experience No experience
No Yes

1934 1917
5 12

Yes Yes
7 12
6 6

True True
Linear Linear

True False
3 5

Yes Yes
False True

3 4
4 4
6 5
8 9
7 8
6 9
5 5
7 6
5 7
6 9
8 7

Essential Essential
Always useful Essential

Useless Sometimes useful
Always useful Sometimes useful

Sometimes useful Sometimes useful
7 6

105

B. Questionnaire answers

Delaunay DEMOULIN Pinera-Gonzalez
Gaetan Jean-Pol Mathieu

25 50 21
Male Male Male

Chercheur M. student
aux Facs logiciels Engineering

gdy@info.fundp.ac. be generationimage@skynet.be mpinerag@student.fsa.ucl.ac. be
YES NO NO

Violon et sampler
20

Competent No experience Expert
Yes No No

1930 1918 1915
2 3 4

Yes Yes Yes
10 3 1

3 2 2
True True True

Exponential Linear Linear
True False True

1 2 2
Yes No No

False False False
2 2 1
9 4 9
8 6 9
5 7 8,5
3 5 6,5
7 8 4
8 7 3
7 6 6
8 8 5
8 4 5
9 8 7,5

Essential Always useful Sometimes useful
Essential Essential Sometimes useful

Sometimes useful Sometimes useful Sometimes useful
Sometimes useful Essential Essential
Sometimes useful Always useful Sometimes useful

7 6 6

106

B. Questionnaire answers

scholler Schôller van passel
martine Stéphanie guy

48 19 49
Female Female Male

mummy of the genius student sales representative
housewife vet commercial

NO YES NO
flute

12
No experience A ver age abilities No experience

Yes Yes No
1937 1923 1910

5 2 5
Yes Yes Yes

2 3 4
3 2 3

True True True
Linear Linear Linear

False False False
2 1 4

Yes Yes Yes
False False False

2 1 3
7 7 9
9 8 7
5 8 9
4 3 5
9 5 9
6 4 6
7 2 5
9 3 7
8 5 9
5 4 8

Always useful Always useful Always useful
Sometimes useful Sometimes useful Essential
Sometimes useful Sometimes useful Essential

Always useful Sometimes useful Always useful
Essential Essential Essential

7 8 7

107

B. Questionnaire answers

SCHOLLER Lecerf
Michel Audrey

54 23
Male Female

MANAGING Director student
Trading computer science

alecerf@info.fundp .ac. be
NO NO

No experience Average abilities
Yes Yes

1939 1910
3 3

Yes Yes
12 3
2 3

True True
Linear Exponential

True True
2 3

Yes Yes
False False

2 3
10 6
4 5
8 7
2 8
6 4
2 0

10 2
6 6
8 4
4 1

Essential Essential
Sometimes useful Essential

Always useful Useless
Essential Essential

Always useful Sometimes useful
7 8

108

B. Questionnaire answers

SoundChart3D Test
Name Martin Nahimana

First name Xavier Adolphe
Age 22

Gender Male Male
Ti tle /position student

Field of activity computer science computer science
e-mail xmartin@info.fundp.ac. be anahimana@hotmail.com

instrument played ? NO NO
which one?

For how many years ?
Musical experience level No experience No experience

Question la - NW w C
Question la - S s sw

Question lb - Yes Yes Yes
Question le 2 4

Question 2a - E E NE
Question 2a - SE SE C
Question 2b - No No No

Question 2c 2 3
Question 3a - NW NW C
Question 3a - SW C sw
Question 3b - Yes Yes No

Question 3c 1 3
Vertical travelling 9 6

Horizontal travelling 9 5
Diagonal travelling 8 7

Pitch mapping Essential Sometimes useful
Beat drums mapping Sometimes useful Essential

End of line notification Essential Essential
3D Sonification in general Always useful Sometimes useful

Results : / 9 7 3

109

B. Questionnaire answers

Vanderavero Stephane
Nicolas Nicoll

22 23
Male Male

Student Master in computer science
Computer Science (Intrusion Detection) Telecom

nvandera@info.fundp.ac . be stephane.nicoll@mail.be
YES NO

Piano
10

Novice No experience
NW N

E w
Yes Yes

3 3
s sw

SE s
No Yes

2 2
NW NW

C C
Yes No

2 1
10 3
8 0
2 4

Essential Always useful
Sometimes useful Sometimes useful

Essential Always useful
Sometimes useful Sometimes useful

6 2

110

B. Questionnaire answers

Bontemps de somer Dallons
Yves pierre Quentin

22 25 23
Male Male Male

PhD Student EMPLOYEE Mr.
Computer Science COTTON TRADING Student in Computer Sciences

ybontemp@info.fundp.ac. be beeboske@yahoo.com qdallons@info.fundp.ac. be
NO NO NO

No experience Novice Novice
NE NE w

C C C
No idea Yes Yes

1 2 3
C E C
s C s

No Yes No
2 1 5

No idea w
sw

No idea Yes
3 6
0 8 10
0 7 5
0 5 1

Useless Sometimes useful Essential
Sometimes useful Always useful Sometimes useful
Sometimes useful Always useful Sometimes useful

Useless Always useful Sometimes useful
1 2 4

111

B. Questionnaire answers

De Pauw Dallons DALLONS
Aurélia Roxane ALAIN

21 21 48
Female Female Male

Miss Student PHARMACIEN
Student economy SANTE

aurelia_depauw@yahoo.fr e980313@fund p . ac. be alain.dallons@skynet.be
NO NO YES

piano
10

No experience Novice A ver age abilities
w N NW
C s C

No idea No Yes
7 7 3
E C w

SE sw C
Yes No No

7 2 2
NW w NW

C C N
Yes Yes No

5 4 3
7 2 5
7 8 5
8 5 2

Always useful Sometimes useful Sometimes useful
Sometimes useful Sometimes useful Always useful

Always useful Always useful Always useful
Sometimes useful Useless Useless

4 3 4

112

B. Questionnaire answers

Scholler Mairiaux
Nicolas Aubry

21 32
Male Male

Junior executive accountant
economics finances

nicscholler@hotmail.com au bry. mairiaux@tiscalinet.be
NO NO

No experience No experience
NW

s
Yes No idea

4 5
E w

SE C
No Yes

4 5
NW w

C C
Yes No

2 6

8 0
8 5
5 5

Always useful Sometimes useful
Useless Sometimes useful

Always useful Sometimes useful
Sometimes useful Sometimes useful

8 0

113

B. Questionnaire answers

Pinera-Gonzalez scholler Scholler
Mathieu martine Stephanie

21 48 19
Male Female Female

Student mam student
Engineering vet

mpinerag@student.fsa.ucl.ac. be
NO NO YES

flute
12

Novice No experience Average abilities
NW NW N

s C w
No Yes No

6 5 2
C E C

SE SE SE
No Yes Yes

4 5 2
NW NW w
NE w C
Yes No No

3 3 1
4 8 8
4 6 8
5 7 3

Sometimes useful Sometimes useful Always useful
Sometimes useful Always useful Sometimes useful

Essential Essential Essential
Sometimes useful Always useful Always useful

6 5 1

114

B. Questionnaire answers

van passel SCHOLLER Lecerf
guy Michel Audrey

49 54 23
Male Male Female

sales representative Managing Director student
commercial Trading computer science

alecerf@info.fundp.ac. be
NO NO NO

No experience No experience Average abilities
NW NW NW

s s C
Yes No Yes

6 6 7

E NE E
NE C s
No No No

3 5 5
NE NW NW
w sw w

Yes Yes Yes
5 5 4
6 8 5
8 4 5
4 6 6

Always useful Essential Essential
Essential Always useful Sometimes useful
Essential Essential Essential
Essential Always useful Sometimes useful

6 6 6

115

Appendix C

Source code

C.1 SoundChart hierarchy

The SoundChart application program can be subdivided into five distinct
parts. While the initialization classes are used only once (when the program
starts), the global classes are used all along the program execution. The
main chart classes are used for creating the main data values and drawing
the chart. The algorithm classes contain methods for smoothing the data
values. The sonification classes map the selected chart to sound using the
MIDI sound format.

The SoundChart class hierarchy is shown in figure C.l. An arrow repre­
sents a dependence between two classes (i.e. the class from where the arrow
starts uses methods from the other class).

C. 2 Sound Chart3D hierarchy

The SoundChart3D application program can be subdivided into four dis­
tinct parts. Like in the SoundChart program, the initialization classes are
used only once and the global classes are used all along the program execu­
tion. The 3D scene group handles the 3D values and the corresponding 3D
scene. The sonification classes map the 3D scene to sound using the selected
travelling method.

The SoundChart3D class hierarchy is shown in figure C.2.

117

C.3. Code listings C. Source code

Initia1ization classes

SoundChart

GuiNorth
Main chart classes Sonification classes

ChartPanel
lllgorithm classes Sonifü:ation

Algorithm
DrawlnitChart ChartFile Midi

Listener SliderListener Globals

Gloha1 classes

Figure C. l: SoundChart class hierarchy

C.3 Code listings

The following pages contain listings of SoundChart's and SoundChart3D's
classes. Each class is briefly explained in a short introduction, and is then
detailed along with plenty of comments.

The Midi class appears only once, but is used by both application pro­
grams.

118

C. Source code C.3. Code listings

Initia1ization classes

SoundChart3D

A
GuiNorth GuiSouth

Sonification classes 3D scene classes

Sonification Scene3D

Midi SliderListener Axis ChartFile Method3D

KbListener MyPickBehavior

AListener Globals PolySound

Globa1 classes

Figure C.2: SoundChart3D class hierarchy

119

SoundChart.java

The SoundChart class is the main class of the application. The first action is to
initialize the two windows used in the application. SCFrame represents the main
window, where the "Main Chart", "Algorithms" and "Sonification" panels are lo­
cated (among other objects). SOFrame represents the window containing additional
sonification options. The other main operation of the SoundChart class is to initial­
ize the MIDI objects used throughout the application. The same objects are closed
when the program terminates (i.e. when the main window is closed) .

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.sound.midi.*;
import java.io.*;
import java.io.IOException;
import java. text.Decima!Format;
import java.text.ParseException;
import java.applet.*;

class MainSplitPane
{

11 the main window is split in two parts
private JSplitPane splitPane;
private ChartPanel pSouth;
private JTabbedPane tpNorth;

public MainSplitPane()
{

tpNorth = new JTabbedPane();
pSouth = new ChartPanel() ;

11 save tpNorth (used to disable tabs}
Globals.tabbedpane = tpNorth;

pSouth.setLayout(null);

Component panell = GuiNorth.makePanelValue();
tpNorth.addTab(" Main Chart " , null, panell, "Main chart settings") ;

Component panel2 = GuiNorth .makePanelAlgorithm();
tpNorth.addTab(" Algorithms ", null, panel2 , "Algorithm settings") ;

Component panel3 = GuiNorth.makePanelSonification() ;
tpNorth.addTab(" Sonification ", nul!, panel3 , "Sonification settings");

Component panel4 = GuiNorth.makePanelStatus();
tpNorth.addTab(" Status ", nul!, panel4, "Status view");

tpN orth.setSelectedlndex(O);

121

}

}

splitPane = new JSplitPane(JSplitPane.VERTICAL-8PLIT, tpNorth, pSouth) ;
splitPane.setOneTouchExpandable(false) ;
splitPane.setDividerLocation(Globals.screenHeight / 2 - 30);
splitPane.setContinuousLayout(false) ;

II provide minimum sizes for the two components in the split pane
Dimension minimumSize = new Dimension(lO0, 50);
tpN orth.setMinimumSize(minimumSize);
pSouth.setMinimumSize(minimumSize);

11 provide a pref erred size for the split pane
splitPane.setPreferredSize(new Dimension(400, 200));

public JSplitPane getSplitPane()
{

return splitPane;
}

class SCFrame extends JFrame
{

public SCFrame()
{

}

setTitle("SoundChart ") ;

addWindowListener(new Window Adapter()
{

public void windowClosing(WindowEvent e)
{

}
}) ;

SoundChart.closeMidiObjects();
System.exit(0);

setSize(Globals.screen Width, Globals.screenHeight);

Container contentPane = getContentPane();

MainSplitPane sp = new MainSplitPane();

contentPane.add(sp.getSplitPane());

class SOFrame extends JFrame
{

public SOFrame()
{

setTitle("Sonif ication options") ;
setBounds(300,220,430,290);

addWindowListener(new WindowAdapter()
{

public void windowClosing(WindowEvent e)
{

122

Globals. bOptions.setEnabled(true);
}

});

getContentPane() .add(GuiN orth.makePanelSoundOptions());
}

}

public class SoundChart
{

II retrieves the number pressed by the user
private static int getKbdlnt()
{

}

int val = 0;

try
{

}

InputStreamReader isr = new InputStreamReader(System.in) ;
BufferedReader br = new BufferedReader(isr);

String s = br.readLine();
DecimalFormat df = new DecimalFormat();

val = (df.parse(s)).intValue();

catch (IOException ex)
{

}

System.out.println("\nERR0R in getKbdint (): " + ex + "\n");
System.exit(!);

catch (ParseException ex)
{

}

System.out .println("\nERR0R in getKbdintO: 11 +ex+ 11 \n");
System.exit(!) ;

return val;

static void initMidiObjects()
{

MidiDevice.InfoQ midiDevices = MidiSystem.getMidiDevicelnfo();

if (midiDevices.length == 0)
{

System.out.println("No MIDI devices found on this system! \n");
System.exit(0);

}

11 print available MIDI devices
System.out. println(" Available MIDI devices on this system: \n");
for (int i = 0; i < midiDevices.length; i++)

System.out.println(i + ": " + midiDevices[i]);

11 the user must choose a MIDI device
System.out. print("\nUse device number: ") ;
int iDevice = getKbdlnt();

123

}

}

try
{

}

System.out.print("\nGetting MIDI device ... ");
Globals.midiDevice = MidiSystem.getMidiDevice(midiDevices[iDevice]) ;
System.out .println(" ok");

System.out.print("Getting synthesizer . .. ");
Globals.midiSynthesizer = MidiSystem.getSynthesizer();
System.out.println(" ok") ;

System.out.print("Getting sequencer . .. ");
Globals.midiSequencer = MidiSystem.getSequencer() ;
System.out.println(" ok\n") ;

catch (MidiUnavailableException ex)
{

}

System.out.println("\nERR0R in initMidiDeviceO : " +ex+ "\n");
System.exit(!);

catch (SecurityException ex)
{

}

System.out .println("\nERR0R in initMidiDeviceO: "+ex+ "\n") ;
System.exit(!) ;

static void closeMidiObjects()
{

}

System.out.print("Closing MIDI objects ... ") ;
Globals.midiSynthesizer .close();
Globals.midiSequencer .close() ;
G lobals.midiDevice.close();
System.out.println(" ok\n") ;

public static void main(StringQ args)
{

}

II create windows
Globals .mainFrame = new SCFrame();
Globals.optionsFrame = new SOFrame();

System.out.println(" ____ ") ;
System.out.println(" 1 I ") ;
System.out.println(" I S0UNDCHART I ");
System.out.println(" j ________________ _j \n\n");

11 initialize MIDI abjects
ini tMidiObjects();

II show main window
Globals.mainFrame.show();

124

GuiN orth.java

The GuiNorth class initializes the upper part of SoundChart's main window. Four
panels can be distinguished: the main chart panel, the sonification panel, the al­
gorithms panel and the status panel. Furthermore, the sonification panel contains
the information to initialize the sound options panel, contained by the "Sonification
Options" window. Two extra classes are defined to specify the MyTable class, which
is used by the main chart panel. This class is merely a simple JTable with special
attributes (e.g. the cells are not editable).

import java.awt .*;
import java.awt.event .* ;
import javax.swing.*;
import javax.swing.border.*;
import java.util.Vector;
import javax.swing.JS!ider ;
import javax.swing.table.*;
import javax.swing.event .ListSelectionEvent;

public class GuiNor-th
{

MAIN CHART PANEL

protected static Component makePane!Value()
{

JPanel panel = new JPanel() ;
panel.setLayout(null) ;

I** Table panel **I

II create the main chart table panel
JPanel pTable = new JPanel() ;
pTable.setLayout(null) ;
pTable.setBounds(25, 10, 425, 260);
Border bEtchedl = BorderFactory.createEtchedBorder();
Border bTitlel = BorderFactory.createTitledBorder(bEtchedl, "Chart Table");
pTable.setBorder(bTitlel) ;

II create the main chart table
Globals.vCoord = new Vector() ;
Vector vNames = new Vector() ;
vNames.add("X") ;
vNames.add("Y") ;
Globals. tCoord = new MyTable(Globals.vCoord, vNames) ;

11 add a scrollpane to the table
JScrollPane spCoord = new JScrollPane(Globals.tCoord);
spCoord.setBounds(25, 30, 170, 210) ;
pTable.add(spCoord) ;

11 create textfields to manually add a value to the table

125

JLabel ltfx = new JLabel("X value : ");
JLabel ltfy = new JLabel("Y value : ") ;
ltfx.setBounds{225, 25, 50, 20);
ltfy.setBounds(225, 50, 50, 20) ;
Globals.tfx = new JTextField();
Globals.tfy = new JTextField() ;
Globals.tfx.setBounds(295, 25, 100, 20);
Globals.tfy.setBounds(295, 50, 100, 20);

I** create main chart buttons ** I

Globals.blnsert = new JButton("Insert point");
Globals.blnsert.setBounds(225, 90, 170, 30);
Globals.blnsert.addActionListener(new Listener());

Globals .bDelete = new JButton("Delete selected line") ;
Globals.bDelete.setBounds(225, 130, 170, 30);
Globals. bDelete.addActionListener(new Listener());
Globals. bDelete.setEnabled(false);

Globals.blmport = new JButton("Load from file .. . ") ;
Globals .blmport.setBounds{225 , 170, 170, 30);
Globals.blmport.addActionListener(new Listener());

Globals.bClearTable = new JButton("Clear table") ;
Globals.bClearTable.setBounds(225, 210, 170, 30);
Globals. bClearTable.addActionListener(new Listener());
Globals.bClearTable.setEnabled(false);

11 add ail these elements to the table panel
pTable.add(ltfx) ;
pTable.add(ltfy);
pTable.add(Globals.tfx);
pTable.add(Globals.tfy);
pTable.add(Globals.blnsert);
pTable.add(Globals.bDelete);
pTable.add(Globals.blmport);
pTable.add(G lobais. bClearTable);

I** Chart Settings panel **I

11 create chart settings panel
JPanel pChartSettings = new JPanel();
pChartSettings.setLayou t(null);
pChartSettings.setBounds(4 75, 10,200,260);
Border bEtched3 = BorderFactory.createEtchedBorder();
Border bTitle3 = BorderFactory.createTitledBorder(bEtched3, "Chart Settings");
pChartSettings.setBorder(bTitle3);

11 create slider for number of values on X axis
JLabel INum Va!X = new JLabel("# Absciss values : ");
IN um ValX.setBounds(20,20,160,30);
Globals.s!Num ValuesX = new JSlider(JSlider.HORIZONTAL, 2, 12, 8);
Globals.s!Num ValuesX.setBounds(20,50,160,50) ;
Globals.slNum ValuesX.addChangeListener(new SliderListener());
G lobals.slN um Val uesX.setMajorTickS pacing(2);
Globals.s!Num ValuesX.setMinorTickSpacing(1);
Globals.slN um ValuesX.setPaintTicks(true) ;
Globals .slN um ValuesX.setPaintLabels(true);

126

}

Globals.s!N um ValuesX.setSnapToTicks(true);
Globals.s!N um ValuesX.setBorder(Border Factory.createEmpty Border(0,0, 10 ,0));

11 create slider for number of values on Y axis
JLabel INumValY = new JLabel("# 0rdinate values : ") ;
!Num ValY.setBounds(20,105,160,30);
Globals.s!NumValuesY = new JS!ider(JS!ider.HORIZONTAL, 2, 12, 8);
G lobals.s!N um Values Y .setBounds(20,135,160,50);
Globals.s!Num Values Y.addChangeListener(new Slider Listener());
Globals.slN um Values Y .setMajorTickSpacing(2) ;
Globals.slNumValuesY.setMinorTickSpacing(l);
G lobals.slN um Values Y.setPaintTicks(true);
Globals.slN um Values Y .setPaintLabels(true) ;
Globals .s!N um Values Y.setSnapToTicks(true) ;
G lobals.s!N um Values Y .setBorder(Border Factory.createEmpty Border(0,0, 10,0));

11 create textfield for number of decimals
JLabel INumDecimals = new JLabel("# decimals : ") ;
1NumDecimals.setBounds(20,210,100,20);
Globals.tfNumDecimals = new JTextField("2");
Globals.tfNumDecimals.setBounds(l25,210,50,20);

II add all these elements to the chart settings panel
pChartSettings.add(!Num Va!X);
pChartSettings.add(Globals.s!N um ValuesX);
pChartSettings.add(!Num Va!Y);
pChartSettings.add(Globals.s!NumValuesY);
pChartSettings.add(!NumDecimals);
pChartSettings.add(G lobais. tfN umDecimals);

11 create button to draw main chart
Globals.bDrawMainChart = new JButton("Drav main chart ");
Globals.bDrawMainChart.setBounds(710,198,200,30); .
Globals. bDraw MainChart.addActionListener(new Listener()) ;
Globals.bDrawMainChart .setEnabled(false);

II create button to hide main chart
Globals.bHideMainChart = new JButton("Hide main chart") ;
G lobais. bHideMainChart.setBounds(710,238,200,30);
Globals. bHideMainChart.addActionListener(new Listener());
G lo bals. bHideMain Ch art .setEnabled (false) ;

I / add them to the main panel
panel.add(Globals.bDrawMainChart);
panel.add(Globals.bHideMainChart);

I / add table panel and chart settings panel to main panel
panel.add(pTable);
panel. add(pChartSettings);

return panel;

ALGORITHM PANEL

protected static Component makePanelAlgorithm()
{

JPanel panel = new JPanel() ;

127

panel.setLayout(null);

II create algorithm panel
JPanel pAlgorithm = new JPanel();
pAlgorithm.setLayout(null);
pAlgorithm.setBounds(25,10,425,260);
Border bEtched = Border Factory.createEtchedBorder();
Border bTitle = BorderFactory.createTitledBorder(bEtched, "Algorithm settings");
pAlgori thm .setBorder (b Ti tle);

11 create select algorithm combobox
JLabel IAlgorithm = new JLabel("Select algorithm : ");
IAlgorithm.setBounds(25 ,40, 180,20) ;
Globals.cbAlgorithm = new JComboBox();
Globals.cbAlgorithm.setEditable(false);
Globals.cbAlgorithm.setBounds(180,35,225,30);
Globals.cbAlgorithm.addltem("Linear Moving Average");
Globals.cbAlgorithm.addltem("Exponential Moving Average");
Globals.cbAlgorithm.addltem("Weighted Moving Average");
Globals.cbAlgorithm.addActionListener(new Listener());
Globals.cbAlgorithm.setEnabled(false);

11 create slider for Linear MA order
Globals.lOrder = new JLabel("0rder : ");
Globals.lOrder.setBounds(25,90,180,20);
Globals.s!Order = new JSlider(JSlider.HORIZONTAL, 0, 0, 0);
Globals.s!Order .setBounds(180 ,94,155,50);
G lobals.slOrder .addChangeListener(new Slider Listener());
G lo bals.si Or der .setMajo~TickSpacing(2);
Globals.s!Order .setMinorTickSpacing(l);
G looals.sl Or der. setBorder(Border Factory. createEm pty Border(0, 0, 10 ,0));
G lobais.si Or der .setEnabled(false);
Globals.lValOrder = new JLabel("0");
Globals.lValOrder.setBounds(355,90,50,20);

11 create slider for Exponential MA percentage
Globals .lPercentage = new JLabel("Percentage : ");
Globals.lPercentage.setBounds(25,90, 180,20) ;
Globals.s!Percentage = new JSlider(JSlider.HORIZONTAL, 1, 100, 10) ;
G lobals.slPercentage.setBounds(180,94, 155 ,50);
G lobals.s!Percentage.addChangeListener(new Slider Listener());
Globals.slPercentage.setMajorTickSpacing(5);
G lobals .slPercentage.setMinorTickSpacing(1);
G lo bals.slPercentage .setBorder(Border Fac tory. createEm pty Border(0, 0, 10, 0));
G lo bals.slPercentage.setEnabled (false) ;
Globals.lValPercentage = new JLabel("10");
Globals.lValPercentage.setBounds(355,90,50,20);
G lobals. lPercentage.set Visible(false);
G lobals.s!Percentage.set Visible(false) ;
Globals .lValPercentage.setVisible(false) ;

II create slider for W eighted MA coefficient
Globals.!Coeff = new JLabel("Coefficient : ");
G lobals.lCoeff.setBounds(25 ,90, 180 ,20);
Globals.s!Coeff = new JSlider(JSlider.HORIZONTAL, 1, 1, 1) ;
G lobals.s!Coeff.setBounds(180 ,94, 155 ,50) ;
G lobals.s!Coeff.addChangeListener(new Slider Listener());
G lobals.slCoeff.setMajorTickSpacing(2);
G lobals.slCoeff.setMinorTickSpacing(1);

128

G lobais.si Coeff.setBorder (Border Factory. createEm pty Border(0, 0, 10 ,0));
Globals.slCoeff.setEnabled(false) ;
Globals.lValCoeff = new JLabel("1") ;
Globals.1Va1Coeff.setBounds(355,90,50,20);
G lobals. lCoeff.set Visible(false);
Globals.slCoeff.set Visible(false);
G lobals .lValCoeff.set Visible(false) ;

II create button to draw selected algorithm
Globals.bDrawSelAlg = new JButton("Draw chart using selected algorithm");
Globals.bDrawSe!Alg.setBounds(70,200,278,30) ;
Globals. bDrawSelAlg.addActionListener(new Listener());
G lobais. bDrawSelAlg.setEnabled(false);

11 add all these elements to algorithm panel
pAlgorithm.add(IAlgorithm);
pAlgorithm.add(Globals.cbAigorithm) ;
pAlgorithm.add(Globals.IOrder);
pAlgorithm.add(Globals.slOrder);
pAlgorithm.add(Globals.lValOrder);
pAlgorithm.add(Globals.lPercentage);
pAlgorithm.add(Globals.slPercentage);
pAlgorithm.add(Globals.lValPercentage);
pAlgorithm.add(Globals.lCoeff);
pAlgorithm.add(Globals.slCoeff);
pAlgorithm.add(Globals.lValCoeff);
pAlgorithm.add(G lobais. bDrawSelAlg) ;

I** create hide chart buttons ** I

Globals.bHideAlgMA = new JButton("Hide Linear Moving Average chart") ;
Globals.bHideAlgMA.setBounds(650,158,260,30);
Globals. bHideAlgMA.addActionListener(new Listener());
Globals. bHideAlgMA .setEnabled(false) ;

Globals.bHideAlgEMA = new JButton("Hide Exponential Moving Average chart");
Globals.bHideAlgEMA.setBounds(650,198,260,30) ;
Globals. bHideAlgEMA.addActionListener(new Listener());
G lobais. bHideAlgEMA .setEnabled(false) ;

Globals.bHideAlgWMA = new JButton("Hide Weighted Moving Average chart");
Globals.bHideAlgWMA.setBounds(650 ,238,260,30) ;
Globals. bHideAlg WMA.addActionListener(new Listener());
Globals.bHideAlgWMA .setEnabled(false);

11 add these buttons and algorithm panel to main algorithm panel
panel.add(pAlgorithm);
panel.add(Globals .bHideAlgMA);
panel.add(Globals.bHideAlgEMA) ;
panel.add(Globals.bHideAlgWMA) ;

return panel;

SONIFICATION PANEL

protected static Component makePanelSonification()
{

129

JPanel panel = new JPanel() ;
panel.setLayout(null);

11 create sonification settings {sons et) panel
JPanel pSonification = new JPanel() ;
pSonification.setLayout(null) ;
pSonification.setBounds(25, 10,425,260);
Border bEtched = BorderFactory.createEtchedBorder() ;
Border bTitle = BorderFactory.createTitledBorder(bEtched, "MIDI settings ") ;
pSonification.setBorder(bTitle);

II create program combo box
JLabel IProgram = new JLabel("Select program : ") ;
IProgram.setBounds(25 ,40, 180,20) ;
11 fill vProgramCB vector with Midi programs
Midi.fillProgramComboBox();
Globals.cbProgram = new JComboBox(Globals.vProgramCB) ;
Globals.cbProgram.setSelectedltem("52 SynthStrings 2");
Globals.cbProgram.setEditable(false) ;
G lo bals.c bProgram .setBounds (180 ,35, 225 ,30) ;
Globals.cbProgram. addActionListener(new Listener()) ;
Globals .cbProgram.setEnabled(false);

II create interval slider
JLabel llnterval = new JLabel("Interval : ") ;
llnterval.setBounds(25,90,180,20);
Globals.slTime = new JSlider(JSlider.HORIZONTAL, 0, 500, 200);
Globals.s!Time.setBounds(180,90,155,25);
Globals.s!Time.addChangeListener(new Slider Listener());
Globals.s!Time.setMajorTickSpacing(5);
Globals.s!Time.setMinorTickSpacing(1);
Globals.s!Time.setEnabled(false) ;
Globals.lTime = new JLabel("200 ms");
Globals.lTime.setBounds(355,86,50,20) ;

II create minN ote slider
JLabel IMinNote = new JLabel("Min Pitch :");
IMinNote.setBounds(25,130,180,20);
Globals.slMinNote = new JSlider(JSlider.HORIZONTAL, 0, 127, 25);
Globals.s!MinNote.setBounds(180 ,130,155,25);
Globals.slMinNote.addChangeListener(new SliderListener());
G lobals.slMinN ote.set MajorTickS pacing(2);
G lobals.slMinN ote.setMinorTickSpacing(1) ;
G lobals.slMinN ote.setEnabled(false);
Globals.lVa!MinNote = new JLabel("25") ;
Globals.1ValMinNote.setBounds(355,126,50,20);

11 create maxNote slider
JLabel IMaxNote = new JLabel(" Max Pitch : ") ;
IMaxNote.setBounds(25,170,180,20);
Globals.slMaxNote = new JSlider(JSlider.HORIZONTAL, 0, 127, 100) ;
Globals.s1MaxNote.setBounds(180, 170, 155,25);
Globals.slMaxNote.addChangeListener(new SliderListener());
G lo bals.slMaxN ote .setMajorTickS paci ng(2);
G lobals.slMaxN ote.setMinorTickSpacing(1) ;
G lobals.slMaxN ote.setEnabled(false) ;
Globals.lVa!MaxNote = new JLabel("100") ;
G lobals. lValMaxN ote.setBounds(355, 166,50, 20);

130

/ / create sonification options button
Globals.bûptions = new JButton("More sonification options ... ");
Globals.büptions.setBounds(l00,210,230,30);
G lobais. bûptions.addActionListener(new Listener());
G lobais. büptions.setEnabled(false);

/ / add all these elements to sonset panel
pSonification.add(IProgram);
pSonification.add(Globals.cbProgram);
pSonification.add(Jinterval);
pSonification. add(G lo bals.s!Time) ;
pSonification.add(Globals.lTime);
pSonification.add(JMinNote);
pSonification.add(Globals.slMinNote);
pSonification.add(Globals.lValMinNote);
pSonification. add (!Max:N ote);
pSonification.add(Globals.slMax:Note);
pSonification.add(Globals .lValMax:Note);
pSonification.add(Glabais. bûptions);

/ / create sound data panel
JPanel pSoundData = new JPanel();
pSoundData.setLayout(null);
pSoundData.setBounds(4 75, 10,425,260);
Border bEtched2 = Border Factory.createEtchedBorder();
Border bTitle2 = BorderFactory.createTitledBorder(bEtched2, "Sound data");
pSoundData.setBorder(bTitle2);

/ / create chart combo box
JLabel IChart = new JLabel("Available charts : ");
_IChart .setBounds(25,40,180,20);
Globals.cbChart = new JComboBox();
G lobals.c bChart .setEdi table(false);
G lobais. cbChart.setBounds(180 ,35, 225 ,30) ;
G lobals .cbChart .setEnabled(false) ;

/ / create mapping type radio buttons
JLabel IMapping = new JLabel("Mapping type : ");
1 Mapping. setBounds(25 ,80, 140 ,20) ;
Globals.rbLinearMapping = new JRadioButton("Linear mapping", true) ;
Globals.rbLinearMapping.setBounds(180 ,80,180,30);
Globals.rbLinearMapping.setEnabled(false);
Globals.rbChromaticMapping = new JRadioButton("Chromatic scale mapping", false) ;
Globals.rbChromaticMapping.setBounds(180,105, 180,30);
Globals.rbChromaticMapping.setEnabled(false) ;
ButtonGroup bgMappingType = new ButtonGroup() ;
bgMappingType.add(G lobals.rbLinear Mapping);
bgMappingType.add(Globals.rbChromaticMapping) ;

/ / create sequence slider
Globals.slSequence = new JSlider(JSlider.HORIZONTAL, 0, 100, 0);
Globals.s!Sequence.setBounds(25 ,170,385,25);
G lobals.slSequence.addChangeListener(new Slider Listener()) ;
Globals.slSequence.setMajorTickSpacing(l0);
G lo bals.slSequence .setM inorTickS paci ng(1) ;
G lobals.slSequence.setEnabled(false) ;

/ ** create sonifi cation sequence buttons ** /

131

int space = 35 + 5;
int xtabQ = new int(7];
xtab(0] = (int)(217.5 - (7.0 * space) / 2.0) ;
for (inti = 1; i :=:; 6; i++)

xtab(i] = xtab(i-1] + space;

Imagelcon iReset = new Imagelcon("data/ resetl.gif") ;
Imagelcon iRew = new Imagelcon("data/rew1. gif");
Imagelcon iPlay = new Imagelcon("data/playl.gif") ;
lmagelcon iPause = new Imagelcon("data/ pausel.gif") ;
Imagelcon iStop = new Imagelcon("data/stopl.gif ");
Imagelcon iFfw = new Imagelcon("data/ffwl.gif") ;
Imagelcon iEnd = new Imagelcon("data/endl.gif") ;

Globals .bReset = new JButton(iReset);
G lobais. bReset.setBounds(xtab[0] ,200,35,35);
G lobais . bReset.addActionListener(new Listener());
G lobais. bReset .setEnabled(false) ;

Globals.bRew = new JButton(iRew);
Globals. bRew .setBounds(xtab(l] ,200,35,35);
Globals. bRew.addActionListener{new Listener());
Globals.bRew.setEnabled(false);

Globals.bPlay = new JButton(iPlay);
Globals.bPlay.setBounds(xtab(2],200,35,35) ;
Globals.bPJay.addActionListener(new Listener()) ;
G lobais. bPlay.setEnabled{ false) ;

Globals.bPause = new JButton(iPause);
G lobais. bPause.setBounds(xtab[3] ,200,35,35);
G lobais. bPause.addActionListener(new Listener());
Globals.bPause.setEnabled(false);

Globals.bStop = new JButton(iStop);
Globals.bStop.setBounds{xtab[4],200,35,35);
Globals. bStop.addActionListener(new Listener());
G lobais. bStop.setEnabled(false) ;

Globals.bFfw = new JButton(iFfw);
Globals.bFfw.setBounds(xtab[5],200,35,35);
Globals.bFfw.addActionListener(new Listener());
Globals.bFfw.setEnabled(false) ;

Globals.bEnd = new JButton(iEnd);
Globals.bEnd.setBounds(xtab[6],200,35,35);
Globals.bEnd.addActionListener(new Listener()) ;
G lobais. bEnd.setEnabled{ false);

11 add ail these elements to sound data panel
pSoundData.add(IChart);
pSoundData.add(G lo bals.cbChart);
pSoundData.add (IMapping);
pSoundData.add(G lobals.rbLinear Mapping);
pSoundData.add(G lobals.r bChromaticMapping);
pSoundData.add(Globals.slSequence);
pSoundData. add(G lobais. bReset) ;
pSoundData.add(G lobais. bRew);
pSoundData.add(Globals . bPlay);

132

}

pSoundData.add(Globals.bPause);
pSoundData.add(Globals. bStop) ;
pSoundData.add(Globals.bFfw);
pSoundData.add(Globals. bEnd) ;

/ / add sonset and sound data panel to main sonification panel
panel. add(pSonification);
panel.add(pSoundData);

return panel;

protected static Component makePanelSoundûptions()
{

JPanel panel= new JPanel();
panel.setLayout(null);

/** create Extreme Values panel **/

JPanel pExtreme = new JPanel() ;
pExtreme.setLayout(null) ;
pExtreme.setBounds(l0,10,400,100) ;
Border bEtched = BorderFactory.createEtchedBorder();
Border bTitle = BorderFactory.createTitledBorder(bEtched, "Extreme values") ;
pExtreme.setBorder(bTitle);

Globals.chbExtremeValues = new JCheckBox("Detect extreme values" , false);
Globals.chbExtremeValues.setBounds(25,25,200,25);
Globals .chbExtremeValues.setEnabled(true);
Globals.chbExtreme Values.addActionListener(new Listener()) ;
pExtreme.add(Globals.chbExtremeValues);

JLabel IExtremeProgram = new JLabel("Warning program: ") ;
IExtremeProgram .setBounds(25 ,60, 150, 20);
Globals.cbExtremeProgram = new JComboBox(Globals.vProgramCB);
Globals .cbExtremeProgram.setSelectedltem("72 Clarinet") ;
G lobals.cbExtremeProgram.setEditable(false);
Globals.cbExtremeProgram.setBounds(l 80,55,200,30);
Globals .cbExtremeProgram.setEnabled(false) ;
pExtreme. add (IExtremeProgram);
pExtreme.add(G lobals.cbExtremeProgram) ;

/** create Drum Beats panel **/

JPanel pDrum = new JPanel();
pDrum.setLayout(null);
pDrum.setBounds(10,120,400,100);
Border bEtched2 = BorderFactory.createEtchedBorder();
Border bTitle2 = BorderFactory.createTitledBorder(bEtched2, "Drum beats");
pDrum.setBorder(bTitle2) ;

Globals .chbDrumBeats = new JCheckBox("Play drum beats" , false);
Globals.chbDrumBeats .setBounds(25,25,200 ,25);
G lobals.chbDrumBeats .setEnabled(true) ;
Globals.chbDrumBeats. addActionListener(new Listener());
pDrum.add(Globals.chbDrumBeats);

JLabel IDrumProgram = new JLabel("Drum program : ") ;

133

}

}

IDrumProgram.setBounds(25,60,150,20);
Globals.cbDrumProgram = new JComboBox(Globals.vProgramCB);
G lobals.cbDrumProgram.setSelectedl tem("48 Timpani") ;
Globals.cbDrumProgram.setEditable(false);
Globals.cbDrumProgram.setBounds(180,55,200,30);
G lobals.cbDrumProgram.setEnabled(false);
pDrum.add(IDrumProgram);
pDrum.add(Globals.cbDrumProgram);

I ** create Stereo P anning checkbox ** I

Globals.chbStereo = new JCheckBox("Use left-to-right stereo panning" , false) ;
Globals.chbStereo.setBounds(15 ,230,200 ,25);
Globals.chbStereo.setEnabled(true) ;

11 add ail these elements to main sonification options panel
panel.add(pExtreme);
panel.add(pDrum);
panel.add(Globals.chbStereo);

return panel;

STATUS PANEL

protected static Component makePanelStatus()
{

JPanel panel= new JPanel();
panel.setLayout(null);

II create status panel
JPanel pStatus = new JPanel();
pStatus.setLayout(null);
pStatus.setBounds(lO, 10, 935, 260);
Border bEtched = BorderFactory.createEtchedBorder();
Border bTitle = BorderFactory.createTitledBorder(bEtched, "Status viev");
pStatus.setBorder(bTitle);

II create the JTextA rea
Globals.taStatus = new JTextArea("--------------- Status -------------", 10, 100);
G lobais. taStatus.setEditable(false) ;
G lobais. taStatus.setLine Wrap(true) ;

11 add a scrollpane to the area
JScrollPane spStatus = new JScrollPane(Globals. taStatus) ;
spStatus.setBounds(20, 30, 885, 205); ·
pStatus.add(spStatus);

11 add the status panel to the main status panel
panel.add(pStatus);

return panel ;

class MyTable extends JTable
{

134

}

public MyTable(Vector rowData, Vector names)
{

}

super(new MyTableModel(rowData, names));
setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

public void valueChanged(ListSelectionEvent e)
{

super.valueChanged(e);
if (Globals.bDelete f- null) Globals.bDelete.setEnabled(true) ;

}

public boolean isFocusTraversable()
{

return false;
}

public boolean isManagingFocus()
{

return false;
}

class MyTableModel extends DefaultTableModel
{

public MyTableModel(Vector rows, Vector names)
{

super(rows, names);
}

public boolean isCellEditable(int x, int y)
{

return false;
}

}

135

G lobals .java

The Globals class contains the static variables used by the SoundChart application.
Working with a single big file containing ail global variables is certainly not perfect
from a programming point of vue, but it is the easiest way to handle such a large
amount of variables since they can be accessed from any point in the program.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;
import javax.sound.midi .*;
import java.util.Vector;
import java.awt.Graphics.*;
import java.awt.geom.*;

public class Globals
{

MAIN CHART PANEL

11 frames representing the 2 windows of SoundChart
static .JFrame mainFrame;
static JFrame optionsFrame;

II abjects to detect when the user changes the active p_ane
static JTabbedPane tabbedpane;
static ChartPanel chartPanel;

11 array and table containing the Main Chart values
static Vector vCoord;
static JTable tCoord;

II in/ ormation on Main Ch art values
static double dMinX, dMinY, dMaxX, dMaxY, dlntX, dlntY = 0.0;

II textfields for entering a new value in the table
static JTextField tfx;
static JTextField tfy;

II buttons on Main Ch art panel
static JButton blnsert;
static JButton bDelete;
static JButton blmport;
static JButton bC!earTable;
static JButton bDrawMainChart;
static JButton bHideMainChart;

11 current line read in a SoundChart file
static String sCurrentLine;

II abjects containing the initial and moving average charts

137

static Genera!Path gp;
static Genera!Path gpMA;
static Genera!Path gpEMA;
static Genera!Path gpWMA;

11 objects used for drawing the charts
static Line2D.Double axeX, axeY;
static Line2D .Float gridXY;
static Line2D.Float originX, originY;
static int cNumberValuesX;
static int cNumberValuesY;
static int cNdecimalsVal = 2;
static JTextField tfNumDecimals;
static JSlider slNumValuesX;
static JSlider slNumValuesY;

11 panel on which the charts are drawn
static JPanel pChart;

II bounds of pChart panel
static int cWidthChart;
static int cHeightChart;
static int cLeftChart;
static int cTopChart;

11 vectors containing the moving average values
static Vector vMACoord;
static Vector vEMACoord;
static Vector vWMACoord;

II indicates if a chart has already been drawn
static boolean bFirstTime = true;

ALGORITHMS PANEL

11 combo box for se1ecting an algorithm
static JComboBox cbAlgorithm;

11 parameters representing the smoothing window for each algorithm
static JSlider si Ortler, slPercentage, slCoeff;

11 objects used to display the smoothing window
static JLabel IValOrder, !Ortler;
static JLabel IValPercentage, IPercentage;
static JLabel IValCoeff, ICoeff;

11 buttons on Algorithms panel
static JButton bDrawSelAlg;
stat ic JButton bHideAlgMA, bHideAlgEMA , bHideAlgWMA ;

SONIFICATION PANEL

11 array containing the MIDI instruments
static Vector vProgramCB;

11 objects on Sonification panel
static JComboBox cbProgram, cbChart;
stat ic JSlider slTime, slMinNote, slMaxNote, slSequence;
static JLabel ITime, IValMinNote, IValMaxNote;

138

}

static JButton bPlay, bPause, bStop, bFfw, bRew, bReset, bEnd;
static JButton büptions;
static JCheckBox chbExtremeValues, chbDrumBeats, chbStereo;
static JComboBox cbDrumProgram, cbExtremeProgram;
static JRadioButton rbLinearMapping, rbChromaticMapping;

11 u.sed to handle vertical line on chart
static boolean bClearOldTimeline = false;
static float timelinePos = -1;

11 MIDI-specific abjects
static MidiDevice midiDevice = null;

static Synthesizer midiSynthesizer = null;
static Sequencer midiSequencer = null;
static Sequence midiSequence = null;
static Timer timerSequence;
static float midiSequenceLength;
static boolean midiSequenceCreated = false;

STATUS PANEL

II contains only a single element
static JTextArea taStatus;

GENERAL INFORMATION

II the screen dimensions are initialized
static int screen Width, screenHeight;
static
{

}

Toolkit tk = Toolkit.getDefaultToolkit() ;
Dimension d = tk.getScreenSize();
screenHeight = d.height * 8 / 9;
screenWidth = d.width * 19 / 20;

139

Slider Listener .java

The main goal of the SliderListener class is to supervise the position of the slid­
ers and to update the corresponding textfields with the appropriate value. The
stateChanged method is called whenever the position of a slider changes. Based on
the source of the change, the corresponding label is updated. A special case concerns
the sonification slider, as the vertical timeline on the chart needs to be updated upon
every change of the slider.

import java.awt.event.*;
import javax.swing.JS!ider;
import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.Graphics.*;
import java.awt.geom.*;

class SliderListener implements ChangeListener
{

public void updateTimeline(boolean drawNewOne)
{

Line2D.Float timeline;
Graphics2D g2d = Globals.chartPanel.getGraphics2D();

g2d.setXORMode(Color .lightGray);
g2d.setColor(Color.cyan);

// compute graph begin/end positions
float dBegin = 0.0f, dEnd = l.0f;
String Sitem = (String) (Globals.cbChart.getSelectedltem());
if (Sltem -=1- null)
{

if (Sitem.equals("Linear MA Chart"))
{

}

float lengthB = ((float)(Globals.vMACoord.size()+l)
/ (float)Globals. vCoord.size());

float lengthE = ((float)(Globals .vMACoord.size()-1)
/ {float)Globals.vCoord.size());

dBegin = 0.5f - lengthB / 2.0f;
dEnd = 0.5f + lengthE / 2.0f;

else if (Sitem.equals("Weighted MA Chart"))
{

}

float length = ((float)Globals.vWMACoord.size()
/ (float)Globals.vCoord.size());

dBegin = 1.0f - length;

float dLeft = (float)(Globals.cLeftChart);
float dBottom = {float)(Globals.cTopChart + Globals.cHeightChart) ;

141

}

float dTop = (float)(Globals.cTopChart);
float dRight = (float)(Globals.cLeftChart + Globals.cWidthChart);

II update timeline position with graph beginl end positions
float dLength = dRight - dLeft;
dRight = dLeft + dLength * dEnd;
dLeft += (dLength * dBegin);

11 clear old timeline
if (Globals.timelinePos i- -1 && Globals.bClearO!dTimeline)
{

}

if (dBegin == 0.Of && Globals.timelinePos == dLeft)
{

}
else
{

}

g2d.setPaintMode();
g2d.setColor(Col or . black);

11 clear previous timeline
timeline = new Line2D.Float(Globals.timelinePos, dBottom,

Globals.timelinePos, dTop);
g2d. draw(timeline);

g2d.setXORMode(Col or .lightGray);
g2d.setColor(Color .cyan);

/ / clear previous timeline
timeline = new Line2D.Float(Globals.timelinePos, dBottom,

Globals.timelinePos, dTop);
g2d.draw(timeline);

if (drawNewOne)
{

else
{

}

/ I compute new timeline position
Glabais. timelinePos = dLeft + (((float)Globals.slSequence.get Value()

/ 100. Of) * (dRight -
dLeft));

if (dBegin == 0.0f && Globals.timelinePos == dLeft)
{

}

g2d.setPaintMode();
g2d.setColor(Color .cyan);

II draw new timeline
timeline = new Line2D.Float(Globals.t imelinePos , dBottom,

Globals .timelinePos, dTop);
g2d.draw(timeline) ;

Globals.timelinePos = -1;

g2d.setPaintMode();

142

public void stateChanged(ChangeEvent e)
{

JSlider source = (JSlider)e.getSource();

if (!source .getValuelsAdjusting() && source== Globals .slNumValuesX)
{

Globals .cNumberValuesX = (int)source.getValue() - 2;
}
else if (!source.getValuelsAdjusting() && source== Globals.slNumValuesY)
{

Globals.cNumberValuesY = (int)source.getValue() - 2;
}
else if (source== Globals.s!Order)
{

}

int itmp = source.getValue();
String Stmp = new String();
Stmp = String.valueOf(itmp);
Globals.lValOrder .setText(Stmp);

else if (source == Globals.s!Percentage)
{

}

int itmp3 = source.getValue();
String Stmp3 = new String() ;
Stmp3 = String.value0f(itmp3);
Globals.lValPercentage.setText(Stmp3);

else if (source == Globals.slCoeff)
{

}

int itmp2 = source.getValue();
String Stmp2 = new String();
Stmp2 = String.value0f(itmp2);
Globals .lValCoeff.setText(Stmp2);

else if (source == Globals .s!Time)
{

}

int itmp3 = source.getValue();
String Stmp3 = new String();
Stmp3 = String.value0f(itmp3) ;
Globals.lTime.setText(Stmp3 + " ms") ;

else if (source == Globals.slMinNote)
{

}

int itmp4 = source.getValue();
String Stmp4 = new String();
Stmp4 = String.value0f(itmp4) ;
G lobais.! ValMinN ote.setText(Stmp4);

else if (source == Globals.s!MaxNote)
{

}

int itmp5 = source.getValue();
String Stmp5 = new String() ;
Stmp5 = String.value0f(itmp5) ;
Globals.1ValMaxNote.setText(Stmp5) ;

else if (source == Globals.slSequence)
{

if (Globals.slSequence.isEnabled())
{

143

}
}

}

}

if {Globals.slSequence.getValue() < 100)
{

}
else
{

}

Globals.bReset.setEnabled{true);
Globals.bRew.setEnabled{true);
G lobals. bPlay.setEnabled{ true);
Globals.bFfw.setEnabled{true);
G lobais. bEnd.setEnabled{ true) ;
if (Globals.s!Sequence.getValue() ~ 0) Sonification.reset();

11 stop sonification when at end of slider
Sonification.end{);

II update timeline position on graph
updateTimeline(true) ;

Globals.bClearOldTimeline = true;

144

Listener .java

The goal of the Listener class is simple: to detect when a button is pressed and to
correctly handle the consequences. This happens in the actionPerformed method.
The other methods are used to enable or disable some graphical elements from the
user interface at certain periods. For example, the sonification-dependent elements
are disabled as long as no chart has been created.

import java.awt .•;
import java.awt.event.•;
import javax.swing.• ;
import javax.swing.border.•;
import java.util.Vector;
import javax.swing.JFileChooser. *;
import java.io.• ;

class Listener implements ActionListener
{

11 minimum number of points needed ta enable chart drawing
private final static int MinimumPointsNeeded = 3;

private void enableChartDrawing()
{

}

Globals. bDrawMainChart .setEnabled(true);
Globals.cbAlgorithm.setEnabled(true) ;
G lobals.s!Order .setEnabled(true);
G lobals.s!Percentage.setEnabled(true);
G lobals.s!Coeff.setEnabled(true) ;
Globals. bDrawSe!Alg.setEnabled(true) ;

private void disableChartDrawing()
{

}

Globals.bDrawMainChart .setEnabled(false);
G lo bals.c bAlgori thm.setEnabled (false);
Globals.s!Order .setEnabled(false) ;
G lobals.s!Percentage .setEnabled (false) ;
G lobals .slCoeff.setEnabled(false) ;
Globals.bDrawSelAlg.setEnabled(false);

private void enableSonification()
{

Sonification. openMidiSeq uencer ();

G lobals.cbProgram.setEnabled(true) ;
G lobals.s!MinNote.setEnabled (true);
G lobals.slMaxN ote.setEnabled(true) ;
G lobals.s!Time.setEnabled(true) ;

145

}

Globals. bOptions.setEnabled(true) ;
Globals.chbExtreme Values.setEnabled(true) ;
Globals.chbDrumBeats.setEnabled(true);
G lobals.chbStereo.setEnabled(true) ;
if (Globals.chbExtremeValues.isSelected()) Globals.cbExtremePrograrn.setEnabled(true);
if (G lobals.chbDrumBeats. isSelected()) Globals.cbDrumProgram.setEnabled(true);
Globals.cbChart.setEnabled(true);
Globals.rbLinear Mapping.setEnabled(true) ;
Globals.rbChromaticMapping.setEnabled(true);
G lobals.slSequence.setEnabled(true) ;
Globals.bReset.setEnabled(false);
Globals .bRew.setEnabled(false);
G lobais. bPlay.setEnabled(true) ;
G lobais. bPause.setEnabled(false);
Globals.bStop.setEnabled(false);
Globals.bFfw.setEnabled(true);
G lobais. bEnd.setEnabled(true);

private void disableSonification()
{

}

Sonification. closeMidiSequencer();

Globals.cbPrograrn.setEnabled(false);
Globals.slMinN ote.setEnabled(false);
Globals.slMaxNote.setEnabled(false);
G lobals.s!Time.setEnabled(false) ;
Globals.bOptions.setEnabled(false);
Globals.chbExtreme Values.setEnabled(false);
Globals.chbDrumBeats.setEnabled(false);
Globals.chbStereo.setEnabled(false);
G lo bals.c bExtremeProgram.setEnabled (false);
Globals.cbDrumProgram.setEnabled(false) ;
G lobals.cbChart.setEnabled(false);
Globals.rbLinearMapping.setEnabled(false);
Globals.rbChromaticMapping.setEnabled(false);
Globals.slSequence.setValue(0);
Globals.slSequence.setEnabled(false);
Globals. bReset.setEnabled(false) ;
G lobais. bRew .setEnabled(false);
G lobais. bPlay.setEnabled(false);
G lobais. bPause.setEnabled(false) ;
Globals.bStop.setEnabled(false);
Globals.bFfw.setEnabled(false);
Globals.bEnd.setEnabled(false);

private boolean exist(String s , JComboBox cb)
{

int num = cb.getltemCount() ;

f01· (int i = 0; i < num ; i++)
{

if (s.equals((String)(cb.getitemAt(i)))) return true;
}

return false;

146

}

public void actionPerformed(ActionEvent evt)
{

11 get event's source object
Object source = evt.getSource();

lNSERT VALUE BUTTON

if (source == Globals.blnsert)
{

inti;
double el2;
boolean inserted;
int size = Globals.vCoord.size();
Vector vData = new Vector() ;

II get textfield values
String sX = Globals.tfx.getText().trim();
String sY = Globals.tfy.getText() .trim() ;

II check data length
if (sX.length() == 0 && sY.length() == 0) return;

II check data format
try
{

el2 = Double.parseDouble(sX);
double temp = Double.parseDouble(sY);

}
catch (NumberFormatException ex)
{

}

Globals. tfx.setText("");
Globals.tfy.setText(" ");
Globals.taStatus.append("\nTRYING TO INSERT INVALID VALUES IN MAIN CHART ->

IGN0RED\n");
return;

II create vector with 2 values
vData.add(sX) ;
vData.add(sY);

I ** table vector must rem a in in ascending order for X ** I

i = O;
inserted = false ;
while ((i < size) && (!inserted))
{

Vector vPoint = (Vector)(Globals.vCoord.elementAt(i));

double el 1 = Double. parseDouble((String) (vPoint .elementAt(0))) ;

if (ell == el2)
{

11 replace current {X, Y) value with new one
G lobais. vCoord.setElementAt (v Data, i) ;
inserted = true;

147

}

}

}

if (ell > el2}
{

}

i++;

Globals.vCoord.add(i, vData};
inserted = true;

11 if not yet inserted, insert vector at end of vCoord
if (1inserted} Globals.vCoord.add(vData} ;

Globals.taStatus.append("\n Coordinate (" + Globals.tfx.getText(}
+ "," + Globals.tfy.getText() + ") inserted") ;

11 update smoothing window settings (for MA and WMA}
size = Globals.vCoord.size(};
if (size > 5) Globals.slOrder.setMaximum((size / 2) - 2};
Globals .s!Coeff.setMaximum(size / 2);

II refresh main chart table
Globals. tCoord.revalidate();
Globals. tCoord.repaint();

11 enable chart drawing if table contains enough points
if (size 2: MinimumPointsNeeded} enableChartDrawing();
Globals.bCiearTable.setEnabled((size # O}};

DELETE SELECTED LINE BUTTON

else if (source == Globals.bDelete)
{

}

II get selected row
int line = Globals.tCoord.getSelectedRow();

11 delete selected row /rom table and /rom corresponding vector
if ((line 2: 0) && (line < Globals.vCoord.size()))
{

Globals. tCoord.clearSelection();
Globals.vCoord.removeElementAt(Iine);
G lobais. tCoord. revalidate();
Globals.tCoord.repaint();

11 disable chart drawing if table does not contain enough points
Globals.bDelete.setEnabled(false);
if (Globals.vCoord.size() < MinimumPointsNeeded) disableChartDrawing(};
if (Globals.vCoord.size() == 0) Globals.bClearTable.setEnabled(false) ;

CLEAR TABLE BUTTON

else if (source== Globals.bClearTable)
{

II delete table and vector
Globals. vCoord.clear(};

148

}

Globals.tCoord.revalidate();
Globals.tCoord.repaint();
G lo bals. tCoord. clearSelection () ;

11 disable chart drawing and sonification
Globals . bDelete.setEnabled(false) ;
G lobais. bClearTable.setEnabled(false) ;
disableChartDrawing();
disableSonification ();

IMPORT FR0M FILE ... BUTTON

else if (source == Globals.blmport)
{

String sPath = new String() ;
String sDirectory = new String() ;
String sFileName = new String() ;

11 create a fil e chooser
final JFileChooser fc = new JFileChooser();
int returnVal = fc .showOpenDialog(null);

if (returnVal == JFileChooser.APPROVE_OPTION)
{

}
else
{

II get complete file name
sDirectory = (fc .getCurrentDirectory()) .getAbsolutePath();
sFileName = (fc.getSelectedFile()).getName();
sPath = (sDirectory + "\ \" + sFileName);
Globals.taStatus.append("\n File opened : " + sPath);

Globals.taStatus.append("\n Open command cancelled by user.") ;
return;

II create buff er reader with complete fil e name
ChartFile .createB uffer Reader (sPath) ;
int i = 0, j = O;
boolean inserted ;

II initialize table vector
Globals. vCoord.clear();

try
{

Globals.taStatus.append("\n Reading file . . . ") ;

while ((Globals.sCurrentLine = ChartFile.in.readLine()) i= null)
{

11 read single line in fil e (containing X - Y)
11 and store results in ChartFile. readX and ChartFile. read Y
ChartFile.readData(G lobais sCurrentLine);

Double dReadX = new Double(ChartFile .readX);
Double dReadY = new Double(ChartFile.readY) ;

Vector vData = new Vector() ;

149

}

}

vData.add(dReadX.toString{)) ;
v Data.add(dReadY. toString());

/** table vector must remain in ascending order for X ** /

j = O;
inserted = false;
double el2 = Double. parseDouble((String)(v Data.elementAt(0))) ;
int size = Globals.vCoord.size{) ;

while ((j < size) && (1inserted))
{

}

Vector vPoint = (Vector)(Globals.vCoord.elementAt(j));

double ell = Double.parseDouble((String)(vPoint .elementAt(0))) ;

if (ell == el2)
{

}

/ / replace current (X, Y) value with new one
Globals.vCoord.setElementAt(v Data, j);
inserted = true;

if (ell > el2)
{

}

j++;

Globals.vCoord.add(j , vData);
inserted = true;

if (1inserted) Globals.vCoord.add(vData);

i++;

Globals.taStatus.append("done. < Total " + i +" points >");

catch (IOException ex)
{

Globals.taStatus.append("\nID EXCEPTION WHILE READING FILE ... \n");
Globals.vCoord.clear{) ;

}
catch (NumberFormatException ex)
{

Globals.taStatus.append("\nNUMBER FORMAT EXCEPTION WHILE READING FILE ... \n");
Globals. vCoord.clear();

}

// update smoothing window settings (for MA and WMA)
int newsize = Globals.vCoord.size();
if (newsize > 5) Globals.s!Order.setMaximum((newsize / 2) - 2) ;
Globals.slCoeff.setMaximum(newsize / 2) ;

/ / refresh table
Globals. tCoord.revalidate();
Globals. tCoord.repaint();
Globals. tCoord.clearSelection();

150

}

11 does table contain enough points for chart drawing'?
if (newsize > MinimumPointsNeeded) enableChartDrawing();
else disableChartDrawing();
Globals.bClearTable.setEnabled((newsize -:/= O));
Globals. bDelete.setEnabled(false);

DRAW MAIN CHART BUTTON

else if (source == Globals.bDrawMainChart)
{

}

11 chart will be drawn, so set bFirstTime to false
Globals .bFirstTime = false;

II draw main chart
DrawlnitChart .drawChart() ;

II add corresponding string to chart combobox m sonification panel
if (!(exist("Hain Chart", Globals.cbChart)))
{

}

Globals.cbChart.addltem("Hain Chart");
enableSonification ();

Globals. bHideMainChart.setEnabled(true);
Globals.bC!earOldTimeline = false;

HIOE CHART BUTTON

else if (source == Globals.bHideMainChart)
{

}

II remove corresponding string from . chart combobox in sonification panel
Globals.cbChart .removeltem(';Hain Chart") ;
if (Globals .cbChart .getltemCount() == O) disableSonification() ;

II clear main chart
Globals .gp.reset();
Globals .pChart .repaint();

Globals.bHideMainChart.setEnabled(false) ;
Globals.bClearO!dTimeline = false;

DRAW LINEAR MüVING AVERAGE BUTTON

else if (source == Globals.bDrawSe!Alg && (Globals .cbA!gorithm.getSelectedlndex()
== 0))

11 chart will be drawn, so set bFirstTime to fals e
G lobais. bFirstTime = false;

II get smoothing window
int iMAOrder = (new Integer(Globals.lValOrder.getText())) .intValue() ;

I I compute linear moving average
Globals.vMACoord = Algorithm.movingAverage(Globals.vCoord , iMAOrder);

151

}

Globals.taStatus.append("\n ---------- Linear Moving Average serie : information
----------");

Globals.taStatus.append("\n Size
Globals.taStatus.append("\n 0rder

11 draw linear moving average chart
DrawlnitChart .draw MovingA ver age();

"+ Globals.vMACoord.size() +" points.") ;
"+ Globals.lValOrder.getText());

11 add corresponding string to chart combobox in sonification panel
if (!(exist("Linear MA Chart" , Globals.cbChart)))
{

}

Globals.cbChart.addltem("Linear MA Chart ") ;
enableSonification ();

Globals. bHideAlgMA .setEnabled(true) ;
Globals.bClearOldTimeline = false;

DRAW EXPONENTIAL MOVING AVERAGE BUTTON

else if (source == Globals.bDrawSelAlg && (Globals.cbAlgorithm.getSelectedlndex()
== 1))

{

}

11 chart will be drawn, so set bFirstTime to false
Globals.bFirstTime = false;

II get smoothing window
int iEMAPercentage = (new Integer(Globals.lVa!Percentage.getText())).intValue();

II compute exponential moving average
Globals. vEfv!ACoord = Algorithm.expMovingAverage(Globals. vCoord, iEMAPercentage) ;

Globals.taStatus.append(
11 \n ---------- Exponential Moving Average serie : information ----------") ;
Globals.taStatus.append("\n Size : "+ Globals.vEMACoord.size() +" points.");
Globals.taStatus.append("\n Percentage : "+ Globals.lValPercentage.getText()) ;

11 draw exponential moving average chart
DrawlnitChart.draw ExpMovingA ver age();

II add corresponding string to chart combobox in sonification panel
if (!(exist("Exponential MA Chart" , Globals.cbChart)))
{

}

Globals.cbChart.addltem("Exponential MA Chart");
enableSonification ();

G lobais. bHideAlgEM A .setEnabled(true) ;
Globals.bClearOldTimeline = false ;

DRAW WEIGTHED MOVING AVERAGE BUTTON

else if (source== Globals.bDrawSelAlg && (Globals.cbAlgorithm.getSelectedlndex()
== 2))

{
11 chart will be drawn, so set bFirstTime to fals e
Globals.bFirstTime = false;

152

}

11 get smoothing window
int iWMACoeff = (new Integer(Globals.lVa!Coeff.getText())) .intValue() ;

II compute weighted moving average
Globals.vWMACoord = Algorithm.weightedMovingA verage(Globals. vCoord, iWMACoeff);

G lobais. taStatus .append(
"\n ---------- Weighted Moving Average serie : information ----------") ;
Globals.taStatus.append("\n Size "+ Globals.vWMACoord.size() +" points.") ;
Globals.taStatus.append("\n 0rder : "+ Globals.lValCoeff.getText());

11 draw weighted moving average chart
Draw InitChart .draw WeightedMovingA verage();

II add corresponding string to chart combobox in sonification panel
if (!(exist("Weighted MA Chart" , Globals.cbChart)))
{

}

Globals.cbChart.addltem("Weighted MA Chart ");
enableSonification();

Globals. bHideAlgWMA.setEnabled(true) ;
Globals.bClearOldTimeline = false;

HIDE LINEAR MOVING AVERAGE BUTTON

else if (source == Globals.bHideAlgMA)
{

}

II remove corresponding string /rom chart combobox in sonification panel
Globals.cbChart.removeltem("Linear MA Chart");
if (Globals.cbChart.getltemCount() == 0) disableSonification();

II clear linear moving average chart
Globals.gpMA.reset();
Globals .pChart .repaint() ;

Globals. bHideAlgMA.setEnabled(false);
Globals.bClearOldTimeline = false;

HIDE EXPONENTIAL MOVING AVERAGE BUTTON

else if (source == Globals.bHideAlgEMA)
{

}

11 remove corresponding string from chart combobox in sonification panel
Globals.cbChart.removeltem("Exponential MA Chart ");
if (Globals.cbChart.getltemCount() == 0) disableSonification();

11 clear exponential moving average chart
Globals.gpEMA.reset();
Globals.pChart.repaint();

G lobais. bHideAlgEMA .setEnabled(false) ;
Globals.bClearüldTimeline = false;

153

HIDE WEIGHTED M0VING AVERAGE BUTTON

else if (source == Globals.bHideAlgWMA)
{

}

/ / remove corresponding string from chart combobox in sonification panel
Globals.cbChart .removeltem("Weighted MA Chart") ;
if (Globals.cbChart .getltemCount() == 0) disableSonification() ;

/ / clear weighted moving average chart
Globals.gp WMA.reset();
Globals .pChart.repaint() ;

Globals .bHideAlgWMA.setEnabled(false) ;
Globals.bClearOldTimeline = false;

ALG0RITHM CHECKBOX

else if (source == Globals.cbAlgorithm)
{

/ / linear moving average
if (Globals.cbAlgorithm.getSelectedlndex() == 0)
{

}

Globals.slCoeff.set Visi hie(false);
Globals. lCoeff.set Visible(false);
Globals.lValCoeff.set Visible(false);

Globals.slPercentage.set Visible(false);
Globals.lPercentage.set Visible(false) ;
Globals.lValPercentage.set Visible(false) ;

Globals.slOrder.setVisible(true) ;
G lobais .1 Ortler .set Visible(true);
Globals. lValOrder .set Visible(true);

/ / exponential moving average
if (Globals.cbAlgorithm.getSelectedlndex() == 1)
{

G lobals .slOrder .set Visible(false) ;
Globals. lOrder .set Visible(false) ;
Globals.lValOrder .setVisible(false) ;

G lobals.slPercentage.set Visible(true) ;
Globals.lPercentage.set Visible(true) ;
Globals.lValPercentage.set Visible(true) ;

G lo bals.slCoeff.set Visi hie(false) ;
G lobals. lCoeff. set Visible(false) ;
G lobals.lValCoeff.set Visible(false) ;

/ / weighted moving average
if (Globals.cbAlgorithm.getSelectedlndex() == 2)
{

G lobals.slOrder .set Visible(false);
Globals. !Order .set Visi hie(false) ;
Globals.lValOrder.setVisible(false);

154

Globals.s!Percentage.set Visible(false);
Globals.!Percentage.set Visible(false) ;
Globals .lValPercentage.set Visible(false);

G lobals.slCoeff.set Visible(true);
Globals.lCoeff.set Visible(true);
Globals.lValCoeff.set Visible(true);

S0NIFICATI0N BUTTONS

else if (source== Globals.bOptions)
{

}

/ / show sonification options window
G lobais. bOptions.setEnabled(false);
G lobals.optionsFrame.show() ;

else if (source == Globals.chbExtremeValues)
{

Globals.cbExtremeProgram.setEnabled(Globals.chbExtreme Values.isSelected()) ;
}

else if (source == Globals.chbDrumBeats)
{

G lo bals .cbDrumProgram.setEnabled (G lo bals. chbDrumBeats .isSelected ());
}

else if (source == Globals.bReset)
{

Sonification .reset ();
}

else if (source == Globals.bRew)
{

Sonification.rew();
}

else if (source == Globals.bPlay)
{

Sonification. play();
}

else if (source == Globals .bPause)
{

Sonification. pause();

else if (source == Globals .bStop)
{

Sonification.stop();
}

else if (source == Globals.bFfw)
{

Sonification . ffw ();
}

155

else if (source == Globals.bEnd}
{

Sonification. end();
}

}
}

156

ChartPanel.java

The ChartPanel class firstly defines some objects (defined in the Globals class)
used for drawing charts. The paintComponent method is called every time a chart
must be redrawn. It draws not only the specified chart (the main chart or a moving
average chart), but also the chart axes and values. The formatValue method is
called by paintComponent to format chart values to the desired format, using the
specified number of decimals.

import javax.swing.*;
import javax.swing.border .*;
import javax.swing.JFileChooser .*;
import java.awt .event .*;
import java.awt.*;
import java.awt.Graphics.*;
import java.awt.geom.*;
import java.util.Vector;
import java.lang.Double;
import java.io.*;

public class ChartPanel extends JPanel
{

public Graphics2D getGraphics2D()
{

11 return parent 's graphies object
return (Graphics2D)getGraphics();

public void paintComponent(Graphics g)
{

II firstly clear the existing chart
clear(g);

11 initialize paint environment and set color to black
Graphics2D g2d = (Graphics2D)g;
g2d.setColor(Color. black);

11 get the desired number of values on each axis
11 (min and max are always displayed)
Globals.cNumberValuesX = Globals.slNumValuesX.getValue() - 2;
Globals.cNumberValuesY = Globals.slNum ValuesY.getValue() - 2;

11 bFirstTime is only true until a Draw button has been pushed
if (1Globals.bFirstTime)
{

II draw min and max values along the X axis
g2d.drawString(formatValue((new Double(Globals.dMinX)) .toString()),

(float)(Globals.axeX.getXl() - 5), (float)(Globals.axeX.getYl() + 20));
g2d.drawString(formatValue((new Double(Globals.dMaxX)) .toString()),

(float)(Globals.axeX.getX2() - 5), (float)(Globals.axeX.getY2() + 20));

157

11 draw min and max values along the Y axis
g2d.drawString(formatValue((new Double(Globals.dMinY)).toString()),

(float)(Globals.axeY.getXl() - 50), (float)(Globals.axeY.getYl() + 5));
g2d.drawString(formatValue((new Double(Globals.dMaxY)).toString()),

(float)(Globals.axeY.getX2() - 50), (float)(Globals.axeY.getY2() + 5));

I** draw the other valu es **I

inti ;
String val;
float fX, f'{ ;

float fXl, fYl , fX2 , fY2;

11 distance between 2 values on each axis
double dVa!IntAxeX = (Globals.dMaxX - Globals.dMinX)

/ (Globals.cNumberValuesX + 1) ;
double dVa!IntAxeY = (Globals.dMaxY - Globals.dMinY)

/ (Globals.cNumberValuesY + 1) ;

Il X axis
for (i = 1; i ~ Globals.cNumberValuesX; i++)
{

11 draw the value in black
g2d.setColor(Color .black);
val= formatValue((new Double(Globals.dMinX + (i * dVa!IntAxeX))) .toString());
fX = (float)(Globals.axeX.getXl() + (dVa!IntAxeX * Globals.dlntX * i));
fY = (float)(Globals.axeX.getYl() + 20) ;
g2d.drawString(val, fX - 5, fY);

11 draw the grid in gray
g2d.setColor(new Color (166, 166, 166));
Globals.gridXY.setLine(fX, fY - 20, fX, (float) (Globals.cTopChart));
g2d.draw(G lobals.gridXY);

11 draw last gridline on X axis
fX = (float)(Globals.axeX.getXl() + (dVa!IntAxeX * Globals.dlntX * i));
fY = (float)(Globals.axeX.getYl() + 20);
Globals.gridXY.setLine(fX, fY - 20, fX , (float)(Globals.cTopChart)) ;
g2d.draw(Globals.gridXY) ;

Il Y axis
for (i = 1; i ~ Globals.cNumberValuesY; i++)
{

11 draw the value in black
g2d.setColor(Col or. black);
val= formatValue((new Double(Globals.dMinY + (i * dVa!IntAxeY))).toString());
fX = (float)(Globals .axeY.getXl() - 50);
fY = (float)(Globals.axeY.getYl() - (dVallntAxeY * Globals.dintY * i));
g2d .drawString(val, fX, fY + 5);

II draw the grid in gray
g2d.sctColor(new Color(166, 166, 166));
G lobals.gridXY.setLine((float) (Globals.cLeftChart), fY,

(float)(Globals.cLeftChart + Globals.cWidthChart), fY);
g2d.draw(Globals.gridXY) ;

158

11 draw last gridline on Y axis
fX = (float)(Globals.axeY.getXl() - 50);
fY = (float)(Globals.axeY.getYl() - (dVa!IntAxeY * Globals.dlntY * i));
Globals.gridXY .setLine((float) (G lobals .cLeftChart), fY,

(float)(Globals.cLeftChart + Globals.cWidthChart) , fY) ;
g2d.draw(Globals.gridXY) ;

II draw origin X lines
if (Globals.dMinX :S 0)
{

fXl = (float)(Globals.axeX.getXl() - (Globals.dMinX * Globals.dlntX));
fYl = (float)(Globals.axeX.getYl());
fX2 = fXl;
fY2 = (float)(Globals.cTopChart);

II draw lines in dark green
g2d.setColor(new Color(0, 110, 0)) ;
Globals.originX.setLine(fXl, fYl, fX2, fY2);
g2d.draw(Globals.originX);

}

II draw origin Y lin es
if (Globals.dMinY :S 0)
{

fXl = (float)(Globals.cLeftChart);
fYl = (float)(Globals.axeY.getYl() + (Globals.dMinY * Globals.dlntY));
fX2 = (float)(Globals.cLeftChart + Globals.cWidthChart);
fY2 = fYl;

II draw lines in dark green
g2d.setColor(new Color(0,110,0));
Globals.originY.setLine(fXl , fYl , fX2, fY2) ;
g2d.draw(Globals.origin Y) ;

}
}

II draw the axes in black
g2d .setColor(Color. black) ;
g2d.draw(Globals.axeX);
g2d.draw(Globals.axeY);

I** final/y draw the charts ** I

II main chart in red
g2d.setColor(Color.red);
g2d.draw(Globals.gp);

II linear moving average in blue
g2d.setColor(Color. blue);
g2d.draw(Globals.gpMA);

11 exponential moving average in yellow
g2d.setColor(new Color(248,248 ,0)) ;
g2d.draw(Globals.gpEMA);

II weighted moving average in green
g2d.setColor(new Color(0,128,128));
g2d.draw(Globals.gpWMA);

159

protected void clear(Graphics g)
{

}

11 call clear method of parent (]Panel)
super. paintComponent(g);

protected String format Value(String str)
{

int index = str.indexOf(". ") ;
try
{

}

Integer INumDec = new Integer(Globals.tfNumDecimals.getText());
Globals.cNdecimalsVal = INumDec.intValue() ;

catch (NumberFormatException ex)
{

}

II reset value to 2
Globals.tfNumDecimals.setText("2") ;
Globals.cNdecimalsVal = 2;
index= -1;
Globals.taStatus.append("\nWARNING: Number format exception while reading number

of decimals\n") ;
Globals.taStatus.append("Resett ed number of decimals to 2\n") ;

11 if no '. ' is present, it 's an integer so return the same string
if (index == -1) return str;
else
{

11 get number of digits after the decimal point
int iCharAfterPoint = str.length() - index - 1;

11 format the string
if (iCharAfterPoint S Globals.cNdecimalsVal) return str;
else
{

String val = str.toString();
val = val.substring(0, index + 1) + val.substring(index +

1, index+ Globals.cNdecimalsVal + 1) ;
return val;

public ChartPanel()
{

Il save current panel
Globals.chartPanel = this ;

11 initialize pChart and add it to the panel
Globals.pChart = new JPanel() ;
G lobais. pChart .setOpaque(fa Ise) ;
Globals. pChart.setLayout(null);
G lobais. pChart.setBounds(10, 10, G lobals.screen Width - 30,

Globals.screenHeight / 2 - 25);

160

Border bEtched = Border Factory.createEtchedBorder();
Border bTitle = BorderFactory.createTitledBorder(bEtched, 1111

);

Globals. pChart .setBorder(bTitle);
add(Globals.pChart);

/ / create chart abjects
Globals.gp = new Genera!Path();
Globals.gpMA = new Genera!Path() ;
Globals.gpEMA = new Genera!Path();
Globals.gpWMA = new Genera!Path();
Globals .axeX = new Line2D.Double();
Globals.axeY = new Line2D.Double();
Globals .gridXY = new Line2D.Float() ;
Globals.originX = new Line2D.Float();
Globals.originY = new Line2D.Float();

161

ChartFile.java

The two methods in the ChartFile class are called from the Listener class when
the user opens a SoundChart file . The first method reads one line from the file , and
stores the X and Y values in the corresponding variables. The second method is
only called once, since it initializes the file pointer which will be used to access the
file denoted by sPath.

import javax.swing.* ;
import java.a,,-t.*;
import java. ut il.StringTokenizer;
import java.util.* ;
import java. io.*;
import java. lang .Double;

public class ChartFile
{

}

public static void readData(String s)
{

}

StringTokenizer t = new StringTokenizer(s, "I ");

readX = Double.parseDouble{t .nextToken{)) ;
readY = Double.parseDouble(t.nextToken{)) ;

public static void createBufferReader(String sPath)
{

try
{

in = new BufferedReader{new FileReader{sPath)) ;
}
catch (IOException e)
{

}

System.out .println{"ERR0R in createBufferReaderO: " + e);
System.exit{0);

public static double readX , readY;
public static BufferedReader in ;

163

Draw InitChart.java

The Drawlni tChart class contains a method to define the scale of the chart and
five drawing methods . In fact these methods don 't draw anything, but fill the
objects that are later used by ChartPanel for the actual drawing. These objects
are Globàls. axeX and Globals. axe Y for t he grid, Globals . gp for the main chart ,
Globals. gpMA for the linear moving average chart , Globals. gpEMA for the expo­
nential moving average chart, and Globals. gpWMA for the weighted moving average
chart. The grid-drawing method is private, since it is called by the other drawing
methods.

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.JFileChooser .*;
import java.awt.event .*;
import java.awt .*;
import java.awt .Graphics.*;
import java.awt.geom.*;
import java .ut il.Vector;
import java. lang. Double;
import java.io.*;

public class DrawlnitChart
{

private static void findScale()
{

inti ;
double dTemp;
Vector vTemp;

Globals. taStatus.append(" \n Sc ale information ----- ") ;
Globals.taStatus.append(" \ n Table size : " + Globals.vCoord.size());

II find min X and max X values in main chart table
vTemp = (Vector)(Globals.vCoord.elementAt(O)) ;
Globals.dMinX = Double.parseDouble((String)(vTemp.elementAt(O)));
vTemp = (Vector)(Globals.vCoord.elementAt(Globals.vCoord.size() - l)) ;
Globals.dMaxX = Double.parseDouble((String)(vTemp.elementAt(O))) ;

Globals.taStatus.append("\n Min X
Globals.taStatus.append("\n Max X

" + Globals.dMinX);
" + Globals.dMaxX);

II find min Y and max Y values in main chart table
Globals.dMinY = Double.MAX_VALUE;
Globals.dMaxY = Double.MIN_VALUE;
vTemp = (Vector) (Globals. vCoord .elementAt(O));
dTemp = Double.parseDouble((String) (vTemp.elementAt(l)));
for (i = O; i < Globals.vCoord .size(); i++)
{

vTemp = (Vector)(Globals.vCoord .elementAt(i));
dTemp = Double.parseDouble((String)(vTemp.elementAt(l)));

165

if (dTemp < Globals .dMinY) Globals.dMinY = dTemp;
if (dTemp > Globals.dMaxY) Globals.dMaxY = dTemp;

}

Globals.taStatus.append("\n Min Y
Globals .taStatus.append("\n Max Y

" + Globals.dMinY);
" + Globals.dMaxY);

11 get dimension of the chart (pChart panel}
Globals .cLeftChart = Globals.pChart.getX() + 70;
Globals. cTopChart = Globals. pChart.getY() + 20;
Globals .cWidthChart = Globals.pChart .getWidth() - ll0;
Globals.cHeightChart = Globals.pChart .getHeight() - 50;

II find X and Y interval
Globals.dlntX = (Globals.cWidthChart) / (Globals .dMaxX - Globals.dMinX);
Globals.dlntY = (Globals.cHeightChart) / (Globals.dMaxY - Globals.dMinY) ;

Globals.taStatus.append("\n Interval X : " + Globals.dlntX) ;
Globals.taStatus.append("\n Interval Y : " + Globals.dlntY);
Globals. taStatus.append(11 \n ----------------------------- "),

private static void drawGrid(float fBottomChart, float fLeftChart)
{

II get bounds for X and Y axis
double dLeft = (double)(Globals.cLeftChart) ;
double dBottom = (double)(Globals.cTopChart + Globals.cHeightChart);
double dTop = (double)(Globals.cTopChart);
double dRight = (double)(Globals.cLeftChart + Globals.cWidthChart);

11 create axes
Globals.axeX.setLine(dLeft, dBottom, dRight , dBottom) ;
Globals.axeY.setLine(dLeft , dBottom, dLeft, dTop);

public static void drawChart()
{

inti;
float ITempX, ITempY, illistFromLeft, illistFromBottom;
float fLeftChart = 0, fBottomChart = 0;

11 reset main chart graphie object
Globals.gp.reset();
G lo bals. pChart.repaint() ;
(G lobais. pChart .getParent()). repaint() ;

11 (re}draw grid
findScale();
fBottomChart = (float)(Globals.cTopChart + Globals.cHeightChart);
fLcft Chart = (float)(Globals.cLeftChart) ;
drawG rid (fLeft Chart, fBottomCh art);

I** draw the chart **I

II move to the first point
Vector vTemp = (Vector)(Globals.vCoord .elementAt(0));

166

}

ITempX = (float)(Double.parseDouble((String)(vTemp.elementAt(O))));
ITempY =(float)(Double.parseDouble((String)(vTemp.elementAt(l))));
IDistFromBottom = (float)((ITempY - Globals.dMinY) * Globals .dlntY) ;
fDistFromLeft = (float)((ITempX - Globals.dMinX) * Globals.dlntX);
Globals.gp.moveTo(fLeftChart, fBottomChart - fDistFromBottom) ;

11 now draw lines from each point to the next one
for (i = l; i < Globals.vCoord.size(); i++)
{

}

vTemp = (Vector)(Globals.vCoord.elementAt(i));
ITempX =(float)(Double.parseDouble((String)(vTemp.elementAt(O))));
fTempY =(float)(Double.parseDouble((String)(vTemp.elementAt(l))));
fDistFromBottom = (float)((ITempY - Globals.dMinY) * Globals.dlntY);
fDistFromLeft = (float)((ITempX - Globals.dMinX) * Globals.dlntX);
Globals .gp. lineTo(fLeftChar t + IDistFromLeft, fBottomChart - fDistFromBottom) ;

11 finally draw the chart
G lobais . pChart .repaint() ;

public static void drawMovingAverage()
{

inti;
float fLeftChart = 0, fBottomChart = O;
float ITempX, fTempY, IDistFromLeft, IDistFromBottom;

11 reset linear moving average chart graphie object
Globals.gpMA.reset();
G lobais. pChart. repaint ();

· (Globals.pChart.getPare~t()).repaint() ;

11 {re}draw grid
findScale() ;
fBottomChart = (float)(Globals.cTopChart + Globals.cHeightChart);
fLeftChart = (float) (Globals.cLeftChart) ;
drawGrid(fLeftChart , fBottomChart);

I"'* draw the linear moving average chart ** /

II move to the first point
Vector vTemp = (Vector)(Globals.vMACoord.elementAt(O));
ITempX =(float)(Double.parseDouble((String)(vTemp.elementAt(O))));
fTempY =(float)(Double.parseDouble((String)(vTemp .elementAt(l))));
IDistFromBottom = (float)((fTempY - Globals. dMinY) * Globals.dlntY);
IDistFromLeft = (float)((fTempX - Globals.dMinX) * Globals.dlntX);
Globals.gpMA.moveTo(fLeftChart + fDistFromLeft , fBottomChart - IDistFromBottom) ;

/ / now draw lines from each point to the next one
for (i = 1; i < Globals. vMACoord.size(); i++)
{

vTemp = (Vector)(Globals.vMACoord.elcmentAt(i));
ITempX =(float)(Double.parseDouble((String)(vTemp.elementAt(O))));
ITempY =(float)(Double. parseDoublc((String)(vTernp.elementAt(l))));
fDistFromBottom = (float)((ITempY - Globals. dM inY) * Globals.dlntY) ;
fDistFromLeft = (float) ((ITempX - Globals.dMinX) * Globals. dlntX);
Globals.gpMA .lineTo(fLeftChart + fDistFromLeft, fBottomChart - fDistFromBottom);

1G7

}

II finally draw the chart
G lobais. pChart.repaint();

public static void drawExpMovingA verage()
{

inti;
float fLeftChart = 0, fBottomChart = 0;
float ITempX, ITemp Y, fDistFromLeft, fDistFromBottom;

/ I reset exponential moving average chart graphie abject
Globals.gpEMA.reset();
G lobais. pChart .repaint();
(G lobais. pChart.getParent()) .repaint();

II (re}draw grid
findScale();
fBottomChart = (float)(Globals.cTopChart + Globals.cHeightChart) ;
fLeftChart = (float)(Globals.cLeftChart);
drawGrid(fLeftChart, fBottomChart);

I** draw the exponential moving average chart ** I

II move to the first point
Vector vTemp = (Vector)(Globals.vEMACoord.elementAt(0));
ITempX =(float)(Double .parseDouble((String)(vTemp.elementAt(0))));
ITempY =(float)(Double .parseDouble((String)(vTemp.elementAt(l))));
fDistFromBottom = (float)((ITempY - Globals.dMinY) * Globals.dlntY);
fDistFromLeft = (float)((ITempX - Globals.dMinX) * Globals .dlntX) ;
Globals.gpEMA.moveTo(fLeftChart + fDistFromLeft, fBottomChart - fDistFromBottom);

II now draw lines /rom each point to the next one
for (i = l; i < Globals.vEMACoord.size(); i++)
{

}

vTemp = (Vector)(Globals .vEMACoord.elementAt(i));
ITem pX = (float) (Double. parseDou ble((String) (vTem p.elementAt(0)))) ;
ITempY =(float)(Double.parseDouble((String)(vTemp.elementAt(l))));
fDistFromBottom = (float)((ITempY - Globals.dMinY) * Globals .dlntY) ;
fDistFromLeft = (float)((ITempX - Globals.dMinX) * Globals.dlntX) ;
Globals.gpEMA.lineTo(fLeftChart + fDistFromLeft, fBottomChart - fDistFromBottom);

11 final/y draw the chart
G lobais. pChart. repaint() ;

public static void drawWeightedMovingAverage()
{

inti ;
float fLeftChart = 0, fBottomChart = 0;
float ITempX, ITemp Y, fDistFromLeft, fDistFromBottom;

11 reset exponential moving average chart graphie abject
Globals.gp WMA.reset();
G lobais. pChart.repaint();
(G lobais. pChart.getParent()) .repaint();

168

11 {re}draw grid
findScale();
fBottomChart == (float)(Globals.cTopChart + Globals.cHeightChart);
fLeftChart == (float)(Globals.cLeftChart);
drawGrid(fLeftChart, fBottomChart);

I** draw the weighted moving average ** I

II move ta the first point
Vector vTemp == (Vector)(Globals.vWMACoord.elementAt(O)) ;
try

{

}

fTempX ==(float)(Double.parseDouble((String)(vTemp.elementAt(O))));
fTempY ==(float)(Double.parseDouble((String)(vTemp.elementAt(l))));

catch (NumberFormatException ex)
{

}

Globals.taStatus.append("\nNUMBER FORMAT EXCEPTION WHILE DRAWING PMA CHART ->
IGNORING\n");

Globals.pChart.repaint();
return;

fDistFromBottom == (float)((fTempY - Globals.dMinY) * Globals.dlntY);
fDistFromLeft == (float)((fTempX - Globals.dMinX) * Globals.dlntX);
Globals.gpWMA.moveTo(fLeftChart + fDistFromLeft, fBottomChart - fDistFromBottom) ;

11 now draw lines from each point ta the next one
for (i == 1; i < Globals .vWMACoord.size(); i++)
{

}

vTemp == (Vector)(Globals .vWMACoord.elementAt(i));
try

{
fTempX ==(float)(Double .parseDouble((String)(vTemp.elementAt(O))));
fTemp Y == (float)(Double.parseDouble((String)(vTemp.elementAt(l))));

catch (NumberFormatException ex)
{

}

Globals.taStatus.append("\nNUMBER FORMAT EXCEPTION WHILE DRAWING PMA CHART ->
IGNORING\n");

break;

fDistFromBottom == (float)((fTempY - Globals .dMinY) * Globals.dlntY);
fDistFromLeft == (float)((fTempX - Globals.dMinX) * Globals.dlntX);
Globals.gpWMA.lineTo(fLeftChart + fDistFromLeft, fBottomChart - fDistFromBottom) ;

II finally draw the chart
G lobais. pChar t .repaint() ;

169

Algorithm.java

The Algorithm class contains three methods for computing the moving averages
of the initial chart . Each method takes the initial chart values and outputs the
corresponding moving average values, using the given parameter k as smoothing
window.

import javax.swing .*;
import java.awt.*;
import java. u til. S tringTokenizer;
import java. util. *;
import java. io. *;
import java.Jang .Double;

public class Algorithm
{

LINEAR MOVING AVERAGE

public static Vector movingAverage(Vector vinitChart, int k)
{

Vector vTemp = new Vector();
Vector vTemp2 = new Vector();
_Vector vMA = new Vector();;
float ITempX, ITempY;
double dMh;

int n = vlnitChart.size() - 1;

for (int h = k + 1; h ~ n - k; h++)
{

/ / compute the sum
float sum = 0.0f;
for (int I = h - k; I ~ h + k; l++)
{

vTemp = (Vector)(vinitChart.elementAt(l - l));
ITempY = (float)(Double.parseDouble((String)(vTemp.elementAt (l))));
sum += ITempY;

}
dMh ~ (double)((l.Of / ((2 .0f * (float)k) + 1.0f)) * sum) ;

Double DMh = new Double(dMh);

vTemp2 = (Vector)(vinitChart.elementAt(h - 1));
fTempX = (float)(Double.parseDouble ((String)(vTemp2.elementAt(0))));

Float FTempX = new Float(ITempX);
Vector vData = new Vector() ;

vData.add(FTempX. toString());
vData.add(DMh .toString()) ;

171

vMA.add{vData);

return vMA;
}

EXPONENTIAL MOVING AVERAGE

public static Vector expMovingAverage(Vector vlnitChart , int k)
{

Vector vTemp = new Vector();
Vector vMA = new Vector{);
double dEMAi. dOldEt--!Ai , E;
float ITempX, ITempY;

int n = vlnitChart.size() - l;

II first point of the EM A serie
vTemp = (Vector) (v InitChart .elementAt{0));
ITempY = {float){Double.parseDouble((String)(vTemp.elementAt(l))));
dOldEMAi = (double)ITempY;
vMA.add(vTemp);

II now the rest
for (inti= l ; i :'.Sn; i++)
{

vTemp = (Vector)(vlnitChart.elementAt(i));
ITempX = (float)(Double.parseDouble((String)(vTemp.elementAt(0))));
ITempY = (float)(Double.parseDouble((String)(vTemp.elementAt(l))));

E = (2.0f / (k + l.0f));

dEMAi = (l.0f - E) * dôldEMAi + E * ITempY;

Double DE:--!Ai = new Double(dEMAi) ;
Float FTempX = new Float(ITempX);
Vector vData = new Vector{) ;

vData.add(FTempX.toString{));
vData.add(DEMAi.toString{));

dOldEMAi = dEMAi;

vMA.add ('"Data);

return vMA ;

WEIGHTED MOVING AVERAGE

public static Vector \\"Cightc<l'.\lovingAverage(Vector vlnitChart , int k)
{

Vcctor vTemp = ne w Vector{);
Vector vTemp2 = new Vector{) ;
Vcctor vWMA = new Vector{); ;
float ITernpX, ITempY;

int n = vlnitChart.size() - l;

172

Globals.taStatus.append("\n coeff : " + k);

double dDivisor == (k • (k+l)) / 2.0f;
double dTopDivision == O.Of;
double dRes == O.Of;
int start == 0;
int v == k;
int c == O;

for (inti == k; i::; n; i++)
{

/ / compute the ponderated sum
C == O;
dTopDivision == O.Of;

for (int j == start; j ::; start + k - 1; j++)

}

{

}

vTemp == (Vector) (v InitChart .elementAt(j)) ;
fTempX == (float)(Double.parseDouble((String)(vTemp.elementAt(O))));
fTempY == (float)(Double.parseDouble((String)(vTemp.elementAt(l))));

dTopDivision +== (c+l) • fTempY ;
c++;

start++;
dRes == dTopDivision / dDivisor;

Vector vData == new Vector();

vTemp == (Vector)(vlnitChart.elementAt(v));
fTempX == (float)(Double.parseDouble((String)(vTemp.elementAt(O))));

Float FTempX == new Float(fTempX) ;
Double DRes == new Double(dRes);

v Data.add(FTempX.toString());
v Data.add(DRes. toString());

vWMA.add(vData);
v++;

Globals.taStatus.append("\n size " + vWMA .size()) ;

return vWMA ;

173

Sonification.java

The Sonification class is obviously the most important and complex class in
SoundChart . Its main method is used to create a MIDI sequence, which consists of
at most 4 steps: creating the base pitch mapping, computing extreme values, adding
beat drums, and finally handling stereo panning. Other methods are used to open
and close a MIDI sequence, and to handle the sonification buttons that control a
sequence.

import javax.swing.* ;
import javax.swing.border.*;
import javax.swing.JFileChooser.*;
import javax.sound.midi.*;
import java.awt.event .*;
import java.awt .*;
import java.awt. Graphics.*;
import java.awt.geom.*;
import java. util. Vector;
import java.Jang.Double;
import java.io .*;
import java.util.*;

class SequenceSliderListener implements ActionListener
{

}

public void actionPerformed(ActionEvent e)
{

}

11 get sequence position
long IPos = Globals.midiSequencer.getMicrosecondPosition();

11 set slider position
Globals.slSequence.set Value((int)((float)IPos / Globals.midiSequenceLength * 100.0f));

11 are we fini shed playing the current sequence ?
if (1Globals.midiSequencer.isRunning())
{

}

II stop sonification
Sonification .stop();

public class Sonification
{

11 converts milliseconds to ticks
private static long Msec2Tick(long msec)
{

return (long)(msec * 0.2) ;

175

private static MidiEvent createMidiEvent(int channel, int command,
int datal, int data2, long msec)

{

}

MidiEvent event = null;

try
{

}

11 create message
ShortMessage msg = new ShortMessage();
msg.setl'vlessage(command, channel, datal, data2) ;

II create event
event = new MidiEvent(msg, 1sec2Tick(msec));

catch (InvalidMidiDataException ex)
{

}

System.out.println("\nERR0R in createMidiEventO: " +ex+ "\n");
System.exit(0) ;

return event;

private static void createMidiSequence()
{

int iProgram = 51, iWarningProgram = 71 , iDrumProgram = 47;
int ilnterval, iMinNote, iMaxNote, iNote, iTime, iLastDrum = -5000;
Vector vChartSonify = null, extremeValues = null;
double dMinY = Double.MAX_VALUE, dMaxY = Double. MIN_VALUE;

Globals.taStatus.append("\nCreating MIDI sequence: \n") ;
Globals.taStatus .append("\ttempo (BPM): " + Globals.midiSequencer .getTempolnBPM()

+ "\n") ;

11 get the program number
iProgram = G lo bals . cb Pro gr am. getSelectedln dex ();
if (iProgram == 0 Il (iProgram > 8 && iProgram 9 == 0)) iProgram++;
if (iProgram < 9) iProgram-;
else iProgram = iProgram - (iProgram / 9) - 1;
Globals.taStatus.append("\tprogram number: " + iProgram + "\n");

if (Globals.chbDrumBeats. isSelected())
{

II get the drum program number
iDrumProgram = Globals.cbDrumProgram.getSelectedlndex();
if (iDrumProgram == 0 Il (iDrumProgram > 8 && iDrumProgram 9 ==

0)) iDrumProgram++;
if (iDrumProgram < 9) iDrumProgram- ;
else iDrumProgram = iDrumProgram - (iDrumProgram / 9) - 1;
Globals.taStatus .append("\tdrum program number: " + iDrumProgram + "\n") ;

if (Globals.chbExtreme Values .isSelected())
{

11 get the warnings program number
iWarningProgram = G lobals.cbExtremeProgram .getSclcctcdlnclex();
if (iWarningProgram == 0 Il (iWarningProgram > 8 && iWarningProgram 9 == 0))
iWarningProgram ++;

17G

}

if (iWarningProgram < 9) iWarningProgram-;
else iWarningProgram = iWarningProgram - (iWarningProgram / 9) - 1;
Globals.taStatus.append("\twarning program number: " + iWarningProgram + "\n") ;

II get chart to sonify
String Sltem = (String)(Globals.cbChart.getSelectedltem());
if (Sitem.equals("Main Chart"))
{

vChartSonify = Globals.vCoord;
Globals.taStatus.append("\ tselected chart: Main Chart\n") ;

}
else if (Sltem.equals("Linear MA Chart"))
{

vChartSonify = Globals .vMACoord;
Globals.taStatus.append("\ tselected chart: Linear MA Chart\n") ;

}
else if (Sitem.equals("Exponential MA Chart"))
{

vChartSonify = Globals.vEMACoord;
Globals.taStatus.append("\ tselected chart: Exponential MA Chart\n");

else if (Sltem.equals("Weighted MA Chart"))
{

}
else
{

}

vChartSonify = Globals.vWMACoord;
Globals .taStatus.append(" \ tselected chart : Weighted MA Chart \n");

System.out.println("\nERROR in createMidiSequence(): Sonification Chart not
present\n");

System.exit(O);

if (Globals.chbExtreme Values.isSelected())
{

else

}

11 compute extreme values indices {/rom initial chart !!)
extreme Values = Extreme Values.getExtreme Valueslndices(G lobais. vCoord);

11 recompute max and min Y
for (inti= O; i < Globals.vCoord.size(); i++)
{

II skip externe values
if (extremeValues.contains(new Integer(i))) continue;

Vector vTemp = (Vector)(Globals.vCoord.elementAt(i));
double dY = Double.parseDouble((String)(vTemp .elementAt(l)));
if (dY < dMinY) dMinY = dY;
if (dY > dMaxY) dMaxY = dY;

dMinY = Globals.dMinY;
dMaxY = Globals.dMaxY;

I / get sonification settings
ilnterval = Globals.slTime.getValue();

177

iMinNote = Globals.slMinNote.getValue();
iMaxNote = Globals.slMaxNote.getValue();
Globals.taStatus.append("\ tinterval: " + ilnterval + "\n");
Globals.taStatus .append("\tminnote: " + iMinNote + "\n") ;
Globals.taStatus.append("\tmaxnote: " + iMaxNote + "\n") ;

11 create MIDI sequ.ence
try
{

Globals.midiSequence = new Sequence(Sequence.PPQ, 100) ;
Track track = Globals.midiSequence.createTrack() ;

11 initialize program nu.mbers
track.add(createMidiEvent(0, ShortMessage.PROGRAM_CHANGE, iProgram, 0, 0)) ;
track.add(createMidiEvent(l , ShortMessage.PROGRAM_CHANGE, iWarningProgram, 0, 0)) ;
track.add(createMidiEvent(2 , ShortMessage.PROGRAM_CHANGE, iDrumProgram , 0, 0));

Il compute dYdelta (u.sed to compute the slope)
double dYdelta = (dMaxY == dMinY)? 1 : (dMaxY - dMinY) ;

II add MIDI events
for (inti = 0; i < vChartSonify.size(); i++)
{

Vector vTemp = (Vector)(vChartSonify.elementAt(i)) ;
double dY = Double.parseDouble((String)(vTemp.elementAt(l)));

if (Globals.rbLinearMapping.isSelected())
{

}
else
{

}

11 LINEAR MAPPING
iNote = (int)(((dY - dMinY) * (iMaxNote - iMinNote)) / (dMaxY - dMinY)) ;
iNote += iMinNote;

11 CHROMATIC SCALE MAPPING
double exp= (dY - dMinY) / (dMaxY - dMinY) ;
iNote = (int)(iMinNote * Math.pow(iMaxNote / iMinNote, exp));

iTime = i * iinterval;

11 add warning for extrem e values (on channel 1}
boolean bAdded = false ;
if (Globals.chbExtreme Values.isSelected())
{

int index= i;
if (Sitem.equals(" Linear MA Chart"))
{

}

int iMAOrder = (new Integcr(G lobals. lValOrder.getText())) .intValue();
index = i + iMAOrder;

e lse if (S i tem.equals("Weighted MA Chart"))
{

int iWMACoeff = (new Integer(G lobals. !ValCoeff.gctText())).intValue() ;
index = i + iWMACocff;

if (extreme Values.contains(ne w Integer(index)))
{

178

}

}
}

11 play waming
track.add(createMidiEvent(l, ShortMessage.NOTE_QN, 50, 127, iTime)) ;
track .add(createMidiEvent(1, ShortMessage.NOTE_OFF,

50, 127, iTime + 300));

bAdded = true;

if (!bAdded)
{

}

if (Globals.chbStereo.isSelected())
{

}

int iPan = (int)(((float)i / (float)vChartSonify.size()) * 127.0);

11 add PAN contrai change
track.add(createMidiEvent(0, ShortMessage.CONTRQL_CHANGE,

10, iPan, iTime));
track.add(createMidiEvent(2, ShortMessage.CONTROLCHANGE,

10, iPan , iTime)) ;

11 add NOTE ON event
track.add(createMidiEvent(0 , ShortMessage.NOTE_ON, iNote, 127, iTime));

11 add NOTE OFF event
track.add(createl'vlidiEvent(0, ShortMessage.NOTE_O FF,

iNote, 127, iTime + ilnterval));

11 add drum beats (on channel 2)
if (Globals.chbDrumBeats.isSelected())
{

for (inti= 1; i < vChartSonify.size(); i++)
{

Vector vTemp = (Vector)(vChartSonify.elementAt(i));
double dY = Double . parseDouble((String) (vTemp.elementAt(l)));
Vector vTemp0 = (Vector)(vChartSonify.elementAt(i-1));
double dYO = Double .parseDouble((String)(vTemp0.elementAt(l)));

double slope = (dY - dY0) / dYdelta;
int drumlnterval = (slope == 0.0) ? 1000 : (int)Math.abs(lO.0 / slope);

int iY0 = (i-1) * ilnterval;
int iY = i * ilnterval;

int iStart = iLastDrum + drumlnterval;
if (iStart < iY0) iStart = iY0;

for (int j = iStart; j < iY; j+=drumlnterval)
{

}

II add drum beat
track.add(createMidiEvent(2, ShortMessage.NOTE_ON , 60, 127 , j));
track.add(createMidiEvent(2 , ShortMessage.NOTE_OFF, 60, 127, j + 250)) ;
iLastDrum = j;

179

}

}

- - - ---- -------------------------;

Globals.midiSequenceLength = Globals .midiSequence.getMicrosecondLength() ;
Globals.taStatus.append("Sequence length in seconds: " +

Globals.midiSequenceLength / (float)le6 + "\n") ;
Globals.taStatus.append(" ticks: " +

Globals.midiSequence.getTickLength() + "\n\n") ;

Il add sequence to sequencer
G lobais. midiSequencer .setSequence(G lobais. midiSequence);

catch (NumberFormatException ex)
{

}

System.out.println("\nERR0R in createMidiSequence(): " +ex+ "\n") ;
System.exit(0);

catch (InvalidMidiDataException ex)
{

}

System.out.println("\nERR0R in createMidiSequenceO: " +ex+ "\n");
System.exit(0);

Globals.midiSequenceCreated = true;

public static void openMidiSequencer()
{

try
{

}

Globals.taStatus.append("\n0pening MIDI sequencer .. . ");
Globals.midiSequencer .open();
Globals.taStatus.append(" ok\n");

catch (MidiUnavailableException ex)
{

System.out.println ("ERR0R in enableSonificationO: " + ex + "\n") ;
Globals.taStatus.append("\nERR0R in enableSonificationO : " +ex+ "\n\n") ;
return;

11 create timer fo r slSequence updates
Globals .timerSequence = new javax.swing.Timer(l00, n e w SequenceSliderListener());

public static void closeMidi$equencer()
{

G lobals.taStatus.append(" \ nClosing MIDI sequencer .. . ");
G lobais. midiSequencer .close();
Globals .taStatus.append(" ok\n") ;

SON IFI CAT ION BUTTONS

public static void reset()
{

G lobals.slSequence.setEnabled (true);

180

Globals.bReset .setEnabled(false);
Globals. bRew .setEnabled(false);
Globals. bPlay.setEnabled(true) ;
Globals.bPause.setEnabled(false);
G lobais. bStop.setEnabled(false) ;
G lobais. bFfw .setEnabled(true) ;
Globals. bEnd.setEnabled(true) ;

Globals.timerSequence.stop();
if (Globals.midiSequencer .isOpen()) Globals.midiSequencer .stop();
G lobals.s!Sequence.set Value(0);

public static void rew()
{

}

G lobals.s!Sequence.setEnabled(true);

G lobais. bReset.setEnabled(true) ;
Globals. bRew .setEnabled(true);
G lobais. bPlay.setEnabled(true);
Globals. bPause.setEnabled(false);
Globals . bStop.setEnabled(false);
Globals. bFfw .setEnabled(true);
Globals. bEnd.setEnabled(true);

Globals. timerSequence.stop();
if (Globals.midiSequencer .isOpen()) Globals.midiSequencer.stop();
Globals.sISequence.setValue(Globals.slSequence.getValue() - 10);

public static void play()
{

Globals.cbProgram.setEnabled(false);
G lo bals.slMinN ote.setEnabled (false) ;
G lobals.slMaxN ote.setEnabled(false);
G lo bals.s!Time.setEnabled (false);
Globals.chbExtreme Values.setEnabled(false);
G lobals.chbDrumBeats.setEnabled(false) ;
G lobals.chbStereo.setEnabled(false) ;
G lobals.cbChart.setEnabled(false);
G lobals.cbExtremeProgram.setEnabled(false);
G lobals.cbDrumProgram.setEnabled(false) ;
G lobals.rbLinear Mapping.setEnabled(false);
Globals.rbChromaticMapping.setEnabled(false) ;
G lobals.s!Sequence.setEnabled(false);

Globals.bReset .setEnabled(true) ;
Globals. bRew .setEnabled(true);
Globals .bPlay.setEnabled(false);
Globals.bPause.setEnabled(true);
G lobais. bStop.setEnabled(true) ;
Globals. bFfw.setEnabled(true) ;
Globals. bEnd.setEnabled(true) ;

if (IGlobals.midiSequenceCreated) createMidiSequcnce();

G lobais. t imerSequence.start();
G lobals .midiSequencer .start();

181

}

11 match sequence position with slSequence position
float pos = {float)Globals.s!Sequence.getValue() * Globals.midiSequenceLength;
Globals.midiSequencer .setMicrosecondPosition{ {long) (pos / 100.0f));

Globals.tabbedpane.setEnabledAt{0, false);
Globals. tabbedpane.setEnabledAt{ 1, false);

public static void pause()
{

Globals.s!Sequence.setEnabled(true) ;

Globals. bReset .setEnabled(true) ;
Globals.bRew.setEnabled(t rue);
Globals. bPlay.setEnabled{ true) ;
Globals. bPause.setEnabled{false) ;
G lobais. bStop.setEnabled{ true) ;
Globals. bFfw.setEnabled{ true);
G lobais. bEnd.setEnabled{ true);

G lobais. timerSequence.stop() ;
if {Globals.midiSequencer .isOpen()) Globals.midiSequencer.stop();

public static void stop()
{

G lobals.cbProgram.setEnabled{ true) ;
G lobals.s!MinN ote.setEnabled{ true);
G lobals.slMaxN ote.setEnabled{ true);
G lobals.s!Time.setEnabled{ true);
Globals.chbExtreme Values.setEnabled{true);
G lobals.chbDrumBeats.setEnabled{ true);
Globals.chbStereo.setEnabled{ true);
Globals.cbChart.setEnabled(true);
if (G lobals.chbExtreme Val ues.isSelected{)) G lobals.cbExtremeProgram.setEnabled(true) ;
if (Globals.chbDrumBeats. isSelected{)) Globals.cbDrumProgram.setEnabled(true);
G lo bals .rbLinear Mapping.setEnabled(true) ;
G lobals.rbChromaticMapping.setEnabled(true) ;
G lobals .s!Sequence.setEnabled(true);

Globals.bReset .setEnabled(false);
Globals. bRew.setEnabled(false);
G lobais. bPlay.setEnabled(true);
G lobais. bPause.setEnabled(false) ;
Globals. bStop.setEnabled(false) ;
G lobais . bFfw .setEnabled(true);
G lobais . bEnd.setEnabled(true) ;

Globals. timerSequence .stop();
if (G lobals.midiSequencer. isOpen ()) G lo bals.midiSeq uencer .stop();
G lobals.s!Sequence.set Value(0);
Globals.midiSequenceCreated = false ;

Globals.tabbedpanc.setEnabledAt(0, true) ;
Globals.tabbedpane.setEnabledAt (l , true) ;

public static void ffw()
{

182

}

Globals.s!Sequence.setEnabled(true);

Globals. bReset.setEnabled(true);
Globals. bRew .setEnabled(true);
Globals. bPlay.setEnabled(true) ;
Globals . bPause.setEnabled(false) ;
G lobais. bStop.setEnabled(false);
Globals. bFfw.setEnabled(true);
Globals.bEnd.setEnabled(true);

Globals.timerSequence.stop();
if (Globals.midiSequencer .isOpen()) Globals.midiSequencer .stop();
Globals.slSequence.set Value(Globals.slSequence.get Value() + 10);

public static void end()
{

}

G lobals.s!Sequence.setEna bled (true);

G lobais. bReset.setEnabled(true) ;
Globals. bRew.setEnabled(true);
Globals. bPlay.setEnabled(false);
Globals. bPause.setEnabled(false);
Globals.bStop.setEnabled(false);
Globals.bFfw.setEnabled(false);
Globals.bEnd.setEnabled(false) ;

Globals . timerSequence.stop();
if (Globals.midiSequencer.isOpen()) Globals.midiSequencer.stop();
Globals.s!Sequence.set Value(l00) ;

183

Extreme Values.java

The ExtremeValues class can only be accessed by calling the public method
getExtremeValuesindices, which creates a Vector object with the indices of
the detected outliers. The actual z-score test is done by the private method
getZScoreOutliers, which uses the mean and standard deviation of the initial
time series.

import javax.swing.*;
import javax.sound.rnidi .* ;
import java.awt.* ;
import java.awt.georn.* ;
import java.util.Vector;
import java.lang.Double;
import java.io.*;
import java.util.*;

public class ExtremeValues
{

private static Vector getZScoreOutliers(Vector vChart, int n, double mean, doubles)
{

}

Vector evi = new Vector();

for (inti= O; i < n; i++)
{

Vector vTemp = (Vector)(vChart.elementAt(i));
double dY = Double.parseDouble((String)(vTemp.elementAt(l)));

double zscore = (dY - mean) / s;

if (Math.abs(zscore) > 3.0)
{

evi.add(new Integer(i));

Globals.taStatus.append("Extreme value detected at Y = " + dY);
Globals.taStatus.append(" (z-score = " + zscore + ") \n") ;

return evi;

public stat ic Vector getExtremeValueslndices(Vector vChart)
{

double s, rnean ;
inti , n;

II get number of elements
n = vChart.size();

185

}

II compute the mean
double sum Y = 0.0;
for (i = O; i < n; i++)
{

Vector vTemp = (Vector)(vChart.elementAt(i));
double dY = Double.parseDouble((String)(vTemp.elementAt(l)));

sumY += dY;
}
mean = sumY / n;

Il compute s
double sumS = 0.0;
for (i = O; i < n; i++)
{

Vector vTemp = (Vector) (vChart.elementAt(i));
double dY = Double. parseDouble((String) (vTemp.elementAt(l)));

sumS += Math.abs(mean - dY) ;
}
s = sumS / n;

II compute extreme values
return getZScoreOutliers(vChart, n , mean, s);

186

Midi.java

The Midi class simply contains a method for initializing the Globals. vProgramCB
vector with the 128 standard MIDI instruments. The created vector contains 144
elements, because 16 group names are added to classify the instruments .

import java.awt .*;
import java.awt.event .*;
import javax.swing.* ;
import javax.swing.border.*;
import java.util.Vector ;

public class Midi
{

public static void fillProgramComboBox()
{

Globals.vProgramCB = new Vector(144) ;

Globals.vProgramCB.add("--­
Globals .vProgramCB.add(" 1
Globals.vPrograrnCB.add("2
Globals.vProgramCB.add("3
Globals.vProgramCB.add("4
Globals.vProgramCB.add("5
Globals.vProgramCB .add("6
Globals.vProgramCB.add("7
Globals.vProgramCB.add("8
Globals.vProgramCB .add("--­
Globals. v ProgramCB.add("9
Globals.vProgramCB.add("10
Globals. vProgramCB.add(" 11
Globals.vProgramCB.add("12
Globals.vProgramCB.add("13
Globals.vProgramCB.add("14
Globals.vProgramCB.add("15
Globals.vProgramCB .add("16
Globals.vProgramCB.add("--­
Globals.vProgramCB.add("17
Globals.vProgramCB .add("18
Globals.vProgramCB.add("19
Globals.vProgramCB .add("20
Globals.vProgramCB.add("21
Globals.vProgramCB.add(" 22
Globals.vProgramCB.add("23
Globals.vProgramCB .add("24
Globals. vProgramCB .add("--­
Globals.vProgramCB.add(" 25
Globals.vProgramCB .add("26
Globals.vProgramCB.add("27
Globals.vProgramCB.add("28
Globals.vProgramCB.add("29

PIANO ---");
Acoustic Grand");
Bright Acoustic");
Electric Grand");
Honky-Tonk") ;
Electric Piano 1");
Electric Piano 2");
Harpsichord") ;
Clavinet") ;

CHROMATIC PERCUSSION ---") ;
Celesta");
Glockenspiel") ;
Music Box") ;
Vibraphone");
Marimba") ;
Xylophone");
Tubular Bells");
Dulcimer") ;

ORGAN ---") ;
Dravbar Organ") ;
Percussive Organ");
Rock Organ") ;
Church Organ") ;
Reed Organ") ;
Accoridan");
Harmonica") ;

Tango Accordian");
GUITAR ---") ;

Nylon String Guitar");
Steel String Guitar") ;
Electric Jazz Guitar") ;
Electric Clean Guitar") ;
Electric Muted Guitar") ;

187

Globals. vProgramCB.add("30
Globals.vProgramCB.add("31
Globals. vP rogramCB.add("32
Globals.vProgramCB.add("--­
Globals.vProgramCB.add("33
Globals.vProgramCB.add("34
Globals. vProgramCB.add(" 35
Globals. vProgramCB.add("36
Globals .vProgramCB.add("37
Globals.vProgramCB.add("38
Globals.vProgramCB.add("39
Globals.vProgramCB.add("40
Globals.vProgramCB.add("--­
Globals.vProgramCB.add("41
Globals.vProgramCB.add("42
Globals.vProgramCB.add("43
Globals.vProgramCB.add("44
Globals.vProgramCB.add("45
Globals.vProgramCB.add("46
Globals.vProgramCB.add("47
Globals.vProgramCB.add("48
Globals.vProgramCB.add("- -­
Globals.vProgramCB.add("49
Globals.vProgramCB.add("50
Globals.vProgramCB.add("51
Globals.vProgramCB.add("52
Globals. v Program CB.add(" 53
Globals.vProgramCB.add("54
Globals.vProgramCB.add("55
Globals.vProgram CB.add("56
Globals.vProgramCB.add("--­
Globals. v ProgramCB.add (" 57
Globals.vProgramCB.add("58
Globals.vProgramCB.add("59
Globals.vProgramCB.add("60
Globals.vProgramCB.add("61
Globals.vProgramCB.add("62
Globals.vProgramCB .add("63
Globals.vProgramCB.add("64
Globals.vProgramCB .add("--­
Globals.vProgramCB.add("65
Globals.vProgramCB.add("66
Globals .vProgramCB.add("67
Globals.vProgramCB .add("68
Globals.vProgramCB.add("69
Globals.vProgramCB.add("70
Globals.vProgramCB.add("71
Globals.vProgramCB.add("72
Globals.vProgramCB.add("- -­
Globals.vProgramCB.add("73
Globals .vProgramCB .add("74
Globals. vProgramCB.add(" 75
Globals. vProgramCB .add("76
Globals. v ProgramCB.add("77
Globals.vProgramCB .add("78
Globals. v ProgramCB.add("79
G lobais. v ProgramCB.add("80
Globals.vProgramCB.add(" - - ­
Globals.vProgramCB.add("81

Overdriven Guitar") ;
Distortion Guitar") ;
Guitar Harmonies") ;

BASS ---");
Acoustic Bass") ;
Electric Bass(finger)") ;
Electric Bass (pick) ");
Fretless Bass");
Slap Bass 1");
Slap Bass 2") ;
Synth Bass 1");
Synth Bass 2");

SOLO STRINGS --- ");
Violin");
Viola");
Celle") ;
Contrabass ");
Tremelo St rings ");
Pi zzicato Str i ngs");
Or chestral Strings");
T impani");

ENSEMBLE ---");
St ring Ensemble 1");
String Ensemble 2");
SynthStrings 1 ") ;
SynthStrings 2") ;
Choir Aahs ");
Voice Oohs");
Synth Voice") ;
Orchestra Hi t ") ;

BRASS ---");
Trumpet") ;
Trombone");
Tuba") ;
Muted Trumpet") ;
French Horn");
Brass Section") ;
SynthBrass 1 ");
SynthBrass 2");

REED --- ");
Soprano Sax");
Alto Sax ");
Tenor Sax");
Baritone Sax ");
Oboe");
English Horn");
Bassoon");
Clarinet");

PIPE - --");
Pic colo");
Flute ");
Recorder ");
Pan Flut e ") ;
Bl own Bott l e") ;
Skakuhachi");
Whis t l e ");
Ocarina");

SYNTH LEAD - - - ");
Lead 1 (s quare)");

188

Globals.vProgramCB.add("82
Globals.vProgramCB.add("83
Globals.vProgramCB.add("84
Globals.vProgramCB.add("85
Globals.vProgramCB.add("86
Globals.vProgramCB.add("87
Globals. v ProgramCB.add("88
Globals.vProgramCB.add("--­
Globals. v ProgramCB.add("89
Globals.vProgramCB.add("90
Globals.vProgramCB.add("91
Globals.vProgramCB.add("92
Globals.vProgramCB .add("93
Globals.vProgramCB.add("94
Globals.vProgramCB.add("95
Globals.vProgramCB.add("96
Globals.vProgramCB.add("--­
Globals.vProgramCB.add("97
Globals.vProgramCB.add("98
Globals.vProgramCB.add("99
Globals.vProgramCB.add("100
Globals.vProgramCB .add("101
Globals.vProgramCB.add(" 102
Globals.vProgramCB .add(" 103
Globals.vProgramCB.add("104
Globals.vProgramCB.add("--­
Globals.vProgramCB.add("105
Globals .vProgramCB .add(" 106
Globals. vProgramCB.add(" 107
Globals. v ProgramCB.add(" 108
Globals. v ProgramCB.add(" 109
Globals.vProgramCB.add("110
Globals. vProgramCB.add(" 111
Globals . vProgramCB.add(" 112
Globals.vProgramCB.add("--­
Globals.vProgramCB.add("113
Globals.vProgramCB .add("114
Globals.vProgramCB.add("115
Globals.vProgramCB .add("116
Globals.vProgramCB .add("117
Globals.vProgramCB.add("118
Globals.vProgramCB.add("119
Globals.vProgramCB .add("120
Globals.vProgramCB.add("--­
Globals. vProgramCB .add(" 121
Globals. v ProgramCB .add(" 122
Globals.vProgramCB .add("123
Globals. vProgramCB .add(" 124
Globals .vProgramCB.add("125
Globals.vProgramCB.add(" 126
Globals.vProgramCB .add("127
Globals.vProgramCB.add("128

Lead 2 (sawtooth) ") ;
Lead 3 (calliope) ") ;
Lead 4 (chiff) ");
Lead 5 (charang) ");
Lead 6 (voice) ");
Lead 7 (fifths) ");
Lead 8 (bass+lead)");

SYNTH PAD - --");
Pad 1 (new age)") ;

Pad 2 (warm) ") ;

Pad 3 (polysynth) ") ;
Pad 4 (choir)") ;
Pad 5 (bowed) ");
Pad 6 (metallic) ") ;
Pad 7 (halo)") ;
Pad 8 (sweep) ");

SYNTH EFFECTS ---") ;
FX 1 (rain) ");
FX 2 (soundtrack) ");
FX 3 (crystal) ") ;
FX 4 (atmosphere) ") ;
FX 5 (brightness)");
FX 6 (goblins) ");
FX 7 (echoes) ") ;
FX 8 (sci-fi)") ;

ETHNIC ---") ;
Sitar") ;
Banjo") ;
Shamisen") ;
Koto");
Kalimba");
Bagpipe");
Fiddle");
Shanai");

PERCUSSIVE ---");
Tinkle Bell") ;
Agogo") ;
Steel Drums");
Woodblock");
Taiko Drum");
Melodic Tom");
Synth Drum") ;
Reverse Cymbal");

SOUND EFFECTS ---") ;
Guitar Fret Noise");
Breath Noise");
Seashore ") ;
Bird Tweet") ;
Telephone Ring") ;
Helicopter");

Applause") ;
Gunshot") ;

189

SoundChart3D .java

The SoundChart3D class is the main class of the application. The first action is
to initialize the two windows used in the application. SC3DFrame represents the
main window, where the user can manipulate 3D charts and alter the sonification
options. SOFrame represents the window containing additional sonification options.
The other main operation of the SoundChart3D class is to initialize the MIDI objects
used throughout the application. The same objects are closed when the program
terminates (i.e. when the main window is closed).

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.sound.midi.*;
import java.io.*;
import java.io .IOException;
import java.text.DecimalFormat;
import java. text.ParseException;
import java.applet.*;

class MainSplitPane
{

/ / the main window is split in two parts
private JSplitPane splitPane;
private JPanel pSouth;
private JPanel pScene;
private JPanel pEditScene;
private JTabbedPane tpNorth;

public MainSplitPane()
{

tpNorth = new JTabbedPane();
pSouth = new JPanel();
pScene = GuiSouth.makeScenePanel();
pEditScene = GuiSouth.makeEditScenePanel();

pSouth.setLayout(null);
pEditScene.setBounds(l0,10, 450, 310);
pScene.setBounds(480,10, 460, 310);

pSouth .add(pEditScene);
pSouth.add(pScene);

Component panel2 = GuiNorth.makePanelSonification();
tpNorth.addTab(" Sonification ", null , panel2, "Sonification view") ;

Component panell = GuiNorth.makePaneIStatus();
tpNorth.addTab(" Status " , null, panell, "Status view") ;

splitPane = new JSplitPane(JSplitPane.VERTICAL...SPLIT, tpNorth, pSouth);
splitPane.setOneTouchExpandable(false) ;

191

}

}

splitPane.setDividerLocation(Globals.screenHeight / 2 - 30);
splitPane.setContinuousLayout(false);

11 provide minimum sizes for the two components in the split pane
Dimension minimumSize = new Dimension(lO0, 50);
tpNorth.setMinimumSize(minimumSize);
pSouth .setMinimumSize(minimumSize);
pScene.setMinimumSize(minimumSize);
pEditScene.setMinimumSize(minimumSize);

II provide a pref erred size for the split pane
splitPane.setPreferredSize(new Dimension(400, 200));

public JSplitPane getSplitPane()
{

return splitPane;
}

class SC3DFrame extends JFrame
{

public SC3DFrame()
{

}

setTitle(" SoundChart 3D");

addWindow Listener(new Window Adapter()
{

public void windowClosing(WindowEvent e)
{

}
});

SoundChart3D.closeMidiObjects();
System.exit(0);

setSize(Globals.screen Width, Globals.screenHeight);

Container contentPane = getContentPane();

MainSplitPane sp = new MainSplitPane();

contentPane. add(sp.getSpli tPane());

class SOFrame extends JFrame

public SOFrame()
{

sctTitle("Sonification options") ;
setBounds(300,220,430,290);

addWindowListener(new Window Adapter()
{

public void windowClosing(WindowEvent e)
{

1!)2

Globals. bOptions.setEnabled(true);
}

});

getContentPane() .add(GuiNorth .makePanelSoundOptions());
}

}

public class SoundChart3D
{

11 retrieves the number pressed by the user
private static int getKbdlnt()
{

}

int val= 0;

try
{

}

InputStreamReader isr = new lnputStreamReader(System.in) ;
BufferedReader br = new BufferedReader (isr);

String s = br .readLine() ;
DecimalFormat df = new DecimalFormat ();

val = (df.parse(s)) .intValue();

catch (IOException ex)
{

}

System.out .println("\nERR0R in getKbdint (): " + ex + "\n");
System.exit(!) ;

catch (ParseException ex)
{

}

System.out.println("\nERR0R in getKbdintO: "+ex+ "\n") ;
System.exit(!) ;

return val ;

static void initMidiObjects()
{

MidiDevice.Info0 midiDevices = MidiSystem.getMidiDevicelnfo();

if (midiDevices. length == 0)
{

System.out.println("No MIDI devices found on this system!\n") ;
System.exit(O) ;

11 print available MIDI devices
System.out . print ln ("Available MIDI devices on this system : \ n");
for (int i = 0; i < midiDevices .length; i++)

System.out.pri nt ln(i + ": " + midiDevices[i]);

11 the user must choose a MIDI device
System.out . print ("\nUse device number : ");
int iDevice = getK bdlnt() ;

193

}

try
{

}

System.out.print("\nGett ing MIDI device . .. ");
Globals.midiDevice = MidiSystem.getMidiDevice(midiDevices[iDevice]);
System.out.println(" ok") ;

System.out.print("Getting synthesizer . . . ");
Globals.midiSynthesizer = MidiSystem .getSynthesizer() ;
System .out .println(" ok") ;

System .out .print("Getting sequencer . . . ") ;
Globals.midiSequencer = MidiSystem .getSequencer() ;
System.out.println(" ok\n") ;

catch (MidiUnavailableException ex)
{

}

System .out.println("\nERR0R in initMidiDeviceO: " + ex+ 11 \n") ;
System .exit (l) ;

catch (SecurityException ex)
{

}

System.out.println("\nERR0R in initMidiDeviceO: " + ex+ 11 \n");
System.exit(l);

static void closeMidiObjects()
{

System.out.print("Closing MIDI objects ... ");
Globals.midiSynthesizer .close() ;
Globals.midiSequencer .close();
Globals. midiDevice.close();
System.out.println(" ok\n") ;

public static void main(StringQ args)
{

II create windows
JFrame frame= new SC3DFrame() ;
Globals .optionsFrame = new SOFrame();

System . out . prin t in (" ___________________________ 11);

System.out .println(" 1 I ");
System .out .print ln (" 1 S0UNDCHART 3D I ");
System.out . println(" 1-------------------------1 \n \n") ;

11 initialize MIDI abjects
ini tM idiObjects() ;

II show main window
fr ame.show() ;

194

GuiNorth.j ava

The GuiNorth class creates the northern part of SoundChart3D's main window, as
well as the Sonification Options panel. Unlike SoundChart's window, it contains
only 2 panels, since the 3D scene is created and manipulated by the southern part
of the window. The two panels are the Sonification panel and the Status panel.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;
import java.util.Vector;
import javax.swing.JSlider;
import javax.swing.table.*;
import javax.swing.event. ListSelectionEvent;

public class GuiNorth
{

SONIFICATION PANEL

protected static Componertt makePanelSonification()
{

JPanel panel = new JPanel(false);
· panel.setLayout(null); ·

I** MIDI settings panel **I

JPanel pSonification = new JPanel();
pSon ification .set Layou t (null);
pSonification.setBounds(25,10,425,260);
Border bEtched = BorderFactory.createEtchedBorder();
Border bTitle = BorderFactory.createTitledBorder(bEtched, "MIDI settings");
pSonification .set Border (bTitle);

II program combobox
JLabel !Program = new JLabel("Select program : ");
1 Program.setBounds(25,40,180,20);
11 fi.li vProgramCB vector with MIDI programs
Midi .fillProgramComboBox();
Globals.cbProgram = new JComboBox(Globals.vProgramCB);
G lobals.cbProgram.setSelectedltem (" 52 SynthStrings 2");
Globals.cbProgram.setEditable(false);
Globals.cbProgram.setBounds(180,35,225,30);
Globals.cbProgram.addActionListener(new AListener());
G lobals.cbProgram.setEnabled(false);

II interval slider
JLabel llnterval = new JLabel("Interval : ");
llnterval.setBounds(25,90,180,20);
Globals.slTime = new JSlider(JSlider.HORIZONTAL, 0, 1000, 200);
Globals.s1Time.setBounds(180,90,155,25);

195

Globals.s!Time.addChangeListener{new SliderListener{));
Globals.s!Time.setMajorTickSpacing{5);
G lobals.slTime.setMinorTickSpacing(1);
G lobals.slTime.setEnabled{ false);
Globals.lTime = new JLabel{"200 ms");
Globals.lTime.setBounds(355,86,50,20);

11 minNote slider
JLabel IMinNote = new JLabel("Min Pit ch : ");
IMinNote.setBounds(25, 130,180,20);
Globals.slMinNote = new JSlider{JSlider.HORIZONTAL, 0, 127, 25);
Globals.s1MinNote.setBounds{180,130,155,25) ;
Globals.slMinNote.addChangeListener(new SliderListener{));
Globals.s!MinNote.setMajorTickSpacing{2);
Globals.slMinNote.setMinorTickSpacing(l);
Globals.slMinNote.setEnabled(false);
Globals.lValMinNote = new JLabe1("25");
Globals.1ValMinNote.setBounds(355,126,50,20) ;

11 maxNote slider
JLabel IMaxNote = new JLabel("Max Pitch : ");
IMaxNote.setBounds{25,170, 180,20);
Globals.slMaxNote = new JSlider (JSlider.HORIZONTAL, 0, 127, 100);
G lobals.slMaxNote.setBounds(180,170, 155,25);
Globals.s!MaxNote.addChangeListener(new SliderListener{));
Globals.slMaxNote.setMajorTickSpacing{2);
G lobals.slMaxNote.setMinorTickSpacing(1) ;
Globals.s!MaxNote.setEnabled(false);
Globals.lValMaxNote = new JLabe1{"100");
G lobals.lValMaxNote.setBounds{355, 166,50,20);

11 sonification options button
Globals.bOptions = new JButton("More sonification options ... ");
Globals.bOptions.setBounds(l00,210,230,30);
G lobais. bOptions.addActionListener(new A Listener());
G lobais. bOptions.setEnabled(false) ;

11 add all these elements to MIDI settings panel
pSonification .add (IProgram);
pSonification.add(Globals.cbProgram);
pSonification.add(IInterval);
pSonification. add (G lobals.s!Time);
pSonification.add(Globals.lTime);
pSonification.add(IMinNote);
pSonification.add(Globals.slMinNote);
pSonification.add(Globals.lVa!MinNote);
pSonification.add(IMaxNote);
pSonification .add(Globals.slMaxNote);
pSonification.add(Globals.lValMaxNote);
pSonification.add(Globals. bOptions);

I** Sonification type panel ** I

JPanel pSonificationType = new JPanel();
pSonificationType.setLayout(null) ;
pSoni fication Type.setBounds(4 75, 10,425,260);
Border bEtched2 = BorderFactory.createEtchedBorder();
Border bTitle2 = BorderFactory.createTitledBorder(bEtched2, "Sonification type") ;
pSonificationType.setBorder(bTitle2);

196

11 sonification type combobox
JLabel ISonificationType = new JLabel("Sonification type : ");
ISonification Type.setBouncls(25, 40, 180,20);
String□ sonificationTypes = { "Horizontal Travelling (along X-axis)",

"Vertical Travelling (along Z-axis)", "Diagonal Travelling"};
Globals.cbSonificationType = new JComboBox(sonificationTypes);
G lobals.cbSonification Type.setEditable(false) ;
Globals.cbSonificationType.setBouncls(l80,35,225,30);
G lobals.cbSonification Type.setEnabled (fa Ise);

II mapping type radio buttons
JLabel IMapping = new JLabel("Mapping type : ");
IMapping.setBounds(25,80,140,20) ;
Globals.rbLinearMapping = new JRadioButton("Linear mapping", true) ;
Globals.rbLinearMapping.setBounds(180,80,180,30);
G lo bals.rbLinear Mapping.setEnabled(false);
Globals.rbChromaticMapping = new JRadioButton("Chromatic scale mapping", false) ;
Globals.rbChromaticMapping.setBounds(l80,105,180,30);
G lobals.r bChromaticM apping.set Enabled(fa)se);
ButtonGroup bgMappingType = new ButtonGroup();
bgMappingType.add(Globals.rbLinearMapping);
bgMappingType.add(Globals. rbChromaticMapping);

II sequence buttons
lmagelcon iPlay = new lmagelcon("data/play1 .gif");
lmagelcon iPause = new Imagelcon("data/pause1 .gif");
Imagelcon iStop = new lmagelcon("data/stop1.gif");

Globals.bPlay = new JButton(iPlay);
G lobais. bPlay.setBouncls(200,200,35,35);
Globals. bPlay.addActionListener(new AListener());
. G lobais. bPlay.setEnabled(false);

Globals.bPause = new JButton(iPause) ;
G lobais. bPause.setBouncls(240,200,35,35);
G lobais. bPause.addActionListener(new AListener());
Globals.bPause.setEnabled(false);

Globals.bStop = new JButton(iStop);
Globals.bStop.setBounds(280,200,35,35);
Globals.bStop.addActionListener(new AListener());
G lobais. bStop .setEnabled(false);

11 add ail these elements to sonification type panel
pSonification Type.add (ISonification Type);
pSonificationType.add(Globals.cbSonificationType);
pSonification Type. add (lMapping);
pSonification Type. add (G lobais. rbLi near Mapping);
pSonification Type. add(G lobais. rbChromaticMapping);
pSonification Type.add(Globals. bPlay);
pSonification Type.add(G lobais. bPause) ;
pSonification Type.add(Globals. bStop);

11 add 2 panels to main sonification panel
panel. add(pSonification);
panel.add(pSonification Type);

return panel;

197

}

SOUND OPTIONS PANEL

protected static Component makePanelSoundOptions()
{

JPanel panel = new JPanel();
panel.setLayout(null);

/** End- OJ-Line elements "'* /

JPanel pEol = new JPanel();
pEol.setLayout(null);·
pEol .setBounds(10, 10,400,100);
Border bEtched = Border Factory.createEtchedBorder() ;
Border bTitle = BorderFactory.createTitledBorder(bEtched, "End of line") ;
pEol.setBorder(bTitle);

Globals.chbEndLine = new JCheckBox("Notify end of line", false);
Globals.chbEndLine.setBounds(25,25,200,25);
G lobals.chbEndLine.setEnabled(true);
G lobals.chbEndLine.addActionListener(new À Listener());
pEol.add(Globals.chbEndLine);

JLabel lEo!Program = new JLabel("End of line program: ");
lEo!Program.setBounds(25,60,150,20);
Globals.cbEo!Program = new JComboBox(Globals.vProgramCB);
Globals.cbEolProgram.setSelectedltem("113 Tinkle Bell");
G lobals.cb Eol Program.setEditable(false);
Globals.cbEolProgram.setBounds(180,55,200,30);
Globals.cbEolProgram.setEnabled(false);
pEol .add(l EolProgram);
pEol.add(Globals.cbEolProgram);

/** Drum Beats elements ** /

JPanel pDrum = new JPanel();
pDrum.setLayout(null);
pDrum.setBounds(l0,120,400,100);
Border bEtched2 = BorderFactory.createEtchedBorder() ;
Border bTitle2 = BorderFactory.createTitledBorder(bEtched2, "Drum beats");
pDrum .setBorder(bTitle2);

Globals.chbDrumBeats = new JCheckBox("Play drum beats", false) ;
Globals.chbDrumBeats.setBounds(25,25,200,25);
G lobals.chbDrumBeats.setEnabled(true);
Globals.chbDrumBeats.addActionListener(new AListener());
pDrum.add(Globals.chbDrumBeats);

JLabel IDrumProgram = new JLabel("Drum program: ") ;
IDrumProgram.setBounds(25,60,150,20);
Globals.cbDrumProgram = new JComboBox(Globals.vProgramCB) ;
G lobals.cbDrumProgram.setSelectedltem ("48 Timpani ") ;
G lobais. cbDrum Program .set Editable(fa Ise);
Globals.cbDrumProgram.setBounds(180,55,200,30);
G lobals.cbDrumProgram.setEnabled(fa Ise);
pDrum.add(IDrumProgram);
pDrum .add(Globals.cbDru mProgram);

198

}

}

panel.add{pEol);
panel.add{pDrum);

return panel;

STATUS PANEL

protected static Component makePanelStatus()
{

}

JPanel panel = new JPanel(false);
panel.setLayout(null);

JPanel pStatus = new JPanel();
pStatus.setLayout{ null);
pStatus.setBounds(lO, 10, 935, 260);
Border bEtched = BorderFactory.createEtchedBorder();
Border bTitle = BorderFactory.createTitledBorder(bEtched, "Status viev") ;
pStatus.setBorder(bTitle);

/ / create the JTextA rea
Globals.taStatus = new JTextArea("--------------- Status -------------\n" , 10, 100);
G lobais. taStatus.setEditable(false) ;
G lo bals. taS tatus. setLine Wrap (true);

JScrollPane spStatus = new JScrollPane(Globals.taStatus);
spStatus.setBounds(20, 30, 885, 205); ·

pStatus.add(spStatus) ;

panel.add(pStatus);

return panel;

199

GuiSouth.java

The southern part of SoundChart3D's main window contains three elements, which
are all created and initialized by the GuiSouth class. The Scene panel is used
to create, load, save or delete a 3D scene. The Edition panel gives some basic
information on the selected PolySound and can be used to alter the current scene.
The third element is of course the 3D scene itself.

import java.awt.•;
import java.awt.event.•;
import javax.swing.•;
import javax.swing.border.•;
import java.util.Vector;
import javax.swing.JS!ider;
import javax.swing.table.•;
import javax.swing.event.ListSelectionEvent;
import java.awt.Component;
import javax.media.j3d.Canvas3D;
import java.awt.GraphicsConfiguration;
import java.awt.GraphicsEnvironment;
import java.awt.GraphicsDèvice;
import com.sun.j3d.utils.universe.•;

public class GuiSouth
{

private static Component makeCanvas3D(GraphicsConfiguration config)
{

}

GraphicsEnvironment ge = GraphicsEnvironment.getLocalGraphicsEnvironment() ;
GraphicsDevice gs = ge.getDefaultScreenDevice() ;
GraphicsConfiguration gc = gs.getDefaultConfiguration() ;

II create canvasBD
Canvas3D canvas3D = new Canvas3D(config);

/ / add key listener
canvas3D .addKey Listener(new KbListener()) ;

return canvas3D;

protected static JPanel makeScenePanel()
{

JPanel panel= new JPanel(tru~) ;
panel.setLayout (new Border Layou t ());

11 create CanvasBD and initialize virtual universe
GraphicsConfiguration config = SimpleUniverse.getPreferredConfiguration();
Globals.canvas3D = GuiSouth.makeCanvas3D(config) ;
Scene3D .initScene3D();

201

}

11 add Canvas9D to center of scene panel
panel.add("Center", Globals.canvas3D);

return panel;

protected static JPanel makeEditScenePanel()
{

JPanel panel= new JPanel(true);
panel.setLayou t(null);

I** scene sub-panel **I

JPanel pScene = new JPanel();
pScene.setLayout(null);
pScene.setBounds(lO, 10, 417, 185);

Border bEtchedl = BorderFactory.createEtchedBorder();
Border bTitlel = BorderFactory.createTitledBorder(bEtchedl, "Scene");
pScene.setBorder(bTitlel);

JLabel ltfRow = new JLabel("Number of rovs");
JLabel ltfCol = new JLabel("Number of columns");
JLabel ltflnitHeight = new JLabel("Ini tial height");
ltfRow.setBounds(16, 32, 150, 25);
ltfCol.setBounds(16, 64, 150, 25);
ltflnitHeight.setBounds(16, 96, 150, 25);

Globals.tfRow = new JTextField("10");
Globals.tfCol = new JTextField("10");
Globals.tflnitHeight = new JTextField("0.0");
Globals.tfRow.setBounds(l 70, 32, 41, 20);
Globals.tfCol.setBounds(170, 64, 41, 20);
Globals.tflnitHeight.setBounds(l 70, 96, 41, 20);

Globals.bCreate = new JButton("Create nev scene");
Globals.bCreate.setBounds(16, 140, 198, 30);
G lobais. bCreate.addActionListener(new AListener());

Globals.bLoad = new JButton("Load scene from file ... ");
Globals.bLoad.setBounds(235, 32, 165, 30);
G lobais. bLoad.addActionListener(new AListener()) ;

Globals.bSave = new JButton("Save scene to file ... ");
Globals.bSave.setBounds(235, 72, 165, 30);
Globals.bSave.addActionListener(new AListener());
G lobais. bSave.setEnabled(false);

Globals.bDelete = new JButton("Delete vhole scene");
Globals.bDelete.setBounds(235, 140, 165, 30);
G lobais. bDelete.addActionListener(new AListener());
Globals. bDelete.setEnabled(false);

pScene.add(ltfRow);
pScene. add (ltfCol);
pScene. add (ltflni tHeight);

pScene. add (Globals. tfRow);

202

pScene.add{Globals.tfCol);
pScene.add{ G lobais. tflnitHeight);

pScene.add(Globals.bCreate);
pScene.add(Globals.bLoad);
pScene.add{ G lobais. bSave);
pScene.add{Globals.bDelete);

panel.add{pScene);

/ ** edition sub-panel ** /

JPanel pEdition = new JPanel();
pEdition.setLayout(null);
pEdition.setBounds{lO, 210, 417, 100);

Border bEtched2 = BorderFactory.createEtchedBorder{);
Border bTitle2 = BorderFactory.createTitledBorder{bEtchedl, "Edition");
pEdition.setBorder{bTitle2);

Globals.ltfSelection = new JLabel{"Ctrl + Left click to select");
Globals.ltfSelection.setBounds{16, 20, 150, 25);

JLabel ltfHeight = new JLabel{"Coordinates : ");
ltfHeight.setBounds(16, 50, 150, 25);

Globals.ltfX = new JLabel("X");
Globals.ltfX.setBounds(115, 50, 40, 25);

Globals.ltfY = new JLabel{"Y");
. Globals.ltfY.setBounds{185, 50, 40, 25);

Globals.ltfZ = new JLabel("Z");
Globals.ltfZ.setBounds{255, 50, 40, 25);

Globals.tfX = new JTextField() ;
Globals.tfX.setBounds{130, 50, 41, 20);
G lobais. tfX.setEditable(false);

Globals.tfY = new JTextField();
Globals.tfY.setBounds(200, 50, 41, 20);
Globals. tfY .setEnabled{ false);
Globals. tfY .addActionListener{ new AListener());

Globals.tfZ = new JTextField();
Globals.tfZ.setBounds{270, 50, 41, 20) ;
Globals.tfZ.setEditable(false) ;

Globals.bSet = new JButton("set");
Globals.bSet.setBounds(340, 50, 52, 22);
Globals.bSet.setEnabled{false);
G lobais. bSet.addActionListener{ new AListener{)) ;

pEdition.add{ltfHeight);
pEdition .add{ G lobais.! tfSelection);
pEdition.add(Globals.ltfX) ;
pEdition.add(G lobals.ltfY) ;
pEdition.add(Globals.ItfZ);

203

}
}

pEdition.add(Globals.tfX);
pEdition. add(G lobais. tfY);
pEdition. add (Globals. tfZ);

pEdition.add(Globals.bSet);

panel.add(pEdition);

return panel;

204

Glabais .java

The SoundChart3D Globals class has the same utility as in the SoundChart appli­
cation. It provides an easy access to the important variables used throughout the
application.

import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.universe.•;
import com.sun.j3d.utils.geometry.ColorCube;
import javax..media.j3d.•;
import javax..vecmath.•;
import java.awt.Component;
import java.awt.Graphics.•;
import java.awt.•;
import javax..sound.midi.•;
import javax.swing.•;
import java.util.Vector;

public class Globals
{

11 color constants
public static final Color3f red = new Color3f(l.0f,0.0f,0.0f);
public static final Color3f green= new Color3f(0.0f,1.0f,0.0f);
public static final Color3f blue = nèw Color3f(0.0f,0.0f,1.0f);
public static final Color3f yellow = new Color3f(l.0f,1.0f,0.0f);
public static final Color3f cyan= new Color3f(0.0f,1.0f,1.0f);
public static final Color3f magenta= new Color3f(l.0f,0.0f,1.0f) ;
public static final Color3f white= new Color3f(l.0f,1.0f,1.0f);
public static final Color3f black = new Color3f(0.0f,0.0f,0 .0f);

11 color level constants
public static final Color3f level0 = new Color3f(0.0f, 0.5f, 0.0f) ;
public static final Color3f levell = new Color3f(0.lf, 0.5f, 0.0f);
public static final Color3f level2 = new Color3f(0.2f, 0.5f, 0.0f);
public static final Color3f level3 = new Color3f(0.3f, 0.5f, 0.0f);
public static final Color3f level4 = new Color3f(0.4f, 0.5f, 0.0f);
public static final Color3f Jevel5 = new Color3f(0.5f, 0.5f, 0.0f);
public static final Color3f level6 = new Color3f(0.6f, 0.5f, 0.0f) ;
public static final Color3f level7 = new Color3f(0.7f, 0.5f, 0.0f) ;
public static final Color3f level8 = new Color3f(0.8f, 0.5f, 0.0f);
public static final Color3f level9 = new Color3f(0.9f, 0.5f, 0.0f);
public static final Color3f levell0 = new Color3f(l.0f, 0.5f, 0.0f) ;

11 main scene
public static BranchGroup scene;

11 grid and dimensions
public static Point3fl] grid;
public static int row;
public static int column;
public static float max.Height;

205

}

11 selection variables
public static int idSelectedPoly = -1;
public static int idSelectedComer = -1;

11 9D appearance
public static String rendering;
public static String shading;

11 canvas used for drawing
public static Component canvas3D;

11 define large bounding sphere
public static BoundingSphere bounds = new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);

11 main window dimensions
static int screen Width = 973;
static int screenHeight = 683;

II sonification options variables
static JFrame optionsFrame;
static JButton büptions;

II main panel abjects
public static JTextField tfRow, tfCol, tflnitHeight, tfX, tfY, tfZ;
public static JButton bCreate, bLoad, bSave, bDelete, bSet;
public static JLabel ltfSelection, ltfX, ltfY, ltfZ;

11 status panel abject
public static JTextArea taStatus;

11 used to read a file
public static String sCurrentLine;

II MIDI abjects
static Midillevice midiDevice = null;
static Synthesizer midiSynthesizer = null;
static Sequencer midiSequencer = null;
static Sequence midiSequence = null;
static boolean midiSequenceCreated = false;
static float midiSequenceLength;
static Timer timerSequence;

11 sonification panel abjects
static Vector vProgramCB;
static JComboBox cbProgram, cbDrumProgram, cbEolProgram;
static JSlider slTime;
static JLabel !Time;
static JSlider slMinNote;
static JLabel IValMinNote;
static JSlider s!MaxNote;
static JLabel IVa!MaxNote;
static JCheckBox chbEndLine, chbDrumBeats;
static JRadioButton rbLinearMapping, rbChromaticMapping;
static JComboBox cbSonificationType;
static JButton bPlay, bPause, bStop;

206

PolySound.java

The PolySound class is a very important one. Indeed, PolySound abjects form the
basic elements of the 3D chart, and thus of the sonification in general. A PolySound
has four points, which are defined by three coordinates (x, y and z) and other 3D
characteristics.

import javax.media.j3d.•;
import javax.vecmath.•;
import javax.media.j3d.PolygonAttributes;
import javax.media.j3d.ColoringAttributes;
import javax.media.j3d.LineAttributes;

public class PolySound extends Shape3D
{

11 polysound attributes {9D data, color, etc.)
public Point3fll points;
public intO indices;
public Color3fll colors;
public Point3f gcenter;
public int id;

11 get coordinates of a specified point
public floatO getPointCoord(int point)
{

}

floatO coord = new float[3);

coord[O] = this.points[point].x;
coord[l) = this.points[point].y;
coord[2) = this.points[point).z;

return coord;

II get a specified coordinate of a specified point
public float getPointCoord(int point, char var)
{

}

floatO coord = getPointCoord(point);
float value = O;

if (var== 'x' Il var== 'X') value= coord[O);
else if (var == 'y' Il var== 'Y') value= coord[l];
else if (var== 'z' Il var== 'Z') value= coord[2];

return value;

11 set coordinates of a specified point

207

public void setPointCoord(int point, floatO coord)
{

}

lndexedQuadArray geom = (IndexedQuadArray)(this.getGeometry());

this.points(point].x = coord[O];
this.points(point].y = coord[l];
this.points(point].z = coord[2];

geom.setCoordinates(point, coord);

int index= geom.getCoordinatelndex(point);
Globals.grid[index].x = coord[O];
Globals.grid(index].y = coord(l];
Globals.grid[index].z = coord[2];

this.setGeometry(geom);

II set a specified coordinate of a specified point
public void setPointCoord(int point, char var, float value)
{

}

float[] coord = this.getPointCoord(point);

if (var== 'x' Il var== 'X') coord[O] = value;
else if (var== 'y' Il var== 'Y') coord[l] = value;
else if (var == 'z' Il var == 'Z') coord[2] = value;

this.setPointCoord(point, coord);

II set the color of a specified point
public void setColor(int point, Color3f color)
{

IndexedQuadArray geom = (IndexedQuadArray)(this.getGeometry()) ;

}

geom.setColor(point, color);
this.colors(point] = color;
this.setGeometry(geom);

11 set the gloabal color of the PolySound
public void setColor(Color3f color)
{

IndexedQuadArray geom = (IndexedQuadArray)(this.getGeometry());

}

for (inti= O; i < 4; i++)
{

}

geom.setColor(i, color);
this.colors[i] = color;

t his .setGeometry(geom);

11 compute the gravity center of the PolySound
public void updateGcenter()

208

{

}

this.gcenter.x = (this.points(0].x + this.points(l] .x +
this.points(2].x + this.points(3] .x) / 4.0f;

this.gcenter.y = (this.points(0] .y + this.points(l].y +
this.points[2].y + this.points[3] .y) / 4.0f;

this.gcenter.z = (this.points[0].z + this.points[l].z +
this.points[2].z + this.points[3].z) / 4.0f;

II constructor
public PolySound(int vertexCount, int indexCount, double scale, Color3f color)
{

II initialize attributes
points= new Point3f{4];
indices= new int(4];
colors = new Color3fJA];
gcenter = new Point3f();

I ** GEOMETRY **I

lndexedQuadArray geom = new lndexedQuadArray(vertexCount,
IndexedQuadArray.COORDIN ATES 1

lndexedQuadArray.NORMALS I IndexedQuadArray.COLOR.3, indexCount);

11 set Java3D geometry capabilities
geom.setCapability(IndexedQuadArray.ALLQW_CQORDINATEJlEAD);
geom.setCapability(IndexedQuadArray.ALLOW _CQORDIN ATE_ WRITE);
geom.setCapability(IndexedQuadArray. ALLOW _COUNT JlEAD) ;
geom.setCapability(IndexedQuadArray. ALLOW _CQORDIN ATE..INDEXJlEAD);
geom.setCapability(IndexedQuadArray.ALLQW_CQORDINATEJNDEX_WRITE) ;
geom.setCapability(IndexedQuadArray.ALLOW ..NORMALJlEAD);
geom.setCapability(IndexedQuadArray.ALLOW ..NORMAL_WRITE);
geom.setCapability(IndexedQuadArray.ALLOW..NORMALJNDEXJlEAD);
geom.setCapability(IndexedQuadArray. ALLOW ..NORMAL..IND EX.. WRITE);
geom.setCapability(IndexedQuadArray.ALLOW _CQLORJlEAD);
geom.setCapability(lndexedQuadArray. ALLOW _CQLOIL WRITE) ;
geom.setCapability(IndexedQuadArray.ALLOW ..FORMAT JlEAD);
this.setCapability(ALLOW _GEOMETRY JlEAD) ;
this.setCapability(ALLOW _G EOMETRY _ WRITE) ;

II initialize colors
for (int i = O; i < 4; i++)
{

}

geom.setColor(i , col or);
colors(i] = color;

II set geometry
t his.setGeometry (geom);

I** APPEARANCE **I

PolygonAttributes polyAttrib = new PolygonAttributes();

11 set Java3D appearance capabilities
this.setCapability(ALLOW _APPEARANCEJlEAD);
this.setCapability(ALLOW _APPEARANCE_ WRITE);
polyAttrib.setCapability(PolygonAttributes.ALLOW..MODEJlEAD);

209

}
}

poly Attrib.setCapability(PolygonAttributes. ALLOW _MQD E_ WRITE);

poly At tri b.setCullFace(PolygonA ttri bu tes. CULL_NONE);
poly Attrib.setPolygonMode(PolygonAttributes.POLYGON _LINE);

ColoringAttributes colorAttrib = new ColoringAttributes();
col or At tri b.setShadeModel (ColoringAttri bu tes.NIC EST);

LineAttributes lineAttrib = new LineAttributes(2.0f,
LineAttributes.PATTERN..SOLID, true);

Material material = new Material();
material.setDiffuseColor(Globals. white);
material.setSpecularColor(Globals. white);
material.setShininess(0.0f);

11 set Java9D appearance capabilities
Appearance Appear = new Appearance() ;
A ppear.setCapability(Appearance. ALLOW _pQLYGON-ATTRJBUTES..READ);
Appear.setCapability(Appearance.ALLOW _pQLYGON-ATTRJBUTES_ WRJTE);
Appear .setCapability(Appearance.ALLOW _CQLORJNG-A TTRJBUTES..READ) ;
Appear.setCapability(Appearance.ALLOW _COLORJNG-ATTRJBUTES-WRITE);
Appear .setCapability(Appearance.ALLOW _LINE_A TTRJBUTES..READ);
Appear.setCapability(Appearance.ALLOW _LINE-ATTRJBUTES_ WRJTE);
Appear.setCapability(Appearance. ALLOW _MATERJAL..READ);
Appear.setCapability(Appearance.ALLOW _MATERJAL_ WRITE);
Appear.setPolygonAttributes(poly Attrib);
A ppear .setColoringAttri bu tes(col or A ttri b) ;
A ppear .setLineAttributes(lineAttrib);
Appear.setMaterial(material);

this.setAppearance(Appear);

210

AListener .java

The AListener class is automatically called by Java when certain elements of
the interface are activated by the user (e.g. pressing a button). Java calls the
actionPerformed method, which identifies the source of the action and performs
the requested operations.

import javax.swing.•;
import java.awt.event.•;
import java.awt.•;
import javax.swing.border.•;
import java.io.DatalnputStream;
import java.io.lOException;
import java.util.Random;
import java.io.File;
import java.io.FilelnputStream;
import java. util. Vector;
import javax.vecmath.•;
import javax.media.j3d.•;

class AListener implements ActionListener
{

public void actionPerformed(ActionEvent evt)
{

Object source = evt.getSource();

CREATE BUTTON

if (source == Globals.bCreate)
{

Scene3D .createScene3D ();
}

DELETE BUTTON

else if (source == Globals.bDelete)
{

Scene3D .deleteScene3D ();
}

SET BUTTON

else if (source == Globals.bSet)
{

String sY = Globals.tfY.getText().trim();
ftoat fY;

/ / check data length
if (sY.length() == 0) return;

/ / check data format

211

try
{

fY = Float.parseFloat{sY);
}
catch (NumberFormatException ex)
{

Globals. tfY .setText("");
Globals.taStatus.append{"\nTRYING TO SET AN INVALID Y VALUE -> IGNORED\n");

return;
}

11 get selected PolySound
PolySound poly = Method3D.getPolySound{Globals.idSelectedPoly);

11 get new Y value
float va!Y = {new Float(Globals.tfY.getText())).floatValue{);

II update height
if {Globals.idSelectedComer == -1)
{

11 a PolySound is selected
float oldva!Y = poly.gcenter.y;
float modifY = va!Y - oldva!Y;

11 set new height of selected PolySound
for {inti= O; i < 4; i++)
{

float coordY = poly.getPointCoord{i, 'y');
coordY += modifY;

poly.setPointCoord{i, 'y', coordY);
}

}
else
{

11 a corner is selected
poly.setPointCoord{Globals.idSelectedComer, 'y', va!Y);

}

11 refresh the scene
Method3D. refresh ();

II update gravity centers
Method3D. updateAIIGCenters();

11 find the height of the highest point after modification
float maxY = 0;
float currY;

for {int i = O; i < Globals.grid.length; i++)
{

currY = Globals.grid(i].y;
if {currY > maxY) maxY = currY;

}
Globals.maxHeight = maxY;

11 update axis, texts and lights
Method3D. updatePicking(G lobals.maxHeight);

212

}

11 update PolySound colors
Method3D. u pdateColors();

II update corners
Method3D.delete("CORNERS");
Method3D .addCorners(poly, Globals.magenta);

if (Globals.idSelectedCorner i= -1)
{

}

TransformGroup TgChild = (TransformGroup)(Globals.scene.getChild(O));
BranchGroup BgChild = (BranchGroup)(TgChild.getChild(9));

II update selected corners
for (inti= O; i < BgChild.numChildren(); i++)
{

}

Shape3D shape = (Shape3D)BgChild.getChild(i);

Color3f color = new Color3f();

if (i i= Globals.idSelectedCorner)
color = new Color3f(0.46f, 0.0f, 0.34f);

else
color = Globals.magenta;

QuadArray qa = (QuadArray)shape.getGeometry();
qa.setColor(O, color);
qa.setColor(l, color);
qa.setColor(2, color);
qa.setColor(3, color);

shape.setGeometry(qa);

SAVE BUTTON

else if (source== Globals.bSave)
{

Scene3D .saveScene3D ();
}

LOAD BUTTON

else if (source == Globals.bLoad)
{

Scene3D .loadScene3D () ;
}

PLAY BUTTON

else if (source== Globals.bPlay)
{

11 start sonification
Sonification. play();

11 update GUI elements
Globals. bPlay.setEnabled(false);

213

}

Globals. bPause.setEnabled(true);
Globals.bStop.setEnabled(true);
Globals.tfY.setEnabled(false);
G lobais. bSet.setEnabled(false);
Globals. bSave.setEnabled(false);
G lobais. bDelete.setEnabled(false);
Sonification .enableSonification Corn ponents(false);

PAUSE BUTTON

else if (source== Globals.bPause)
{

}

11 pause sonification
Sonification. pause();

11 update G UJ elements
G lobais. bPause.setEnabled(false);
Globals. bPlay.setEnabled(true);
Globals.bStop.setEnabled(true);
Sonification.enableSonification Corn ponents(false);

STOP BUTTON

else if (source== Globals.bStop)
{

}

11 stop sonification
Sonification.stop();

II update GUI elements
Globals. bStop.setEnabled(false);
Globals. bPause.setEnabled(false);
Globals. bPlay.setEnabled(true);
if (Globals.idSelectedPoly :/= -1)
{

}

Globals. tfY .setEnabled(true);
Globals. bSet.setEnabled(true);

Globals.bSave.setEnabled(true);
G lobais. bDelete.setEnabled (true);
Sonification .enableSonification Corn ponents(true);

SONIFICATION ÜPTIONS ELEMENTS

else if (source == Globals.büptions)
{

}

Globals. bOptions.setEnabled(false);
II open sonification options window
Globals.optionsFrarne.show();

else if (source == Globals.chbEndLine)
{

G lobals.cbEolProgram.setEnabled (G lobals.chb End Line.isSelected ());
}

else if (source == Globals.chbDrurnBeats)

214

}
}

{

}
G lobals.cbDrumProgram .setEnabled(G lobals.chbDrumBeats.isSelected()) ;

215

Scene3D.java

The Scene3D class contains five methods. The ini tScene3D method is only called
once, since it is used to initialize the scene (from a Java3D point of view). The other
methods are used to create a new scene, delete the current scene, save the current
scene to a file, and load a scene from a file. They have a corresponding button in
the graphical interface.

import java.applet.Applet;
import java.awt.BorderLayout;
import java.awt.Frame;
import java.awt.event.•;
import java.awt.Component;
import java.awt.GraphicsConfiguration;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.universe.•;
import com.sun.j3d.utils.geometry.ColorCube;
import com.sun.j3d.utils.behaviors.mouse.•;
import javax.media.j3d.PickPoint;
import javax.media.j3d.•;
import javax.vecmath.•;
import javax.media.j3d.GraphicsContext3D;
import java;io.File;
import jàva.io.FilelnputStream;
import javax.swing.•;
import java.io.lOException;

public class Scene3D
{

lNITIALIZE THE 3D SCENE

public static void initScene3D()
{

II create an empty root Branch Croup
Globals.scene = new BranchGroup() ;
Globals.scene.setCapability(BranchGroup.ALLOW _CHILDREN_EXTEND) ;
Globals.scene.setCapability(BranchGroup.ALLOW _CHILDREN..R.EAD) ;
Globals.scene.setCapability(BranchGroup.ALLOW _CHILDREN_ WRITE);
Globals.scene.setCapability(BranchGroup.ENABLE_PICK..R.EPORTING) ;

11 create the Main Transform Croup
TransformGroup sceneTG = new TransformGroup();
sceneTG .setCapability(TransformGroup. ALLOW _CHILDREN _EX TEND);
sceneTG .setCapability(TransformGroup. ALLOW _CHILDREN ..R.EAD);
sceneTG.setCapability(TransformGroup.ALLOW_CHILDREN_WRITE);
sceneTG .setCapability(Transforri:i.Group.ALLOW _ TRANSFORM_ WRITE);
sceneTG.setCapability(TransformGroup. ALLOW _ TRANSFORM..R.EAD) ;
sceneTG.setCapability(TransformGroup.ENABLE_PICK..R.EPORTING);

11 add Child (0)
Globals.scene.addChild(sceneTG);

217

}

11 create the Mouse Rotate Behavior
MouseRotate myMouseRotate = new MouseRotate();
my MouseRotate.setTransformGroup(sceneTG);
my MouseRotate.setSchedulingBounds(new BoundingSphere());

11 add Child {1)
Globals.scene.addChild(myMouseRotate);

11 create the Mouse Translate Behavior
MouseTranslate myMouseTranslate = new MouseTranslate();
my MouseTranslate.setTransformGroup(sceneTG);
my MouseTranslate.setSchedulingBounds(new BoundingSphere());

11 add Child (2)
Globals.scene.addChild(myMouseTranslate);

11 create the Mouse Zoom Behavior
MouseZoom myMouseZoom = new MouseZoom();
myMouseZoom.setTransformGroup(sceneTG);
my MouseZoom.setSchedulingBounds(new BoundingSphere());

11 add Child (3)
Globals.scene.addChild(myMouseZoom);

11 create the Picking Behavior
MyPickBehavior myPick = new MyPickBehavior(Globals.scene,

(Canvas3D)Globals.canvas3D, new BoundingSphere());

Il add Child (4)
Globals.scene.addChild(myPick);

II set initial rendering mode
Globals.rendering = "LINE";
Globals.shading = "NICEST";

II compile the scene
G lobals.scene.compile() ;

11 Simple Universe is a Convenience Utility class
SimpleUniverse simpleU = new SimpleUniverse((Canvas3D)(Globals.canvas3D)) ;

11 this moves the ViewPlatform back a bit so the
11 abjects in the scene can be viewed
sim pleU .get ViewingPlatform () .setN ominalViewingTransform ();

11 set Back Clip distance to 20 meters
sim pleU.get Viewer() .get View() .setBackClipDistance(20.0);

11 add scene to universe
simpleU.addBranchGraph(Globals.scene);

CREATE THE 3D SCENE

public static void createScene3D()
{

String sRow = Globals.tffiow.getText().trim();

218

String sCol = Globals.tfCol.getText() .trim();
String sHeight = Globals.tflnitHeight.getText().trim();
int iRow, iCol;
float fHeight;

II check data length
if (sRow.length() == 0 && sCol.length() == 0 && sHeight.Iength() == 0) return;

II check data format
try
{

}

iRow = Integer.parselnt(sRow);
iCol = Integer.parselnt(sCol);
fHeight = Float.parseFloat(sHeight);

catch (NumberFormatException ex)
{

Globals.tfRow.setText("");
Globals.tfCol.setText("");
Globals. tflnitHeight.setText(" ");

Globals.taStatus.append("\nTRYING T0 CREATE SCENE WITH INVALID PARAMETERS ->
IGN0RED\n");

return;
}

11 create Grid F'olySotmd
int row = new Integer(Globals.tfRow.getText()).intValue();
int col = new lnteger(Globals.tfCol.getText()).intValue();

. float height = new Float(Globals.tflnitHeight.getText()).floatValue();

Method3D.createGridPoint(row + 1, col + 1, height);
Method3D.createGridPolySound(row + 1, col+ 1,. hèight);

II create axis
Method3D.createAxis(Globals.column, height + l.0f, Globals.row);

II create text along axis
float valx = (float)(Globals.column) - l.0f;
float valz = (float)(Globals.row) - l.0f;

11 add max values on each axis (with specified size)
int size = 90;
Strings = String.valueOf(valx);
Method3D.createText3d(s, 'X', valx, Globals.white, size);
Method3D.createText3d((new Float(height + l.0f)) .toString(), 'Y',

height + l.0f, Globals.white, size);
s = String.valueüf(valz);
Method3D.createText3d(s, 'Z', valz, Globals.white, size);

II add axis names
Method3D.createText3d("X", 'X', valx + 2, Globals.red, 120);
Method3D.createText3d("Y", 'Y', height + 0.5f, Globals.red, 120);
Method3D.createText3d("Z", 'Z', valz + 2, Globals.red, 120);

II add lights
Color3f color = new Color3f(0.8f, 0.8f, 0.7f);

219

}

Point3f attenuation = new Point3f(0.9f, O.lf, 0.lf);
int interval = 8;
Method3D.addPointLights(color, attenuation, interval, height + 3.0f);

11 refresh the scene
Method3D. refresh ();

II update buttom
G lobais. bCreate.setEnabled (false);
G lobais. bDelete.setEnabled(true);
Globals. bLoad.setEnabled(false);
G lobais. bSave.setEnabled(true);
Globals.tfRow.setEnabled(false);
Globals. tfCol.setEnabled(false);
Globals.tflnitHeight.setEnabled(false);

I** enable sonification ** I

Il open MIDI sequencer
Sonification.openMidiSequencer();

11 enable sonification elements
Sonification.enableSonification Corn ponents(true);
G lobais. bPlay.setEnabled (true);
G lobais. bPause.setEnabled(false);
Globals. bStop.setEnabled(false);

DELETE THE 3D SCENE

public static void deleteScene3D()
{

}

Method3D. delete("ALL 11
);

II close sequencer
Sonification .closeMidiSequencer();

II update buttons
G lobais. bCreate.setEnabled(true);
Globals.bDelete.setEnabled(false);
G lobais. bLoad.setEnabled(true);
Globals. bSave.setEnabled(false);
Globals.tfY.setText("");
Globals. tfY .setEnabled(false);
G lobais. bSet.setEnabled(false);
Globals.tfRow.setEnabled(true);
Globals. tfCol.setEnabled(true);
Globals. tflnitHeight.setEnabled(true);

11 disable sonification elements
Sonification .enableSonification Corn ponents(false);
Globals. bPlay.setEnabled(false);
Globals. bPause.setEnabled(false);
Globals.bStop.setEnabled(false);

SAVE THE 3D SCENE

220

public static void saveScene3D()
{

String sPath = new String();
String sDirectory = new String();
String sFileName = new String();

11 create a file chooser
JFileChooser fc = new JFileChooser() ;

int returnVal = fc.showSaveDialog(null);

if (returnVal == JFileChooser.APPROVE_OPTION)
{

}
else
{

}

sDirectory = (fc.getCurrentDirectory() }.getAbsolutePath();
sFileName = (fc.getSelectedFile()).getName();
sPath = (sDirectory + "\\" + sFileName);
Globals.taStatus.append("\n Saving file : " + sPath + " . . . ");

Globals.taStatus.append("\n Save command cancelled by user.") ;
return; .

II begin saving procedure
try
{

II create file with specified path
ChartFile.createBuffer Wri ter(sPath);

I** write file header ** I

String text = new String("S0UNDCHART 3D file");
ChartFile.out.write(text, 0, text.length()) ;
ChartFile.ou t . new Line();
ChartFile.out.write("BEGIN", 0, 5);
ChartFile.out.newLine();

I** write 9D data ** I

ChartFile.out. write(Globals. tfRow.getText(), 0,
(G lobais. tfRow.getText()) .length()) ;

ChartFile.out.newLine();
ChartFile.out. write(Globals. tfCol.getText(), 0,

(Globals. tfCol.getText()) .length());
ChartFile.out.newLine() ;
ChartFile.out. write(Globals. tflnitHeight.getText(), 0,

(Globals.tflnitHeight.getText()) .length()) ;
ChartFile.out.newLine();

11 select PolySound 's BranchGroup
TransformGroup TgChild = (TransformGroup)(Globals.scene.getChild(0)) ;
BranchGroup BgChild = (BranchGroup)(TgChild.getChild(0)) ;

for (int i = 0; i < BgChild.numChildren() ; i++)
{

PolySound poly = (PolySound)(BgChild.getChild(i)) ;

221

}

}

}

for (int j = 0; j < 4; j++)
{

}

text = (new Float(poly.pointsli).y)).toString();
ChartFile.out.write(text, 0, text.length());
ChartFile.out.write(" I ", 0, l);

ChartFile.ou t.newLine();

ChartFile.out.write("END", 0, 3);

11 close file
ChartFile.out.close();
Globals.taStatus.append("done\n");

catch (IOException ex)
{

Globals.taStatus.append("\nIO EXCEPTION WHILE SAVING FILE ... \n");
}

LOAD A 3D SCENE

public static void loadScene3D()
{

String sPath = new String();
String sDirectory = new String();
String sFileName = new String();

11 create a file chooser
JFileChooser fc = new JFileChooser();

int returnVal = fc.showOpenDialog(null);

if (return Val == JFileChooser.APPROVE_QPTION)
{

}
else
{

}

sDirectory = (fc.getCurrentDirectory()).getAbsolutePath();
sFileNarne = (fc.getSelectedFile()).getNarne();
sPath = (sDirectory + "\ \" + sFileName);
Globals.taStatus.append("\n Opening file : " + sPath + " ... ");

Globals.taStatus.append("\n Open command cancelled by user.");
return;

II begin loading procedure
try
{

ChartFile.createBufferReader(sPath);

Globals.sCurrentLine = ChartFile.in.readLine();

ChartFile.readLine(G lobals.sCurrentLine);
if (!ChartFile.line.equals("SOUNDCHART 3D file"))
{

Globals.taStatus.append("\nError : WRONG FILE FORMAT ! ");

222

return;
}

Globals.sCurrentLine = ChartFile.in.readLine();

ChartFile. readLine(G lobals.sCurrentLine);
if (!ChartFile.line.equals("BEGIN"))
{

Globals.taStatus.append("\nError WRONG FILE FORMAT ! ");

return;
}

11 get row, œl and initHeight
Globals.sCurrentLine = ChartFile.in.readLine();
ChartFile. readLine(G lobals.sCurrentLine);
G lobais. tffiow .setText(ChartFile. line);

Globals.sCurrentLine = ChartFile.in.readLine();
ChartFile.readLine(G lobals.sCurrentLine);
Globals.tfCol .setText(ChartFile.line);

Globals.sCurrentLine = ChartFile.in.readLine();
ChartFile. readLine(G lobals.sCurrentLine);
Globals. tflnitHeight.setText(ChartFile. line);

11 create the beginning of the scene with these values
Scene3D .createScene3D ();

11 select PolySound's BranchGroup
TransformGroup TgChild = (TransformGroup)(Globals.scene.getChild(O));
BranchGroup BgChild = (BranchGroup)(TgChild.getChild(O));

while (((Globals.sCurrentLine = ChartFile.in.readLine()) i= null) &&
!Globals.sCurrentLine.equals("END"))

{

}

ChartFile. readData(G lobals.sCurrentLine);

PolySound poly = (PolySound)(BgChild.getChild(i));

poly.setPointCoord(O, 'Y', ChartFile.readO);
poly.setPointCoord(l, 'Y', ChartFile.readl);
poly.setPointCoord(2, 'Y', ChartFile.read2);
poly.setPointCoord(3, 'Y', ChartFile.read3);

if (!Globals.sCurrentLine.equals("END"))
{

Globals.taStatus.append("\nError WRONG FILE FORMAT ! ") ;
return;

}

11 update sceneSD
Method3D .refresh();
Method3D.updateAIIGCenters();

11 find the height of the highest point of the whole scene after modification
float maxY = 0, currY;
for (int j = O; j < Globals.grid.length; j++)
{

223

}
}

}

currY = Globals.grid[i].y;
if (currY > maxY) maxY = currY;

}
Globals.maxHeight = maxY;

11 update axis, texts and lights
Method3D. updatePicking(G lobals.maxHeight);

11 update colors
Method3D. updateColors();

11 refresh scene
Method3D. refresh ();

G lobais. taStatus.append("done \n");

I** enable sonification ** I

11 open sequencer
Sonification .openMidiSequencer();

11 update sonification elements
Sonification .enableSonification Corn ponents(true);
Globals. bPlay.setEnabled(true);
G lobais. bPause.setEnabled(false);
Globals.bStop.setEnabled(false);

catch (IOException ex)
{

}

Globals.taStatùs.append("\nIO EXCEPTIQN WHILE READING FILE .. . \n");
Globals.taStatus.append("LINE : " + Globals.sCurrentLine + "\n") ;
Scene3D. deleteScene3D();
return;

catch (NumberFormatException ex)
{

}

Globals.taStatus.append("\nNUMBER FORMAT EXCEPTION WHILE READING FILE ... \n");
Globals.taStatus.append("LINE : " + Globals.sCurrentLine + "\n");
Scene3D. deleteScene3D();
return;

224

Method3D.java

The Method3D class contains several methods for handling the 3D scene, which are
called from about every place in the program. While they are obviously all useful,
the essential one is the refresh method, which is called very frequently by other
SoundChart3D methods.

import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.universe.• ;
import corn .sun.j3d. u tils.geometry. ColorCu be;
import com.sun.j3d. utils.geometry. Text2D;
import javax.media.j3d.•;
import javax.vecmath.•;
import java.awt.Font;
import java.util.Random;

public class Method3D
{

11 get a specified PolySound Child of the BG
public static PolySound getPolySound(int index)
{

TransformGroup TgChild = (TransformGroup)(Globals.scene.getChild(O)) ;

BranchGroup BgChild = (BranchGroup) (TgChild.getChild(O));
PolySound poly = (PolySound)(BgChild.getChild(index));

return poly;
}

public static void createGridPoint(int row, int column, ftoat height)
{

ftoat z = O.Of;
int index = O;

Globals.grid = new Point3f[row • column);
Globals.taStatus.append("\ncreating points grid . . . ");

for (int i = 0; i < row; i++)
{

}

ftoat x = O.Of;
for (int j = O; j < column; j++)
{

}

Globals.grid(index) = new Point3f(x, height, z);
X+= l.Of;
index++;

z += l.Of;

Globals.taStatus.append("done (" + Globals.grid.length + " points inserted) \n") ;

225

}

public static void refresh()
{

}

II refresh PolySound BranchGroup
Transform Group TgChild = (TransformGroup) (Globals.scene.getChild(O));
BranchGroup BgChild = (BranchGroup)(TgChild.getChild(O));

for (inti= O; i < BgChild.numChildren(); i++)
{

}

PolySound poly = (PolySound)(BgChild.getChild(i));
IndexedQuadArray geom = (IndexedQuadArray)(poly.getGeometry());

geom.setCoordinates(O, Globals.grid);

geom.setCoordinatelndex(0, poly.indices[O]);
geom.setCoordinatelndex(l, poly.indices[l]);
geom.setCoordinatelndex(2, poly.indices[2]);
geom.setCoordinatelndex(3, poly.indices[3]);

geom.setColors(O, poly.colors);

poly.setGeometry(geom);

II get appearance
Appearance Appear = poly.getAppearance();

Material material = new Material();

Color3f polycolor = new Color3f(poly.colors[O).x - 0.2f,
poly.colors[O).y - 0.2f,
poly.colors[O].z - 0.2f);

material.setDiffuseColor(poly.colors(O));
material.setSpecularColor(poly.colors(O));
material.setShininess(lO.Of);

Appear.setMaterial(material);

poly. set A ppearance(A ppear) ;

public static void createGridPolySound(int row, int column, float height)
{

Color3f color, lastcolor, nextcolor = new Color3f();

Globals.taStatus.append("creating polysound grid ... ");

Color3f greenl = new Color3f(O.Of, l.Of, 0.0f);
Color3f green2 = new Color3f(O.Of, 0.5f, 0.0f);

Globals.row = row;
Globals.column = column;

II create BranchGroup
BranchGroup bg = new BranchGroup();

226

bg.setCapability(BranchGroup.ALLOW _CHILDREN .READ);
bg.setCapability(BranchGroup.ALLOW _CHILDREN _ WRlTE);
bg.setCapability(BranchGroup.ALLOW ..DETACH);

color = green!;
lastcolor = green!;
nextcolor = green!;

Globals.maxHeight = height;

11 creo.te grid PolySounds
for (inti= 0; i < (row - 1) • (column - 1); i++)
{

color = nextcolor;

bg.addChild(new PolySound((row • column), 4, 0.1, Globals.leve!O));

lastcolor = color;

if (color.equals(greenl)) nextcolor = green2;
else nextcolor = green!;

11 if column is odd then the number of poly on a column is pair
if ((column 2) == 1)
{

if (i #0 && (((i+l) (column - 1)) == 0))
{

}
}

nextcolor = lastcolor;

PolySound poly = (PolySound)(bg.getChild(i));
IndexedQuadArray geom = (IndexedQuadArray)(poly.getGeometry());

geom.setCoordinates(0, Globals.grid);

II compute normals
Vector3f n = new Vector3f(0.0f, height + l.0f, 0.0f);
n.normalize();

geom.setNormal(0, n);
geom.setNormal(l, n);
geom.setNormal(2, n);
geom.setNorma1(3, n);

II compute Coordinate Indices according to the grid
int i0 = (column) • (i / (column - 1)) + (i (column - 1)) + 1;
int il = i0 + column;
int i2 = il - 1;
int i3 = i2 - column;

geom.setCoordinatelndex(0, iO);
geom.setCoordinatelndex(1, il);
geom.setCoordinatelndex(2, i2);
geom.setCoordinatelndex(3, i3);

poly.setGeometry(geom);

poly.points[0] = Globals.grid[i0];

227

}

}

poly.points(l] = Globals.grid(il];
poly.points(2] = Globals.grid(i2];
poly.points(3] = Globals.grid(i3];

poly. updateGcenter();

poly.indices(0] = i0;
poly.indices(l] = il;
poly.indices(2] = i2;
poly.indices(3] = i3;

poly.id = i;

TransformGroup TgChild = (TransformGroup)(Globals.scene.getChild(0));
TgChild.insertChild(bg, 0);

Globals.taStatus.append("done (" + bg.numChildren() + " PolySounds inserted) \n");

public static void addPointLights(Color3f color, Point3f attenuation,
int interval, float height)

{
PointLight ptlight;

Globals. taStatus.append(" creating Point lights ... ");

11 create ambient light
Globals.taStatus.append("creating Ambiant light ... ") ;
AmbientLight lightA = new AmbientLight(Globals.white);
lightA.setinfluencingBounds(Globals.bounds);
G lobais. taStatus.append("done \n");

11 compute PointLight intervals
int intX = Globals.column / interval;
int intZ = Globals.row / interval;

11 add ambient light to TransformGroup
Transform Group TgChild = (Transform Group) (G lobals.scene.getChild(0));
BranchGroup bg = new BranchGroup();
bg.setCapability(BranchGroup.ALLOW_CHILDREN..READ);
bg.setCapability(BranchGroup.ALLOW_CHILDREN_WRITE);
bg.setCapability(BranchGroup.ALLOW ..DETACH);
bg.addChild(lightA);

II add point lights
for (int i = 0; i < intZ; i++)
{

for (int j = 0; j < intX; j++)
{

float X = a.Of+ U+l) * interval;
float y = height;
float z = 0.0f + (i+l) * interval;

Point3f position = new Point3f(x, y, z);
ptlight = new PointLight(color, position, attenuation);
ptlight.setCapability(PointLight.ALLOW _POSITION ..READ);
ptlight.setCapability(PointLight.ALLOW _POSITION_ WRITE);

228

}

}
}

ptlight.setlnfiuencingBounds(G lobais. bounds);

bg.addChild(ptlight);

Globals.taStatus.append("done\n");
Globals.taStatus.append("creating Spot light ... ");

/ / create SpotLight
SpotLight splight = new SpotLight(Globals.yellow,

new Point3f((Globals.column / 2.0f), height + 7.0f, (Globals.row / 2.0f)),
new Point3f(0.9f, 0.02f, 0.0lf),
new Vector3f((Globals.column / 2.0f), height - 3.0f, (Globals.column / 2.0f)),
3.14f, 0.0f);

/ / add SpotLight
splight.setCapability(PointLight. ALLOW _POSITION..READ);
splight.setCapability(PointLight.ALLOW _pQSITION_ WRJTE) ;
splight.setlnfiuencingBounds(G lobais. bounds);
bg.addChild(splight);

Globals.taStatus.append("done\n");

/ / add lights to scene
TgChild.insertChild(bg, 8);

Globals.taStatus.append("--- "+ bg.numChildren() + " lights inserted ---\n") ;

public static void addCorners(PolySound poly, Color3f color)
{

TransformGroup TgChild = (TransformGroup)(Globals.scene.getChild(0)) ;

/ / create BranchGroup for corners
BranchGroup bg = new BranchGroup();
bg.setCapability(BranchGroup.ALLOW_CHILDREN..READ) ;
bg.setCapability(Branch Group.ALLOW _CHILDREN _ WRITE);
bg.setCapability(BranchGroup.ALLOW -1)ETACH);

/ / create and add corners
for (inti= 0; i < 4; i++)
{

QuadArray pa = new QuadArray(4,
QuadArray.COORDINATES I PointArray.NORMALS I PointArray.COLOR-3) ;

pa.setCapability(QuadArray.ALLOW-COORDINATE..READ);
pa.setCapability(QuadArray.ALLOW _COORDIN ATE_ WRJTE);
pa.setCapability(QuadArray.ALLOW-COLOR..READ);
pa.setCapability(QuadArray.ALLOW -CO LOIL WRITE);
pa.setCapability(QuadArray. ALLOW _COUNT ..READ);
pa.setCapability(QuadArray. ALLOW -FORMAT ..READ);

Point3f coord = poly.points[i];
Point3f corner0 = new Point3f(coord.x + 0.lf, coord.y + 0.0lf, coord.z - 0.lf) ;
Point3f corner! = new Point3f(coord.x + 0.lf, coord.y + 0.0lf, coord.z + 0.lf) ;
Point3f corner2 = new Point3f(coord.x - 0.lf, coord.y + 0.0lf, coord.z + 0.lf) ;
Point3f corner3 = new Point3f(coord.x - 0.lf, coord.y + 0.0lf, coord.z - 0.lf) ;

229

}

}

pa.setCoordinate(0, corner0);
pa.setCoordinate(l, cornerl);
pa.setCoordinate(2, corner2);
pa.setCoordinate(3, corner3);

pa.setColor(0, color);
pa.setColor(l, color);
pa.setColor(2, color);
pa.setColor(3, color);

Appearance Appear = new Appearance();
Appear .setCapability(Appearance.ALLOW _pQLYGON ..A TTRJBUTES-READ);
Appear.setCapability(Appearance.ALLQW_pQLYGON..ATTRJBUTES_WRJTE);
PolygonAttributes polyAttrib = new PolygonAttributes();
poly At tri b.setCullFace(PolygonAttri bu tes. CULL..NONE);
Appear .setPolygonAttributes(poly Attrib);

Shape3D Corner= new Shape3D(pa, Appear);
Corner.setCapability(Shape3D.ALLOW _Q EOMETRY -READ);
Corner.setCapability(Shape3D.ALLOW _GEOMETRY _ WRJTE);

hg. add Child(Corner);

11 add corner BranchGroup to scene
TgChild.insertChild(bg, 9);

public static void setNextRenderMode()
{

PolygonAttributes polyAttrib = new PolygonAttributes();
poly Attrib.setCullFace(PolygonAttributes .. CULL..NONE);

if (Globals.rendering.equals("P0INT"))
{

}

polyAttrib.setPolygonMode(PolygonAttributes.POLYGON..LINE);
Globals.rendering = "LINE";

else if (Globals.rendering.equals("LINE"))
{

}

poly Attrib.setPolygonMode(PolygonAttributes.POLYGON _FILL);
Globals.rendering = "FILL";

else if (Globals.rendering.equals("FILL"))
{

}

polyAttrib.setPolygonMode(PolygonAttributes.POLYGON_pQINT);
Globals.rendering = "POINT";

TransformGroup TgChild = (TransformGroup) (Globals.scene.getChild(0));
BranchGroup BgChild = (BranchGroup)(TgChild.getChild(0));

for (int i = 0; i < BgChild.numChildren(); i++)
{

PolySound poly = (PolySound)(BgChild.getChild(i));
Appearance Appear = poly.getAppearance();
Appear.setPolygonAttributes(poly Attrib);
poly.setA ppearance(A ppear);

230

}
}

public static void setNextShadeMode()
{

}

ColoringAttributes colorAttrib = new ColoringAttributes();

if (G Jobals.shading.equals("FLAT"))
{

}

col or Attrib.setShadeModel (ColoringAttributes.NICEST);
Globals.shading = "NICEST";

else if (Globals.shading.equals("NICEST"))
{

}

colorAttrib.setShadeModel(ColoringAttributes.SHADE_FLAT);
Globals.shading = "FLAT";

TransformGroup TgChild = (TransformGroup) (Globals.scene.getChild(0));
BranchGroup BgChild = (BranchGroup)(TgChild.getChild(0)) ;

for (inti= 0; i < BgChild.numChildren(); i++)
{

}

PolySound poly = (PolySound)(BgChild.getChild(i));
Appearance Appear = poly:getAppearance();
Appear.setColoringAttributes(colorAttrib);
poly.setAppearance(A ppear);

public static void createAxis(float maxX, float maxY, float maxZ)
{

}

Globals.taStatus.append("creating axis .. . ");

TransformGroup TgChild = (TransformGroup)(Globals.scene.getChild(0));

BranchGroup bg = new BranchGroup() ;
bg.setCapability(Branch Group.ALLOW _CHILDREN-READ);
bg.setCapability(BranchGroup.ALLOW_CHILDREN_WRJTE) ;
bg.setCapability(BranchGroup.ALLOW .DETACH);

Axis axis= new Axis(maxX, maxY, maxZ) ;

bg.addChild(axis);

11 add axis to scene
TgChild.insertChild(bg, 1);

Globals.taStatus.append("done\n");

public static void createText3d(String s, char axis, float value, Color3f color, int size)
{

Globals.taStatus.append("creating text . .. ") ;

TransformGroup TgChild = (TransformGroup)(Globals.scene.getChild(0)) ;

231

BranchGroup bg = new BranchGroup();
bg.setCapability(BranchGroup.ALLOW_CHILDRENJlEAD);
bg.setCapability(BranchGroup. ALLOW _CHILDREN -WRITE);
bg.setCapability(BranchGroup.ALLOW _DETACH);

String fontName = "Arial";ll"Helvetica";
float si = s.length();

11 create Text2D object
Text2D text2D = new Text2D(s, color, fontName, size, Font.ITALIC);
text2D.setCapability(Shape3D.ALLOW -GEOMETRY ..R.EAD);
text2D.setCapability(Shape3D.ALLOW _GEOMETRY-WRITE);
text2D .setCapability(Shape3D .ALLOW ..APPEARANCE..R.EAD);
text2D .setCapability(Shape3D .ALLOW _APPEARANCE-WRITE);
text2D .setPickable(false);

QuadArray qa = (QuadArray)text2D.getGeometry();

qa.setCapability(QuadArray.ALLOW _CQUNT ..R.EAD);
qa.setCapability(QuadArray.ALLOW -FORMAT ..R.EAD);
qa.setCapability(QuadArray.ALLOW _CQORDIN ATEJlEAD);

text2D .setGeometry(qa);

Appearance textAppear = text2D.getAppearance();

11 make the Text2D object 2-sided.
PolygonAttributes polyAttrib = new PolygonAttributes();
poly Attrib.setCullFace(PolygonAttri bu tes. CULL..NO NE);
poly Attrib.setBackFaceNorma!Flip(true);
textAppear.setPolygonAttribu tes(poly Attrib) ;

text2D.setAppearance(textAppear);

TransformGroup bbTransY = new TransformGroup();
bbTrans Y.setCapability(Transform Group.ALLOW _ TRANSFORM_ WRITE);
bbTrans Y .setCapability(TransformGroup.ALLOW _ TRANSFORM..R.EAD);
bbTransY.setCapability(TransformGroup.ALLQW_CHILDREN..R.EAD);

Billboard bboardY = new Billboard(bbTransY);

bg.addChild(bboardY);

bg.addChild(bbTransY);

II define the translation
Transform3D textTranslation = new Transform3D();

Transform Group textTranslationGroup;

if (axis == 'x' Il axis== 'X')
{

Billboard bb = (Billboard)bg.getChild(0);

bb.setSchedulingBounds(new BoundingSphere());
bb.setAlignmentMode(Billboard.ROTATE-ABOUT _pQINT);
bb.setRotationPoint(value, 0.0f, -1.0f);

textTranslation.setTranslation(new Vector3f(value, 0.0f, 0.0f));

232

}

}

textTranslationGroup = new TransformGroup(textTranslation);
textTranslationGroup.setCapability(TransformGroup. ALLOW _ TRANSFORM_ WRJTE);
textTranslationGroup.setCapability(TransformGroup.ALLOW _CHILDREN ...READ);
textTranslationGroup.setCapability(TransformGroup. ALLOW _CHILDREN _ WRITE);

textTranslationGroup.addChild(text2D) ;
bbTrans Y .addChild(textTranslationGroup);

else if (axis== 'y' Il axis== 'Y')
{

}

Billboard bb = (Billboard)bg.getChild(0);

bb.setSchedulingBounds(new BoundingSphere());
bb.setAlignmentMode(Billboard.ROTATE..ABOUT ..POINT);
bb.setRotationPoint(0.0f, value, 0.0f);

textTranslation.setTranslation(new Vector3f(0.0f, value, 0.0f)) ;
textTranslationGroup = new TransformGroup(textTranslation);
textTranslationGroup.setCapability(TransformGroup.ALLOW _ TRANSFORM_ WRITE);
textTranslationGroup.setCapability(TransformGroup.ALLOW _CHILDREN .READ);
textTranslationGroup.setCapability(TransformGroup.ALLOW _CHILDREN _ WRJTE) ;
textTranslationGrou p. addChild(text2D);
bbTransY.addChild(textTranslationGroup);

else if (axis== 'z' Il axis== 'Z')
{

}

Bill board bb . = (Billboard)bg.getChild(0);

bb.setSchedulingBounds(new BoundingSphere());
bb.setAlignmentMode(Billboard.ROTATE..ABOUT ..POINT);
bb.setRotationPoint(-0.5f, 0.0f, value) ;

textTranslation.setTranslation(new Vector3f(0.0f, 0.0f, value)) ;
textTranslationGroup = new TransformGroup(textTranslation);
textTranslationGroup.setCapability(TransformGroup.ALLOW _ TRANSFORM_ WRITE);
textTranslationGroup.setCapability(TransformGroup.ALLOW _CHILDREN .READ);
textTranslationGroup.setCapability(TransformGroup.ALLOW _CHILDREN _ WRITE);
textTranslationGroup.addChild(text2D) ;
bbTransY.addChild(textTranslationGroup) ;

TgChild.insertChild(bg, 2) ;

Globals. taStatus.append("done\n") ;

public static void delete(String s)
{

TransformGroup TgChild = (TransformGroup)(Globals.scene.getChild(0));

if (s.equals("GRID")) TgChild.removeChild(0);
else if (s.equals("AXIS")) TgChild.removeChild(l) ;
else if (s.equals("TEXT"))
{

TgChild.removeChild(7) ;
TgChild.removeChild(6) ;
TgChild.removeChild(5) ;
TgChild.removeChild(4) ;

233

}

}

TgChild.removeChild(3);
TgChild.removeChild(2);

else if (s.equals("LIGHT")) TgChild.removeChild(8);
else if (s.equals("CORNERS")) TgChild.removeChild(9);
else if (s.equals("ALL"))
{

}

Globals.taStatus.append("deleting vhole scene ... ");
for (int i = TgChild.numChildren() - l; i ~ O; i-)

TgChild.removeChild(i);

Globals. taStatus.append("done \n");
Globals.taStatus.append("--- "+ TgChild.numChildren() +

" children remaining ---\n");

public static void updatePicking(float coordY)
{

II u.pdate PointLights if max Y 6 9 met ers
if (coordY > 3.0f)
{

}

TransformGroup TgChild = (TransformGroup)(Globals.scene.getChild(O));
BranchGroup hg= (BranchGroup)(TgChild.getChild(8));

Point3f coord = new Point3f();
Il start at 1 because light O is an AmbientLight
for (inti= 1; i < bg.numChildren(); i++)
{

}

PointLight pl = (PointLight)(bg.getChild(i));
pl.getPosition(coord);
coord.y = coordY + l.Of;
pl.setPosition(coord);

SpotLight sp = (SpotLight)(bg.getChild(bg.numChildren() - l));
sp.getPosition(coord);
coord.y = coordY + l.Of;
sp.setPosition(coord);

11 u.pdate Axis
Method3D.delete("AXIS");
Method3D.createAxis(Globals.column, coordY, G lobals.row);

11 u.pdate Text along Axis
TransformGroup TgChild = (TransformGroup)(Globals.scene.getChild(O));

Il "Y"
BranchGroup bg = (BranchGroup)(TgChild.getChild(3));
Billboard bb = (Billboard)(bg.getChild(O));
bb.setRotationPoint(O.Of, coordY + 0.5f, O.Of);
TransformGroup Tg2 = (TransformGroup)(bg.getChild(l));
TransformGroup Tg3 = (TransformGroup)(Tg2.getChild(O));
Transform3D textTranslation = new Transform3D();
textTranslation.setTranslation(new Vector3f(O.Of, coordY + 0.5f, O.Of));
Tg3.setTransform (textTranslation);

234

}

}

Il Y val
bg = {BranchGroup)(TgChild.getChild{6));
bb = {Billboard){bg.getChild{O));
bb.setRotationPoint(O.Of, coordY, O.Of);
Tg2 = (TransformGroup){bg.getChild{l));
Tg3 = {TransformGroup)(Tg2.getChild{O));
textTranslation = new Transform3D{);
textTranslation.setTranslation{new Vector3f{O.Of, coordY, O.Of));
Tg3.setTransform{ textTranslation);

Text2D t2d = (Text2D){Tg3.getChild{O));
t2d.setString{new Float(coordY).toString());

public static void updateColors()
{

}

TransformGroup TgChild = (TransformGroup){Globals.scene.getChild{O)) ;
BranchGroup BgChild = (BranchGroup){TgChild.getChild{O));

for {inti= O; i < BgChild.numChildren{); i++)
{

}

PolySound poly = (PolySound){BgChild.getChild{i));

float gY = poly.points(O].y;
for {int j = 1; j < 4; j++)

if (poly.pointsü].y > gY) gY = poly.points[i].y;

if (gY > 5.5) poly.setColor(Globals.IevellO) ;
else if (gY > 4.5) poly.setColor(Globals.Ievel8) ;
else if (gY > 3) poly.setColor(Globals.Ievel6);
else if (gY > 1.5) poly.setColor(Globals.Ievel4) ;
else if (gY > O) poly.setColor(Globals.level2);
else if (gY == 0) poly.setColor(Globals.levelO) ;

public static void updateAIIGCenters()
{

}

TransformGroup TgChild = (TransformGroup)(Globals.scene.getChild(O));
BranchGroup BgChild = (BranchGroup)(TgChild.getChild(O));

for (inti= O; i < BgChild.numChildren() ; i++)
{

}

PolySound poly = (PolySoÙnd)(BgChild.getChild(i));

II re-compute gravity centers
poly.gcenter.x = (poly.points(O] .x + poly.points[l] .x +

poly.points[2] .x + poly.points[3] .x) / 4.0f;
poly.gcenter.y = (poly.points[O].y + poly.points[l] .y +

poly.points[2] .y + poly.points[3].y) / 4.0f;
poly.gcenter.z = (poly.points(O].z + poly.points[l] .z +

poly.points[2] .z + poly.points[3].z) / 4.0f;

235

Axis.java

The Axis class creates the 3D axes. The constructor is called by the createAxis
method in the Method3D class. After the geometry of the axes is created, the line
attributes and appearance are defined.

import javax.media.j3d.•;
import javax. vecmath.•;
import javax.media.j3d.LineAttributes;

public class Axis extends Shape3D
{

public Axis(float maxX, float max Y, float maxZ)
{

}

II create geometry
this.setGeometry(createGeometry(maxX, max Y, maxZ)) ;
this.setCapability(ALLOW -G EOMETRY ..READ);

II set line attributes
LineAttributes lineAttrib = new LineAttributes(0.5f,

LineAttributes.PATTERN..SOLID, true) ;
ColoringAttributes colorAttrib = new ColoringAttributes();

. col or A ttrib.setShadeModel (ColoringAttributes.NICEST);

II set appearance
Appearance appear = new Appearance();
appear .setLineAttributes(lineAttrib);
appear .setColoringAttributes(color Attrib) ;
this.setA ppearance(appear);

private Geometry createGeometry(float maxX, float maxY, float maxZ)
{

11 create lines geometry
IndexedLineArray axisLines = new IndexedLineArray(18, GeometryArray.COORDINATES, 30) ;

II set capabilities
axisLines.setCapability(IndexedLineArray.ALLOW _CQUNT ..READ);
axisLines.setCapability(IndexedLineArray.ALLOW ..FORMAT ..READ);
axisLines.setCapability(IndexedLineArray.ALLOW _CQORDIN ATE..READ);
axisLines.setCapability(IndexedLineArray.ALLOW _CQORDIN ATE.JND EX..READ) ;

11 set X-axis coordinates
axisLines.setCoordinate(0, new Point3f(-1.0f, 0.0f, 0.0f));
axisLines.setCoordinate(1, new Point3f(maxX, 0.0f, 0.0f)) ;
axisLines.setCoordinate(2, new Point3f(maxX - 0.lf, 0.lf, 0.lf)) ;
axisLines.setCoordinate(3, new Point3f(maxX - 0.lf, -0.lf, 0.lf));
axisLines.setCoordinate(4, new Point3f(maxX - 0.lf, 0.lf,-0.lf));
axisLines.setCoordinate(5, new Point3f(maxX - 0.lf, -0.lf,-0.lf)) ;

237

}
}

11 set Y-axis coordinates
axisLines.setCoordinate(6, new Point3f(0.0f,-1.0f, O.Of));
axisLines.setCoordinate(7, new Point3f(O.Of, maxY, O.Of));
axisLines.setCoordinate(8, new Point3f(O.lf, maxY - O.lf, O.lf));
axisLines.setCoordinate(9, new Point3f(-O.lf, maxY - O.lf, O.lf));
axisLines.setCoordinate(lO, new Point3f(0.lf, maxY - O.lf, -0.lf));
axisLines.setCoordinate(ll, new Point3f(-O.lf, maxY - 0.lf, -0.lf));

11 set Z-axis coordinates
axisLines.setCoordinate(12, new Point3f(0.0f, O.Of,-1.0f));
axisLines.setCoordinate(13, new Point3f(O.Of, O.Of, maxZ));
axisLines.setCoordinate(14, new Point3f(0.lf, O.lf, maxZ - O.lf));
axisLines.setCoordinate(15, new Point3f(-O.lf, 0.lf, maxZ - 0.lf));
axisLines.setCoordinate(16, new Point3f(0.lf,-0.lf, maxZ - O.lf));
axisLines.setCoordinate(17, new Point3f(-O.lf,-O.lf, maxZ - O.lf));

II set coordinate indices
axisLines.setCoordinatelndex(0, O);
axisLines.setCoordinatelndex(1, 1);
axisLines.setCoordinatelndex(2, 2);
axisLines.setCoordinatelndex(3, 1);
axisLines.setCoordinatelndex(4, 3);
axisLines.setCoordinatelndex(5, 1);
axisLines.setCoordinatelndex(6, 4);
axisLines.setCoordinatelndex(7, 1);
axisLines.setCoordinatelndex(8, 5);
axisLines.setCoordinatelndex(9, 1);
axisLines.setCoordinatelndex(lO, 6);
axisLines.setCoordinatelndex(l 1, 7);
axisLines.setCoordinatelndex(12, 8);
axisLines.setCoordinatelndex(13, 7);
axisLines.setCoordinatelndex(14, 9);
axisLines.setCoordinatelndex(15, 7);
axisLines.setCoordinatelndex(16,10);
axisLines.setCoordinatelndex(l 7, 7);
axisLines.setCoordinatelndex(18,11);
axisLines.setCoordinatelndex(19, 7);
axisLines.setCoordinatelndex (20, 12);
axisLines.setCoordinatelndex(21, 13);
axisLines.setCoordinatelndex (22, 14);
axisLines.setCoordinatelndex (23, 13);
axisLines.setCoordinatelndex(24, 15);
axisLines.setCoordinatelndex(25, 13);
axisLines.setCoordinatelndex (26, 16);
axisLines.setCoordinatelndex(27, 13);
axisLines.setCoordinatelndex(28,17);
axisLines.setCoordinatelndex(29,13);

return axisLines;

238

ChartFile.java

Like in SoundChart, the ChartFile class is used to read data from a file. However,
it is also possible to write data to a file, since SoundChart3D enables the user to save
the 3D scene. The readData method reads one line from the file, and stores the four
values in the corresponding variables. The last two methods are only called once,
since they initialize the file pointers which will be used to access the files denoted
by sPath.

import javax.swing.•;
import java.awt.• ;
import java. util.StringTokenizer;
import java.util.•;
import java.io.• ;
import java.Jang.Double;

public class ChartFile
{

public static void readData(String s)
{

}

StringTokenizer t = new StringTokenizer(s, "1 ") ;

i-ead0 = Float.parseFloat(t.nextToken());
readl = Float.parseFloat(t.nextToken());
read2 = Float.parseFloat(t.nextToken()) ;
read3 = Float.parseFloat(t.nextToken());

public static void readLine(String s)
{

StringTokenizer t = new StringTokenizer(s, "\n") ;

line = (String)(t.nextToken()) ;
}

public static void createBufferReader(String sPath)
{

}

try
{

in = new BufferedReader(new FileReader(sPath)) ;
}
catch (IOException e)
{

}

System.out.println("ERR0R in createBufferReaderO: " + e) ;
System.exit(0);

239

}

public static void createBufferWriter(String sPath)
{

try
{

out = new BufferedWriter(new FileWriter(sPath));
}
catch (IOException e)
{

System.out.println("ERR0R in createBufferWriterO: " + e);
System.exit(0);

}
}

public static float read0, readl, read2, read3;
public static String line;
public static BufferedReader in;
public static BufferedWriter out;

240

KbListener .java

The KbListener class enables SoundChart3D to be notified when the user presses
a certain key. The two methods are automatically called by Java when a keypress
occurs. The keyTyped method is called when "normal" keys are pressed (such as
letters), whereas keyPressed is used for special keys (such as function keys) .

import java.awt.event.•;
import java.awt.event.KeyEvent;
import corn .sun.j3d. u tils.applet. Main Frame;
import corn.sun.j3d.utils.universe.•;
import corn .sun.j3d. utils.geornetry. ColorCu be;
import corn.sun.j3d.utils.geornetry. Text2D;
import javax.rnedia.j3d.•;
import javax.vecrnath.•;
import java.awt.Font;
import javax.rnedia.j3d.Canvas3D;
import java.awt.Component;

class KbListener implements KeyListener
{

public void keyTyped(KeyEvent e)
{

}

char source = e.getKeyChar();

if (source== 'r' Il source== 'R')
{

}

II refresh the scene
Method3D .refresh ();

public void keyPressed(KeyEvent e)
{

int source= e.getKeyCode();

if (source== KeyEvent.VK..F3)
{

}

11 set next shading mode
Method3D .setNextShadeMode();

if (source == Key Event. VK..F4)
{

}

11 set next rendering mode
Method3D .setNextRender Mode();

if (source == Key Event. VK..ESCAPE)
{

241

}

}
}

11 deselect PolySound and corners
TransformGroup TgChild = (TransformGroup)(Globals.scene.getChild(O));
if (TgChild.numChildren() == 10)
{

}

Method3D.delete("CORNERS");

11 update Edition panel
Globals. tfX.setText("");
Globals.tfY.setText("");
Globals. tfZ.setText(" ");
Globals. tfY .setEnabled (false);
Globals.bSet.setEnabled(false);
Globals.ltfSelection.setText("Ctrl + Left click to select");

Globals.idSelectedPoly = -1;
Globals.idSelectedCorner = -1;

11 must be declared, but not used by SoundChart3D
public void keyReleased(KeyEvent e) {}

242

MyPickBehavior .java

The MyPickBehavior class enables the user to pick a PolySound (or some of its
corners) by clicking on it with the mouse. Since the mouse is also used to move and
rotate the 3D scene, additional keys are needed when selecting a PolySound (i.e. Alt
and Control keys).

import com.sun.j3d.utils.picking.•;
import corn .sun.j3d. u tils. behaviors. mouse. •;
import java.awt.•;
import java.awt.event.•;
import java.util.•;
import javax.media.j3d.•;
import javax.vecmath.•;
import com.sun.j3d. utils. picking.behaviors. •;
import com.sun.j3d.utils.geometry. Text2D;

public class MyPickBehavior extends PickMouseBehavior
{

int pickMode = PickTool.GEOMETRY;
private PickingCallback callback = null;
private TransformGroup currentTG;

public MyPickBehavior(BranchGroup root, Canvas3D canvas, Bounds bounds)
{

}

super(canvas, root, bounds);
this.setSchedulingBounds(bounds);

public void updateScene(int xpos, int ypos)
{

PolySound poly = null;
Shape3D corner = null;

if (!mevent.isMetaDown() && !mevent.isAltDown() &\ mevent.isControlDown())
{

pickCanvas.setShapeLocation (mevent);
pickCanvas.setMode(PickTool. G EOMETRY _JNTERSECT ..INFO);
pickCanvas.setTolerance(0.0f);

TransformGroup TgChild = (TransformGroup)(Globals.scene.getChild(0));

PickResult pr = pickCanvas.pickClosest();
String classPicked = new String();
if (pr # null) classPicked = pr.getNode(PickResult.SHAPE3D) .getClass().getName();

/** POLYSOUNDS PICKING **/

if ((pr # null) &&
(classPicked.equals("PolySound")) &&

243

{

}

((poly = (PolySound)pr.getNode(PickResult.SHAPE3D))-:/= null) &&
(poly.getCapability(BranchGroup.ALLOW _CHILDREN ...READ)) &&
(poly.getCapability(BranchGroup. ALLOW _CHILDREN_ WRITE)))

11 display corners of this PolyS01ind
if (TgChild.numChildren() < 10)
{

}
else
{

}

Method3D.addCorners(poly, Globals.magenta);

Method3D. delete("CORNERS");
Method3D.addCorners(poly, Globals.magenta);

11 update Edition panel
Globals.tfX.setText((new Float(poly.gcenter.x)).toString());
Globals.tfY.setText((new Float(poly.gcenter.y)).toString());
Globals.tfl.setText((new Float(poly.gcenter.z)).toString());

Globals.ltfSelection.setText("PolySound • s center");

Globals. tfY .setEnabled(true);
G lobais. bSet.setEnabled(true);
Globals.tfY.requestFocus();
G lobais. tfY .selectAII();

11 update selection variables
Globals.idSelectedPoly = poly.id;
Globals.i<:iSelectedCorner = -1;

I** CORNER PICKING **/

else if ((pr -:/= null) &&

{

(classPicked.equals(" j avax .media. j 3d. Shape3D")) &&
((corner= (Shape3D)pr.getNode(PickResult.SHAPE3D)) -:/= null))

Globals.taStatus.append("Corner selected ->");

BranchGroup BgChild = (BranchGroup)(TgChild.getChild(9));
int index = -1;

for (int i = 0; i < BgChild.numChildren(); i++)
{

if ((BgChild.getChild(i)) .equals(corner))
index= i;

}
Globals.taStatus.append("point # " + index+ "\n");

for (int i = 0; i < BgChild.numChildren(); i++)
{

Shape3D shape = (Shape3D)BgChild.getChild(i);

Color3f color = new Color3f();

if (i -:/= index) color = new Color3f(0.46f, 0.0f, 0.34f);
else color = Globals.magenta;

244

}

}

}
}

} .

QuadArray qa = (QuadArray)shape.getGeometry();
qa.setColor(0, color);
qa.setColor(l, color);
qa.setColor(2, color);
qa.setColor(3, color);

shape.setGeometry(qa);

11 update Edition panel
poly = Method3D.getPolySound{Globals.idSelectedPoly);
Globals.tfX.setText((new Float(poly.points(index].x)).toString{));
Globals.tfY.setText((new Float(poly.points[index].y)).toString{));
Globals. tfZ.setText((new Float(poly.points[index].z)). toString{));

Globals.JttSelection.setText{"PolySound • s point #" + index);

G lobais. tfY .setEnabled{ true);
Globals.bSet.setEnabled{true);
G lobais. tfY .requestFocus();
Globals.tfY.selectAII{);

II update global var
Globals.idSelectedCorner = index;

else if {callback -:/= null)
{

callback.transformChanged(PickingCallback.NO_PICK, null);
}

11 not needed, so doesn't do anything
public void transformChanged{int type, Transform3D transform) {}

245

Sonification.java

The SoundChart3D Sonification class is very similar toits two-dimensional coun­
terpart. The only big difference is the creation of sound data. Indeed, the 3D scene
can be travelled in three wàys, resulting in three different methods for creating
the data (horizontal, vertical and diagonal travelling) . Another difference is that
extreme values are not detected.

import javax.swing.•;
import javax.swing.border.•;
import javax.swing.JFileChooser.•;
import javax.sound.midi.•;
import java.awt.event.•;
import java.awt.•;
import java.awt.Graphics.•;
import java.awt.geom.•;
import java. util. Vector;
import java.Jang.Double;
import java.io.•;
import java.util.•;
import javax.media.j3d.•;

class SequenceEndListener implements ActionListener
{

}

public void actionPerformed(ActionEvent e)
{

I / are we finished playing the current sequence '?
if (!Globals.midiSequencer.isRunning())
{

}
}

11 stop sonification
Sonification.stop() ;

II update GUI elements
Sonification. enableSonificationComponents(true);
Globals.bPlay.setEnabled(true);
G lobais. bPause.setEnabled(fa Ise) ;
Globals.bStop.setEnabled(false} ;
if (Globals.idSelectedPoly :/= -1}
{

}

Globals.tfY.setEnabled(true);
Globals.bSet.setEnabled(true};

G lobais. bSave.setEnabled(true);
G lobais. bDelete.setEnabled(true);

public class Sonification
{

247

private static double dMaxY = Double.MIN_VALUE, dMinY = Double.MAX_VALUE;

private static void updateMaxMinY(float y)
{

}

if (y > dMaxY) dMaxY = (double)y;
if (y< dMinY) dMinY = (double)y;

private static long Msec2Tick(long msec)
{

return (long)(msec • 0.2);
}

private static MidiEvent createMidiEvent(int channel, int command,
int datal, int data2, long msec)

{

}

MidiEvent event = null;

try
{

}

11 create message
ShortMessage msg = new ShortMessage();
msg.setMessage(command, channel, datal, data2);

11 create event
event = new MidiEvent(msg; Msec2Tick(msec));

catch (InvalidMidiDataException ex)
{ .

}

System.out.println("\nERROR in createMidiEventO: 11 +ex+ "\n");
System.exit(O);

re turn event;

private static Vector createHorizonta!Data()
{

Vector vData = new Vector(), vLine = null;
PolySound ps;
float coordsQ, lastY = Float.MIN_VALUE, lastZ = Float.MIN_VALUE;
int nbPolys = -1, lastLineChangelndex = O;

11 get nb of polysounds
Transform Group TgChild = (TransformGroup) (G lobals.scene.getChild(O)) ;
BranchGroup BgChild = (BranchGroup) (TgChild.getChild(O));
nbPolys = BgChild.numChildren();

for (int i = O; i < nbPolys; i++)
{

11 get ith PolySound
ps = Method3D.getPolySound(i);

11 get coords from 9rd point
coords = ps.getPointCoord(3);

248

II are we still on same line ?
if (coords[2] == lastZ)
{

}
else
{

}

11 add Y coord to current line
vLine.add(new Float(coords[l]));
updateMaxMin Y (coords[l]);

lastLineChangelndex = i;

11 finish last line
if (lastY f= Float.MIN_VALUE)
{

}

v Line.add(new Float(last Y));
updateMaxMin Y(last Y);
vData.add(vLine);

11 create new line
vLine = new Vector();

11 add Y coord to new line
vLine.add(new Float(coords[l]));
updateMaxMinY(coords[l]);

11 update last Z coord
lastZ = coords[2];

11 save last Y coord from 2nd point on poly
float coords20 = ps.getPointCoord(2);
lastY = coords2[1];

}

II finish current line
if (lastY f= Float.MIN_VALUE)
{

}

v Line.add(new Float(last Y));
updateMaxMin Y (Jast Y);
vData.add(vLine);

II create new line
vLine = new Vector();

11 handle last line
for (int i = lastLineChangelndex; i < nbPolys; i++)
{

11 get ith PolySound
ps = Method3D.getPolySound(i);

11 get coords from 0th point
coords = ps.getPointCoord(O);

II add Y coord to current line
v Line.add(new Float(coords[l]));
updateMaxMin Y(coords[l]);

249

}

}

11 save last Y coord from 1st point Of} poly
float coords20 = ps.getPointCoord(l);
lastY = coords2(1];

11 finish current line
if (lastY #= Float.MIN_VALUE)
{

}

vLine.add(new Float(lastY));
updateMaxMin Y(last Y);
vData.add(vLine);

return vData;

private static Vector createVertica!Data()
{

}

Vector vData = new Vector();
Vector vHorData = createHorizonta!Data();
Vector vLine = null;

int nbHorRows = vHorData.size();
int nbHorCols = ((Vector)vHorData.elementAt(O)).size() ;

11 each horizontal columns must become a vertical row
for (int i = O; i < nbHorCols; i++)
{

}

vLine = new Vector();

for (int j = O; j < nbHorRows; j++)
{

}

Vector vHorLine = (Vector)vHorData.elementAtU) ;
vLine.add(vHorLine.elementAt(i));

vData.add(vLine);

return vData;

private static Vector createDiagona!Data()
{

Vector vData = new Vector();
Vector vHorData = createHorizonta!Data();
Vector vLine = null;
int dx, dy ;

int nbHorRows = vHorData.size();
int nbHorCols = ((Vector)vHorData.elementAt(O)) .size();

for (int i = O; i < nbHorRows; i++)
{

vLine = new Vector();
Vector vHorLine = (Vector)vHorData.elementAt(i) ;
vLine.add(vHorLine.elementAt(O));

250

}

}

dx = l;
dy = i - l;

while (dx < nbHorCols && dy ::::: O)
{

}

Vector vLineY = (Vector)vHorData.elementAt(dy);
vLine.add(vLineY.elementAt(dx));
dx++;
dy-;

vData.add(vLine);

/ / get last hor row
Vector vHorLine = (Vector)vHorData.elementAt(nbHorRows-1);

/ / handle last horizontal row
for (int j = l; j < nbHorCols; j++)
{

}

vLine = new Vector();
vLine.add(vHorLine.elementAtU));

dx = j + l;
dy = nbHorRows - 2;

while (dx < nbHorCols && dy::::: 0)
{

}

Vector vLineY = (Vector)vHorData.elementAt(dy);
vLine.add(vLineY.elementAt(dx));
dx++;
dy-;

vData.add(vLine);

return vData;

private static void createMidiSequence()
{

int iProgram, ilnterval, iMinNote, iMaxNote, iNote, iTime = 0, iLastDrum = -5000;
int iEolProgram = 116, iDrumProgram = 47;
int lastLineEndTime = 0;
Vector vDataSonify = null;

Globals.taStatus.append("\nCreating MIDI sequence: \n");

/ / get the program number
iProgram = Globals.cbProgram.getSelectedlndex();
if (iProgram == 0 Il (iProgram •> 8 && iProgram 9 == 0)) iProgram++;
if (iProgram < 9) iProgram-;
else iProgram = iProgram - (iProgram / 9) - l;
Globals.taStatus.append("\tprogram number: " + iProgram + "\n") ;

if (Globals.chbDrumBeats.isSelected())

251

{

}

11 get the drum program number
iDrumProgram = Globals.cbDrumProgram.getSelectedlndex();
if (iDrumProgram == 0 Il {iDrumProgram > 8 && iDrumProgram 9 ==

0)) iDrumProgram++;
if {iDrumProgram < 9) iDrumProgram-;
else iDrumProgram = iDrumProgram - (iDrumProgram / 9) - 1;
Globals.taStatus.append{"\tdrum progr~ number: " + iDrumProgram + "\n");

if (Globals.chbEndLine.isSelected())
{

}

11 get the warnings program number
iEolProgram = Globals.cbEo!Program.getSelectedlndex{);
if {iEolProgram == 0 Il {iEolProgram > 8 && iEolProgram 9 == 0)) iEolProgram++;
if {iEolProgram < 9) iEo!Program-;
else iEolProgram = iEo!Program - {iEolProgram / 9) - 1;
Globals.taStatus.append{"\tEnd of line program number: " + iEolProgram + "\n");

11 get data to sonify based on sonification type
String Sltem = {String){Globals.cbSonificationType.getSelectedltem{));
if {Sltem.equals{"Horizontal Travelling (along X-axis)"))
{

}

vDataSonify = createHorizonta!Data();
Globals.taStatus.append("\tselected data: Horizontal Travelling\n");

else if {Sltem.equals{"Vertical Travelling (along Z-axis) "))
{

vDataSonify = createVertica!Data{);
G lobais. taStatus.append{" \ tselected data: Vertical Travelling\n");

}
else if {Sltem.equals{"Diagonal Travelling"))
{

}
else
{

}

vDataSonify = createDiagona!Data();
G lobais. taStatus.append{" \ tselected data: Diagonal Travelling\n");

System.out.println{"\nERR0R in createMidiSequence (): Wrong sonification type\n");
System.exit{0);

11 get sonification settings
ilnterval = Globals.slTime.getValue{);
iMinNote = Globals.slMinNote.getValue();
iMaxNote = Globals.slMax:Note.getValue();
Globals.taStatus.append{"\tinterval: " + ilnterval + "\n");
Globals.taStatus.append{"\tminnote: " + iMinNote + "\n");
Globals.taStatus.append{"\tmaxnote: "+ iMaxNote + "\n");

11 create MIDI sequence
try
{

Globals.midiSequence = new Sequence(Sequence.PPQ, 100);
Track track = Globals.midiSequence.createTrack{);

11 set program numbers
track.add{createMidiEvent{0, ShortMessage.PROGRAM_CHANGE, iProgram, 0, 0));

252

track.add(createMidiEvent(l, ShortMessage.PROGRAM_CHANGE, iEolProgram, 0, 0)) ;
track.add(createMidiEvent(2, ShortMessage.PROGRAM_CHANGE, iDrumProgram, 0, 0));

11 create MIDI events for en.ch line
for (int line = 0; line < vDataSonify.size(); line++)
{

11 get line
Vector vLine = (Vector)(vDataSonify.elementAt(line)) ;

11 add MIDI events for this line
for (inti= 0; i < vLine.size(); i++)
{ . .

}

double dY = ((Float)(vLine.elementAt(i))).floatValue();

if (Globals.rbLinear Mapping.isSelected())
{

}
else
{

}

11 LINEAR MAPPING
iNote = (int)(((dY - dMinY) * (iMaxNote - iMinNote))

/ (dMaxY - dMinY));
iNote += iMinNote;

11 CHROMATIC SCALE MAPPING
double exp= (dY - dMinY) / (dMaxY - dMinY) ;
iNote = (int)(iMinNote * Math.pow(iMaxNote / iMinNote, exp)) ;

iTime = lastLineEndTime + i * ilnterval;

11 add NOTE ON event
track.add(createMidiEvent(0, ShortMessage.NOTE_ON, iNote, 127, iTime)) ;

11 add NOTE OFF event
track.add(createMidiEvent(0, ShortMessage.NOTE-OFF,

iNote, 127, iTime + ilnterval)) ;

11 add EOL sound (on channel 1)
if (Globals.chbEndLine.isSelected())
{

}

track.add(createMidiEvent(l, ShortMessage.NOTE_QN,
60, 127, iTime + ilnterval)) ;

track.add(createMidiEvent(l, ShortMessage.NOTE_QFF,
60, 127, iTime + 2 * ilnterval));

11 add drum ben.ts (on channel 2}
if (Globals.chbDrumBeats.isSelected ())
{

iLastDrum = -5000;

for (int i = 1; i < vLine.size(); i++)
{

double dY = ((Float)(vLine.elementAt(i))) .floatValue() ;
double dY0 = ((Float)(vLine.elementAt(i-1))).floatValue();

double slope = (dMinY == 0)? (dY - dY0): (dY - dY0) * dMinY;
Globals.taStatus.append("slope = " + slope + "\n") ;

253

}

}

}

}
}

int clrumlnterval = (slope == 0.0)
? 1500 : (int)Math.abs(150.0 / slope);

Globals.taStatus.append("druminterval = " + drumlnterval + "\n");

int iY0 = (i-1) • ilnterval;
int iY = i • ilnterval;

int iStart = iLastDrum + drumlnterval;
if (iStart < iY0) iStart = iY0;

for (int j = iStart; j < iY; j+=drumlnterval)
{

}

Globals.taStatus.append("drum added at " +
(lastLineEndTime + j) + "\n");

track.add(createMidiEvent(2, ShortMessage.NOTE_ON,
60, 127, lastLineEndTime + j));

track.add(createMidiEvent(2, ShortMessage.NOTE_QFF,
60, 127, lastLineEndTime + j + 250));

iLastDrum = j;

11 update lastLineEndTime
lastLineEndTime = iTime + 3 • ilnterval;

Globals.midiSequenceLength = Globals.midiSequence.getMicrosecondLength();
Globals.taStatus.append("Sequence length in seconds: " +

Globals.midiSequenceLength / (float)le6 + "\n");
Globals. taStatus.append(" ticks: " +

Globals.midiSequence.getTickLength() + "\n\n") ;

11 add sequence to sequencer
G lobais. midiSequencer .setSequence(G lobals.midiSequence);

catch (NumberFormatException ex)
{

}

System.out.println(" \nERR0R in createMidiSequence (): " +ex+ 11 \n") ;
System.exit(0);

catch (InvalidMidiDataException ex)
{

}

System.out.println("\nERR0R in createMidiSequence (): " +ex+ "\n");
System.exit(0);

Globals.midiSequenceCreated = true;

public static void openMidiSequencer()
{

try
{

}

Globals.taStatus.append("\n0pening MIDI sequencer ... ") ;
Globals.midiSequencer.open();
Globals. taStatus.append(" ok \n");

254

}

}

catch (MidiUnavailableException ex)
{

}

System.out.println("ERR0R in openMidiSequencerO: " +ex+ "\n");
Globals.taStatus.append("\nERR0R in openMidiSequencerO: " +ex+ "\n\n");
return;

11 create timer for sequence-end tests
Globals.timerSequence = new javax.swing.Timer(lO0, new SequenceEndListener());

public static void closeMidiSequencer()
{

}

Globals.taStatus.append("\nClosing MIDI sequencer . .. ");
G lobals.midiSequencer .close();
Globals.taStatus.append(" ok\n");

public static void play()
{

if (!Globals.midiSequenceCreated) createMidiSequence();

G lobais. timerSequence.start() ;
Globals.midiSequencer .start();

}

public static void pause()
{

Clobals.timerSequence.stop();
if (Globals.midiSequencer .isOpen ()) Globals.midiSequencer.stop();

}

public static void stop()
{

}

G lobais. timerSequence.stop() ;
if (G lobals.midiSequencer.isOpen()) Globals. midiSequencer .stop() ;
Globals.midiSequenceCreated = false;

public static void enableSonificationComponents(boolean bool)
{

}

G lobals.cbProgram.setEnabled (bool);
G lobais.si Time.setEnabled (bool);
Globals.lTime.setEnabled(bool);
G lobals.slMinN ote.setEnabled(bool);
Globals.lValMinNote.setEnabled(bool);
Globals.slMaxNote.setEnabled(bool);
G lobais.IV alMaxN ote.setEnabled(bool) ;
Globals.rbLinearMapping.setEnabled(bool);
G lobals.rbChromaticMapping.setEnabled(bool);
G lobals.c bSonification Type.setEnabled (bool);
Globals. bOptions.setEnabled(bool);

255

Slider Listener .java

The goal of the SliderListener class is to supervise the position of the sliders and to
update the corresponding textfields with the appropriate value. The stateChanged
method is called whenever the position of a slider changes. Based on the source of
the change, the corresponding label is updated.

import java.awt.event.•;
import javax.swing.JS!ider;
import java.awt.•;
import javax.swing.•;
import javax.swing.event.•;

class SliderListener implements ChangeListener
{

public void stateChanged(ChangeEvent e)
{

JS!ider source = (JSlider)e.getSource();

if (source== Globals.s!Time)
{

int itmp3 = source.getValue();
String Stmp3 = new String();
Stmp3 = String.value0f(itmp3);
Globals.lTime.setText(Stmp3 + " ms");

}
}

}
else if (source== Globals.slMinNote)
{

int itmp4 = source.getValue();
String Stmp4 = new String();
Stmp4 = String.value0f(itmp4) ;
Globals.lValMinNote.setText(Stmp4) ;

} .
else if (source == Globals.slMaxNote)
{

}

int itmp5 = source.getValue();
String Stmp5 = new String() ;
Stmp5 = String.value0f(itmp5);
Globals.lValMaxNote.setText(Stmp5);

257

