

Institutional Repository - Research Portal Dépôt Institutionnel - Portail de la Recherche

researchportal.unamur.be

RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Estetrol is a unique native estrogen that does not modify coagulation markers in postmenopausal women and maintains sensitivity to activated protein C (APC)

Foidart, Jean-Michel; Lobo, Rogerio A.; Rosing, Jan; Taziaux, Mélanie; Jost, Maud; Douxfils, Jonathan; Gaspard, Ulysse

Publication date: 2019

Link to publication

Citation for pulished version (HARVARD):

Foidart, J-M, Lobo, RA, Rosing, J, Taziaux, M, Jost, M, Douxfils, J & Gaspard, U 2019, 'Estetrol is a unique native estrogen that does not modify coagulation markers in postmenopausal women and maintains sensitivity to activated protein C (APC)', 2019 Annual Meeting of the North American Menopause Society, Chicago, United States, 25/09/19 - 28/09/19.

General rights

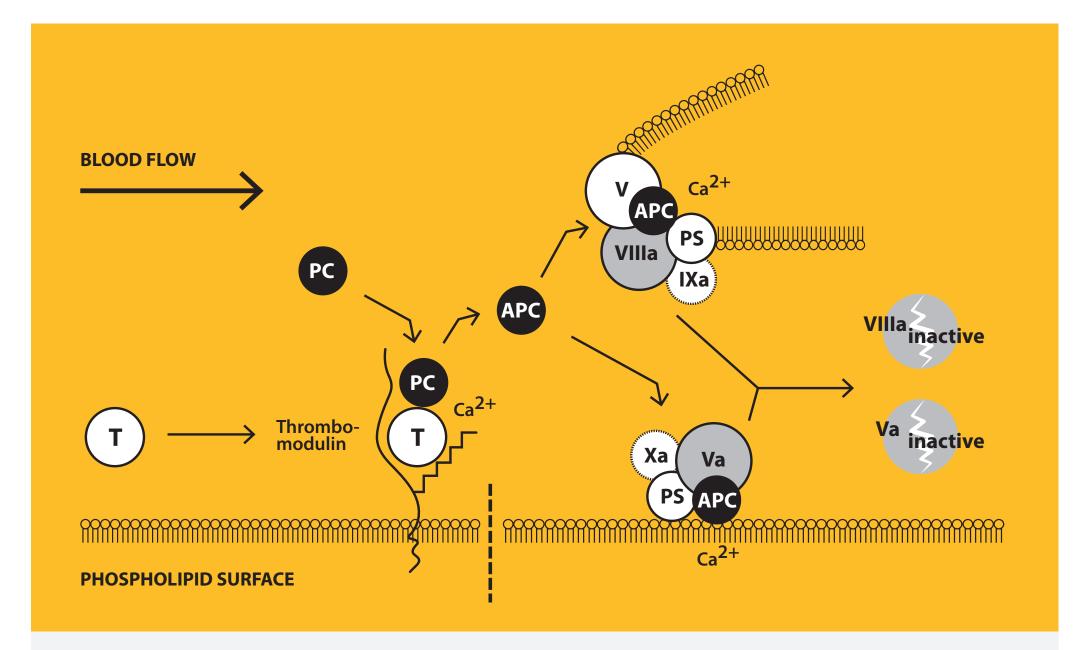
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Estetrol (E4) is a Unique Native Estrogen that does not modify Coagulation Markers in Postmenopausal Women and maintains Sensitivity to Activated Protein C (APC)


Jean-Michel Foidart¹, Rogerio A. Lobo², Jan Rosing³, Mélanie Taziaux⁴, Maud Jost⁴, Jonathan Douxfils^{5,6}, Ulysse Gaspard¹ ¹ University of Liège, Liège, Belgium; ²Columbia University, Maastricht, the Netherlands; ⁴Mithra Pharmaceuticals, Liège, Belgium; ⁵Qualiblood sa, Namur, Belgium; ⁶University of Namur, Belgium; ¹University, Maastricht, the Netherlands; ⁴Mithra Pharmaceuticals, Liège, Belgium; ⁵Qualiblood sa, Namur, Belgium; ⁶University of Namur, Belgium; ¹University, Maastricht, the Netherlands; ⁴Mithra Pharmaceuticals, Liège, Belgium; ⁶University, Maastricht, the Netherlands; ⁴Mithra Pharmaceuticals, Liège, Belgium; ⁶Mithra Pharmaceuticals, Liège, Belgium; ⁶Mithra, Netherlands; ⁴Mithra, Netherlands; ⁴Mithra, Netherlands; ⁶Mithra, Netherlands; ⁶Mithra, Netherlands; ⁶Mithra, Netherlands; ⁴Mithra, Netherlands; ⁶Mithra, Netherlands; ⁶Mithra, Netherlands; ⁶Mithra, Netherlands; ⁸Mithra, Netherlands; ⁸Mithra,

Introduction

Combined oral contraceptives (COC) or hormonal replacement therapy (HRT) increase 3 to 6 fold the risk of venous thromboembolism (VTE). This risk increase is largely explained by induction by the estrogens of resistance towards the physiological anticoagulant called Activated Protein C (APC) [1–3] (Figure 1).

Estetrol (E4) is a promising natural estrogen in development by Mithra Pharmaceuticals. Unlike other estrogens, E4 blocks the activation of the membrane estrogen receptor α (ERα). This property of E4 is the basis for its tissue specific action and its unique pharmacodynamic profile. Data in pre- and postmenopausal women show that E4 alone or in combination with a progestin has minimal stimulatory effects on triglycerides, sex hormone binding globulin, corticosteroid-binding globulin, and angiotensinogen.

In this study, we sought to determine the effects of E4 on the resistance to APC in postmenopausal women.

Figure 1: Protein C Anticoagulant Pathway

Thrombin (T), once activated by the extrinsic or intrinsic pathways of the coagulation, binds to its receptor thrombomodulin on the intact cell surface. As a result, this complex loses the procoagulant properties of thrombin and instead becomes a potent activator of protein C. APC will then form with protein S a complex that functions as a circulating anticoagulant, which specifically degrades and inactivates the phospholipid-bound factors Va and VIIIa. This effectively down-regulates the coagulation process and limits clot extension.

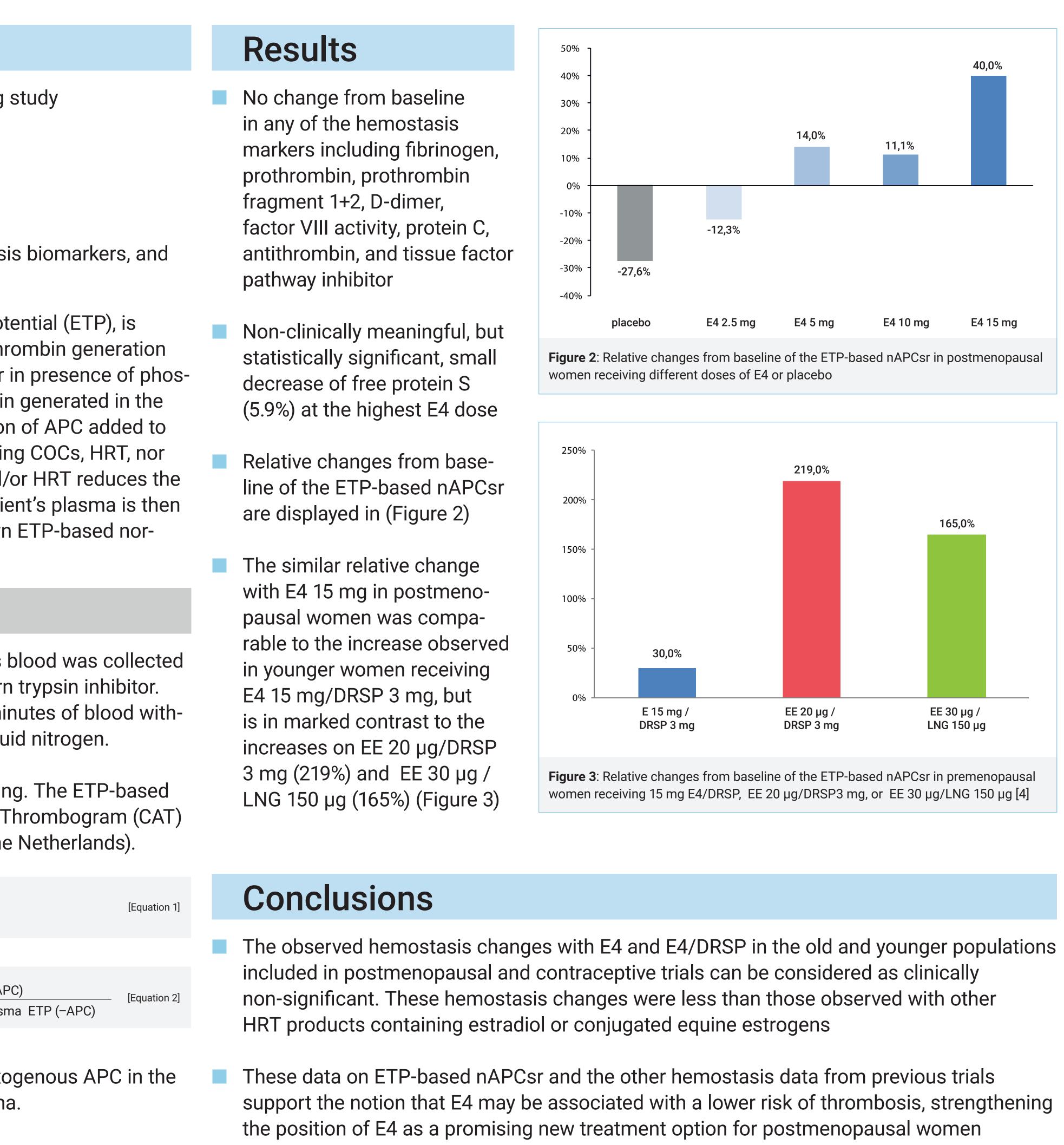
T = Thrombin, PC = Protein C, APC = Activated Protein C, PS = Protein S

1328'; [7] Douxfils et al. Clin Chem Lab Med. 2019. Aug 24

Design and methods

- Multicenter, randomized, placebo-controlled, double-blind, dose-finding study
- 257 postmenopausal women
- 2.5, 5, 10, or 15 mg E4; or placebo once daily for 12 weeks
- Assessments: changes from baseline of coagulation factors, hemostasis biomarkers, and ETP-based normalized APC sensitivity ratio (nAPCsr)

The global clotting capacity of plasma called the endogenous thrombin potential (ETP), is determined with the thrombin generation test (TGT). The TGT quantifies thrombin generation after triggering the extrinsic pathway of the coagulation using tissue factor in presence of phospholipids. To assess APC resistance with this test, the amounts of thrombin generated in the absence and presence of exogenous APC are compared. The concentration of APC added to plasma is chosen to obtain 90% inhibition of the ETP in individuals not taking COCs, HRT, nor having thrombotic abnormalities. Resistance to APC induced by COCs and/or HRT reduces the percentage inhibition of the ETP by APC. The relative resistance of the patient's plasma is then compared to that of a reference plasma. This is the basis of the well-known ETP-based normalized APC sensitivity ratio (nAPCsr).


ETP-based nAPCsr

- ETP based APCsr was determined as described previously [7]. Venous blood was collected from the antecubital vein into 0.109 M sodium citrate tubes without corn trypsin inhibitor. Platelet poor plasma (PPP) was obtained by centrifugation within 30 minutes of blood withdrawal. PPP was aliquoted, snap frozen, and subsequently stored in liquid nitrogen.
- Frozen samples were thawed and performed within 4 hours after thawing. The ETP-based APC resistance assay was conducted using the Calibrated Automated Thrombogram (CAT) and the Thrombinoscope software (Thrombinoscope by, Maastricht, the Netherlands).
- Concentration of APC was calculated to ensure 90% inhibition of ETP (equation 1) on reference plasma. ETP-based APCr was also expressed as the nAPCsr according to equation 2.

Inhibitation % =
$$(1 - \frac{\text{sample ETP (+APC)}}{\text{sample ETP (-APC)}}) \times 100$$

sample ETP (+APC) / sample ETP (-APC) nAPCsr = _ Reference plasma ETP (+APC) / Reference plasma ETP (-APC)

APCsr is defined as the ratio of ETP in the presence and absence of exogenous APC in the respective plasma sample, divided by the same ratio of a control plasma.

Poster presented at the 2019 Annual Meeting of the North American Menopause Society (NAMS), September 25-28, 2019; Chicago, IL, USA. Financial support was provided by Mithra Pharmaceuticals Belgium. Correspondence: M. Jost, Mithra Pharmaceuticals, Rue Saint Georges 5, 4000 Liège, Belgium. Tel: +32 4 349 2822. Fax: +32 4 349 2821. E-mail: mjost@mithra.com