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Abstract: This paper presents an algorithm that follows the sample-free approach to synthesise a population
for agent basedmodelling purposes. Whilemost existing algorithms rely on a sample dataset, the fact that this
algorithmdoes not rely on onemakes it a novel contribution. It has potentially widespread application for situ-
ations in which such survey data is not available. In contrast to existing sample-free algorithms, the population
synthesis presented in this paper applies the heuristics to part of the allocation of synthetic individuals into
synthetic households. As a result the iterative process which does this and which is normally the most compu-
tationally demanding and time consuming process, is required only for a subset of synthetic individuals. This
means that the population synthesiser in thiswork is computationally e�icient enough for practical application
to build a large synthetic population (many millions) for many thousands target areas at the smallest possible
geographical level. This capability ensures that the geographical heterogeneity of the resulting synthetic popu-
lation is preserved. Thepaper presents the application of the newmethod to synthesise the population forNew
South Wales in Australia in 2006. The resulting total synthetic population has approximately 6 million people
living in over 2.3 million households residing in private dwellings across over 11,000 census collection districts
(CCDs). Analyses show evidence that the synthetic population matches very well with the census data across
seven demographic attributes that characterise the population at both household level and individual level. A
Java-based open source implementation of the population synthesiser as well as sample input data is freely
available at https://github.com/smart-facility/SPGen.

Keywords: Synthetic population, Combinatorial optimisation, Sample-free Agent-basedmodelling, Social be-
haviours

Introduction

1.1 Micro-simulations such as activity based models for urban transport demand forecasting purposes or agent
based models for epidemiology studies usually involve a large number of agents representing the real pop-
ulation living in the area being studied. It is extremely expensive, however, if not impossible (due to stringent
privacy laws in certain countries), to carry out a survey that obtains a fully disaggregateddata set todescribe the
demographics and characteristics of the agents of interest. An alternative is to construct a synthetic population
that statistically matches the demographics of the real population. Examples of micro-simulation models that
require a large synthetic population include those in studies by Fumanelli et al. (2012) and Huynh et al. (2015).
Synthetic population generation has consequently attracted increasing attention from various research groups
around the world. A number of works, for example those by Huang &Williamson (2001), Bowman (2004), Ryan
et al. (2009), Muller & Axhausen (2010), Barthelemy & Cornelis (2012), and Tanton et al. (2014), provide a good
review and comparisons between the current population synthesising methods.

1.2 The basic principle behind the majority of population synthesisers found in the literature is to integrate an ag-
gregated dataset with a disaggregated dataset. The aggregated dataset is a set of joint distributions (or cross-
tabulations) that describes the demographics of a relative small geographical area (the target area), the syn-
thetic population of whichmust be generated. Such a dataset is normally available from the census data, such
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as the Summary Files in the US, the Small Area Statistics file in the UK, and the Community Profiles in Aus-
tralia. The disaggregated data is normally survey data of sample households with demographic attributes of
the household and those of its residents. Examples of such survey data is the Public-Use Microdata Samples
in the US, the Sample of Anonymised Records in the UK, and the Confidentialised Unit Record File in Australia.
The information in the survey data normally covers a much larger geographical area (the seed area) than the
area for which the synthetic population is required.

1.3 Very o�en the joint distributions are available only between some, but not all, of the critical demographic at-
tributes (the control variables) required for population synthesis. The well-known iterative proportional fitting
(IPF) procedure (Deming & Stephan 1940; Ireland & Kullback 1968; Fienberg 1970) has been widely used to con-
struct the missing joint distributions between control variables based on their marginal distributions. Evalu-
ation of popular techniques for generating joint-distributions (or cross-tabulations), including IPF procedure
and hill-climbing algorithms, can be found in Kurban et al. (2011). In conventional population synthesisers, the
requirement for these fully joint distributions is that theymust preserve not only the correlation between these
control variables as observed in the subset of the disaggregated (survey) data associated with the target area,
but also the correlation between themarginal distributions of the variables that are specific to that target area.
Once the fully joint distributions between all the control variables are constructed, records of individuals in a
household are iteratively drawn from the survey data so that joint distributions of attributes of the resulting
synthetic population match as closely as possible the distributions obtained from the IPF process. The house-
hold, the residents therein, and their attributes (both at household level and individual level) are stored as part
of the resulting synthetic population.

1.4 The above procedure of population synthesis was first proposed by Beckman et al. (1996). There were a few
problems with this approach and these were reported in the literature (Beckman et al. 1996; Guo & Bhat 2007;
Ye et al. 2009). The first was the incorrect zero cell values in the resulting table of joint distributions (Lovelace
et al. 2015). This happens when the demographic distribution in the sample data is not fully representative of
the demographic in the target areas (as described by the marginal distributions in the aggregated data). Be-
cause of this, the value corresponding to the demographic group that exists in the aggregated data but not
in the sample data would remain zero throughout the IPF process and, as a result, these will fail to converge.
This problem was investigated by various studies (e.g., Beckman et al. 1996; Guo & Bhat 2007; Ye et al. 2009).
A comprehensive review and evaluation of di�erent modifications to the implementation of the IPF algorithm
for spatial microsimulation was reported by Lovelace et al. (2015). Another shortcoming of the conventional
population synthesiser used by Beckman et al. (1996) was that the procedure can control and satisfy joint dis-
tributions of attributes at either household level or individual level, but not both. To overcome this di�iculty,
Guo & Bhat (2007) proposed amechanism that draws a household from the survey data and adds it to the syn-
thetic population only if it satisfies both a set of joint distributions of household-level attributes and a set of
joint distributions of individual-level attributes. Ye et al. (2009) proposed a new iterative proportional updat-
ing procedure (IPU) in which the weight corresponding to a household type in the sample is iteratively deter-
mined and adjusted by the weights corresponding to individual types in each of the sample households. These
weights are then used to determine the probability based on which households are drawn from the survey.
Other notable studies that focused on resolving the problem of individual household allocation include the
one by Muller & Axhausen (2011), who introduced the hierarchical IPF for multi-level control of the drawing of
households from survey data, and the study by Pritchard & Miller (2012) who proposed a method that fitted
household and individual zonal attributes simultaneously with a focus application on Canadian census data.
PopGen, developed at the Arizona State University, is a formal package for population synthesis for activity-
basedmodel modelling purposes, that is also capable of controlling thematching of both household-level and
individual-level attributes.

1.5 Huang & Williamson (2001) presented another method, called the combinatorial optimisation approach, for
population synthesis, which is slightly di�erent from the above procedures. In this method, the process first
randomly picks a set of households from survey data, as an initial estimate of the population to be synthesised
for the target area. It then assesses the e�ects achieved by swapping a random household from this set with
one household from the survey data. If the swapping improves the goodness of fit between the attributes of the
synthetic population and a set of predefined aggregated demographic attributes of the target area, the swap
is made. Otherwise the swap is not made and the process restarts with another household randomly picked
from the survey data. This process of assessment and swapping is repeated until a satisfactory goodness of
fit is achieved. The fit between the resulting population and the constraining aggregated dataset is measured
by the relative sum of squared Z scores, proposed by Huang & Williamson (2001). Major research e�orts to
build a synthetic population following this approach include those carried out at the National Centre for Social
and Economic Modelling (NATSEM) at the University of Canberra, Australia (Harding et al. 2004; Williams 2003;
Melhuish et al. 2002).
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1.6 One critical assumption in the aforementioned population synthesisers is the availability of a disaggregated
dataset from which household records are drawn to form the resulting population in the target area. This as-
sumption is not always accurate either because such a survey does not exist or, more o�en, it is inaccessible.
Even when such survey data is available, the sample size needs to be large and spatially distributed enough
to be fully representative of the demographic distributions of each target area. This condition is critical to the
convergence of the iterative processes (IPF, IPU, HIPF) used in the majority of the above approaches. To avoid
these di�iculties, a sample-free approachwas first introduced by Birkin & Clarke (1988) where it was applied to
constructmicrodata of the population in the LeedsMetropolitan District (UK). The approachwas then followed
byGargiulo et al. (2010)whodeveloped an algorithm to synthesise population for the Auvergne region (France),
and by Barthelemy & Toint (2013), whose algorithm was applied to the Belgium’s population. Similarly, Long
& Shen (2013) developed an algorithm that disaggregated not only heterogeneous attributes of the population
but also locations of the people from aggregated data, small-scale surveys, and empirical studies.

1.7 In the sample-free population synthesiser by Barthelemy & Toint (2013), the joint distributions of attributes at
individual level and household level are constructed using onlymarginal joint distributions of these attributes.
Values in the resulting joint distributions at individual level represent the number of individuals of each indi-
vidual type and are used to construct a pool of individuals. Records of individuals are drawn from this pool and
allocated to households so that the resulting households in the synthetic population satisfy the joint distribu-
tions at household level calculated above. The joint distributions at individual level also inform this drawing
process in terms of the probability an individual type being drawn given the household type being considered
and attributes of the existing (previously allocated) residents. Comparisons between sample-free and sample-
based approaches on the same target area were made by Lenormand & De�uant (2013) and by Barthelemy &
Toint (2013). The latter authors claimed that the synthetic population from the sample-free approachwasmore
accurate than that from the sample-based approach.

1.8 It is worth noting that while sample-free algorithms reported in the literature followed the same principle, i.e.
relying solely on aggregated demographics data to reconstruct the microdata record of individuals, they were
designed specifically to solve the problems of data quality and availability in di�erent applications, and there-
fore had limited transferability.

1.9 While there have been various studies on using Australian census data to construct the population, they re-
lied on a sample of microdata for this purpose (for example, see Tanton et al. 2014; Namazi-Rad et al. 2014). We
present in this paper apopulation synthesiserwhich constructs a computational representationof apopulation
following the sample-free approach and which takes advantage of the wealth of demographics data available
in the Australian context. The synthesiser begins by constructing a pool of individuals and a pool of house-
holds using only aggregated census data at the individual and household level, respectively. The allocation of
individuals into households in this work follows a two-stage process. The first stage is essentially a heuristic
allocation which follows a set of constraints which restricts the composition of individual types for the type of
household being considered. The second stage iteratively assigns remaining individuals in the individual pool
into households aiming at gradually and simultaneouslyminimising the deviation across various demographic
attributes between the resultingpopulation and the censusdata in the target area. This second stage resembles
the combinatorial approach reviewed above. The allocation processes are further constrained by biological re-
strictions, including the maximal and minimal age gap between the mother and a child in a household and a
distribution of age gap of a couple (either married or in a de facto relationship). This feature also existed in the
population synthesiser used by Barthelemy & Toint (2013).

1.10 There are major di�erences in the synthesis algorithm in our work compared to other sample-free population
synthesisers. The population synthesiser by Gargiulo et al. (2010) relied on a full set of household types con-
structedbasedon thoseof thedesireddemographic attributes in the final population. The synthetic population
was then constructed by drawing households from this set following a predefined distribution until the final
population matches satisfactorily with a set of observed demographics. While the algorithm in this approach
may be simple (and thus preferred for code writing and maintenance), its application may be limited because
any increase in the number of the desired attributes and/or the number of categories in each of these attributes
would exponentially increase the set of possible household types. This would likely lead to much higher com-
putational time for the algorithm to iterate through the set before arriving at a satisfactory final population. Our
synthesiser, instead, is not constrained by the number of desired demographic attributes or the number of their
categories. In fact, the synthetic population that we constructed has seven demographic attributes, compared
to three in Gargiulo et al. (2010), with up to 17 categories per attribute.

1.11 The di�erence between the population synthesiser in this work and the one proposed by Barthelemy & Toint
(2013) is two-fold. In terms of data availability and quality, we are fortunate that all aggregated census data
required for thepopulation synthesis is available for each target area. Therefore theapplicationof IPFprocesses
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Census data Denotation in synthetic population
Husband (wife) in a registered marriage Married
Partner in de facto marriage
Lone parent LoneParent
Child under 15 U15Child
Dependent student (aged 15-24 years) Student
Non-dependent child O15Child
Other related individual Relative
Unrelated individual living in family household
Group household member GroupHhold
Lone person LonePerson
Visitor (fromwithin Australia) (not included)

Table 1: Categories of household relationship in census data and their denotation in the synthetic population

to reconstruct the joint distributions of population attributes from various data sources (available at various
geographical levels), which was an important part of the population synthesiser used by Barthelemy & Toint
(2013), was unnecessary in this study. The iterative process for allocating a synthetic individual into a synthetic
household in our method is required only for a subset of the population (thanks to the preceding heuristic –
and deterministic thus more computationally e�icient – allocation step) whereas this process was applied to
the whole population in the algorithm Barthelemy & Toint (2013) proposed.

1.12 The remaining of the paper is structured as follow. Section 2 presents the method we propose to build a syn-
thetic population, including the input data available for this purpose. Section 3 presents results from the pop-
ulation synthesis for a representative census collection district (CCD) in the state of NSW, Australia in 2006, as
well as the resulting synthetic population for all CCDs across the state, including the comparison against census
data. The paper is concluded with suggestions for further development of the population synthesiser as well
as its potential application particularly for the modelling of urban transport demand.

AModified Sample-free Approach to Synthesise Population

2.1 This section first introduces the aggregated data used in this study and attributes of the synthetic population
to be constructed. The proposed algorithm used to model the population is presented in the subsection that
follows. A Java-based open source implementation of the population synthesiser as well as the sample input
data used in this research is available at https://github.com/smart-facility/SPGen.

Description of the aggregated data

2.2 The aggregated data used in this study is from the Basic Community dataset in the Community Profiles data
published by the Australian Bureau of Statistics (ABS) for the year 2006. This dataset is freely available and
contains information related to people, families and dwellings that characterise a given geographical area. The
data is available at various geographical levels, ranging from CCD to State or Territory, e.g. New South Wales
(NSW). CCD is the smallest geographical unit. The dataset was collected and processed in 2006 andwas chosen
in this study as a unit target area for population reconstruction so that the resulting synthetic population over
the whole state of NSW best preserves the geographical heterogeneity of the real population characteristics.
To give a perspective of scale, an average CCD in 2006 has around 225 dwellings. It should be noted that the
information in this dataset contains information only for population living in private dwellings.

2.3 Tables from the Basic Community dataset used for the population synthesis in this work are briefly described
below.
• Census table “Relationship in Household by Age by Sex”. This table provides information on the num-
ber of males and females in each relationship category in each age group. There are 9 age groups which
are “0-14 years”, “15-24 years”, “25-34 years”, “35-44 years”, “45-54 years”, “55-64 years”, “65-74 years”,
“75-84 years”, and “85 years and over”. A summary of relationship categories in census data and their
corresponding relationship categories used in the population synthesis is in Table 1. Relationship cate-
gory ‘Visitor’ is not considered in the population synthesis because of the inconsistent inclusion of this
category across the tables. The counts of males and females in categories ‘Husband (wife) in a regis-
tered marriage’ and ‘Partner in de facto marriage’ include same sex couples. Categories corresponding
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Census data Denotation in synthetic population
Couple family with no children HF1
Couple family with children under 15 and
dependent students and non-dependent children HF2
dependent students and no non-dependent children HF3
no dependent students and non-dependent children HF4
no dependent students and no non-dependent children HF5
Couple family with no children under 15 and
dependent students and non-dependent children HF6
dependent students and no non-dependent children HF7
no dependent students and non-dependent children HF8
One parent family with children under 15 and
dependent students and non-dependent children HF9
dependent students and no non-dependent children HF10
no dependent students and non-dependent children HF11
no dependent students and no non-dependent children HF12
One parent family with no children under 15 and
dependent students and non-dependent children HF13
dependent students and no non-dependent children HF14
no dependent students and non-dependent children HF15
Other family HF16
Non family household NF

Table 2: Categories of household type in census data and their denotation in the synthetic population

Table 3: Assumptions of compositional household relationships for each household type

to children in a family household are ‘Child under 15’, ‘Dependent student (aged 15-24 years)’, and ’Non-
dependent child’ andare inclusive of natural, adopted, stepor foster childrenof a couple or a loneparent.
These notations of relationship between individuals are crucial in allocating individuals into households
as well as in explaining (very) few exceptional cases in the resulting synthetic population.

• “Family Composition”. This table gives the number of family households by type. According to census
data, there are 16 categories of family household types, as elaborated in Table 2. It should be noted that
couple families in the census data include same-sex families.

• Census table “FamilyCompositionbySexofPerson inFamily”. This tablegives informationon thenumber
ofmales and females in each family household type. The family household types in this table are identical
to the household types in table “Family Composition”.

• Census table “Household Composition by Number of Persons Usually Resident”. This table provides in-
formation on the number of family households and the number of non-family households by household
size (i.e. the number of people living in these households).

2.4 The definition of household types and the definition of categories of household relationship imply a set of re-
quirements of compositional residents for each household type. Such requirements constrain the minimum
number of individuals in each category of household relationship for a given household type, as summarised
in Table 3.

2.5 Any cell with value -1 indicates the household type in that columnmust not have any individuals of the house-
hold relationship categories in that row. For example, cells in row ‘Married/LoneParent’ that have value ‘2’ in-
dicate that the corresponding household types must have two individuals of type ‘Married’ of either same or

JASSS, 19(4) 11, 2016 http://jasss.soc.surrey.ac.uk/19/4/11.html Doi: 10.18564/jasss.3198



di�erent genders. Similarly, cells on this row that have value ‘1’ indicate that the corresponding household
types must have one individual of type ‘LoneParent’. A household of type, for example, HF2 therefore

• Needs exactly 2 individuals of type ‘Married’ (of either same or di�erent genders), and

• Needs at least 1 individual of type ‘U15Child’, and

• Needs at least 1 individual of type ‘Student‘, and

• Needs at least 1 individual of type ‘O15Child’, and

• May or may not have individuals of type ‘Relative’, and

• Must not have any individuals of type ‘LonePerson’ and ‘GroupHhold’.

2.6 While the dataset is consistent across all target areas with information highly useful for the purpose of popu-
lation synthesising, there are mismatches in values between tables that characterise individual attributes and
those that characterise household attributes. This is because in order to preserve the confidentiality of the cen-
sus data, small random adjustments had been introduced into these tables before they were published. These
mismatches need to be accounted for in the algorithm synthesising the population, as described in further de-
tail in the following section.

The proposed algorithm to synthesise the population

2.7 Themodified sample-free population synthesiser presented in this paper starts with the construction of a pool
of individuals and a pool of households based on the census tables presented in Section 2.1.

2.8 The pool of individuals is a collection of disaggregated records each of which details demographic information
of a synthetic individual. This pool, in principle, serves the same purpose as the microdata in sample-based
population synthesisers, i.e. individuals are drawn from this pool to construct the final population. The major
di�erence is that the pool is constructed using an aggregated census table for the target area, meaning that the
number of synthetic individuals in this pool is exactly the size of the final population. The census table used to
construct the individual pool is “Relationship in Household by Age by Sex”. The values in this table inform the
number of synthetic individuals which need to be generated for each household relationship category, for each
age group, and for a given gender. The specific age of an individual is randomly generated following a uniform
distribution between the bounds of his/her age group. At the end of this pool construction process, attributes
that will have been assigned to each synthetic individual are household relationship, age, and gender.

2.9 The pool of households is a collection of disaggregated records, each of which represents demographic infor-
mation of a synthetic household. Values in the “Family composition” table inform the number of households in
each family household type (i.e. types ‘HF1’ to ‘HF16’) that needs to be constructed. The total number of non-
family households (i.e. type ‘NF’) that needs to be constructed is from the table ‘Household Composition by
Number of Persons Usually Resident’. At the end of the pool construction process, the attribute that will have
been assigned to each synthetic household is the household type.

2.10 Once the pools are constructed, the next task assigns individuals into households. Such assignment is con-
strained by:
• the requirement of individual characteristics for a given household type, and

• the distribution of total number of males and females for each household type, and

• the distribution of households by household size

2.11 An algorithm to allocate individuals into households that simultaneously satisfies the above three constraints
would be not only highly sophisticated (which imposes huge burdens on the coding and debugging the algo-
rithm) but likely computationally ine�icient. We therefore propose that synthetic individuals in the individual
pool be allocated into each synthetic household in the household pool following a two-stage process. The first
stage aims at satisfying the requirement of compositional individuals (based on their household relationship)
in each household based on its type following the assumptions in Table 3. The second stage aims at simulta-
neously satisfying the demographic distributions, as set out in table “Family Composition by Sex of Person in
Family”, and table “Household Composition by Number of Persons Usually Resident”. The process is demon-
strated by the diagram in Figure 1. The allocation algorithm in each step is described in detail in the following
subsections.
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Figure 1: The two stage process of the population synthesiser

Heuristic allocation of synthetic individuals into synthetic households

2.12 The allocation in this stage includes the following steps. It should be noted that the constraints on age gaps
used throughout the allocation of individuals into households in this stage are only a guideline. For a given set
of values in the census data of a target area, some allocations may not satisfy these constraints. This can be
attributed to the quality of census data aswell as exceptions that crisp numerical constraints cannot represent.

2.13 Step 1. Assigning a couple of ‘Married’ individuals into each of the households requiring them
2.14 The households requiring this step are those with types ‘HF1’ to ‘HF8’ in the household pool. Pairs of ‘Married’

individuals are selected from the pool of individuals so that their age gap follows a predefined distribution,
which ideally should be informed by census data. In this study we assume that the age gap distribution of
married couples follows a Gaussian distribution. This assumption can be easily replaced by a real distribution
(e.g. from surveys or census) if available.

2.15 Foreachof the requiringhouseholds, a valueof thedesiredagegapof the ‘Married’ individualpair tobe selected
for this household is randomly generated following the predefined distribution. A matrix of age gap between
all available ‘Married’ individuals in the individual pool is constructed as follows:

DAgeij =MarriedMalei.age−MarriedFemalej .age (1)

where1 ≤ i ≤numberof ‘Married’male individuals in thepool, 1 ≤ j ≤numberof ‘Married’ female individuals
in the pool. If there are only same sex ‘Married’ individuals in the pool, the matrix of age gap is determined by

DAgeij = |Marriedi.age−Marriedj .age| (2)

where 1 ≤ i ≤ number of ‘Married’ individuals in the pool, i + 1 ≤ j ≤ number of ‘Married’ individuals in the
pool.

2.16 The selection of the pair of ‘Married’ individuals to be allocated into a household is further constrained by the
minimum age of the female parent (or the younger parent for same sex couple). This minimum age is deter-
mined based on the types of children entitled to this household type, as elaborated below.
• Households of types ‘HF2’, ‘HF3’, ‘HF4’, ‘HF6’, ‘HF7’ and ‘HF8’ need at least one ‘Student’ individual and/or
one ‘O15Child’ individual. Because the minimum age of an individual of either of these types is 15, the
minimum age of the female parent (or younger parent in case of same sex couple) in these households
should be older than 15 plus the age of consent. In this study, we assume the age of consent is 16.
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• For households of type ‘HF5’ (which require only at least one child under 15 years old) or of type ‘HF1’
(which require no children at all), theminimum age of the female parent (or the younger parent for same
sex couple) is the age of consent.

2.17 Satisfying the condition of parental minimum age in this step facilitates the more accurate allocation of child
individuals (i.e. ‘U15Child’, ‘Student’, and ‘O15Child’ individuals) in later steps. The ‘Married’ pair that (i) has the
corresponding age gap in the age gapmatrix closest to the desired age gap and (ii) satisfies the above condition
of parent minimum age is selected. In case no pair satisfies the second condition, the pair that has the female
age (or the younger parent age) closest to the parent minimum age gap is selected. The selected individuals
are added to the list of residents of the requiring household being considered. They are removed from the pool
of synthetic individuals and will not be considered in the selection of ‘Married’ individuals for the remaining
requiring households.

2.18 If there is only one ‘Married’ individual remaining in the pool, a new ‘Married’ individual is created. The gender
and age group of the new ‘Married’ individual are determined to minimise the root mean square between the
distribution ofmales and females by age group by household relationship in the resulting synthetic population
and the distribution from census table “Relationship in Household by Age by Sex”.

2.19 This step stops if one of the following conditions is met.

• There are no requiring households remaining. In this case, any remaining ‘Married’ individuals in the
individual pool are deleted.

• There are no remaining ‘Married’ individuals in the individual pool. In this case, any remaining house-
holds requiring this step in the household pool will be deleted.

2.20 Step 2. Assigning a ‘LoneParent’ individual into each of the households requiring it.

2.21 The households requiring this step are those with types ‘HF9’ to ‘HF15’. The allocation of a ‘LoneParent’ indi-
vidual into a requiring household is also constrained by theminimumparent age, which is dependent upon the
types of children entitled to this household type, as elaborated below.

• Households of types ‘HF9’, ‘HF10’, ‘HF11’, ‘HF13’, ‘HF14’, ‘HF15’, ‘HF8’ need at least one ‘Student’ individual
and/or one ‘O15Child’ individual. Because theminimumage of an individual of either of these types is 15,
theminimumageof the femaleparent (or younger parent in caseof same sex couple) in thesehouseholds
should be older than 15 plus the age of consent. In this study, we assume the age of consent is 16.

• For households of type ‘HF12’ (which require only at least one child under 15 years old), theminimumage
of the female parent (or the younger parent for same sex couple) is the age of consent.

2.22 For each of these households, a ‘LoneParent’ individual is randomly selected from the individual pool and
stored to the list of residents of the requiring household being considered. This individual is removed from
the pool of synthetic individuals and will not be considered in the selection of ‘LoneParent’ individuals for the
remaining requiring households.

2.23 If there are no ‘LoneParent’ individuals remaining in the individual pool, a new ‘LoneParent’ individual is con-
structed to allocate to each of the requiring households remaining. The gender and age of new ‘LoneParent’
individuals are determined to minimise the root mean square between the distribution of males and females
by age group by household relationship in the resulting synthetic population and the distribution from census
table “Relationship in Household by Age by Sex”.

2.24 This step stops if all requiring households have been allocated a ‘LoneParent’ individual.

2.25 Step 3. Assigning an ‘O15Child’ individual into each of the households requiring it.

2.26 The households requiring this step are those with types ‘HF2’, ‘HF4’, ‘HF6’, ‘HF8’, ‘HF9’, ‘HF11’, ‘HF13’ and ‘HF15’.
The existent residents in each of these households are either a couple of ‘Married’ individuals (allocated in Step
1) or a ‘LoneParent’ individual (allocated in Step 2).

2.27 The allocation of an ‘O15Child’ individual is constrained by the biological law represented by theminimumand
maximumage gap between the child and a parent in a household. The choice of which parent to be considered
for this biological constraint depends on the type of parent(s) of the household being considered, as follows:

• In households with two ‘Married’ individuals (i.e. two parents) and one of them is female, the age of the
female parent is used in this constraint.
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• In households with two parents having same genders, the age of the younger parent is used.

• In households that have ‘LoneParent’ individuals, the age of the ‘LoneParent’ is used.

2.28 The households in this step are sorted in descending order of the age of the parent chosen for the child-parent
age gap constraint. The list of available ‘O15Child’ individuals in the individual pool is also sorted by their age.
For each household in the sorted households, the allocation algorithm looks into the individual pool for the
oldest ‘U15Child’ individual satisfying the upper bound and lower bound of the parent-child age gap constraint.
This allocation strategy ensures that the parent-child age gap constraint is met as much as possible for the
distribution of ‘O15Child’ individuals and the distributions of ‘Married’ and ‘LoneParent’ individuals across the
age groups in census data for a given target area.

2.29 In cases where no ‘O15Child’ individual satisfies the upper bound and lower bound of the parent-child age gap
constraint, the individual whose age is closest to either the upper bound or the lower bound is selected. A
possible explanation for the allocation in these cases is that the selected ‘O15Child’ individual is not a natural
child to the parent(s) in the household but is either an adopted child, foster child, or step child.

2.30 If thereareno ‘O15Child’ individuals remaining in the individual poolwhile there remainsat least onehousehold
requiring this, a new ‘O15Child’ individual is constructed for each of the remaining households. The age and
gender of each of the new ‘O15Child’ individuals are decided to minimise the root mean square between the
distribution ofmales and females by age group by household relationship in the resulting synthetic population
and the distribution from census table “Relationship in Household by Age by Sex”.

2.31 This step stops when all households requiring this step are assigned with an ‘O15Child’ individual.

2.32 Step 4. Assigning a ‘Student’ individual into each of the households requiring it.

2.33 The households requiring this step are those with types ‘HF2’, ‘HF3’, ‘HF6’, ‘HF7’, ‘HF9’, ‘HF10’, ‘HF13’ and ‘HF14’.
The algorithm assigning a ‘Student’ individual into each of these households resembles the algorithm that al-
locates ‘O15Child’ individuals into households in Step 3.

2.34 Step 5. Assigning a ‘U15Child’ individual into each of the households requiring it.

2.35 The households requiring this step are those with types ‘HF2’, ‘HF3’, ‘HF4’, ‘HF5’, ‘HF9’, ‘HF10’, ‘HF11’ and ‘HF12’.
The algorithm assigning a ‘U15Child’ individual into each of these households resembles the algorithm that
allocates ‘O15Child’ individuals into households in Step 3.

2.36 Step 6. Assigning a pair of ‘Relative’ individuals into each of the households requiring them.

2.37 The households requiring this step are those with type ‘HF16’. Two ‘Relative’ individuals are randomly selected
from the pool of individuals and allocated to each of these households. If there are not su�icient ‘Relative’ in-
dividuals in the pool for the number of households requiring them, new ‘Relative’ individuals are constructed.
The gender and age group of these new individuals will be constructed to minimise the root mean square be-
tween the distribution of males and females by age group by household relationship in the resulting synthetic
population and the distribution from census table “Relationship in Household by Age by Sex”. This step stops
when all ‘HF16’ households in the household pool are assigned with two ‘Relative’ individuals.

2.38 Step 7. Assigning ‘LonePerson’ and ‘GroupHhold’ individuals into each of the non-family households
(type ‘NF’)

2.39 For each household of type ‘NF’ in the household pool that has one resident, a ‘LonePerson’ individual is ran-
domly selected from the individual pool and assigned to this household. The number of such households is
specified in the census table “Household Composition by Number of Persons Usually Residents”. If the num-
ber of ‘LonePerson’ individuals in the individual pool is less than the number of 1-resident ‘NF’ households, new
‘LonePerson’ individualswill be constructedunder the constraint thatminimises the rootmeansquarebetween
the distribution of males and females by age group by household relationship in the resulting synthetic popu-
lation and the distribution from census table “Relationship in Household by Age by Sex”.

2.40 ‘GroupHhold’ individuals are randomly drawn from the individual pool and assigned to ‘NF’ households that
havemore than 1 resident following the distribution of number of non-family households by household size as
specified in table “HouseholdCompositionbyNumber of PersonsUsually Residents”. If the number of ‘GroupH-
hold’ individuals in the individual pool is insu�icient to satisfy this distribution, new ‘GroupHhold’ individuals
will be constructed. Their age and gender are decided tominimise the root mean square between the distribu-
tion ofmales and females by age group by household relationship in the resulting synthetic population and the
distribution from census table “Relationship in Household by Age by Sex”.

2.41 This step stops when all non-family households are filled with the required number of residents.

JASSS, 19(4) 11, 2016 http://jasss.soc.surrey.ac.uk/19/4/11.html Doi: 10.18564/jasss.3198



Iterative allocation of synthetic individuals into synthetic family households

2.42 A�er the allocation steps in Section 2.2.1, non-family synthetic households (i.e. those with type ‘NF’) in the
target area should have been filled with the required number and type of residents following the distribution
of non-family households by household size from census data. For this reason, these households will not be
considered in the allocation algorithm in this section. On the contrary, each synthetic family household in the
target area has been allocated with only the minimum required number of individuals to satisfy its household
type. The individual pool at this stage should contain only individuals with relationship categories ‘U15Child’,
‘Student’, ‘O15Child’ and ‘Relative’. The objective of this allocation stage is allocating these remaining individ-
uals into synthetic family households constrained by simultaneously satisfying the distribution of individuals
by household type (from census table “Family Composition by Sex of Person in Family”) and the distribution
of family households by household size (from census table “Household Composition by Number of Persons
Usually Residents”). This allocation is iterative and is detailed below.

2.43 For each remaining individual in the individual pool, the allocation algorithm considers each feasible synthetic
household and calculates the following root mean square (RMS) errors should the individual be allocated to
that synthetic household. It should be noted that a feasible synthetic household is the one whose type does
not restrict thehousehold relationship categoryof the synthetic individualbeingconsidered, asdefined inTable
3.
• The root mean square error between the distribution of individuals by family household type in the re-
sulting synthetic population and in the census data, as follows:

RMSIndCount =

√√√√ 1

nHFType

nHFType∑
i=1

(PICi − PISi)2 (3)

where

PISi =


ISi

1 +
∑nHFType

j=1 ISj

, i 6= k

1 + ISi

1 +
∑nHFType

j=1 ISj

, i = k

and
PICi =

ICi∑nHFType

j=1 ICj

.

In Equation 3, IC and IS are the array of counts of individuals by household type in census data and in
the existing synthetic population (i.e. before the synthetic individual being considered is allocated to
any household), respectively; nHFType is the number of family household types (which is 16 according to
Table 2); k is the index in IS corresponding to the type of feasible synthetic household being considered.

• The root mean square error between the distribution of family households by household size in the re-
sulting synthetic population and in census data, as follows:

RMSHholdCount =

√√√√ 1

nHFSize

nHFSize∑
i=1

(PHCi − PHSi)2 (4)

where

PHSi =


HSi

1 +
∑nHFSize

j=1 HSj
, i 6= k

1 +HSi

1 +
∑nHFSize

j=1 HSj
, i = k

and
PHCi =

HCi∑nHFSize

j=1 HCj
.

In equation (4), HC andHSare, respectively, the array of family household counts by household size in the
census data and the existing synthetic population (i.e. before the synthetic individual being considered
is allocated to any household); nHFSize is the number of valid categories of household size, which are
2 people, 3 people, 4 people, 5 people, and 6 people or more; k is the index in HS corresponding to the
new household size category of the feasible synthetic household being considered should the current
synthetic individual be allocated to it.
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2.44 Each pair of these RMS values represents the errors (between the resulting synthetic population and census
data) associated with a possible choice of allocating the synthetic individual being considered to a feasible
synthetic household. The best choice (i.e. the most suitable synthetic household this individual belongs to) is
the one that results in both the smallest error in the distribution of individual counts by household type and
the smallest error in the distribution of household counts by household size. In case such optimal choice is
not available, i.e. not any one of the feasible choices strictly outperforms others, a set of choices that are not
strictly dominated by any other are selected. These choices are represented by the Pareto front of RMS data
points. The algorithm then randomlypicks a choiceout of this set that allocates the individual being considered
into a household. The algorithm in this second allocation stage stops when all remaining individuals in the
individual pool are allocated tohouseholds in thehouseholdpool. The constructionof the synthetic population
is completed.

The Resulting Synthetic Population

3.1 A population synthesising process is normally (and should be) carried out at the smallest possible geographical
area where the required demographic attributes (the aggregated data) are available. This ensures that the lo-
cation information of the synthesised population is retained and thus the heterogeneity of the population over
a large geographical area is best preserved. This is particularly required when synthetic households need to
be geo-located onto the street network. A population synthesiser therefore needs to be computationally e�i-
cient to make it practically feasible to be iteratively executed over a very large number (e.g. many thousands)
of small geographical areas in constructing a very large synthetic population (e.g. many millions of people). In
the population synthesis presented in this paper, the iterative process allocating individuals into households
(the second stage), which normally is the most computationally demanding and time consuming process, is
required only for a subset of individuals in the individual pool. This is because a considerable number of indi-
viduals are already placed into households in the target area a�er the first allocation stage, which is based on
heuristics, deterministic, and thus fairly fast. As a result, the computation time required for population synthe-
sis in this work is improved significantly.

3.2 This section presents the results from applying the algorithm described in Section 2 to construct the synthetic
population in 11,678CCDs inNewSouthWales (NSW), Australia in 2006. The total populationwas approximately
6millionpeople living inover2.3millionhouseholds that resided inprivatedwellings. Thealgorithm isexecuted
independently for each CCD. The resulting synthetic population comes in the form of disaggregated records,
eachofwhich represents a synthetic individual characterisedby six attributes including age, gender, household
relationship, household type, identificationof the synthetichouseholdhe/shebelongs to, and the identification
of the CCD the synthetic household resides in.

3.3 As the algorithm is stochastic, the generator has been run 40 times with di�erent seed values for the pseudo-
random generator. The resulting populations from these runs are analysed to assess the accuracy and robust-
ness of the synthesis algorithm.

3.4 The total computational time to finishone runwas2hoursand34minutesonaverage (witha standarddeviation
of 9 minutes). It should be noted that the population synthesiser was implemented using a single threaded
Java 7 and executed on a 64 bit Windows environment with Intel Xeon CPU E5-2603 v2 at 1.80GHz and 16GB of
RAM. Since the generation process is not time-critical because it is typically executed only once (e.g. in agent-
based models by Huynh et al. (2015) and by Barthelemy & Toint (2015)), this computational time is deemed
satisfactory. Nevertheless the current implementation and execution time could be improved, for example by
taking advantage of parallel computing.

Goodness of fit

3.5 The Freeman-Tukey (FT) goodness of fit test is used to evaluate the satisfactorymatching of demographics dis-
tributions from the resulting population to those in the census data of a CCD. Sevendemographics distributions
from the synthetic population were compared against those from census data. These include

• the distribution ofmales and females by household relationship (informed by census table “Relationship
in Household by Age by Sex”)

• the distribution of family households by type (informed by census table “Family Composition”)
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Table 4: Counts of males and females by household relationship in synthetic population (SP) and census data
of CCD 1331103

• the distribution ofmales and females by household type (informed by census table “Family Composition
by Sex of Person in Family”)

• thedistributionof familyhouseholdsandnon-familyhouseholdsbysize (informedbycensus table “House-
hold Composition by Number of Persons Usually Resident”)

3.6 The Freeman-Tukey statistics is defined by

FT (T, T ′) = 4
∑
i

(√
Ti −

√
T ′
i

)2
(5)

where T and T ′ are the distribution of a demographic attribute from the census and from generated distribu-
tions, respectively. This test, suggested by Voas & Williamson (2000), has the advantage over the classic Pear-
son χ2 test that it allows the presence of zeros in the cells of the distributions. One can easily observe that the
smaller the FT is, the more similar the two distributions are. The FT statistic follows an χ2 distribution with a
number of degrees of freedom equal to one less than the number of cells in the compared distributions. This
property can be used to derive a p-value, namely the probability to observe another distribution with an FT
value at least as great as the one associated with the generated distribution. In other words, a small p-value (in
our context lower than 0.05) indicates that it is very unlikely to observe another distribution as dissimilar as the
one produced by the generator. Such a case implies that the distribution extracted from the resulting synthetic
population does not fit the corresponding distribution from census data.

3.7 Figure 2 shows the average and associated 95% confidence intervals of the proportions of the CCDs that has a
p-value greater than 0.05 for each of the seven demographic attributes examined. The statistics are computed
across the 40 replications of the synthetic population of all CCDs. More specifically, according to the FT test, an
average of 89.1% of the CCDs has the distribution of males by household relationship in the resulting synthetic
populationwhich satisfactorilymatcheswith their census data. Similarly, this average proportion for the distri-
bution of females by household relationship is 86.8%. The same interpretation applies to other demographics
categories in Figure 2.

3.8 It should be noted that for every run, 100% of the CCDs have the distributions of family households and non-
family households by size in the synthetic population which match with their census data. This is because the
distributions in the census data are used in constructing the pool of synthetic households, as described at the
beginning of Section 2.2. It should also be noted that the distributions of males and females by household re-
lationship are used in constructing the pool of synthetic individuals (see Section 2.2). Figure 2, however, shows
that not 100%of theCCDshavedistributionswhichmatchwith the censusdata. This is attributed to the fact that
census data for some CCDs violates the assumptions of minimum number of individuals of each household re-
lationship for each household type (see Table 3). Such a violation is a result of random adjustments introduced
into census data before these were released to preserve the confidentiality of the data. The number of males
and females in each household relationship category in the individual pool therefore needs to be adjusted for
these CCDs and this leads to discrepancies of the distributions ofmales and females by household relationship
between the resulting synthetic population and the census data. Such adjustments and their impacts are better
illustrated by closely looking into the population synthesising process for a CCD selected for its relatively poor
results compared to the other CCDs, namely CCD 1331103.

3.9 Tables 4 to 6 detail the average counts, their associated standard deviations and the length of the correspond-
ing 95% confidence interval for the demographics attributes in the resulting 40 replications of the synthetic
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Figure 2: Proportion of CCDs of which synthetic population matches with census data for each demographics
attribute. The whiskers on the top of each bar represent the 95% confidence interval of the associated propor-
tion.

Table 5: Counts of family households and non-family households by size in synthetic population (SP) and in
census data of CCD 1331103

Table 6: Counts ofmales, females and family households by family household type in synthetic population (SP)
and in census data of CCD 1331103

population for CCD 1331103. The census data for this CCD is also included for comparison purposes. As men-
tionedpreviously, the lengthsof theconfidence intervals are small, further indicating the stabilityof themethod
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regardless of the initial seed value used by the pseudo-random number generator.

3.10 Contradictions between values across the census data of this CCD include:

• The total number of households requiring two ‘Married’ individuals is 66. The total number of ‘Married’
males and females is only 131.

• The number of non-family households requiring exactly one resident is 19. The number of ‘LonePerson’
males and females is 18.

• The total number of households requiring a ‘LoneParent’ individual is 24. The total number of ‘LonePar-
ent’ males and females is 27.

• The total number of households requiring at least a ‘Student’ individual is 25. The number of ‘Student’
males and females is 25.

• The number of non-family households requiring at least two residents is 4. The number of ‘GroupHhold’
males and females is 0.

3.11 Adjustmentsweremade to the number of synthetic individuals in this CCD in order to satisfy the assumptions of
resident composition in Table 3. It should also be noted that these adjustments need to minimise (as much as
possible) the di�erence between the distribution ofmales and females by household relationship by age group
in the resulting synthetic population and in the census data. It should be noted that these adjustments were
done in stage one of the synthesis process (see steps 1 to 7 in Section 2.2.1). Changes to the number of synthetic
males and females in the relevant household relationships as a result of these adjustments are shown in Table
4.

3.12 The radar graph in Figure 3a shows the p-value of seven demographic distributions for the worst replication
of CCD 1331103 in terms of p-values. The change of p-values of these demographics a�er 40 runs is shown in
Figure 3b. While the resulting distribution of synthetic males by household relationship is statistically similar
to the one extracted from census data (according to the FT test), the resulting distribution of synthetic females
by household relationship is not (i.e. its p-value is lower than 0.05). This unsatisfactory result is attributed to
the level of contradictions in the original census data (and thus the level of adjustment required) rather than
the adjustment procedure itself. The impacts of these adjustments also contribute to the unsatisfactorymatch
between the distribution of females by household type in the synthetic population and in the census data (p-
value: 3.32e-4), particularly in regards to the acceptable performance of the iterative allocation algorithm, as
described in the next subsection.

Impact of the iterative allocation algorithm

3.13 The adjustments to the number of syntheticmales and femaleswere done in stage oneof the two-stage process
allocating individuals into households (see steps 1 to 7 in Section 2.2.1). Stage two of the process (Section 2.2.1)
iteratively allocates individuals remaining from stage 1 into households aiming at simultaneously maintaining
the distribution of males and females by household type and the distribution of family household by size as
closely as possible to the distributions in census data.

3.14 The box plots in Figure 4 represent the distribution of the RMS value at each iteration across the 40 runs for the
CCD 1331103. It illustrates that the iterative allocation algorithm e�ectively improves the (already small) RMS
errors described in Equations 3 and 4 throughout the iterations of the allocation process. This improvement in
RMS error as shown in Figure 4a is 32%, from 0.019 to approximately 0.013. It should be noted that the number
of iterations is the number of individuals at the beginning of stage 2, which need to be allocated to synthetic
households. The box plots also show that the process presents little variability across the 40 runs, as indicated
by the small length of the boxes (i.e., the di�erence between the third quartile and the first quartile).

3.15 There are certain iteration steps where the RMS errors are higher than that in previous steps. This is because
the allocation algorithm in stage 2 considers only the possible solutions of allocating a synthetic individual
into a synthetic household within the current step and is not aware of the outcome of the previous allocation
step. Simple changes can bemade to the algorithm such as adding the data point of RMS errors from previous
allocation step(s) into the collection of possible solutions of the current step, to help enable the algorithm to
take into consideration the performance of previous steps and this may improve the allocation results.
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(a) Radar graph of the p-values for the worst synthetic CCD in terms
of p-values over 40 runs.

(b) Box-plot of the p-values distributions over 40 replications.

Figure 3: p-values of seven demographics distributions for CCD 1331103.

Absolute percentage deviation across the study area

3.16 The population synthesis for CCD 1331103 and its results have detailed typical issues in census data and their
impacts on the resulting synthetic population that are applicable to many of the CCDs. The demographics of
the total synthetic population over the whole study area, nevertheless, agree quite well with those from the
census data.

3.17 For instance, bar plots in Figure 5 provide visual comparisons of the median of the demographic attributes
computed for the 40 replications of the synthetic population and in the census data for the whole study area.
The whiskers correspond to the 95% confidence interval of the median of the synthetic data. A heat map of
population density for each CCD in the census data and a heat map of the absolute percentage deviation (APD)
in the resulting synthetic population are given in Figure 6.

3.18 It should be noted that while the APD in some CCDs is as high as 60% (0.5926), these are the CCDs that have
relatively small population, as can be seen in Figure 7 which illustrates the distribution of APD by population
size. The values in census data for these CCDs are relatively small and thus su�er more from processing errors
or any randomisation made to the data. As a result, the adjustments/corrections required during the popula-
tion synthesising for these CCDs are likely to be substantial, leading to relatively large deviations between the
resulting synthetic population and the census data.
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(a) Box plot of the RMS error between the distribution of individuals by family household
type in resulting synthetic population and in census data (Equation 3)

(b) Boxplot of RMSerror between thedistributionof family householdsbyhousehold size
in resulting synthetic population and in census data (Equation 4)

Figure 4: Performance of the iterative allocation algorithm repeated over 40 runs.

Couple age gap distribution

3.19 As described in Section 2.2.1. the selection of two ‘Married’ individuals to form a couple for a synthetic house-
hold that needs two parents is constrained by a distribution of age gap of couples in the population. Because
such guiding distribution is not available in the census data, we assume in this study that the age gap of cou-
ples follow aGaussian distributionwith amean of 2 years and a standard deviation of 2 years. This hypothetical
guiding distribution can be easily replaced by a real distribution once the data becomes available.

3.20 Figure 8 shows the average distribution (computed across the 40 replications) of couple counts by their age
gap in the resulting synthetic population in comparison with the curve from the hypothetical guiding Gaussian
distribution.

3.21 While thedistributionof coupleagegaps in the syntheticpopulation resemblesaGaussiandistribution, discrep-
ancies compared to the Gaussian distribution are expected because of a number of factors. First, the guiding
Gaussian distribution is used only as a guideline for coupling ‘Married’ individuals during population synthesis
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(a) Distribution of males and females by household relationship

(b) Distribution of households by household type

(c) Distribution of females andmales by household type

Figure 5: Demographics of the synthetic population versus distributions from census data for NSW 2006.

and is highly unlikely to be representative of the age gap distribution of couples in the real population. Second,
the age of a synthetic individual is randomly generated following a uniform distribution bounded by his/her
age group in the census data. Therefore the larger the size of age groups in census data, the less accurate the
age of a synthetic individual can be. Such inaccuracy of the age of synthetic individuals contributes to errors
in reproducing the true age gap distribution of synthetic couples. Ideally, the age group size should be 1, thus
we can accurately assign an age to the synthetic males and females. The size of age groups in the census data
available to this study is 10 years, which is relatively large and couldbe a significant source of errors. In addition,
Figure 8 also illustrates the median of the generated distribution and their 95% confidence interval, showing
once more the similarities between the di�erent runs.

3.22 It is important to note that all confidence intervals shown in Figures 2, 3, 4, 5, 8 and Tables 4, 5, 6 are very small
and this indicates that the population synthesising algorithm produces similar results regardless of the seed
values. This is a good indication not only of its robustness and but also of its computational e�iciency because
such insensitivity to randomness infers that the algorithm does not need to be executed multiple times to find
a population replication closest to the observed data (i.e. the census) as suggested by Lenormand & De�uant
(2013) to the population synthesiser proposed by Gargiulo et al. (2010).

Conclusions

4.1 This paper has presented a hybridmethod that utilises heuristics and combinatorial optimisation to synthesise
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(a) Heat map of population density from census data

(b)Heatmapof APDof populationdensity between synthetic populationandcensusdata

Figure 6: Heat maps of population density in NSW, Australia, 2006

a population for agent basedmodelling purposes. Themethod follows the sample-free approach of population
synthesis pioneered by Gargiulo et al. (2010) and by Barthelemy & Toint (2013) which do not rely on a set of
disaggregated survey data fromwhich household records are drawn to form the resulting synthetic population
in the target area.

4.2 Unlike the methods proposed by Gargiulo et al. (2010) and by Barthelemy & Toint (2013), however, the popula-
tion synthesiser in this study comprises two stages. The first stage heuristically allocates synthetic individuals
into synthetic households following a set of constraints that restricts the composition of individual types for
the type of the household being considered. The second stage iteratively assigns the remaining synthetic in-
dividuals into synthetic households aiming at gradually and simultaneously minimising the deviation across
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Figure 7: Distribution of APD by population density for CCDs in study area

Figure 8: Distribution of couple age gaps in the resulting synthetic population. The whiskers on the top of each
bar represent the associated 95% confidence interval.

various demographic attributes between the resulting population and the census data in the target area. Be-
cause of this combined approach, the new population synthesiser is computationally e�icient and this means
that it can be used to build a large synthetic population (many millions) for many thousands of target areas
at the smallest possible geographical level. This capability ensures that the geographical heterogeneity of the
resulting synthetic population is best preserved.

4.3 The method was applied to construct the synthetic population for 11,678 CCDs in New South Wales (Australia)
in 2006. The resulting synthetic populationmatches verywell with the census data across seven demographics
attributes that characterise thepopulation at bothhousehold level and individual level. Discrepancies between
the synthetic population and the census data are primarily due to random adjustments made to the census ta-
bles before they were released (to preserve the confidentiality of the data). This led to contradictions between
values across the census tables for certain CCDs and thus extensive corrections to these values during the popu-
lation synthesis. The contradictions in census data, the required corrections, and their impacts on the resulting
synthetic population were demonstrated by carefully examining the population synthesis of a sample CCD.

4.4 The robustness of themethodwas also tested by producing several replications of the synthetic population for
the same study area using di�erent seed values for the pseudo-random number generator. The results high-
lighted a small variation between the replications. This observation in conjunction with satisfactory compar-
isons of the synthetic population against census data indicate that a single run would be su�icient to produce
a synthetic population with statistically satisfactory accuracy, hence obviating the need to run the algorithm
multiple times to select the best replication as proposed in Lenormand & De�uant (2013).

4.5 The resulting synthetic population comes in the form of disaggregated records, each of which represents a syn-
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thetic individual characterisedby six attributes including: age, gender, household relationship, household type,
identification of the synthetic household he/she belongs to, and the identification of the CCD the synthetic
household resides in. Sucha syntheticpopulation ishighly suitable for agentbasedmodels for simulating social
behaviours, especially those encapsulating collective decision making at household level, e.g. demographics
evolution, transport demands, and residentialmobility, amongmanyothers. This is because thepopulation ac-
curately replicates the link between synthetic individuals and synthetic households via a number of attributes
especially the relationship of the individuals. The application of this population for an agent based model for
urban planning for a metropolitan area in South East Sydney, New South Wales (Australia) has been reported
by Huynh et al. (2015). More specifically, the agent based model simulated the change of demographics in the
urban area of interest, how this change impacts housing and transport needs of the population and the way
they make collective decisions regarding residential relocation andmode choice.
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