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50 ABSTRACT

51 The biodiversity of food webs is composed of horizontal (i.e. within trophic levels) and vertical 

52 diversity (i.e. the number of trophic levels). Understanding their joint effect on stability is a 

53 key challenge. Theory mostly considers their individual effects and focuses on small 

54 perturbations near equilibrium in hypothetical food webs. Here, we study the joint effects of 

55 horizontal and vertical diversity on the stability of hypothetical (modelled) and empirical food 

56 webs. In modelled food webs, horizontal and vertical diversity increased and decreased 

57 stability, respectively, with a stronger positive effect of producer diversity on stability at higher 

58 consumer diversity. Experiments with an empirical plankton food-web, where we 

59 manipulated horizontal and vertical diversity and measured stability from species interactions 

60 and from resilience against large perturbations, confirmed these predictions. Taken together, 

61 our findings highlight the need to conserve horizontal biodiversity at different trophic levels 

62 to ensure stability.
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63 INTRODUCTION

64 Diversity (i.e., species richness) within food webs is important for sustaining ecosystem 

65 functions such as biomass production, energy flow and nutrient uptake (Otto et al. 2007; 

66 Rooney & McCann 2012; Soliveres et al. 2016; Barnes et al. 2018; Wang & Brose 2018). 

67 Diversity can be characterized in two dimensions (Duffy et al. 2007; Srivastava & Bell 2009; 

68 Wang & Brose 2018): the number of species within trophic levels (i.e., horizontal diversity) 

69 and the number of trophic levels (i.e., vertical diversity). Horizontal and vertical diversity both 

70 affect the functioning and stability of food webs, via different mechanisms (Duffy et al. 2007). 

71 Effects of horizontal diversity are driven by competitive interactions, while effects of vertical 

72 diversity are mediated by predation. Horizontal and vertical diversity may interact with each 

73 other (Duffy et al. 2007). For instance, producer coexistence can be indirectly mediated by 

74 consumer diversity (Brose 2008).

75 Until now, the effects of horizontal and vertical diversity on food web stability (i.e., via local 

76 stability analysis) have been mostly treated separately (Pimm & Lawton 1977; Duffy et al. 

77 2007), and mainly using small trophic modules (Pimm & Lawton 1977; McCann et al. 1998; 

78 Thébault & Loreau 2005). No information is available on their joint effect in multitrophic food 

79 webs. Horizontal diversity of consumers is expected to increase stability (McCann et al. 1998), 

80 because a higher number of consumer species decreases the per capita energy flux in 

81 consumer-resource interactions by decreasing the per capita consumption rate (Crowder et 

82 al. 1997; Perna et al. 2004; Finke & Denno 2005), hence stabilizing the consumer-resource 

83 links (Rip & Mccann 2011; Gilbert et al. 2014). Producer diversity can increase stability 

84 (McCann 2000) by increasing the potential for niche differentiation among consumers 

85 (Novotny et al. 2006; Jetz et al. 2009; Poisot et al. 2013), or again weaken consumer-resource 
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86 interactions (Berlow 1999; Hillebrand & Cardinale 2004; Edwards et al. 2010; Moore & de 

87 Ruiter 2012). In contrast, vertical diversity is expected to decrease stability in simple food 

88 chains via increasing recovery times (Pimm & Lawton 1977; Morin & Lawler 1995; Post 2002). 

89 This negative vertical diversity effect has been evoked as an explanation for the limited 

90 number of trophic levels in natural food webs (Pimm & Lawton 1977; Morin & Lawler 1995; 

91 McHugh et al. 2010; Sabo et al. 2010). 

92 In natural systems, horizontal and vertical diversity will vary jointly. For example, the decrease 

93 of vertical diversity (e.g., the extinction of top predators) could cause cascades that lead to 

94 species extinction, lowering horizontal diversity (Crooks & Soulé 1999; Borrvall & Ebenman 

95 2006; Srivastava & Bell 2009). In addition, ecosystem succession and degradation often 

96 change both horizontal and vertical diversity (Ferris & Matute 2003; Maharning et al. 2009; 

97 Yang et al. 2018). Hence, it is critical to understand how horizontal (both producer and 

98 consumer) and vertical diversity interact and shape food web stability.

99 The individual effects of horizontal and vertical diversity on local stability are often examined 

100 by analysing the Jacobian matrix (hereafter ‘Jacobian’). This approach assumes that systems 

101 are near equilibrium and exposed to small perturbations (May 2001; Allesina & Tang 2012, 

102 2015). However, ecosystems are often far away from equilibrium (Allesina & Tang 2015) and 

103 face large perturbations (De Laender et al. 2016). This makes it uncertain if stability analyses 

104 based on the Jacobian provide useful information for real-world perturbations (May 2001). 

105 Alternative stability measures have therefore been proposed (Grimm & Wissel 1997; Arnoldi 

106 et al. 2016; Donohue et al. 2016). Examples include population recovery and resistance 

107 following severe perturbations (Isbell et al. 2015; Baert et al. 2016; Hillebrand et al. 2018) and 

108 the coefficient of temporal variation of population dynamics (McCann 2000; Pennekamp et al. 
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109 2018). Recent work indicates that these alternative stability measures may correlate poorly 

110 (Ives & Carpenter 2007; Montoya et al. 2013; Hillebrand et al. 2018; Radchuk et al. 2019). For 

111 example, temporal stability is positively associated with diversity, while the latter is negatively 

112 correlated with resistance (Pennekamp et al. 2018). 

113 In this paper, we combine models and experiments to examine the joint effect of horizontal 

114 and vertical diversity on food web stability. We define stability using two kinds of metric: 

115 either based on the assumption of small near equilibrium perturbations, or on biomass and 

116 compositional recovery following large perturbations away from equilibrium. To this end, we 

117 first analysed the joint effect of horizontal (the number of producer/consumer species) and 

118 vertical diversity (the number of trophic levels) on the Jacobian-based stability of randomly 

119 created food webs. Second, we manipulated horizontal and vertical diversity in an experiment 

120 with a planktonic food web and quantified their joint effect on stability, measured using 

121 empirically established Jacobian matrices. Finally, we quantified the effect of horizontal and 

122 vertical diversity on the stability of the same food web, but now measured as resilience 

123 following large perturbations caused by two types of chemicals.

124 Overall, our results show for the first time that the positive effect of producer diversity on 

125 stability increases with consumer diversity, regardless of vertical diversity. In contrast, vertical 

126 diversity always decreased stability. This trend emerged from all analyses and suggests that 

127 conserving diversity within multiple trophic levels is key to promote food web stability. 

128 MATERIALS AND METHODS

129 Model and simulations

130 We conducted a full factorial design with 24 food web configurations: four levels of horizontal 

131 diversity at the first trophic level (producer diversity equalled 6, 7, 8, or 9), three levels of 
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132 horizontal diversity at the second trophic level (consumer diversity equalled 3, 4, or 5), and 

133 two levels of vertical diversity (2 or 3 trophic levels). This design reflects the empirically 

134 observed triangularity of food webs (Woodward et al. 2005; Turney & Buddle 2016). We 

135 deliberately omitted omnivores (species consuming at multiple trophic levels), because 

136 omnivores have already been proven to stabilize food webs by creating weak predator-prey 

137 interactions (Neutel et al. 2002, 2007). Food web connectance (i.e. the number of links divided 

138 by the square of the number of species) was set to 0.10 (Dunne et al. 2002a, b; Williams et al. 

139 2002). The links were randomly distributed between adjacent trophic levels. 

140 We described community dynamics with generalised Lotka–Volterra equations (Eq. 1) 

141 (Emmerson & Yearsley 2004; Gibbs et al. 2018; Maynard et al. 2018): 

142 (1)
𝑑𝑁𝑖

𝑑𝑡 = 𝑁𝑖(𝑏𝑖 + ∑
𝑗𝑎𝑖𝑗𝑁𝑗)

143 where Ni and Nj are the population density of species  and , respectively;  is the intrinsic 𝑖 𝑗 𝑏𝑖

144 per capita growth rate of species . The  is positive for producers, where it represents the 𝑖 𝑏𝑖

145 density independent growth rate, while  is negative for consumers and predators, where it 𝑏𝑖

146 represents a death rate. The  is the per capita effect of species  on the growth rate of 𝑎𝑖𝑗 𝑗

147 species . 𝑖

148 The growth rate for all producers was equal to 1, which guaranteed that emergent food 𝑏𝑖 

149 web patterns were a direct effect of horizontal/vertical diversity, rather than fitness 

150 differences among species (Maynard et al. 2018). For consumers and predators, we randomly 

151 drew  from a uniform distribution U(−0.001, 0) while  for predators was generated from 𝑏𝑖 𝑏𝑖

152 U(-0.0001,0) (Eklöf & Ebenman 2006). We ensured that the  of predators were less negative 𝑏𝑖

153 than the  of consumers, because species at higher trophic levels often have larger body sizes, 𝑏𝑖

154 and therefore lower mortality rates (Borrvall et al. 2000). We ensured that intraspecific 

Page 7 of 31 Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

155 competition  (i=j) was stronger for primary producers (-1) than for consumers and predators 𝑎𝑖𝑖

156 (-0.1) (Berg et al. 2011; Kadoya et al. 2018). Interspecific competitions  (i≠j) among 𝑎𝑖𝑗

157 producers were sampled from U(-0.5, 0) and set symmetrically to avoid cycling or chaos 

158 (Maynard et al. 2018)(Eklöf & Ebenman 2006). Consumers competed indirectly by sharing 

159 producers, and direct interspecific interactions among consumers were thus set to zero (Eklöf 

160 & Ebenman 2006). 

161 Finally, the  (i≠j), the per capita effect of consumers (or predators) species j on the per capita 𝑎𝑖𝑗

162 growth rate of producers (or prey) species i, were sampled from U(−0.5, 0) when a consumer 

163 (or predator) only consumed one producer (or prey) (Eklöf & Ebenman 2006). Considering that 

164 interaction strengths in natural systems communities often have skewed distributions with 

165 mostly weak and only few strong interactions (Borrvall et al. 2000), one strong  was sampled 𝑎𝑖𝑗

166 from U(-0.4, 0) and assigned randomly (Eklöf & Ebenman 2006), if the number of producers 

167 (or prey) was larger than one. The weak  were sampled from U(-0.1,0) divided by the 𝑎𝑖𝑗

168 number of prey species minus one (Borrvall et al. 2000; Borrvall & Ebenman 2006). Hence, the 

169 total effect of a consumer (or predator) on all its producers (or prey)  always varied between 𝑎𝑖𝑗

170 −0.5 and 0, but the average per capita effect of a consumer (or predator) on its producers (or 

171 prey) decreased with the number of producers (or prey) (McCann et al. 1998; Borrvall et al. 

172 2000). A rationale for this approach and more details can be found in the supplementary 

173 information 1. The effect of producers (or prey) on consumers (or predators) is given by , 𝑎𝑗𝑖

174 which is positive: , with  representing the efficiency of the resources being 𝑎𝑗𝑖 = ―k ∗ 𝑎𝑖𝑗 k

175 converted into consumers, which was set at 0.2 (Borrvall & Ebenman 2006; Eklöf & Ebenman 

176 2006).
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177 Per food web configuration, we created 10,000 food webs, yielding 240,000 food webs. For 

178 each food web, we calculated stability as follows. First, we calculated equilibrium population 

179 density (directly solving the equations  on Eq. 1) and verified if all equilibrium 0 = 𝑏𝑖 + ∑
𝑗𝑎𝑖𝑗𝑁𝑗

180 densities were positive. If this was the case, we retained the particular food web, otherwise 

181 we discarded it. For each food web configuration, more than 95% of the generated food webs 

182 were feasible with positive equilibrium densities (Table S1). Next, we used these equilibria to 

183 compute the Jacobian for this food web. Finally, we quantify stability using the recovery time, 

184 defined as the negative reciprocal of the real part of the dominant eigenvalue of the Jacobian, 

185 i.e. ( ))  (Pimm & Lawton 1977; Emmerson & Yearsley 2004; Moore & de Ruiter ― 1/real(λmax

186 2012). A larger recovery time indicates a lower stability. Finally, we conducted two sensitivity 

187 analyses to inspect how our results changed with the selected parameter ranges (Fig S1-3). 

188 Experiments: general conditions

189 We experimentally tested the effect of horizontal and vertical diversity on the stability of a 

190 freshwater plankton food web representative of Dutch ditches. These two experiments, each 

191 lasted for 21 days, were performed in 900 mL glass jars, filled with 500 ml WC medium 

192 (Guillard & Lorenzen 1972; Frenken et al. 2018) and contained in a water bath at constant 

193 temperature (19.9 ºC ± 0.8 ºC) and a light regime of 12h: 12h (light: dark). The light intensity 

194 at the surface (measured with a LI-COR LI-250A, LI-COR Biosciences, Lincoln, USA) was 120 

195 μmol m−2 s−1, and was created using Ceramalux® Phillips 430 Watt High Pressure Sodium Non-

196 Cycling Lamps. We worked with field-collected organisms (details are in the supplementary 

197 information 2). The total initial bio-volume of producers (algae) and consumers (invertebrate 

198 grazers) was always 25 mm3 and 0.2 mm3, respectively, regardless of producer and consumer 

199 diversity (richness). For the systems with three trophic levels, we added one individual of 
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200 predator Chaoborus to each system. The predators used in the experiments had mean 

201 individual body length 11.21 ± 0.04 mm. In both experiments, we worked with 4 replicates.

202 Experiment 1: empirical Jacobian matrices

203 The aim of the experiment was to examine how stability, based on empirically constructed 

204 Jacobian matrices varied with horizontal and vertical diversity. We manipulated horizontal 

205 diversity, at the first (producers; 1 or 5 species) and second trophic level (consumers; 1 or 4 

206 species), and vertical diversity (2 or 3 trophic levels) in a full factorial design (Table S2). At all 

207 combinations, we estimated interactions (within and between tropic levels) to characterize 

208 the Jacobian on day 21 after the start of the experiment. The off-diagonal elements of this 

209 matrix are per capita interactions, which we estimated as the per capita material fluxes 

210 between consumers (or predators) and producers (or consumers) (de Ruiter et al. 1995; 

211 Neutel et al. 2007; Schwarz et al. 2017). The effect of consumers (or predators) on producers 

212 (or consumers) is given by , and the effect of producers (or consumers) on 𝐽𝑗𝑖 = ―
𝐹𝑖𝑗

𝑀𝑗

213 consumers (or predators) is given by , where  is the energy flux from  to  (e.g. 𝐽𝑖𝑗 = 𝑒𝑗
𝐹𝑖𝑗

𝑀𝑖
𝐹𝑖𝑗 i j

214 from producers to consumers), is the assimilation efficiency of , and  and  (g m-2) are  𝑒𝑗 j 𝑀𝑖 𝑀𝑗

215 the biomass of  and  ,  respectively (Schwarz et al. 2017). The diagonal elements of the i j

216 Jacobian are , where  is the metabolism of trophic level ,and s is a free parameter 𝐽𝑖𝑖 = ―𝑠
𝑋𝑖

𝑀𝑖
 𝑋𝑖 i

217 between 0 and 1 (Schwarz et al. 2017). Because  cannot be determined empirically in complex 𝑠

218 food webs, we determined the smallest  leading to all eigenvalues of the Jacobian having 𝑠

219 negative real parts. The value of  represents the stability of the community against small 𝑠

220 perturbations, assessed based on estimated interactions (Schwarz et al. 2017). It is therefore 

221 conceptually similar to recovery time (smaller values indicate more stable food webs) 
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222 obtained with the model and is referred to as the degree of self-damping. Details on the 

223 calculation of  , , and  are provided in the supplementary information 3. 𝐹𝑖𝑗 𝑋𝑖 𝑀

224 Experiment 2:  large perturbations

225 The objective of this experiment was to examine how horizontal and vertical diversity affected 

226 the stability against large perturbations. Here, we applied functional and compositional 

227 resilience as stability metrics. We manipulated the same experimental factors as in 

228 experiment 1, and added one additional factor: pesticide exposure (absent or present). We 

229 performed this experiment twice, once using the insecticide chlorpyrifos (1 μg l-1), and once 

230 using the herbicide linuron (100 μg l-1), selectively targeting consumers and producers, 

231 respectively (Wijngaarden et al. 1996; Daam et al. 2009). Experimental procedures were 

232 identical to the experiment 1. Information on chemical administration is provided in 

233 supplementary information 4. We measured community biomass, community composition 

234 (using the same methods as for experiment 1 and on days 6 and 21 day) and stability. To 

235 measure stability we first measured functional resilience (the recovery rate of total biomass) 

236 as (Isbell et al. 2015; Baert et al. 2016): 

237                    (2) functional resilience =
|𝐵𝑐𝑜𝑛𝑡𝑟𝑜𝑙,6 ― 𝐵𝑠𝑡𝑟𝑒𝑠𝑠,6|

|𝐵𝑐𝑜𝑛𝑡𝑟𝑜𝑙,21 ― 𝐵𝑠𝑡𝑟𝑒𝑠𝑠,21|

238 where Bcontrol,6, Bcontrol,21, Bstress,6 and Bstress,21 represent the total biomass in the control (no 

239 pesticide) and exposure (pesticide present) on days 6 and 21. Functional resilience is >1 if 

240 biomass differences between the control and stress treatment decrease between day 6 and 

241 21, and <1 otherwise. Larger values mean faster recovery.

242 Next, we measured compositional resilience (compositional recovery) as (Baert et al. 2016; 

243 Hillebrand et al. 2018):
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244        (3)compositional resilience = (
𝐵𝐶21

1 ―
∑

𝑖|𝑁𝑖𝑐𝑜𝑛𝑡𝑟𝑜𝑙,21 ― 𝑁𝑖𝑠𝑡𝑟𝑒𝑠𝑠,21|

∑
𝑖𝑁𝑖𝑐𝑜𝑛𝑡𝑟𝑜𝑙,21 + ∑

𝑖𝑁𝑖𝑠𝑡𝑟𝑒𝑠𝑠,21) ― (
𝐵𝐶6

1 ―
∑

𝑖|𝑁𝑖𝑐𝑜𝑛𝑡𝑟𝑜𝑙,6 ― 𝑁𝑖𝑠𝑡𝑟𝑒𝑠𝑠,6|

∑
𝑖𝑁𝑖𝑐𝑜𝑛𝑡𝑟𝑜𝑙,6 + ∑

𝑖𝑁𝑖𝑠𝑡𝑟𝑒𝑠𝑠,6)
245 Compositional resilience can be considered an abundance-based change of Bray-Curtis 

246 similarity between day 6 (BC6) and day 21 (BC21) (Baert et al. 2016; Hillebrand et al. 2018), 

247 where  is abundance of species i. Positive values reflect that compositions of the control 𝑁𝑖

248 and disturbed communities converge between day 6 and day 21, while negative values imply 

249 compositional divergence. Again, larger values mean faster recovery.

250

251 Analysis of simulated and empirical data

252 To the simulated data, we applied linear regression to estimate the effect of producer, 

253 consumer, and vertical diversity, and their pairwise interactions, on the recovery time. To 

254 interpret potential effects on recovery time, we also tested for diversity effects on average 

255 interaction strengths, defined as the square root of the average of all the off-diagonal 

256 elements in the interaction matrix  with total species T i.e., ( ) (May 2001; 𝐽𝑖𝑗(𝑖 ≠ 𝑗)
∑

𝑖 ≠ 𝑗𝐽
2
𝑖𝑗

𝑇(𝑇 ― 1)

257 Moore & de Ruiter 2012), again using linear regression. 

258 To the data from experiment 1, we applied linear mixed models to test for the effect of 

259 producer, consumer, and vertical diversity, and their pairwise interactions, on the degree of 

260 self-damping, as calculated from the estimated interactions. We used species identity as a 

261 random effect to exclude the potential confounding effect of species identity. 

262 To understand possible effects of diversity on the degree of self-damping, we examined 

263 diversity effects on three variables underlying the degree of self-damping: consumer biomass, 

264 the energy flux into consumers, and interaction strengths. We did so by first applied the mixed 

265 model to test for the effect of producer, consumer, and vertical diversity, and their pairwise 
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266 interactions (again with species identity as a random effect) on these three variables. Next, 

267 we constructed linear regression models to examine the relationship between (1) consumer 

268 biomass and energy flux into consumers, (2) energy flux into consumers and the absolute 

269 value of interaction strength of consumers to producers, and finally (3) the absolute value of 

270 interaction strength of consumers to producers and degree of self-damping (minimum s). 

271 Again, we used mixed models with species identity as a random effect, and included 

272 interactions between horizontal and vertical diversity. We adopted the same approach for 

273 predator biomass, energy flux into predator, and absolute value of interaction strength of 

274 predator to consumer. However, note that by definition, vertical diversity here was always 

275 three, so we could only analyse the effects of horizontal diversity. 

276 To the data from experiment 2, we again used linear mixed-effects models (species identity 

277 was again a random effect) to test for the effect of producer, consumer, and vertical diversity 

278 and their pairwise interactions on the two measures of recovery (Eq. 2 and 3). Because these 

279 measures depend on how total biomass changed with time, we also included sampling time 

280 and chemical concentrations into the analysis of total biomass. All models were fitted with the 

281 lme4 package in R (Bates et al. 2014). 

282

283 RESULTS 

284 Model simulations

285 Producer and consumer diversity both promoted stability, i.e., decreased recovery time (Fig. 

286 1). The positive effect of producer diversity on stability increased with increasing consumer 

287 diversity, and this trend was not qualitatively changed by vertical diversity. Vertical diversity 

288 on itself always decreased stability. Stability was highest at high horizontal (producer and 
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289 consumer) diversity and low vertical diversity, and lowest at low horizontal diversity and high 

290 vertical diversity (Fig. 1a,b), indicating that high horizontal diversity can compensate the 

291 stability loss caused by vertical diversity. These results were robust to changing all parameters 

292 simultaneously from their reference value by -20% and +20% (Fig. S1). Outside of this range, 

293 the model results were sensitive to the conversion efficiency  (Fig. S2), where larger  k k

294 destabilized the food webs and switched the diversity-stability relationship, as expected (Rip 

295 & Mccann 2011; Barbier & Loreau 2019). When fixing the conversion efficiency  to its k

296 reference value, the model results were robust to changes of up to -60% and +60% of all 

297 parameters except  (Fig. S3).k

298 Experiment 1: empirical Jacobian matrices

299 Producer, consumer, and vertical diversity all affected food web stability. In line with the 

300 model predictions, both producer and consumer diversity increased food web stability (i.e., 

301 decreasing the degree of self-damping) and the impact of producer diversity on stability 

302 increased with increasing consumer diversity. Also in line with the model results, vertical 

303 diversity on itself decreased stability (Fig. 2a,b). Stability was highest at high horizontal (both 

304 producer and consumer) diversity and low vertical diversity, and was lowest at low horizontal 

305 diversity (producer and consumer) and high vertical diversity (Fig. 2a,b).

306 The effects of horizontal and vertical diversity on stability were associated with effects on 

307 consumer biomass, energy fluxes, and interaction strengths between trophic levels. Consumer 

308 biomass increased with producer and consumer diversity but decreased with vertical diversity 

309 (Fig. 2c,d). Diversity did not affect predator biomass (Table S3).

310 Interactions of producer, consumer, and vertical diversity affected the energy flux into 

311 consumers (Fig. 2e,f). At high vertical diversity (i.e., 3), horizontal diversity of either producers 
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312 or consumers increased the energy flux into consumers (Fig. 2f). This higher energy flux was 

313 associated with higher consumer biomass (Fig. 3a). Under low vertical diversity (i.e., 2), 

314 however, horizontal diversity decreased the energy flux (Fig. 2e), while increasing consumer 

315 biomass (Fig. 3a). We found no effect of diversity on the energy flux into predators (Table S3).

316 The interaction strength of consumers to producers was influenced by interactions of 

317 producer, consumer, and vertical diversity. Horizontal diversity decreased the interaction 

318 strength, whereas vertical diversity increased it (Fig. 2g,h). The interaction strength was 

319 lowest at high horizontal and low vertical diversity, but highest at low horizontal and high 

320 vertical diversity (Fig. 2g,h), where the interaction strength was positively correlated with the 

321 energy flux into consumers (Fig. 3b). No significant diversity effects were detected on the 

322 interaction strength of predators to consumers (Table S3). Finally, the interaction strength of 

323 consumers to producers was positively correlated with the degree of self-damping (Fig. 3c), 

324 indicating that strong interactions decreased food web stability.

325 Experiment 2:  large perturbations

326 In line with the results obtained with the Jacobian method for simulated and empirical food 

327 web data, producer and consumer diversity both increased stability (i.e. functional resilience) 

328 against severe perturbations and the positive effect of producer diversity was stronger when 

329 consumer diversity was high (Fig. 4a-d). Again, vertical diversity decreased stability (Fig. 4a-d). 

330 Therefore, functional resilience was highest at high horizontal diversity and low vertical 

331 diversity, and it was lowest when horizontal diversity was low and vertical diversity was high 

332 (Fig. 4a-d). We found qualitatively identical results for stability measured by the compositional 

333 resilience (Fig. 5a-d), even though the interactive effect of producer and consumer diversity 

334 was weaker for the case of herbicide exposure. 
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335 The effects of horizontal and vertical diversity on the functional and compositional resilience 

336 were associated with effects on total biomass (sum across all trophic levels) and composition, 

337 respectively. Total biomass showed signs of recovery after exposure to the herbicide and 

338 insecticide, but horizontal diversity increased the biomass recovery rate while vertical 

339 diversity decreased it. This result can be understood from the smaller effect the pesticides had 

340 on the horizontally more diverse communities (Fig. S4a-d and Fig. S5a-d). Indeed, this smaller 

341 effect translates to the numerator and especially denominator of Eq.2 being smaller at higher 

342 horizontal diversity, making their ratio (i.e. functional resilience) inevitably larger. The 

343 opposite occurred for vertical diversity, which increased biomass differences (Fig. S4e,f and 

344 Fig. S5e,f) and therefore decreased the recovery rate. 

345 On average, the composition of the exposed and control communities was more similar on 

346 day 21 than on day 6, indicating compositional recovery. Horizontal and vertical diversity had 

347 also opposite effects on compositional recovery. Because producer abundance accounted for 

348 more than 97% of the whole community, the effects of horizontal and vertical diversity on 

349 compositional recovery can be understood by focusing on the producer community. 

350 The herbicide directly decreased the abundance of sensitive producers (Desmodesmus 

351 pannonicum, Chlorella vulgaris and Selenastrum capricornutum, Fig. S6a) on day 6, but did not 

352 change consumer composition (Fig. S6c,d).  A greater producer diversity caused an insurance 

353 effect as tolerant producers (e.g., Scenedesmus obliquus in Fig. S6a) became dominant, which 

354 caused compositional differences between the control and the herbicide-treated systems. 

355 This difference translates to the last term of Eq.3 ( ) being smaller at higher producer 𝐵𝐶6

356 diversity (no composition changes on day 21), making the difference between  and  𝐵𝐶21 𝐵𝐶6

357 (i.e., compositional resilience) inevitably greater. We also found that the magnitude of this 
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358 insurance effect was increased by consumer diversity, but decreased by vertical diversity, 

359 which respectively increased and decreased compositional recovery (Fig. S6a-d). 

360 The insecticide directly decreased the abundance of sensitive consumers (i.e., Daphnia pulex, 

361 and Moina macrocopa in Fig. S7a), and tolerant species (e.g., Daphnia lumholtzi in Fig. S7a) 

362 became dominant. The dominance of tolerant species had indirect, top-down, effects on its 

363 preferred algae (Scendesmus acutus, C. vulgaris and S. capricornutum), which increased the 

364 abundance of non-preferred algae (D. pannonicum), compensating the loss of the preferred 

365 algae (Fig. S7c). Again, this represents an insurance effect, but this time driven by consumer 

366 diversity. This mechanism caused composition to be more different between control and 

367 insecticide-exposed systems on day 6 (no composition discrepancy on day 21), which again 

368 translated to the last term of Eq.3 ( ) being smaller at higher consumer diversity, making 𝐵𝐶6

369 the difference between  and  (i.e. compositional resilience) inevitably greater. This 𝐵𝐶21 𝐵𝐶6

370 insurance effect was again increased by producer diversity, but decreased by vertical diversity, 

371 which increase and decrease compositional recovery, respectively (Fig. S7a-d).

372

373 DISCUSSION

374 Our model and empirical results show for the first time that horizontal diversity and vertical 

375 diversity jointly affect stability. Specifically, the effect of producer diversity was stronger when 

376 consumer diversity was higher, regardless of vertical diversity. Vertical diversity consistently 

377 decreased stability. Taken together, these results suggest that food webs that are horizontally 

378 diverse at various trophic levels, but contain relatively few trophic levels will be more stable. 

379 These conclusions are broadly supported. First, both model simulations and two independent 

380 experiments with natural food webs yield consistent results. Second, we applied both 
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381 Jacobian-based stability assessments that assume small perturbations and population 

382 equilibrium, but also alternative stability measures following large perturbations. 

383 The results from the simulations and empirical food webs (experiment 1) indicate that, under 

384 the assumption of small perturbations and population at equilibrium, horizontal and vertical 

385 diversity affect food web stability by changing (average) interaction strength. The individual 

386 and joint effects of producer and consumer diversity as well as the effect of vertical diversity, 

387 as found through modelling, can be understood from changing average interaction strengths 

388 (Fig. S8). The results from experiment 1 can be explained by biomass changes and energy flows 

389 between trophic levels, which finally change interaction strengths between trophic levels. We 

390 show that the well-known positive (and negative) effects of horizontal (and vertical) diversity 

391 on consumer biomass (Duffy 2002; Cardinale et al. 2003) underpin these proposed effects. 

392 The positive interactive effects of producer and consumer diversity on consumer biomass 

393 reflects a greater niche differentiation among producers and consumers, optimising consumer 

394 biomass (Cardinale et al. 2006; Tilman et al. 2014; Barnes et al. 2018). The negative effect of 

395 vertical diversity on biomass reflects predation on consumers. It should be noted that, in this 

396 study, we only added a single predator individual. Given that natural systems are controlled 

397 by predator populations (Cardinale et al. 2003; Snyder et al. 2008; Griffin et al. 2013), biomass 

398 depression by vertical diversity can be higher than reported here. 

399 Increasing the biomass of a focal trophic group generally increases the energy flux into this 

400 group (Otto et al. 2007; Ehnes et al. 2011; Barnes et al. 2014). At high vertical diversity (i.e., 

401 3), we found a positive interactive effect of producer and consumer diversity on consumer 

402 biomass, which was indeed positively associated with energy fluxes into consumers. However, 

403 the positive association between biomass and energy flux can be overruled by other factors 
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404 such as body size structure (Barnes et al. 2014, 2018). Under low vertical diversity (i.e., 2), we 

405 detected that high consumer biomass was negatively correlated with the energy fluxes to 

406 consumers. We found some support that individual body mass distributions could explain this 

407 result (Fig. S9). The treatments with high consumer biomass had a higher proportion of large 

408 individuals, which have slower metabolic rates, and thus generate lower energy fluxes, than 

409 small organisms. 

410 High energy flux between trophic levels can increase interaction strength (McCann 2000; Rip 

411 & Mccann 2011; Schwarz et al. 2017; Kadoya et al. 2018), which in turn decreases food web 

412 stability (McCann 2000; Rip & Mccann 2011; Ushio et al. 2018). We found that the large energy 

413 flux into consumers indeed increased the interaction strength between consumers and 

414 producers, which led to lower stability. More specifically, producer and consumer diversity 

415 positively interacted to decrease interaction strengh, which increased food web stability. 

416 Vertical diversity increased the interaction strength and decreased stability. 

417 Taken together, interactive effects of producer and consumer diversity can change consumer 

418 biomass and the energy flux into consumers, leading to weak interactions and increased 

419 stability. Vertical diversity, in contrast, makes for strong links which will decrease stability. 

420 Pesticide effects on community biomass were a direct result of effects on community 

421 composition, and were buffered by horizontal diversity. This buffering effect has been shown 

422 before for competitive systems (Gonzalez & Loreau 2009; Isbell et al. 2015; Baert et al. 2016). 

423 Our findings suggest that this effect also holds for food webs. Importantly, we found that – in 

424 our system where producers were the largest community – this effect occurs both when the 

425 pesticide directly affects producers and when it affects producers indirectly by depressing 

426 consumers. 

Page 19 of 31 Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

427 We are cognizant of our study’s limitations. First, in our experiments, we only considered two 

428 levels per horizontal and vertical diversity treatment. Previous studies have shown that food 

429 webs with higher horizontal (producer or consumer) diversity have larger niche differentiation 

430 and lower consumption rate (Duffy et al. 2007; Edwards et al. 2010). We therefore expect the 

431 positive effect of producer diversity on stability to be stronger than reported here. Second, 

432 natural systems often vary not only in species richness but also in how species biomasses are 

433 distributed. Our results may therefore change when considering alternative diversity indices 

434 (e.g., Shannon’s index in Kato et al. (2018)). However, a combination of Shannon’s index and 

435 species richness may provide a deeper insight in future work. Third, our model assumed 

436 pairwise interactions and neglected potential higher-order interactions, i.e. pairwise 

437 interactions being modulated by a third species, which have been found to stabilize 

438 communities (Bairey et al. 2016; Grilli et al. 2017; Mayfield & Stouffer 2017; Letten & Stouffer 

439 2019). We expect that adding high-order interactions will reinforce the positive effect of 

440 horizontal diversity we found here, but weaken the negative effect of vertical diversity on 

441 stability. Finally, our results cannot be extrapolated to food webs that include omnivores. 

442 Previous studies indeed showed that complex food webs with omnivores potentially hold 

443 many stabilizing weak links (Neutel et al. 2002, 2007), making the destabilizing effect of 

444 vertical diversity we report here possibly weaker. Recent studies demonstrated that the 

445 presence of omnivores can alter the relationship between vertical diversity and primary 

446 productivity in complex food webs (Wang et al. 2019). 

447 Our results show that different aspects of biodiversity may affect stability in different ways, 

448 through effects on biomass, energy fluxes, and eventually interaction strengths. How our 

449 results scale up to more complex food webs is an outstanding question, but our findings 

450 suggest that the benefits of horizontal diversity can in theory overcompensate the negative 
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451 effects of vertical diversity. Our results show that conserving horizontal diversity across 

452 trophic levels (multiple horizontal biodiversity) can offer a solution to maintain both 

453 functioning and stability of natural ecosystems with high vertical diversity.

454
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618 FIGURE LENGENDS

619 Figure 1. Model simulations illustrating the interactive effects of horizontal (producer and 

620 consumer) and vertical diversity on recovery time (a lower recovery time indicates a greater 

621 stability).

622 Figure 2. The interactive effects of horizontal (producer and consumer) and vertical diversity 

623 on stability (the degree of self-damping) (a, b), on consumer biomass (c, d), on energy flux 

624 from producers to consumers (e, f), and on the absolute value of interaction strength of 

625 consumers to producers (g, h). Plotted are sample mean ± one s.d. Detailed statistical results 

626 are listed in Table S4. 

627 Figure 3. Relationships between consumer biomass (g m-2) and energy flux from producers 

628 to consumers (g c m-2 h-1) (a), between the energy flux from producers to consumers (g c m-2 

629 h-1) and the absolute value of interaction strength of consumers to producers (b), and 

630 between the absolute value of interaction strength of consumers to producers and the 

631 degree of self-damping (c). 

632 Figure 4. The interactive effects of horizontal (producer and consumer) and vertical diversity 

633 on the functional resilience after herbicide (a, b) and insecticide (c, d) exposure. Plotted are 

634 sample mean ± one s.d. Detailed statistical results are listed in Table S5.

635 Figure 5. The interactive effects of horizontal (producer and consumer) and vertical diversity 

636 on the compositional resilience after herbicide (a, b) and insecticide (c, d) exposure. Plotted 

637 are sample mean ± one s.d. Detailed statistical results are listed in Table S5.
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