
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

A genetic algorithm for addressing computationally expensive optimization problems
in optical engineering
Mayer, Alexandre; Lobet, Michaël

Published in:
Jordan Journal of Physics

Publication date:
2019

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Mayer, A & Lobet, M 2019, 'A genetic algorithm for addressing computationally expensive optimization problems
in optical engineering', Jordan Journal of Physics, vol. 12, no. 1, pp. 17-36.
<http://journals.yu.edu.jo/jjp/JJPIssues/Vol12No1pdf2019/3.pdf>

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/publications/a-genetic-algorithm-for-addressing-computationally-expensive-optimization-problems-in-optical-engineering(d322d80e-6c63-48f0-a514-bdd469d17f41).html
http://journals.yu.edu.jo/jjp/JJPIssues/Vol12No1pdf2019/3.pdf

A genetic algorithm for addressing computationally expensive
optimization problems in optical engineering

Alexandre Mayera and Michaël Lobeta,b

aDepartment of Physics, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
bJohn A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford

Street, 02138 Cambridge, MA, USA

ABSTRACT

We present a genetic algorithm that we developed in order to address computationally expensive optimization
problems in optical engineering. The idea consists in working with a population of individuals that represent
possible solutions to the problem. The best individuals are selected. They generate new individuals for the
next generation. Random mutations in the coding of parameters are introduced. This strategy is repeated from
generation to generation until the algorithm converges to the global optimum of the problem considered. For
computationally expensive problems, one can analyze the data collected by the algorithm in order to infer more
rapidly the final solution. The use of a mutation operator that acts on randomly-shifted Gray codes helps the
genetic algorithm to escape local optima and enables a wider diversity of displacements. These techniques reduce
the computational cost of optical engineering problems, where the design parameters have a finite resolution and
are limited to a realistic range. We demonstrate the performance of this algorithm by considering a set of
22 benchmark problems in 5, 10 and 20 dimensions that reflect the conditions of these engineering problems.
We finally show how these techniques accelerate the determination of optimal structures for the broadband
absorption of electromagnetic radiations.

Keywords: genetic algorithm, optical engineering, optimization, quadratic approximation, Gray codes, meta-
materials

1. INTRODUCTION

The design of optical devices requires at some point the search for optimal parameters in order to achieve maximal
performances. With genetic algorithms (GA), natural selection is mimicked in order to determine this set of
optimal parameters. The idea consists in working with a virtual population of individuals that represent possible
solutions to the problem. The initial population consists of random individuals. The best individuals are then
selected. They generate new individuals for the next generation. Random mutations in the coding of parameters
are finally introduced. When repeated from generation to generation, this strategy enables the determination of
a globally optimal set of parameters.1–6

Optical engineering problems are typically computationally expensive due to the numerous degrees of freedom
and the cpu time involved by the numerical modeling. It is therefore desirable to solve the optimization problem
ideally by a single run of the GA and with a reduced number of fitness evaluations. The fitness is defined as the
objective function to be optimized. When the time required by the fitness evaluations is largely superior to the
time required by the GA itself, it makes sense to establish a record with all fitness evaluations in order to avoid
any duplication of these calculations. The GA also gains at being organized in a way that enables all fitness
calculations in a given generation to be addressed at the same time. This allows indeed a massive parallelization
of these calculations on modern supercalculators. The genetic algorithm finally gains at being combined with
a mathematical analysis of these collected data in order to accelerate convergence to the final solution. The
objective is to determine the global optimum as quickly as possible (reduced number of generations) and with a
reduced number of fitness evaluations.

Further author information: (Send correspondence to A.M.)
A.M.: E-mail: alexandre.mayer@unamur.be, Telephone: +32 81 724720
M.L.: E-mail: mlobet@seas.harvard.edu

One can guide the algorithm to promising directions and accelerate the refinement of the final solution by
coupling the genetic algorithm with a local optimizer (Memetic Algorithms).7–13 A first approach consists in
applying a local optimization procedure on the solutions established by the genetic algorithm, either regularly
(starting from best-so-far solutions established at each generation by the GA) or after the GA has converged
(starting from the final best solutions established by the GA).5,8 This approach requires however an extra
budget of fitness evaluations. Another approach consists in working on the data already collected by the genetic
algorithm in order to avoid an increase of the number of fitness evaluations. An idea consists in establishing
different approximations of the fitness (reduced models) in order to implement this local optimization,14–19

improve the genetic operators,20,21 estimate the robustness of solutions22 or avoid unnecessary evaluations of
the fitness.23–25 The data collected by the GA can actually be analyzed by a variety of mathematical methods.
Methods based on the Singular Values Decomposition were used to estimate the evolution direction and increase
the population diversity.26 This technique was also used to qualify potential candidates for the next generation.27

Recent papers finally consider training neural networks in order to guide the genetic algorithm.20,28–31 A neural
network is then trained on the data collected by the GA in order to establish reduced models of the fitness and
suggest promising solutions.

In optical engineering problems, the physical parameters to determine have a finite resolution due to physical
or experimental limitations in the fabrication of a device.32–37 The decision variables have therefore a finite
number of possible values (typically of the order of 1000). A binary encoding of these decision variables offers
the advantage to account for this discrete set of possible values at all stages of the algorithm. Optical engineering
problems that rely on numerical simulations for the evaluation of the fitness have also as specificity the fact that
the fitness is generally accurate to only three or four significant digits. Optimizing the fitness beyond this limited
accuracy does not make any sense. The genetic algorithm on the contrary gains at being tuned to achieve a
target accuracy that is both realistic and appropriate for these applications (typically ∆ftarget ∼ 10−4).

We present in this article an algorithm that we developed in order to account for these different issues
when addressing optical engineering problems. Our approach consists in establishing at each generation a
quadratic approximation of the fitness in the close neighborhood of the best-so-far individual in order to infer more
rapidly the global optimum. We also consider randomly-shifted Gray codes when applying mutations in order to
improve exploration and escape local optima. These modifications of the well-known genetic algorithm reduce
the computational cost of optical engineering problems, where the design parameters have a finite resolution and
are limited to a realistic range. This article is organized as follows. The main lines of our algorithm are presented
in Section 2. In Section 3, we apply our algorithm to typical benchmark problems in 5, 10 and 20 dimensions in
order to demonstrate its performance. We provide a real optical engineering application in Section 4. We finally
conclude this article in Section 5.

2. DESCRIPTION OF THE GENETIC ALGORITHM

The genetic algorithm described in this section aims at determining the global optimum (depending on the
application, it will be the global minimum or the global maximum) of an objective function f = f(x1, . . . xn),
where n is the number of decision variables. xi ∈ [xmin

i , xmax
i] with a discretization step ∆xi. The boundaries xmin

i

and xmax
i must be specified at the beginning of the search. ∆xi accounts for the experimental resolution of each

decision variable. The variables xi are represented by sequences of binary digits (genes). We use the Gray code to
interpret the bit content of these genes.5,38 The decision variables are then given by xi = xmin

i + 〈gene i〉×∆xi,
where 〈gene i〉 ∈ [0, 2ni − 1] refers to the value of the gene. The bit length ni of each gene is the first integer for
which xmin

i + (2ni − 1)×∆xi ≥ xmax
i . nbits =

∑n
i=1 ni refers to the total number of bits in a DNA, i.e. the set

of genes used for coding the n decision variables.

A detailed pseudocode of our algorithm can be found in Appendix A. We present here only the main ideas
of this algorithm, which are as follows: We consider a population of npop=50 individuals. We start with a
random population. We evaluate the fitness f(x1, . . . xn) of each individual and sort the population from the
best individual to the worst. We save the computed {~x, f(~x)} data in a record. We compute the genetic similarity
s of the population; s corresponds to the fraction of bits in the population whose value is identical to the best
individual.32,38 We then define a progress indicator p = |s− 0.5|/0.5, which takes values between 0 and 1. The
worst nrand = even[0.1× npop × (1− p)] individuals of the population are then replaced by random individuals

(even[.] stands for the nearest even integer). These random individuals are transferred to the next generation.
The remaining N = npop−nrand individuals of the current population participate to the usual steps of selection,
crossover and mutation. We hence select N parents in this subset of N individuals by a rank-based roulette
wheel selection, noting that a given individual can be selected several times.5,32 For any pair of parents, we
define two children for the next generation either (i) by a one-point crossover of the parents’ DNA (probability
of 70%), or (ii) by a simple replication of the parents. The children obtained by crossover are subjected to a
modified mutation operator that acts on randomly-shifted Gray codes (see Appendix B), using m = 0.95/nbits

as mutation rate for individual bit flips. We apply at this point a local optimization procedure on the {~x, f(~x)}
data collected so far by the genetic algorithm in order to guess the final solution (see Appendix C). If the result of
this local optimization can be accepted, it replaces the last individual already scheduled for the next generation
(a random individual if nrand > 0). Before evaluating the fitness of the individuals finally scheduled for the next
generation, we check the records in order to avoid any duplication of these evaluations. We then evaluate the
fitness of the individuals scheduled for the next generation for which no {~x, f(~x)} data was found. We sort the
new population and apply elitism in order to make sure that the best solution achieved so far is not lost when
going from one generation to the next.5 We apply these different steps from generation to generation until a
termination criterion is met.

The organization of the algorithm ensures that all fitness calculations in a given generation can be evaluated
in parallel since there is only one round of fitness evaluations per generation. In this implementation, the parents
are not transferred automatically to the next generation since this leads to premature convergence to solutions
that are not globally optimal. We found in previous, unpublished work that a crossover rate of 70% maintains a
good balance between the conservation of good solutions (individuals transferred to the next generation without
any modification) and the exploration of new solutions (individuals modified by the operators of crossover and
mutation). The mutation rate m = 0.95/nbits is settled automatically by the number of bits used for the
representation of the decision variables. We found in previous work that the optimal mutation rate decreases
with the dimension of the problem. Maintaining m × nbits < 1 is also motivated by biological evidence.39

This condition ensures indeed that the best individuals in the population have a chance to be unaffected by
mutations. We confirmed empirically that this improves in the long term the quality of the solutions established
by the genetic algorithm. The use of a mutation operator that acts on randomly-shifted Gray codes helps the
genetic algorithm to escape local optima since the displacements generated by this mutation operator have a
wider diversity (see Appendix B). This improves also the exploration of the decision variable space. The local
optimization procedure finally provides a useful guidance to the genetic algorithm by indicating, generation after
generation, directions to consider based on collected data. The technical parameters of this algorithm were tuned
on test problems in 5, 10 and 20 dimensions, for conditions that reflect those encountered in optical engineering
problems.40 We demonstrate the performance of this algorithm on an extended set of test problems in the next
section.

3. APPLICATION TO TEST PROBLEMS IN 5, 10 AND 20 DIMENSIONS

In the optical engineering problems that stimulated this work,32–34 the decision variables xi must be determined
only up to a precision ∆xi due to experimental limitations in the fabrication of a device. We will therefore
consider in this section test problems for which ∆xi = (xmax

i − xmin
i)/4096 in order to reflect the conditions of

these applications. It corresponds to ni=12 bits per gene since 212 = 4096. We will also consider that the global
minimum of the test problems considered in this section is found if the objective function is within a margin
∆ftarget of 10−4 compared to the exact solution. This reflects again the accuracy with which solutions should
be established in these optical engineering applications. Our objective was to determine the global minimum of
this type of problems with a high chance of success in one run and with a reduced number of fitness evaluations
(since we accept a margin ∆ftarget on the global minimum, technically we actually seek at determining a ”global
∆ftarget-optimal solution”; since the algorithm is stochastic, there is of course no guarantee on optimality).

The 22 benchmark functions considered in this work are given in Table 1. The boundaries [xmin
i , xmax

i]
considered for each function are provided as well as the number of bits ni used for the representation of each

decision variable (ni = 12, except for Schwefel 7 where ni = 16).∗ With this setting of the experiment, all gene
values can be accepted and there is a point in the grid for which the target ∆ftarget of 10−4 can actually be
reached. In order to make sure that our results do not depend on a specific encoding of the decision variables
and in order to break easy symmetries, we consider for each instance of the genetic algorithm a random shift of
the domain [xmin

i , xmax
i] considered for each decision variable. This randomization of the boundaries is limited to

integer multiples of ∆xi = (xmax
i −xmin

i)/2ni in order to make sure that the point for which the target ∆ftarget of
10−4 can actually be reached remains on the grid. The limits considered for this randomization of the boundaries
are given in the fourth column of Table 1.

Formula [xmin
i , xmax

i] rand shift ni
1 f(~x) =

∑n
i=1 x

2
i [−5.12, 5.12] [−0.5, 0.5] 12

2 f(~x) =
∑n
i=1(

∑i
j=1 xj)

2 [−65.5, 65.5] [-5,5] 12

3 f(~x) =
∑n−1
i=1 [100 (xi+1 − x2i)2 + (1− xi)2] [−2, 2] [-0.2,0.2] 12

4 f(~x) = n(x1 − 1)2 +
∑n
i=2(2x2i − xi−1)2 [0, 10.24] [0,0.25] 12

5 f(~x) = −Πn
i=1 cos(xi)

2 exp(−x2i /10) [−5, 5] [-0.5,0.5] 12

6 f(~x) = 418.98288727243× n−
∑n
i=1 xi sin(

√
|xi|) [−500, 500] [-5,10] 16

7 f(~x) = sin2(πw1) +
∑n−1
i=1 (wi − 1)2[1 + 10 sin2(πwi + 1)] [−10.24, 10.24] [-1,1] 12

+(wn − 1)2[1 + sin2(2πwn)], wi = 1 + (xi − 1)/4
8 f(~x) = 10 n+

∑n
i=1(x2i − 10 cos(2πxi)) [−5.12, 5.12] [-0.5,0.5] 12

9 f(~x) = −a exp
(
−b
√

1
n

∑n
i=1 x

2
i

)
− exp

(
1
n

∑n
i=1 cos(cxi)

)
[−32, 32] [-3,3] 12

+a+ e, a = 20, b = 0.2, c = 2π

10 f(~x) = 1 +
∑n
i=1

x2i
4000
−
∏n
i=1 cos(xi/

√
i) [−600, 600] [-50,50] 12

11 f(~x) = 0.1× n+
∑n
i=1 x

2
i − 0.1

∑n
i=1 cos(5πxi) [−1, 1] [-0.1,0.1] 12

12 f(~x) = 1− exp
(
−0.5

∑n
i=1 x

2
i

)
[−1, 1] [-0.1,0.1] 12

13 f(~x) = π
n

(
10 sin2(πw1) +

∑n−1
i=1 (wi − 1)2[1 + 10 sin2(πwi+1)] [−10.24, 10.14] [-1,1] 12

+(wn − 1)2
)
, wi = 1 + xi+1

4

14 f(~x) = 0.1
(
sin2(3πx1) +

∑n−1
i=1 (xi − 1)2[1 + sin2(3πxi+1)] [−5.12, 5.12] [-0.5,0.5] 12

+(xn − 1)2[1 + sin2(2πxn)]
)

15 f(~x) =
∑n
i=1 x

2
i +

(
1
2

∑n
i=1 ixi

)2
+
(
1
2

∑n
i=1 ixi

)4
[−5.12, 5.12] [-0.5,0.5] 12

16 f(~x) =
∑n
i=1 |xi|+

∏n
i=1 |xi| [−10, 10] [-1,1] 12

17 f(~x) =
∑n−1
i=1

(
(x2i)

x2i+1+1 + (x2i+1)x
2
i+1
)

[−1, 4] [-0.1,0.4] 12

18 f(~x) = x21 + 100, 000
∑n
i=2 x

2
i [−10, 10] [-1,1] 12

19 f(~x) = 3.5− 2.5
∏n
i=1 sin

(
xi − π

6

)
−
∏n
i=1 sin

(
5(xi − π

6
)
)

[0, 3.1415] [-0.1,0.2] 12

20 f(~x) =
∑n
i=1

[
n−

∑n
j=1 cosxj + i(1− cosxi − sinxi)

]2
[0, 3.1415] [-0.3,0] 12

21 f(~x) =
∑n
i=1 ix

2
i +

∑n
i=1 20i sin2A+

∑n
i=1 i log10

(
1 + iB2

)
, [−10, 10] [-1,1] 12

A = xi−1 sinxi + sinxi+1, x0 = xn, xn+1 = x1,
B = x2i−1 − 2xi + 3xi+1 − cosxi + 1

22 f(~x) =
∑n
i=1

∑n
j=1

[
(100(x2i−xj)

2+(1−xj)2)2

4000
[−10.24, 10.24] [-1,1] 12

− cos(100(x2i − xj)2 + (1− xj)2) + 1
]

Table 1. List of test functions with the boundaries [xmin
i , xmax

i] considered for the decision variables and the number of
bits ni used for the representation of each gene. The fourth column indicates the limits considered for the randomization
of the boundaries when running a given instance of the genetic algorithm. Names: Sphere (#1), Rotated Hyper-Ellipsoid
(#2), Rosenbrock (#3), Modified Dixon-Price (#4), Mayer (#5), Schwefel 7 (#6), Levy (#7), Rastrigin (#8), Ackley
(#9), Griewank (#10), Cosine Mixture (#11), Exponential (#12), Levy and Montalvo 1 (#13), Levy and Montalvo 2
(#14), Zakharov (#15), Schwefel 3 (#16), Brown 3 (#17), Cigar (#18), Sinusoidal (#19), Trigonometric 1 (#20), Pinter
(#21) and Whitley (#22).

When running the genetic algorithm on a given function f(~x) in order to determine its global minimum,
we consider that the target ∆ftarget is reached if |f(~xbest) − f∗opt| ≤ ∆ftarget, where f(~xbest) is the best-so-far
solution found by the genetic algorithm and f∗opt the exact global minimum. By running the genetic algorithm

∗For Schwefel 7 (fct #6 in Table 1), we actually consider ni=16 bits per gene since we can otherwise not get sufficiently
close to the exact solution x∗i = 420.96874636.

#run times on each test function, we can measure the probability P (∆ftarget) with which the target ∆ftarget

is reached by a given run of the algorithm. This quantity is calculated by P (∆ftarget)=#success/#run, where
#success refers to the number of successful runs. We can also measure the average number of fitness evaluations
required to reach ∆ftarget. This quantity is calculated by 〈neval〉 = #eval(target not reached)/#success, where
#eval(target not reached) is the number of fitness evaluations in all generations for which the target ∆ftarget

was not reached (summing over the #run executions of the GA).11 〈neval〉 includes fitness evaluations in runs
that failed to meet the target. Accounting for failed attempts makes sense, since they must be paid in real-world
applications. They consume indeed cpu time and they cause a delay in the resolution of a problem. Our efforts
to tune the genetic algorithm therefore focusses on 〈neval〉 as measure for the computational cost associated with
a given target ∆ftarget. Another measure commonly used in the literature is 〈n∗eval〉, the average number of
fitness evaluations required to reach ∆ftarget when this target is actually reached. 〈n∗eval〉 does not account for
failed attempts. Similarly, 〈n∗gen〉 measures the average number of generations required to reach a ∆ftarget for
runs that actually reach this target. 〈n∗gen〉 is representative of how fast a solution is found - if found.

The results obtained with our algorithm, when considering the benchmark problems of Table 1 for n=5, 10
and 20 dimensions, are summarized in Table 2. Tables 3, 4 and 5 provide the P (∆ftarget), 〈neval〉, 〈n∗eval〉 and
〈n∗gen〉 values obtained for individual functions when considering a target ∆ftarget of 10−4. For these benchmark
problems, we consider a maximum of 30 × nbits generations for a given run of the algorithm. The algorithm is
interrupted if (i) there is no improvement of the best fitness in the last 1.5 × nbits generations, (ii) the mean
value of the genetic similarity s over the last 1.5×nbits generations is higher than 1− 3m, (iii) s ≥ 1−m, or (iv)
the number of fitness evaluations exceeds 10000× n. The different columns of Table 2 show the results obtained
when considering/not considering (i) local optimizations based on quadratic approximations of the fitness, and
(ii) a mutation operator that acts on randomly-shifted Gray codes. The table provides the probability of success
in one run P (∆ftarget) and the average number of fitness evaluations 〈neval〉 for different values of ∆ftarget.
It also specifies the number of functions for which the target was reached at least once in ten runs. This
comparison between different versions of our algorithm proves the advantage of using a mutation operator that
acts on randomly-shifted Gray codes and a local optimization procedure that works on the data collected by the
algorithm (see Appendix B and C).

By using the local optimization procedure and a mutation operator that acts on randomly-shifted Gray
codes, we achieve a probability of success in one run P (∆ftarget) of 94.9% for n=5 dimensions, 92.3% for n=10
dimensions and 89.0% for n=20 dimensions when considering a target ∆ftarget of 10−4 (these values correspond
to an average over the 22 benchmark problems; the values obtained for individual functions can be found in
Tables 3, 4 and 5). The average number of fitness evaluations 〈neval〉 required to reach this target is 1724 for
n=5 dimensions, 5104 for n=10 dimensions and 19870 for n=20 dimensions. This corresponds to 〈neval〉/n ratios
of 345 for n=5 dimensions, 510 for n=10 dimensions and 993 for n=20 dimensions. We meet therefore our
objective to determine the global minimum of these test problems with a high probability of success in one run
(P (∆ftarget) = 89− 95%), while keeping to a budget of fitness evaluations 〈neval〉 of the order of ∼ 1000× n. In
contrast, when the techniques presented in the two Appendices are not used, the probability of success in one run
P (∆ftarget) is reduced to 75.6% for n=5 dimensions, 62.5% for n=10 dimensions and 46.7% for n=20 dimensions.
The number of functions for which the global minimum is determined at least once in ten runs decreases rapidly
with the dimension of the problem, going from 18 functions out of 22 for problems in 5 dimensions to only 15
functions out of 22 for problems in 20 dimensions. The average number of fitness evaluations required to reach
a given target is also significantly higher.

The local optimization procedure improves significantly the ability of the genetic algorithm to determine the
global minimum (a global ∆ftarget-optimal solution) of the functions considered (increase of P (∆ftarget)). This
conclusion was tested for statistical significance.† This technique also accelerates the algorithm by reducing the
number of fitness evaluations (decrease of 〈neval〉). Although originally intended to accelerate the refinement
of the final solution, this technique actually provides a useful guidance to the genetic algorithm by indicating,

†The hypothesis H0=”P (∆ftarget) not improved by the local optimization procedure” is rejected at a confidence
level α=0.005 by a right-tailed z-test where µ0 = P (∆ftarget) for the reference model (no local optimization) and s20 =
#run

#run−1
∗µ0 ∗ (1−µ0). We used ∆ftarget = 10−4 and #run=100 in our numerical experiment. This confidence level holds

for problems in 5, 10 and 20 dimensions and whether shifted Gray codes are used or not.

5 dimensions

Local Optim. no no yes yes
∆ftarget Shifted Gray no yes no yes CMA-ES

10−4 P (∆ftarget) 75.6% 83.2% 87.0% 94.9% 83.7%
〈neval〉 9051 7867 1866 1724 3287

#fct(P ≥10%) 18/22 20/22 21/22 all 21/22

10−3 P (∆ftarget) 75.8% 83.4% 87.1% 94.9% 83.7%
〈neval〉 8256 7153 1751 1622 3017

#fct(P ≥10%) 18/22 20/22 21/22 all 21/22

10−2 P (∆ftarget) 78.8% 86.4% 87.2% 94.9% 85.4%
〈neval〉 7037 5990 1604 1488 2630

#fct(P ≥10%) 19/22 20/22 21/22 all 21/22

10−1 P (∆ftarget) 83.5% 91.6% 88.5% 95.5% 87.4%
〈neval〉 5389 4436 1248 1173 2170

#fct(P ≥10%) 21/22 all 21/22 all 21/22

10 dimensions

Local Optim. no no yes yes
∆ftarget Shifted Gray no yes no yes CMA-ES

10−4 P (∆ftarget) 62.5% 78.3% 77.8% 92.3% 81.7%
〈neval〉 30884 22981 5928 5104 6891

#fct(P ≥10%) 17/22 18/22 19/22 21/22 19/22

10−3 P (∆ftarget) 63.4% 78.5% 78.1% 92.5% 81.7%
〈neval〉 28144 20834 5698 4892 6399

#fct(P ≥10%) 17/22 18/22 19/22 all 19/22

10−2 P (∆ftarget) 67.0% 82.9% 78.5% 92.6% 81.9%
〈neval〉 24387 17323 5302 4541 5865

#fct(P ≥10%) 18/22 20/22 19/22 all 19/22

10−1 P (∆ftarget) 71.8% 87.6% 79.2% 92.6% 82.0%
〈neval〉 19331 13371 4462 3896 5289

#fct(P ≥10%) 20/22 21/22 19/22 all 19/22

20 dimensions

Local Optim. no no yes yes
∆ftarget Shifted Gray no yes no yes CMA-ES

10−4 P (∆ftarget) 46.7% 76.1% 62.2% 89.0% 72.0%
〈neval〉 108941 61676 29643 19870 16081

#fct(P ≥10%) 15/22 18/22 17/22 20/22 18/22

10−3 P (∆ftarget) 48.4% 76.4% 62.7% 89.3% 72.0%
〈neval〉 98986 56276 27280 18325 15242

#fct(P ≥10%) 15/22 18/22 17/22 20/22 18/22

10−2 P (∆ftarget) 50.1% 79.5% 63.1% 89.5% 72.0%
〈neval〉 90715 49375 25404 16989 14377

#fct(P ≥10%) 15/22 19/22 17/22 20/22 18/22

10−1 P (∆ftarget) 59.4% 84.9% 64.9% 89.6% 72.0%
〈neval〉 68611 39038 22229 15133 13426

#fct(P ≥10%) 16/22 20/22 17/22 20/22 18/22

Table 2. Results obtained for test problems in 5, 10 and 20 dimensions. The different columns corresponds to results
obtained when considering/not considering (i) local optimizations based on quadratic approximations of the fitness, and
(ii) a mutation operator that acts on randomly-shifted Gray codes. P (∆ftarget) represents the probability to reach a
target ∆ftarget by a single run of the GA. 〈neval〉 is the average number of fitness evaluations required to reach this target,
counting runs that fail to meet the target. #fct(P ≥10%) is the number of functions for which the target was reached at
least once in ten runs. The last column provides for comparison the results obtained with CMA-ES when using the same
population size of 50 individuals. These statistics were generated by running the genetic algorithm 100 times on each test
function.

generation after generation, directions to consider based on collected data. This is especially useful for functions
that require displacements in preferential directions, like the function #3 (Rosenbrock). It is also useful for
functions whose large-scale structure leads to the global minimum despite the presence of many local minima,
like the function #10 (Griewank). For functions that have a single minimum, like the function #1 (Sphere) and
the function #2 (Rotated Hyper-Ellipsoid), the procedure is actually able to finalize the minimization as soon
as a sufficient number of data points have been collected. Other functions, like the function #12 (Exponential),
the function #17 (Brown 3) and the function #18 (Cigar), have their global minimum determined also much
more rapidly.

n=5 dimensions

P 〈neval〉 〈n∗eval〉 〈n∗gen〉
1 100% 85±4 85±4 1±0
2 100% 86±5 86±5 1±0
3 99% 6250±1147 6156±1102 187±34
4 100% 1333±166 1333±166 38±5
5 100% 953±209 953±209 26±7
6 100% 1403±603 1403±603 42±22
7 100% 1235±213 1235±213 35±7
8 95% 2754±733 2565±694 85±27
9 100% 1823±343 1823±343 55±11
10 95% 1186±736 1004±474 30±17
11 100% 513±79 513±79 13±2
12 100% 270±55 270±55 6±2
13 100% 1040±215 1040±215 30±7
14 100% 1133±221 1133±221 33±7
15 100% 1893±392 1893±392 55±12
16 100% 1777±300 1777±300 54±10
17 100% 654±91 654±91 17±3
18 100% 1199±478 1199±478 41±18
19 98% 991±427 928±298 26±11
20 87% 2571±1392 1978±1152 60±42
21 99% 1341±669 1295±585 37±18
22 14% 43640±6590 2727±490 85±16

Table 3. Results obtained for each test function when considering a target ∆ftarget of 10−4 for problems in 5 dimensions.
The local optimization procedure as well as a mutation operator that acts on randomly-shifted Gray codes are used by the
genetic algorithm. The quantities represented are the probability of success in one run (P (∆ftarget)), the average number
of fitness evaluations required to reach the target counting runs that fail to meet the target (〈neval〉), the average number
of fitness evaluations required to reach the target counting only runs that reach the target (〈n∗eval〉) and the average
number of generations required to reach the target counting only runs that reach the target (〈n∗gen〉). 〈n∗gen〉 corresponds
to the number of generations beyond that associated with the initial population. The standard deviation (std) of 〈neval〉,
〈n∗eval〉 and 〈n∗gen〉 is also indicated. These statistics were generated by running the genetic algorithm 100 times on each
test function.

The use of a mutation operator that acts on randomly-shifted Gray codes provides a further boost to our
results. Table 2 reveals indeed that the probability to determine the global minimum (a global ∆ftarget-optimal
solution) of the functions considered by a single run of the genetic algorithm is improved by this technique. This
conclusion was also tested for statistical significance.‡ It applies whether the local optimization procedure is
used or not. Table 2 reveals consistently that the number of fitness evaluations required to determine the global
minimum of the functions considered is reduced by this technique. The use of randomly-shifted Gray codes
when applying mutations helps the genetic algorithm to escape local minima since the displacements generated
by these mutations have a wider diversity (see Appendix A). This is especially useful for functions with many
local minima, like the function #6 (Schwefel), the function #8 (Rastrigin), the function #11 (Cosine Mixture),
the function #13 (Levy and Montalvo 1), the function #14 (Levy and Montalvo 2) and the function #21 (Pinter).
The wider variety of displacements generated by the use of randomly-shifted Gray codes improves exploration of
the decision variable space, which results in a higher probability to detect the global minimum of the functions
considered. This technique represents a useful complement to the local optimization procedure used in this work.

The genetic algorithm presented in this work generally achieves good results on the test problems consid-
ered. The functions #20 (Trigonometric 1) and #22 (Whitley) remain however challenging. It is interesting at

‡The hypothesis H0=”P (∆ftarget) not improved by shifted Gray codes” is rejected at a confidence level α=0.05 by a
right-tailed z-test where µ0 = P (∆ftarget) for the reference model (no shift of the Gray code) and s20 = #run

#run−1
∗µ0∗(1−µ0).

We used ∆ftarget = 10−4 and #run=100 in our numerical experiment. This confidence level holds for problems in 5, 10
and 20 dimensions and whether the local optimization procedure was used or not.

n=10 dimensions

P 〈neval〉 〈n∗eval〉 〈n∗gen〉
1 100% 121±6 121±6 2±0
2 100% 120±7 120±7 2±0
3 99% 16962±3162 16766±3151 522±102
4 100% 3016±341 3016±341 90±11
5 100% 2407±372 2407±372 72±12
6 99% 4298±1445 4214±1383 136±51
7 100% 3164±414 3164±414 95±13
8 94% 7800±1720 7264±1673 251±67
9 100% 4952±666 4952±666 155±22
10 100% 458±580 458±580 12±19
11 100% 1079±196 1079±196 30±6
12 100% 585±58 585±58 15±2
13 100% 2352±361 2352±361 70±11
14 100% 2598±567 2598±567 78±19
15 100% 11596±2080 11596±2080 356±65
16 100% 6067±1041 6067±1041 197±37
17 100% 1495±219 1495±219 43±7
18 100% 2063±878 2063±878 75±35
19 98% 2449±722 2315±396 68±12
20 34% 26531±4548 9785±3652 308±126
21 100% 3541±1105 3541±1105 108±35
22 7% 260736±24993 11907±5253 397±189

Table 4. Results obtained for each test function when considering a target ∆ftarget of 10−4 for problems in 10 dimensions.
The local optimization procedure as well as a mutation operator that acts on randomly-shifted Gray codes are used by the
genetic algorithm. The quantities represented are the probability of success in one run (P (∆ftarget)), the average number
of fitness evaluations required to reach the target counting runs that fail to meet the target (〈neval〉), the average number
of fitness evaluations required to reach the target counting only runs that reach the target (〈n∗eval〉) and the average
number of generations required to reach the target counting only runs that reach the target (〈n∗gen〉). 〈n∗gen〉 corresponds
to the number of generations beyond that associated with the initial population. The standard deviation (std) of 〈neval〉,
〈n∗eval〉 and 〈n∗gen〉 is also indicated. These statistics were generated by running the genetic algorithm 100 times on each
test function.

this point to compare our results with those provided by the reference algorithm CMA-ES.41–43 CMA-ES, for
Covariance-Matrix Adaptation-Evolution Strategy, is a genetic algorithm that relies on a real-value encoding of
the decision variables. Mutations consist of random normally-distributed perturbations of the decision variables.
The covariance matrix that actually controls the distribution of these mutations is adapted along the optimiza-
tion. When applying CMA-ES to our test problems with the same population size of 50 individuals, it actually
achieves a probability of success in one run P (∆ftarget = 10−4) of 84.1% for n=5 dimensions, 81.7% for n=10
dimensions and 72.0% for n=20 dimensions.§ These results are included in Table 2. A detailed analysis of the
results achieved with CMA-ES on individual test functions for n=20 dimensions can be found in Table 6. The
comparison with Table 5 shows that the algorithm presented in this work achieves respectable performances for
the class of problems considered. The use of a mutation operator that acts on randomly-shifted Gray codes
enables indeed our genetic algorithm to escape local optima more easily. This improves its ability to determine
the true global minimum of the multimodal functions considered in this work.

4. APPLICATION IN OPTICAL ENGINEERING

In order to provide a real-world application in optical engineering, we consider the maximization of broadband
absorption by a metamaterial. The structures considered in this work consist of 2-D periodic arrays of truncated
square-based pyramids made of 3 stacks of titanium/poly(methyl methacrylate) (Ti/PMMA) layers (see Fig. 1).

§CMA-ES accounts for the boundaries [xmin
i , xmax

i] specified in Table 1. The starting point 〈~x〉(0)w used by CMA-ES is
a random position in the search domain. We finally take σ(0) = (xmax

i − xmin
i)/3 as recommended.

n=20 dimensions

P 〈neval〉 〈n∗eval〉 〈n∗gen〉
1 100% 284±11 284±11 6±0
2 100% 283±11 283±11 6±0
3 98% 74216±17673 72168±17207 2340±572
4 100% 9700±1271 9700±1271 303±41
5 100% 6313±757 6313±757 194±24
6 99% 11840±2766 11624±2586 377±98
7 100% 8380±818 8380±818 259±26
8 97% 18950±3498 18269±3430 631±138
9 100% 13833±1458 13833±1458 444±50
10 100% 623±1102 623±1102 18±37
11 100% 3893±759 3893±759 118±24
12 100% 2228±323 2228±323 65±10
13 100% 6264±809 6264±809 193±27
14 100% 8142±1519 8142±1519 255±56
15 95% 89761±11592 84907±11222 2707±367
16 100% 18387±2402 18387±2402 620±87
17 100% 3986±442 3986±442 120±14
18 100% 3715±1389 3715±1389 143±56
19 91% 7866±2975 6354±815 195±28
20 4% 677342±48424 49436±19695 1590±674
21 73% 40537±22437 24540±15579 799±526
22 1% 5108453 44272 1509

Table 5. Results obtained for each test function when considering a target ∆ftarget of 10−4 for problems in 20 dimensions.
The local optimization procedure as well as a mutation operator that acts on randomly-shifted Gray codes are used by the
genetic algorithm. The quantities represented are the probability of success in one run (P (∆ftarget)), the average number
of fitness evaluations required to reach the target counting runs that fail to meet the target (〈neval〉), the average number
of fitness evaluations required to reach the target counting only runs that reach the target (〈n∗eval〉) and the average
number of generations required to reach the target counting only runs that reach the target (〈n∗gen〉). 〈n∗gen〉 corresponds
to the number of generations beyond that associated with the initial population. The standard deviation (std) of 〈neval〉,
〈n∗eval〉 and 〈n∗gen〉 is also indicated. These statistics were generated by running the genetic algorithm 100 times on each
test function.

These pyramids stand on a flat support that consists of successive uniform layers of Au (60 nm), Cr (5 nm) and
amorphous Si (1 micron). Previous work has shown that periodic arrays of truncated square-based pyramids
made of successive stacks of metal/dielectric layers can lead to the quasi-perfect absorption of electromagnetic
radiations over a wide wavelength range. By considering pyramids made of 20 stacks of Au/Ge layers, Lobet
et al. could indeed achieve an integrated absorptance of 98% of incident light over a 0.2-5.8 µm wavelength
range.44,45 This ultra-broadband absorption is essentially due to (i) an efficient anti-reflection property of these
pyramidal structures46,47 and (ii) a well-designed coupling between the localized surface plasmons found at the
metal/dielectric interfaces of each stack.48–51

In order to reduce the difficulty of fabricating structures made of many different layers, we will consider in
this work pyramids that consist of only three stacks of Ti/PMMA layers (see Fig. 1 again). Our objective is to
maximize the absorption of incident radiations in the wavelength range 420-1600 nm by tuning the geometrical
parameters of the system. The objective function (fitness) for this problem is therefore defined by η(%) =

100×
∫ λmax
λmin

A(λ)dλ

λmax−λmin
, where λmin=420 nm and λmax=1600 nm. A(λ) refers to the absorptance of normally incident

radiations at the wavelength λ. It is calculated by a Rigorous Coupled Waves Analysis (RCWA) method.52,53

This method solves Maxwell’s equations numerically in laterally periodic systems. We used this method with
11 × 11 plane waves and reported values for the refractive indices.54–56 The parameters to determine in order
to maximize the figure of merit η are (i) the lateral period P of the system, (ii) the lateral dimensions L1, L2

and L3 of the three stacks of Ti/PMMA layers, and (iii) the thicknesses t1, t2 and t3 of the three PMMA layers
(the subscripts 1, 2 and 3 refer respectively to the top, medium and bottom stacks of the nanopyramids). The

n=20 dimensions (CMA-ES)

P 〈neval〉 〈n∗eval〉 〈n∗gen〉
1 100% 4582±214 4582±214 92±4
2 100% 9000±314 9000±314 180±6
3 100% 34559±1151 34559±1151 691±23
4 100% 6662±310 6662±310 133±6
5 4% 22162±15607 5688±278 114±6
6 0% / / /
7 100% 5704±263 5704±263 114±5
8 0% / / /
9 96% 9261±1882 8622±378 172±8
10 100% 7250±293 7250±293 145±6
11 99% 4804±741 4685±211 94±4
12 100% 3399±191 3399±191 68±4
13 100% 5010±302 5010±302 100±6
14 100% 5022±316 5022±316 100±6
15 100% 8199±313 8199±313 164±6
16 100% 9232±341 9232±341 185±7
17 100% 5532±327 5532±327 111±7
18 100% 14186±451 14186±451 284±9
19 28% 104618±47707 6322±3318 126±66
20 23% 67967±3169 13818±1450 276±29
21 35% 39899±6176 9197±605 184±12
22 0% / / /

Table 6. Results obtained with CMA-ES for each test function when considering a target ∆ftarget of 10−4 for problems in
20 dimensions. CMA-ES is used with a population size of 50 individuals. The quantities represented are the probability
of success in one run (P (∆ftarget)), the average number of fitness evaluations required to reach the target counting runs
that fail to meet the target (〈neval〉), the average number of fitness evaluations required to reach the target counting only
runs that reach the target (〈n∗eval〉) and the average number of generations required to reach the target counting only runs
that reach the target (〈n∗gen〉). 〈n∗gen〉 corresponds to the number of generations beyond that associated with the initial
population. The standard deviation (std) of 〈neval〉, 〈n∗eval〉 and 〈n∗gen〉 is also indicated. These statistics were generated
by running the genetic algorithm 100 times on each test function.

thickness of each Ti layer is fixed at 15 nm. In order to reduce the search to a realistic range, we actually
consider P values between 50 and 500 nm, L1, L2 and L3 values between 50 and 500 nm, and t1, t2, t3 values
between 50 and 250 nm. We account for the experimental resolution with which these structures can possibly be
fabricated by considering a discretization step of 1 nm for these different quantities. In order to obtain pyramidal
structures, we finally impose that the genetic algorithm only considers solutions for which L1 < L2 < L3 ≤ P .¶

With these specifications, we hence have seven decision variables to determine and 1.3× 1016 possible parameter
combinations ! Each simulation takes approximately one hour of cpu time. We are therefore in conditions where
it is impossible to test all parameter combinations. We are also in conditions where the time required by the
fitness evaluations is largely superior to the time required for running the genetic algorithm.

In order to show the advantage of using the techniques developed in Appendix B and C, we represent in
Fig. 2 the fitness (figure of merit η) of the best individual as a function of the number of generations. When
using a mutation operator that acts on randomly-shifted Gray codes (Appendix B) and a local optimization
procedure that analyzes the collected data (Appendix C), the genetic algorithm determines after 167 generations
and 4628 fitness evaluations the final solution (global optimum associated with a figure of merit η = 99.757%; the
parameters found by the GA are the following: L1=155 nm, t1=124 nm, L2=285 nm, t2=126 nm, L3=416 nm,
t3=98 nm and P=416 nm). If all fitness calculations in a given generation run in parallel, this solution is actually

¶For applications with constrains on acceptable gene values, the genetic algorithm will only consider individuals that
match these constrains. The crossover operator makes in this case nbits− 1 attempts to generate children with acceptable
gene values. If these attempts fail, children will be simple copies of the parents. The mutation operator is repeated from
scratch on the input DNA until it generates a DNA with acceptable gene values.

Figure 1. Square-based pyramids made of 3 stacks of Ti/PMMA layers. The support of the pyramids consists of uniform
layers of Au (60 nm), Cr (5 nm) and a-Si (1 micron). We assume an infinite substrate of Si (ε = 16).

obtained after 7 days. When the techniques described in Appendix B and C are not used, the genetic algorithm
stops after 266 generations and 6275 fitness evaluations without finding the global optimum (the solution found
in this case corresponds to a figure of merit η = 99.726%; the parameters associated with this solution are the
following: L1=161 nm, t1=125 nm, L2=295 nm, t2=126 nm, L3=431 nm, t3=97 nm and P=431 nm). The GA
stopped in this case because the mean value of the genetic similarity s over the last 1.5× nbits generations was
higher than 1−3m, where the total number of bits nbits is 60 and the mutation rate m = 0.95/nbits is 1.6% for this
application. If all fitness calculations in a given generation run in parallel, this sub-optimal solution is obtained
after 11 days. As shown in the previous section, several runs are typically necessary on difficult problems when
the techniques of Appendix B and C are not used. This would be the case here. Fig. 2 shows that the modified
version of the genetic algorithm (techniques of Appendix B and C used) actually outperforms the classical version
of the genetic algorithm (techniques of Appendix B and C not used) after only 50 generations.

Figure 2. Best fitness (figure of merit η) when optimizing a structure made of three stacks of Ti/PMMA layers. Solid: the
GA is used with a mutation operator that acts on randomly-shifted Gray codes (Appendix B) and a local optimization
procedure (Appendix C). Dashed: the GA does not use the techniques developed in Appendix B and C. The stars indicate
when the best solution is found.

5. CONCLUSIONS

This article describes a genetic algorithm that we developed in order to address computationally expensive
optimization problems in optical engineering. For these problems, the decision variables are characterized by a
finite set of possible values due to experimental limitations in the fabrication of a device. A target accuracy of
10−4 on the objective function is also sufficient for these applications. The technical parameters of our algorithm
were tuned to address these conditions. The organization of the algorithm enables a massive parallelization of the
fitness calculations. The data collected by the genetic algorithm is analyzed by a local optimization procedure
in order to infer more rapidly the final solution. This procedure, which relies on quadratic approximations
of the fitness in the close neighborhood of the best-so-far solution, provides a useful guidance to the genetic
algorithm by indicating, generation after generation, directions to consider based on these collected data. We
also use a mutation operator that acts on randomly-shifted Gray codes. This helps the genetic algorithm to
escape local optima. It also improves the exploration of the decision variable space by enabling a wider diversity
of displacements. We applied this algorithm to a set of 22 benchmark problems in 5, 10 and 20 dimensions in
order to demonstrate its performance. The results prove that the techniques presented in this work improve
significantly the ability of the genetic algorithm to determine the global minimum of these problems. The
average number of fitness evaluations required to determine these solutions is also significantly reduced. This
algorithm was already applied successfully to a variety of computationally expensive optimization problems in
optical engineering. We showed in this article how these techniques accelerate the optimization of pyramidal
structures for the broadband absorption of electromagnetic radiations.

APPENDIX A. PSEUDOCODE OF THE GENETIC ALGORITHM

Initialize a Population of npop random individuals.
Compute the fitness f(~x) of each individual in the Population.
Save the calculated {~x, f(~x)} data in the Records.
Sort the Population from best to worst individuals.
Save {~xbest, fbest}=best-so-far solution.

For k ranging from 1 to ngen:
Compute genetic similarity s of the Population.
Set p = |s− 0.5|/0.5, nrand = even[0.1× npop × (1− p)] and N = npop − nrand.
Define, for the modified mutation operator, a random shifti ∈ [0, 2ni − 1] for each gene i ∈ [1, n].

Pool(N + 1 : npop) = nrand random individuals.
For i ranging from 1 to N/2:

Select Parent1 in Population(1 : N) by a rank-based roulette wheel selection.
Select Parent2 in Population(1 : N) by a rank-based roulette wheel selection.
If rnd ≤ 0.7:
{Child1,Child2}=1-point crossover between {Parent1,Parent2}.
Apply Mutation=True.

Else:
{Child1,Child2}={Parent1,Parent2}.
Apply Mutation=False.

If Apply Mutation:
Apply modified mutation operator on Child1 (see Appendix B).
Apply modified mutation operator on Child2 (see Appendix B).

Pool(1 + (i− 1) ∗ 2) = Child1 ; Pool(2 + (i− 1) ∗ 2) = Child2.
Guess=Local Optimization using {~x, f(~x)} data in the Records (see Appendix C).
If Guess can be accepted:

Pool(N)=Guess.

Check the Records to avoid any duplication in the fitness evaluations.
Compute the fitness f(~x) of each new individual in the Pool.
Save the calculated {~x, f(~x)} data in the Records.
Sort the Pool from best to worst individuals.
Set new Population=Pool.

If best individual in new Population not as good as previous {~xbest, fbest}:
Choose random integer i ∈ [1, npop]; Population(i) = ~xbest.
Update sorting of Population.

Save {~xbest, fbest}=best-so-far solution.
Exit if a stopping criterion is met.

APPENDIX B. MODIFIED MUTATION OPERATOR BASED ON
RANDOMLY-SHIFTED GRAY CODES

The decision variables are represented by xi = xmin
i + 〈gene i〉 ×∆xi, where 〈gene i〉 ∈ [0, 2ni − 1] stands for the

value coded by the ni binary digits of the gene. We use the Gray code to interpret the value of this gene.5,38 A
Gray code is characterized by the fact that successive numbers differ only by one bit (see Table 7). It is therefore
always possible to move from xi to xi±∆xi by changing a single bit. This is an advantage compared to standard
binary, where several bit changes are typically necessary.57 The use of Gray codes enables thus mutations
to perform a fine tuning of the decision variables. By changing the ni − 2 other bits of the gene, mutations
will generate wider displacements in the decision variable space. These wider displacements are important for
exploration. The displacements generated by mutations depend however artificially on the coding considered
and this is a limit to exploration.

Decimal Binary Gray Gray+3
0 000 000 010
1 001 001 110
2 010 011 111
3 011 010 101
4 100 110 100
5 101 111 000
6 110 101 001
7 111 100 011

Table 7. Comparison between decimal, standard binary, the original Gray code and a shifted version of the Gray code
(circular permutation by 3 steps).

The idea to improve the mutation operator is hence to apply this operator to the encoding obtained with
shifted versions of the Gray code. It consists actually of a circular permutation of the original encoding; see
last column of Table 7.57–59 At each generation, a random shift in the range [0, 2ni − 1] is attributed to each
gene. This shift is specific to the gene. It is identical for all individuals of the current generation. Its value
is reset at each generation. A possible implementation of the modified mutation operator is given in Table 8.
This modified mutation operator receives genes that are expressed in the original Gray code. Before applying
mutations, the original chain of binary digits 〈gene i〉 is translated from the original Gray code to the shifted
Gray code (in Table 7, this comes to moving from column 3 to column 4 on the line associated with the original
encoding). Mutations are then applied on the modified encoding. The result is finally translated back from the
shifted Gray code to the original Gray code (in Table 7, this comes to moving back from column 4 to column 3
on the line associated with the modified version of the gene). Since the result of this modified mutation operator
is expressed in the original Gray code (reference encoding used in the rest of the algorithm), adaptation related
to this reference encoding can still take place.

Input : 〈genei〉 (Gray code)

Operations:
1. Decode the gene : 〈genei〉 (Gray code) → integer
2. Apply the shift : integer → mod(integer+shift,2ni)
3. Get Gray code representation : integer → Gray code
4. Apply bit-wise mutations
5. Decode the gene : Gray code → integer
6. Remove the shift : integer → mod(integer-shift,2ni)
7. Recode the gene : integer → 〈genei〉 (Gray code)

Ouput : 〈genei〉 (Gray code) with mutations

Table 8. Possible implementation of the modified mutation operator. Operations 1, 2 and 3 transform 〈genei〉 from the
original Gray code to the shifted Gray code. Operation 4 introduces mutations on the encoding obtained with this shifted
Gray code. Operations 5, 6 and 7 transform the modified gene from the shifted Gray code to the original Gray code. The
shift assigned to each gene is the same for all individuals in the population. It is reset randomly at each generation.

Illustrative example : Let us consider the number ”3” (010 in the original Gray code; see third column of
Table 7). Individual bit flips can lead to ”2” (011), ”4” (110) and ”0” (000). This possible transition between
”3” and ”0” is specific to the original Gray code. There is no direct transition to the other entries of the table. If
we consider a circular permutation by three steps of the original Gray code (last column of Table 7), the number
”3” is now encoded by ”101”. Individual bit flips lead now to ”2” (111), ”4” (100) and ”6” (001). There is a
possible transition between ”3” and ”6” (instead of ”3” and ”0”). By changing the shift introduced in the Gray
code at each generation, we reset the transitions generated by individual bit flips.

Illustration with Rastrigin’s function : Rastrigin’s function (fct#8 in Table 1) provides a good illustration
for the benefit of using randomly-shifted Gray codes when applying mutations. This function has many local
minima. The global minimum is for xi = 0 (i = 1, . . . n). When searching for the global minimum of Rastrigin’s
function in n=10 dimensions, it turns out that the algorithm described in Sec. 2 fails most of the times at
finding this global minimum if the mutation operator does not shift the Gray code. The reason is that xi = 0
is represented by 110000000000 in our case if we work in the original domain [−5.12, 5.12] (we have indeed
xmin
i = −5.12 and ∆xi=0.0025; a gene value of 2048 is represented by 110000000000 in the original Gray code).

The closest local minimum is at xi = 0.995, which is represented by 110101001001. There is a difference of four
bits between these two encodings and the genetic algorithm has a hard time finding the appropriate bit changes
once trapped in this local minimum. Fig. 3 shows that there is a poor diversity in the displacements generated
by mutations if no shifting of the Gray code is considered. By considering randomly-shifted versions of the Gray
code when applying mutations, we increase the diversity of the displacements generated by these mutations. This
helps the genetic algorithm to escape the local minimum to eventually find the global minimum. The second
part of Fig. 3 shows that there is indeed a wider diversity in the displacements generated by mutations when
considering randomly-shifted Gray codes.

APPENDIX C. LOCAL OPTIMIZATION BASED ON A QUADRATIC
APPROXIMATION OF THE FITNESS

The data collected by the genetic algorithm can be analyzed, generation after generation, in order to infer more
rapidly the final solution. The idea consists in establishing a quadratic approximation of the fitness in the close
neighborhood of the best-so-far solution. We then inject in the population an individual that corresponds to the
optimum of this approximation.‖

‖We use a quadratic approximation of the fitness because establishing this approximation and its optimum is easily
tractable for problems in up to 20 dimensions as in this work and because it is indeed appropriate to describe the local
behavior of the fitness in the region of interest; advanced methods are available for higher dimensions or for situations in
which the time required by this analysis is no more negligible compared to that required for evaluating the fitness.14–16,19

Figure 3. Application of the genetic algorithm to Rastrigin’s function in 10 dimensions. The blue dots represent individuals
considered by the genetic algorithm. The star represents the best solution found by the algorithm. The algorithm was
interrupted after 10000 evaluations of the fitness. Top : There is no shift of the Gray code when applying mutations; the
genetic algorithm is trapped in a local minimum. Bottom : Mutations are applied to randomly-shifted versions of the
Gray code; the algorithm finds the global minimum.

We chose as reference point (~xref) the best-so-far solution found by the genetic algorithm. In order to establish
the quadratic approximation, we will use Nselect distinct data points from the records established by the genetic

algorithm. A data point ~x is selected if maxi
|xi−xi,ref |

∆xi
≤ W , where W specifies the width of the selection, in

units of ∆xi. We take W = 5 as initial value each time we start this procedure.

The expression to establish has the form

f(~x) = a0 + ~A1. ~X +
1

2
~X.A2

~X , (1)

where ~X = ∆−1(~x−~xref) with ∆ = diag[∆x1, . . . ,∆xn] a diagonal matrix that contains the discretization steps.

a0 is a scalar, ~A1 is a vector of size n and A2 is a symmetric matrix of size n × n. Since A2 is symmetric,
there is a total of Ncoeff = 1 + n + n.(n + 1)/2 coefficients to determine. We must ensure at this point that

Nselect ≥ 2Ncoeff , by increasing W if needed. To establish the quadratic approximation, we define a vector ~f of
size Nselect that contains the f(~x) values of the selected data points and a vector ~A of size Ncoeff that contains

the unknown coefficients in a0, ~A1 and A2. The equations to solve can then be written as ~f = M ~A, where M is

a Nselect ×Ncoeff matrix with coefficients defined from Eq. (1). Since the system ~f = M ~A is overdetermined, we

actually require that ||~f−M ~A||2 be minimized (by an appropriate choice of ~A). We compute for this purpose the
singular values decomposition (SVD) of the matrix M.60 This gives us M = UΣVt, where U is an orthonormal
matrix of size Nselect × Ncoeff and V is an orthonormal matrix of size Ncoeff × Ncoeff . Σ is a diagonal matrix
of size Ncoeff ×Ncoeff that contains the singular values σk of the matrix M. The solution of min ||~f −M ~A||2 is

then given by ~A = VΣ+Ut ~f , where Σ+ is a diagonal matrix of size Ncoeff ×Ncoeff whose diagonal elements are
defined by σ−1

k if σk ≥ ε× σmax (with σmax = maxk σk) and 0 otherwise. ε accounts for the relative accuracy of
f(~x).

Once the quadratic approximation has been established, the solution of ~∇f = 0 is given formally by ~x∗ = ~xref−
∆A−1

2
~A1. Since the matrix A2 may be non-invertible, we use an approach based on the spectral decomposition

of A2. Since the matrix A2 is symmetric, its eigensystem A2~xk = λk~xk is characterized by real eigenvalues λk
and its eigenvectors ~xk form an orthonormal basis. It is useful at this point to define λmax = maxk |λk| and

λmin = mink |λk|. The solution of ~∇f = 0 can then be expressed as

~x∗ = ~xref −∆
∑
k

~xk. ~A1

λk
~xk , (2)

where the sum is restricted to the eigenvalues λk that satisfy |λk| ≥ εinv × λmax in order to avoid numerical
instabilities. For analytical functions, we take ε = 10−10 and εinv = 10 λmax

λmin
ε. For problems in which the fitness

has an accuracy limited to three significant digits, we recommend using εinv = ε = 10−3. If the solution ~x∗

provided by this approach can be accepted, it replaces the last individual scheduled for the next generation. We
repeat otherwise this procedure up to three times by increasing the width of the selection (W →W + 2).

ACKNOWLEDGMENTS

A.M. is funded by the Fund for Scientific Research (F.R.S.-FNRS) of Belgium. He is member of NaXys, Na-
mur Institute for Complex Systems, University of Namur, Belgium. This work was performed while M.L.
was a recipient of a Fellowship of the Belgian American Educational Foundation. The authors acknowledge
Benoit Hackens, Nicolas Reckinger, Luc Henrard and Sarah Griesse-Nascimento for useful discussions on the
nanopyramids. This research used resources of the “Plateforme Technologique de Calcul Intensif (PTCI)”
(http://www.ptci.unamur.be) located at the University of Namur, Belgium, which is supported by the F.R.S.-
FNRS under the convention No. 2.5020.11. The PTCI is member of the “Consortium des Equipements de Calcul
Intensif (CECI)” (http://www.ceci-hpc.be).

REFERENCES

[1] Holland, J., [Adaptation in Natural and Artificial Systems], University of Michigan Press, Ann Arbor, Mich.
(1975).

[2] De Jong, K., [An Analysis of the Behaviors of Genetic Adaptative Systems], PhD thesis, University of
Michigan, Ann Arbor, Mich. (1975).

[3] Goldberg, D., [Genetic Algorithms in Search, Optimization and Machine Learning], Addison-Wesley, Read-
ing, Mass. (1989).

[4] Haupt, R. and Werner, D., [Genetic Algorithms in Electromagnetics], J. Wiley & Sons, Hoboken, NJ (2007).

[5] Eiben, A. and Smith, J., [Introduction to Evolutionary Computing], Springer-Verlag, Berlin, second ed.
(2007).

[6] Eiben, A. and Smith, J., “From evolutionary computation to the evolution of things,” Nature 521, 476–482
(2015).

[7] Hinton, G. and Nowlan, S., “How learning can guide evolution,” Complex Systems 1, 495–502 (1987).

[8] Krasnogor, N. and Smith, J., “A tutorial for competent algorithms: model, taxonomy and design issues,”
IEEE T. Evolut. Comput. 9(5), 474–488 (2005).

[9] Chen, X., Ong, Y.-S., Lim, M.-H., and Tan, K., “A multi-facet survey on memetic computation,” IEEE T.
Evolut. Comput. 15(5), 591–607 (2011).

[10] Neri, F., Cotta, C., and Moscato, P., [Handbook of Memetic Algorithms], Studies in Computational Intelli-
gence, Springer, Berlin (2011).

[11] Posik, P., Huyer, W., and Pal, L., “A comparison of global search algorithms for continuous black box
optimisation,” Evol. Comput. 20(4), 509–541 (2012).

[12] Sapin, E., De Jong, K., and Shehu, A., “A novel ea-based memetic approach for efficiently mapping complex
fitness landscapes,” in [Proceedings of the Genetic and Evolutionary Computation Conference], 85–92, ACM,
New York (2016).

[13] Nguyen, P. and Sudholt, D., “Memetic algorithms beat evolutionary algorithms on the class of hurdle
problems,” in [Proceedings of the Genetic and Evolutionary Computation Conference], 1071–1078, ACM,
New York (2018).

[14] Powell, M., “The newuoa software for unconstrained optimization without derivatives,” Large-Scale Non-
linear Optimization. 83, 255–297 (2006).

[15] Wanner, E., Guimaraes, F., Takahashi, R., and Fleming, P., “Local search with quadratic approximation
in genetic algorithms for expensive optimization problems,” IEEE C. Evolut. Comput. , 677–683 (2007).

[16] Wanner, E., Guimaraes, F., Takahashi, R., and Fleming, P., “Local search with quadratic approximations
into memetic algorithms for optimization with multiple criteria,” Evol. Comput. 16(2), 185–224 (2008).

[17] Deep, K. and Das, K., “Quadratic approximation based hybrid genetic algorithm for function optimization,”
Appl. Math. Comput. 203, 86–98 (2008).

[18] da Cruz, A., Wanner, E., Cardoso, R., and Takahashi, R., “Using convex quadratic approximation as a local
search operator in evolutionary multiobjective algorithms,” IEEE C. Evol. Computat. , 1217–1224 (2011).

[19] Fonseca, C. and Wanner, E., “A quadratic approximation-based local search operator for handling two
equality constraints in continuous optimization problems,” in [IEEE C. Evol. Computat.], 4911–4917 (2016).

[20] Rasheed, K., Ni, X., and Vattam, S., “Comparison of methods for developing dynamic reduced models for
design optimization,” Soft Comput. 9(1), 29–37 (2005).

[21] Regis, R. and Shoemaker, C., “Local function approximation in evolutionary algorithms for the optimization
of costly functions,” IEEE T. Evolut. Comput. 8(5), 490–505 (2004).

[22] Paenke, I., Branke, J., and Jin, Y., “Efficient search for robust solutions by means of evolutionary algorithms
and fitness approximation,” IEEE T. Evolut. Comput. 10(4), 405–420 (2006).

[23] Jones, D. R., “A taxonomy of global optimization methods based on response surfaces,” J. Global Op-
tim. 21(4), 345–383 (2001).

[24] Jin, Y., “Surrogate-assisted evolutionary computation: Recent advances and future challenges,” Swarm
Evol. Comput. 1(2), 61–70 (2011).

[25] Forrester, A., Sobester, A., and Keane, A., [Engineering Design via Surrogate Modelling: A Practical Guide],
J. Wiley & Sons, Chichester, UK (2008).

[26] De Lucia, A., M., D. P., Oliveto, R., and Panichella, A., “Estimating the evolution direction of populations
to improve genetic algorithms,” in [Proceedings of the Genetic and Evolutionary Computation Conference],
617–624, ACM, New York (2012).

[27] Martin, J. and Rasheed, K., “Using singular value decomposition to improve a genetic algorithm’s perfor-
mance,” in [Proceedings of the 2003 Congress on Evolutionary Computation], 3, 1612–1617 (2003).

[28] Marim, L., Lemes, M., and Dal Pino, A., “A neural-network-assisted genetic algorithm applied to silicon
clusters,” Phys. Rev. A 67(3), 033203 (2003).

[29] Javadi, A., Farmani, R., and Tan, T., “A hybrid intelligent genetic algorithm,” Adv. Eng. Inform. 19,
255–262 (2005).

[30] Patra, T., Meenakshisundaram, V., Hung, J.-H., and Simmons, D., “Neural-network-biased genetic algo-
rithms for materials design: evolutionary algorithms that learn,” ACS Comb. Sci. 19, 96–107 (2017).

[31] Garciarena, U., Santana, R., and Mendiburu, A., “Expanding variational autoencoders for learning and
exploiting latent representations in search distributions,” in [Proceedings of the Genetic and Evolutionary
Computation Conference], 849–856, ACM, New York (2018).

[32] Mayer, A. and Bay, A., “Optimization by a genetic algorithm of the light-extraction efficiency of a GaN
light-emitting diode,” J. Opt. 17, 025002 (2015).

[33] Mayer, A., Gaouyat, L., Nicolay, D., Carletti, T., and Deparis, O., “Multi-objective genetic algorithm for
the optimization of a flat-plate solar thermal collector,” Opt. Express 22, A1641 (2014).

[34] Mayer, A., Muller, J., Herman, A., and Deparis, O., “Optimized absorption of solar radiations in nano-
structured thin films of crystalline silicon via a genetic algorithm,” Proc. SPIE 9546, 95461N (2015).

[35] Lin, A. and Phillips, J., “Optimization of random diffraction gratings in thin-film solar cells using genetic
algorithms,” Sol. Energ. Mat. Sol. C. 92, 1689–1696 (2008).

[36] Wang, C., Yu, S., Chen, W., and Sun, C., “Highly efficient light-trapping structure design inspired by
natural evolution,” Sci. Rep. 3(1025), 1–8 (2013).

[37] Yu, S., Wang, C., Sun, C., and Chen, W., “Topology optimization for highly-efficient light-trapping structure
in solar cells,” Struct. Multidisc. Optim. 50, 367–382 (2014).

[38] Judson, R., “Genetic algorithms and their use in chemistry,” Reviews in Computational Chemistry 10, 1–73
(1997).

[39] Smith, J., [Evolutionary Genetics], Oxford University Press, second ed. (1998).

[40] Mayer, A., “A genetic algorithm with randomly shifted gray codes and local optimizations based on
quadratic approximations of the fitness,” in [Proceedings of the Genetic and Evolutionary Computation
Conference Companion], 195–196, ACM, New York (2017).

[41] Hansen, N. and Ostermeier, A., “Completely derandomized self-adaptation in evolution strategies,” Evol.
Comput. 9(2), 159–195 (2001).

[42] Hansen, N., “The CMA evolution strategy: a comparing review,” in [Towards a new evolutionary computa-
tion. Advances on estimation of distribution algorithms], 75–102, Springer, Berlin (2006).

[43] Hansen, N., “Benchmarking a bi-population cma-es on the bbob-2009 function testbed,” in [Proceedings of
the Genetic and Evolutionary Computation Conference], 2389–2396, ACM, New York (2009).

[44] Lobet, M., Lard, M., Sarrazin, M., Deparis, O., and Henrard, L., “Plasmon hybridization in pyramidal
metamaterials: a route towards ultra-broadband absorption,” Opt. Express 22(10), 12678–12690 (2014).

[45] Lobet, M. and Henrard, L., “Metamaterials for ultra-broadband super absorbers based on plasmon hy-
bridization,” in [8th International Congress on Advanced Electromagnetic Materials in Microwaves and
Optics], 190–192 (2014).

[46] Clapham, P. and Hutley, M., “Reduction of lens reflexion by the moth eye principle,” Nature 244(5414),
281–282 (1973).

[47] Deparis, O., Vigneron, J.-P., Agustsson, O., and Decroupet, D., “Optimization of photonics for corrugated
thin-films solar cells,” J. Appl. Phys. 106, 094505 (2009).

[48] Prodan, E., Radloff, C., Halas, N., and Nordlander, P., “A hybridization model for the plasmon response
of complex nanostructures,” Science 302(5644), 419–422 (2003).

[49] Christ, A., Zentgraf, T., Tikhodeev, S., Gippius, N., Kuhl, J., and Giessen, H., “Controlling the interaction
between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys.
Rev. B 74(15), 155435 (2006).

[50] Liu, N., Guo, H., Fu, L., Kaiser, S., Schweizer, H., and Giessen, H., “Plasmon hybridization in stacked
cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).

[51] Pu, M., Feng, Q., Hu, C., and Luo, X., “Perfect absorption of light by coherently induced plasmon hy-
bridization in ultrathin metamaterial film,” Plasmonics 7(4), 733–738 (2012).

[52] Moharam, M. and Gaylord, T., “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc.
Am. A 71(7), 811–818 (1981).

[53] Lobet, M. and Deparis, O., “Plasmonic device using backscattering of light for enhanced gas and vapour
sensing,” Proc. SPIE 8425, 842509 (2012).

[54] Johnson, P. and Christy, R., “Optical constants of transition metals: Ti, v, cr, mn, fe, co, ni, and pd,”
Phys. Rev. B 9(12), 5056–5070 (1974).

[55] Ordal, M., Bell, R., Alexander, R., Newquist, L., and Querry, M., “Optical properties of al, fe, ti, ta, w,
and mo at submillimeter wavelengths,” Appl. Opt. 27(6), 1203–1209 (1988).

[56] Beadie, G., Brindza, M., Flynn, R., Rosenberg, A., and Shirk, J., “Refractive index measurements of
poly(methyl methacrylate) (pmma) from 0.4-1.6 µm,” Appl. Optics 54(8), 139 (2015).

[57] Rowe, J., Whitley, D., Barbulescu, L., and Watson, J.-P., “Properties of gray and binary representations,”
Evol. Comput. 12(1), 47–76 (2004).

[58] Barbulescu, L., Watson, J.-P., and Whitley, D., “Dynamic representations and escaping local optima: im-
proving genetic algorithms and local search,” in [17th National Conference on Artificial Intelligence], 879–
884 (2000).

[59] Whitley, D., “An overview of evolutionary algorithms: practical issues and common pitfalls,” Information
and Software Technology 43(14), 817–831 (2001).

[60] Golub, G. and Kahan, W., “Calculating the singular values and pseudo-inverse of a matrix,” J. Soc. Ind.
Appl. Math. Ser. B Numer. Anal. 2(2), 205–224 (1965).

	Introduction
	Description of the Genetic Algorithm
	Application to test problems in 5, 10 and 20 dimensions
	Application in Optical Engineering
	Conclusions
	PSEUDOCODE OF THE GENETIC ALGORITHM
	MODIFIED MUTATION OPERATOR BASED ON RANDOMLY-SHIFTED GRAY CODES
	LOCAL OPTIMIZATION BASED ON A QUADRATIC APPROXIMATION OF THE FITNESS

