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ABSTRACT: The uncatalyzed Mukaiyama aldol reaction between C,O,O-
tris(trimethylsilyl)ketene acetal and aldehydes bearing alkyl, vinyl, and
aromatic substituents has been studied theoretically using density functional
theory with the M06-2X exchange−correlation functional. These DFT
calculations mostly demonstrate that (i) the syn product is both kinetically
and thermodynamically favored, (ii) the diastereoselectivity of the
uncatalyzed reaction is larger than observed for the reaction catalyzed by
HgI2 and it is inverted with respect to the latter, (iii) solvents with larger
dielectric constants increase the activation barrier but reduce the
diastereoselectivity, (iv) the concerted reaction is preferred over the
stepwise reaction, and (v) the OSiMe3 group in geminal lowers the
activation barrier and increases the energy of reaction. Analyzing the
concerted mechanism unravels four types of cyclic transition states, two pro-anti and two pro-syn. Then, the relative energy of the
most stable transition state of each type as well as of the corresponding anti and syn products shows that the syn reaction path is
located at lower Gibbs enthalpy than the anti reaction path for all substituents.

I. INTRODUCTION

The Mukaiyama aldol1 reaction is an efficient reaction for
forming carbon−carbon bonds. This reaction is an addition of
silyl enol ether (enolsilane) or ketene silyl acetal on carbonyl
compounds. It provides a route for the stereoselective
construction of β-hydroxy carbonyl units, which are important
building blocks for the preparation of a broad range of natural
products and pharmaceuticals. This aldol reaction is usually
catalyzed by Lewis acids but it can also proceed without catalyst
when the acidity of the Si atom of the silyl enol is increased.2−5

For instance, Bellassoued et al.6 have carried out a noncatalyzed
addition between a bis(trimethylsilyl)ketene acetal and an
aromatic aldehyde under high pressure.
Mukaiyama aldol reaction has also been described using

quantum chemical calculations.4,7,8 Wong and Wong8 have
shown that the noncatalyzed condensation of the trihydrosilyl
enol ether (CH2CHOSiH3) on formaldehyde is
possible via two mechanisms, concerted or stepwise and that
the concerted mechanism is favored. During the concerted
mechanism [ΔE = −22.7 kcal mol−1 and ΔE⧧ = 18.4 kcal
mol−1, as estimated at the G3(MP2) level of approximation]
the migration of the silyl group from the enol ether to the
aldehyde is accompanied by the formation of a CC single bond.
The role of the silyl group is not limited to influencing the
nature of the transition state because the silicon transfer from
the enolsilane to the β-alkoxy position may be a key step in the

overall mechanism and becomes crucial to the turnover
necessary for nonstoichiometric transformations. On the
contrary, in the case of the concerted mechanism, the activation
energy of the first step is much larger (ΔE⧧ = 49.5 kcal mol−1).
These results were in agreement with previous works.4,7,9,10 So,
for the concerted mechanism of the same reaction, Gung et al.7

obtained at the MP2/6-31G* ΔH = −33.2 kcal mol−1 and ΔE⧧

= 13.8 kcal mol−1 and highlighted that the Si atom of the
transition state presents a trigonal bipyramid geometry.
Though Mukaiyama reaction between a tris-silyl ketene

acetal and an aldehyde is less common than the reactions
involving bis-silyl and monosilyl species, it was investigated by
Bellassoued and co-workers,6,11,12 in the case of the
condensation of tris(trimethylsilyl)ketene acetal with a variety
of aldehydes in the presence of Lewis acids or bases. In
particular, in ref 12 they have reported on the reaction between
C,O,O-tris(trimethylsilyl)ketene acetal 1 and a variety of
aldehydes 2a−2h (aliphatic, vinylic, and aromatic), catalyzed
by HgI2 at room temperature and in toluene solutions. This
aldol reaction produces syn and anti β-(trimethylsiloxy)-α-
(trimethylsilyl)alkanoic acid silyl esters 3 in low diastereose-
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lectivity, of which the major diastereoisomer is 3 anti and the
minor is 3 syn (Scheme 1).
In this work, density functional theory (DFT) is employed to

describe this Mukaiyama condensation but in the absence of
catalyst. By determining the structural, electronic, and
thermodynamical properties of the reactants, transition states,
and products as well as by using reactivity criteria, we address
several issues, including (i) which SiMe3 group is migrating, (ii)
which product, syn or anti, is favored, (iii) how the presence of
one, two, and three silyl groups impacts the reactions, and (iv)
what are the differences with respect to the experimental HgI2
catalyzed reaction,12 and with respect to other investiga-
tions.4,7,8 The work is organized as follows: the details on the
computational procedure are described in the next section; the
results are then presented and discussed for the reactants, the

energies of reaction, and the concerted mechanism; finally, we
conclude.

II. COMPUTATIONAL METHODS

Equilibrium structures of reactants and products were
optimized at the DFT level using the M06-2X exchange−
correlation functional13,14 and the 6-31G(d) basis set. For the
products, the (2R,3R) absolute configuration is chosen to
represent the anti form whereas the syn form is represented by
the (2R,3S) configuration. For both products forms, several
starting structures were considered in the geometry optimiza-
tion to probe widely the potential energy surface and to locate
the different minima. These structures were obtained by
considering systematic rotations, by steps of 30°, around the
Cβ−Cγ bond. The transition states (TS) were localized and

Scheme 1. Mukaiyama Reaction between the C,O,O-Tris(trimethylsilyl)ketene Acetal 1 and Aldehydes 2a−2h (Called Reaction
1)

Table 1. Enthalpy (ΔH⊖, kcal mol−1), Entropy (ΔS⊖, cal K−1 mol−1), and Gibbs Enthalpy (ΔG⊖, kcal mol−1) of Reaction for the
Most Stable Conformers of the 3 anti and 3 syn Diastereomers, As Determined at the M06-2X/6-31G* Level (T = 298.15K; P =
1 bar) as Well as Representative Geometrical Parameters of the Products, the αSi−Cβ−Cγ−Oβ and βSi−Cβ−Cα−Oα Dihedral Angles
(deg) and the d(Oβ···Si) Distances (Å)

reaction ΔH⊖ ΔS⊖ ΔG⊖ αSi−Cβ−Cγ−Oβ βSi−Cβ−Cα−Oα d(Oβ···Si)

1 + 2a → 3a anti −36.79 −52.82 −21.04 178.3 83.0 4.153
1 + 2a → 3a syn −37.36 −52.42 −21.73 52.0 79.9 3.018
1 + 2b → 3b anti −36.03 −50.95 −20.84 179.7 83.0 4.150
1 + 2b → 3b syn −37.53 −52.69 −21.82 50.7 80.2 3.002
1 + 2c → 3c anti −37.19 −51.11 −21.95 178.5 83.8 4.154
1 + 2c → 3c syn −38.13 −52.62 −22.44 52.1 84.7 3.013
1 + 2d → 3d anti −37.31 −52.76 −21.58 178.7 82.9 4.149
1 + 2d → 3d syn −37.54 −52.69 −21.83 51.9 84.2 3.016
1 + 2e → 3e anti −34.74 −50.38 −19.72 180.8 85.9 4.150
1 + 2e → 3e syn −35.42 −55.11 −18.99 −42.3 111.6 3.034
1 + 2f → 3f anti −34.04 −52.05 −18.52 180.9 81.1 4.146
1 + 2f → 3f syn −34.82 −53.73 −18.80 −43.8 114.3 3.045
1 + 2g → 3g anti −39.10 −60.64 −21.02 181.7 88.5 4.164
1 + 2g → 3g syn −40.10 −56.21 −23.34 43.3 78.5 2.920
1 + 2h → 3h anti −39.24 −60.71 −21.14 182.7 89.6 4.164
1 + 2h → 3h syn −40.38 −64.30 −21.21 −39.8 110.3 3.037
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characterized using the same M06-2X/6-31G* level of
approximation. They possess a unique imaginary frequency.
Intrinsic reaction coordinate (IRC) calculations were then
performed to check that the TS are related to the
corresponding reactants and products. For all species, reactants,
products, and TS, the standard enthalpy (ΔH⊖, ΔH⧧), entropy
(ΔS⊖, ΔS⧧), and Gibbs enthalpy (ΔG⊖, ΔG⧧) were evaluated
(T = 298.15 K, P = 1 atm).
Several descriptors15−22 of the electronic structure and

reactivity were evaluated, including the energies of the highest
occupied molecular orbital (HOMO, εH) and of the lowest
unoccupied molecular orbital (LUMO, εL), the LUMO−
HOMO gap (gap = εLUMO − εHOMO), the electronegativity [χ =
−(εHOMO + εLUMO)/2], the chemical potential (μ = −χ), the
global hardness [η = (εLUMO − εHOMO)/2], the global softness
(S = 1/2η), the global electrophilicity (ω = μ2/2η), the
nucleophilicity index [N(X) = εHOMO(X) − εHOMO(TCE),
where tetracyanoethylene (TCE) is taken as reference], the
local electrophilicity of atom k [ωk = ωf k

+, where f k
+ = {q(k,N

+1) − q(k,N)}], and the local nucleophilicity [Nk = Nfk
−, where

f k
− = {q(k,N) − q(k,N−1)}]. q(k,N) is the Mulliken charge on

atom k of the neutral molecule containing N electrons whereas
the corresponding charges for the cation and anion are q(k,N−
1) and q(k,N+1), respectively. The ionization energy of 1 as
well as the electroaffinitives of 2a−2h were also calculated from
difference energy calculations, after evaluating the energies of
the cation and anion at the geometries of the neutral molecule.
Solvent effects (toluene) were taken into account both in the

geometry optimizations and in the calculations of the
thermodynamic state functions by using the integral equation
formalism (IEF) version of the polarizable continuum model
(IEF-PCM).23 Additional calculations were carried out with
acetone as solvent and in vacuo. All calculations were performed
using the Gaussian 09 package.24

III. RESULTS AND DISCUSSION
Reactants Properties. After the geometrical structures

were optimized, the descriptors of the reactants were calculated
(Table S1), which gives a first estimate of their reactivity. The
hardness (and softness) of 1 and 2a−2h are similar, which is in
favor of their interactions. The chemical potential of 1 (−2.65
eV) is larger than those of 2a−2h (from −3.95 to −4.69 eV),
confirming the transfer of electron from the C,O,O-tris-
(trimethylsilyl)ketene acetal 1 to the aldehydes 2a−2h. This
is consistent with (i) the higher HOMO energy of 1 (−7.10
eV) than those of 2a−2h (from −7.85 to −8.70 eV), with (ii)
the larger electrophillicity index of 2a−2h (from 1.56 to 3.01
eV) than 1 (0.77 eV), and with (iii) the smaller value of [ΔESA
= εHOMO(1) − εLUMO(2a−2h)] with respect to [ΔEAS =
εHOMO(2a−2h) − εLUMO(1)]. This indicates a preference of
interaction between the HOMO of the C,O,O-tris-
(trimethylsilyl)ketene acetal and the LUMO of the aldehyde
(Figure 1, Figure S1). This latter result is consistent with the
work of Wong and Wong.8

Then, the local nucleophilicity values for Cα and Cβ of 1
shows that the nucleophilic ionic addition (NIA) will take place
between the Cγ of the aldehyde and Cβ of the acetal, which has
a nucleophilicity index 2 times larger than the Cα. The
electroaffinities are negative for all the aldehydes. Still, these are
smaller (in absolute value) for the alkyl substituents [|EA| =
0.30 and 0.22 eV for 2g (R = isopropyl) and 2h (R = heptyl),
respectively], which also display the smallest electrophilicity
indices. On the contrary, the aromatic and vinylic aldehydes

have similar and quite large EA’s. The increasing order of the
EA’s is

< < < <

< < <

2 2 2 2 2

2 2 2

EA( h) EA( g) EA( f) EA( d) EA( b)

EA( a) EA( c) EA( e)

The smaller EA of the aldehydes with alkyl substituents than for
the aromatic and vinylic ones is associated with smaller
electronegativity, larger hardness, and smaller global electro-
philicity but the local electrophilicity on Cγ is similar to those of
the aromatic substituents and larger than these of the vinylic
ones.

Energies of Reaction. The enthalpies, entropies, and
Gibbs enthalpies of reactions are listed in Table 1 for the most
stable conformers of the 3 anti and 3 syn diastereoisomers. All
reactions are exothermic and exergonic, and they are
characterized by entropy reduction, owing to the formation
of an additional bond. Moreover, the formation of the anti
diastereoisomers is slightly less exothermic than for the syn
ones. The enthalpy of reaction is the largest (in amplitude) for
the alkyl substituents, with values ∼2 kcal mol−1 larger than
those of the aromatic substituents and ∼4 kcal mol−1 larger
than those of the vinylic ones. On the contrary, the entropies of
reactions are similar for the aromatic and vinylic substituents
and smaller than those of the alkyl substituents by about 8−10
cal K−1 mol−1. As a result, there are few variations among the
Gibbs enthalpies of reactions for the alkyl and aromatic
substituents, but their amplitudes are typically 2 kcal mol−1

larger than those of the vinylic ones. Analysis of these energies
at the light of the descriptors of Table 1 shows that there is no
fully consistent relationship with the molecular descriptors,
though the vinylic aldehydes have smaller local electrophilicities
and the aliphatic ones have the largest ΔESA.
The geometry of the most stable conformation of 3 anti and

3 syn was characterized by two dihedral angles (αSi−Cβ−Cγ−Oβ
and βSi−Cβ−Cα−Oα) as well as the distance d(Oβ···Si) (Table 1).
The 3 anti products always display larger d(Oβ···Si) distances
than 3 syn, the differences in the βSi−Cβ−Cα−Oα angle between 3
anti and 3 syn are generally small, whereas the differences in
αSi−Cβ−Cγ−Oβ angle are very important. Note that the
αSi−Cβ−Cγ−Oβ angle is in the antiperiplanair domain for 3 anti
{α ∈ [178.3°, 182.7°]} and in the synclinal domain for 3 syn
{|α| ∈ [39.8°, 52.1°]}.
These data on the energetics of the uncatalyzed Mukaiyama

aldol reaction between 1 and 2a−2h further substantiate the
role of the substituent, as pointed out by Wong and Wong.8

Indeed, in the latter study, considering a broad range of donor/
acceptor substituents on the trihydrosilyl enol ether (CH3,
NH2, OH, F, SH, and CHO) and on the formaldehyde (CH3,
CF3, NH2, F, CHO, COOCH3, CHCH2, and C6H5), ΔH⊖

was found to vary from −2.9 to −38.7 kcal mol−1 whereas the
energy barrier was from 7.2 to 31.3 kcal mol−1. In general,
acceptor/donor groups on the aldehyde reduce/increase the
barrier of activation and lead to larger/smaller exothermicity.
More precisely, the ΔH⊖(alkyl) < ΔH⊖(aromatic) <
ΔH⊖(vinylic) order results from donor character of the
aromatic and mostly of the vinylic groups. This order was
already observed for the model reactants of ref 7, but their
amplitudes are smaller as a result of the absence of an
additional OSiMe3 group in geminal position (vide inf ra).
Moreover, Denmark et al.4 reported that the rate of the
uncatalyzed aldol reaction was highly dependent on the
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spectator substituent on the silicon atom and on the geometry
of the ketene acetal.
Concerted Mechanism. The concerted mechanism of the

noncatalyzed Mukaiyama reaction between the C,O,O-tris-
(trimethylsilyl)ketene acetal 1 and aldehyde 2 involves the
migration of a SiMe3 group from the Oα or Oα′ oxygen of the
acetal to the Oβ oxygen together with the formation of the Cβ−
Cγ bond to obtain the syn and anti diastereoisomers of β-
(trimethylsiloxy)-α-(trimethylsilyl)alkanoic acid silyl esters 3
(Scheme 2). However, there are two SiMe3 groups that could
migrate on the oxygen of the carbonyl and one of the issues is
to determine which one is transferred. Indeed, the Oα−SiMe3
and Oα′−SiMe3 groups have different chemical environments
because the Oα′−SiMe3 group is on the same side as the SiMe3
group attached to Cβ whereas the Oα−SiMe3 one is on the
opposite site. The transition state of both pro-anti and pro-syn
forms, leading respectively to the anti and syn products, adopts
a boat conformation (Cβ−Cα−Oα−Si−Oβ−Cγ).

4,7,8 There are
two possible positions for the carbonyl, on the same or on the
opposite side to the Cβ−SiMe3, as characterized by two
dihedral angles, ΘSi−Cβ−Cγ−Oβ (position of the CγOβ carbonyl
with respect to CβSiMe3) and ØCα−Cβ−Cγ−Oβ (position of the
CγOβ carbonyl with respect to the CαCβ double bond). The
Burgi−Dunitz25 angle (αBD = αCβ−Cγ−Oβ) as well as the d1(Oβ···
Si), d2(Cγ···Cβ), and d3(Oα/Oα′···Oβ) distances are additional
descriptors of the transition states. The Ø and Θ angle values

enable to distinguish between four types of transition states
(Ta−Td, Scheme 3). Ta and Tb are pro-anti whereas Tc and Td

are pro-syn. Then, Ta and Td correspond to the situation where
the carbonyl and Cβ−SiMe3 are on the same side whereas they
are on opposite sides in Tb and Tc (Scheme 3). During the
concerted mechanism, the CγOβ carbonyl and the CαCβ double
bond are always on the same side, characterized by a
ØCα−Cβ−Cγ−Oβ angle (∈[13.7°, 72.4°]) in the synperiplanar or
synclinal domain. These synperiplanar and synclinal conforma-
tions correspond to small distances between the carbonyl
oxygen atom and the migrating SiMe3 group whereas
antiperiplanar conformations (not shown in Scheme 3)
would lead to excessive distances to allow SiMe3 migration.
Energies, thermodynamic state functions, and key geometrical
parameters of the transition states are listed in Table 2.
In the pro-anti case, Ta is characterized by smaller d1(Oβ···Si)

and larger d2(Cγ···Cβ) bond lengths than Tb. For the pro-syn
case, the situation depends on the nature of R and the
differences are smaller than for the pro-anti case. So, if R is
aromatic, Td is characterized by larger d1(Oβ···Si) and smaller
d2(Cγ···Cβ) bond lengths than Tc whereas if it is vinylic (or R =
heptyl), the opposite is observed. Finally, when it is an
isopropyl, both bond lengths are larger in the case of Tc.
Further analysis of the geometrical structures of the transition
states shows that both dihedral angles increase from Ta to Tb

whereas from Td to Tc, Ø decreases and Θ increases.

Figure 1. Relative energy positions and topologies of the frontier orbitals. The 2a aldehyde has been chosen. ΔESA = εHOMO(1) − εLUMO(2) and
ΔEAS = εHOMO(2) − εLUMO(1).

Scheme 2. Concerted versus Stepwise Mechanisms of the Noncatalyzed Mukaiyama Reaction
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In the case of the pro-anti route, due to severe steric
hindrance between the SiMe3 attached to the Cβ and the
methyls of the migrating SiMe3 group on the bow of the boat,
the activation energies (ΔE⧧, ΔH⧧, and ΔG⧧) are systematically
smaller for the Tb transition state forms than for the Ta ones,
for all kinds of substituents, so that the concerted mechanism
leading to the formation of the 3 anti diastereoisomers favors
the Tb transition state (synclinal). This corresponds to the
migration of the SiMe3 group attached to Oα to the Oβ oxygen
of the carbonyl. Similarly, the Tc transition states of the pro-syn
route are more stable than the Td ones so that the 3 syn
products result also from the migration of the SiMe3 group
attached to Oα. Nevertheless, the Tb−Ta activation energy
differences are always smaller than the corresponding Tc−Td
ones.
Pro-anti versus Pro-syn. For all substituents, the following

ordering of the transition state energies (E, H, and G) is
observed:

Δ < Δ < Δ < Δ≠ ≠ ≠ ≠syn anti anti syn(T , ) (T , ) (T , ) (T , )c b a d

so that globally, the syn diastereoisomers are favored over the
anti analogs. The smaller activation energies of the pro-syn (Tc)
transition state than the pro-anti (Tb) is not straightforward to
explain because in Tc the OβSi distance is smaller (closer to the
product) but the CγCβ distance is larger. Still, it is observed that
by going from Tb to Tc the Ø torsion angle decreases strongly
and accordingly the Oα···Oβ distance, leading to an increased
interaction between the frontier orbitals where the donor and
acceptor are in favorable position.26 In addition, αBD decreases
by about 1° from Tb to Tc. Moreover, because the energies of

the 3 anti products are also larger than those of the syn species,
the syn reaction path is below the anti reaction path (Figure 2).
Note also that there is a nice correlation between the ΔE⧧ and
ΔH⧧ amplitudes as well as between the ΔE⧧ and ΔG⧧

amplitudes. The kinetics of this reaction is in agreement with
the anti/syn ratio of other uncatalyzed Mukaiyama aldol
reactions, (i) between O,O-ketene acetal and aldehyde as
studied by Denmark et al.,4 of which the syn product was
obtained with high diastereoselectivity (93/7 to 99/1) and (ii)
between bis(trimethylsilyl)ketene acetals [(OSiMe3)2C
CHR] and benzaldehyde as studied by Bellassoued et al.,6 of
which the major diastereoisomer is syn and the minor is anti
(the percentage of syn products ranges from 62% to 67% for R
= Me, from 67% to 80% for R = Et, and from 80% to 84% for R
= iPr). On the contrary, there is an inversion of
diastereoselectivity with respect to the reaction catalyzed by
HgI2.

12 Similar diastereoselectivity inversions have also been
reported for Mukaiyama−Michael reactions due to catalysis by
graphite oxide27 and for hydroborations of acyclic allylic alcohol
derivatives catalyzed by catecholborane.28

Stepwise versus Concerted Mechanism. The preference
for the concerted mechanism over the stepwise mechanism
(Scheme 2) was studied by performing additional calculations
for the 2a aldehyde. The stepwise mechanism is characterized
by two transition states (TSs1 and TSs2). The first one
corresponds to a concerted but asynchronous (the C−O bond
forms later than the C−C bond) formal [2 + 2] cycloaddition
leading to the formation of an oxetane intermediate. The
second leads to the Cα−Oβ cleavage and the migration of the
SiMe3 group from the acetal to the oxygen of aldehyde. As
shown in Figure 3, TSs1 lies at higher energy (ΔE⧧ = 15.8 kcal
mol−1, ΔH⧧ = 17.6 kcal mol−1, ΔG⧧ = 35.2 kcal mol−1) than
the transition state of the concerted mechanism (TSc, ΔE⧧ =
11.4 kcal mol−1, ΔH⧧ = 12.9 kcal mol−1, ΔG⧧ = 31.0 kcal
mol−1). These results are in qualitative agreement with the
study of Wong and Wong8 on the uncatalyzed reaction
between formaldehyde and trihydrosilyl enol ether.

Effects of the SiMe3 Groups. Additional reaction profiles
were then characterized to highlight the role of the SiMe3
groups (Scheme 4). In reaction 2 the SiMe3 substituent
attached to Cβ is missing whereas in reaction 3 one of the
OSiMe3 has been removed. Finally, in reaction 4 both are
removed. ΔH of activation and of reaction, listed in Table 3,
highlight the minor role of the SiMe3 substituent (reaction 1
versus reaction 2) but the huge impact of the geminal OSiMe3
group that reduces the activation energy by a factor of 2 and
enhanced the exothermicity by about 60%. Additional
calculations not detailed here demonstrate that for these
simplified acetals the concerted mechanism is also favored over
the stepwise one with ΔΔH⧧ that increase up to 12 kcal mol−1

when the geminal OSiMe3 group is absent.
Solvent Effects. Wong et al.8 have shown that the

Mukaiyama reaction is generally favorable in solvents that do
not bear donating oxygen atoms, like in dichloromethane,
hexane, benzene, toluene, and acetonitrile. On the contrary, the
reaction is hampered or impossible in tetrahydrofuran, diethyl
ether, and N,N-dimethylformamide1,2,29−31 whereas Kitanosona
and Kobayashi have shown that the silyl enolate decomposes in
the presence of water, preventing also the reaction to occur.32

In this work, the explicit solute−solvent interactions are not
investigated but the dielectric constant effects are assessed by
using the PCM approach, which is an implicit solvation model.
In particular, the activation energies in vacuo for Tb and Tc

Scheme 3. Conformation Types (a−d) of the Pro-anti and
Pro-syn Transition States
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transition states as well as their differences are compared to
those calculated in toluene and in acetone (Table 4).
It is observed that (i) the ΔE⧧ activation energies increase

with the dielectric constant of the medium for both syn and anti

mechanisms by up to 2 and 3.6 kcal mol−1 in toluene and in
acetone, respectively, (ii) in the gas phase and in solution, the
Tc state remains more stable than the Tb state, keeping the syn/
anti ratio larger than 1, but that (iii) the ΔΔE⧧ differences
decrease slightly with the dielectric constant, demonstrating
that the diastereoselectivity of Mukaiyama reaction is slightly
reduced.

■ CONCLUSIONS
Theoretical investigations using density functional theory with
the M06-2X functional have been performed to unravel the
concerted mechanism of the uncatalyzed Mukaiyama aldol
reaction between C,O,O-tris(trimethylsilyl)ketene acetal 1 and
aldehydes 2 bearing alkyl, vinyl, or aromatic substituents. These

Table 2. Activation Energy (ΔE⧧, kcal mol−1), Activation Enthalpy (ΔH⧧, kcal mol−1), Activation Free Enthalpy (ΔG⧧, kcal
mol−1), and Activation Entropy (ΔS⧧, cal K−1 mol−1) As Evaluated with the IEFPCM/M06-2X/6-31G* Method (T = 298.15 K;
P = 1 bar, solvent = toluene) as Well as Representative Geometrical Parameters of the Products, the ΘSi−Cβ−Cγ−Oβ and
ØCα−Cβ−Cγ−Oβ Dihedral Angles (deg), the Burgi−Dunitz Valence Angle (αBD = αCβ−Cγ−Oβ) (deg), and the d1(Oβ···Si), d2(Cγ···Cβ),
and d3(Oα/Oα′··· Oβ) Distances (Å)

a

TS ΔE⧧ ΔΔE⧧ ΔH⧧ ΔΔH⧧ ΔS⧧ ΔG⧧ ΔΔG⧧ Ø Θ αBD d1 d2 d3 T

pro-3a anti-a 13.30 1.94 14.91 1.97 −60.00 32.80 2.23 17.7 251.9 107.9 2.082 2.212 2.474 a
pro-3a anti-b 11.36 0 (1.82) 12.94 0 (1.78) −60.64 31.02 0 (1.77) 56.3 180.0 107.5 2.312 1.956 2.574 b
pro-3a syn-d 14.62 5.08 16.29 5.13 −62.85 35.03 5.78 71.5 309.3 104.8 2.149 2.142 2.600 d
pro-3a syn-c 9.54 0 11.16 0 −60.67 29.25 0 29.2 155.9 106.3 2.097 2.148 2.434 c
pro-3b anti-a 13.98 1.76 15.33 1.72 −61.31 33.61 1.47 17.6 251.9 107.7 2.065 2.211 2.469 a
pro-3b anti-b 12.22 0 (1.88) 13.61 0 (1.89) −62.15 32.14 0 (2.21) 56.3 180.0 107.4 2.309 1.957 2.573 b
pro-3b syn-d 15.31 4.97 16.72 5.00 −64.26 35.88 5.95 71.6 309.3 104.6 2.128 2.142 2.594 d
pro-3b syn-c 10.34 0 11.72 0 −61.08 29.93 0 29.4 155.8 106.1 2.080 2.146 2.430 c
pro-3c anti-a 12.17 1.42 13.84 1.56 −62.35 32.43 1.81 17.1 250.3 108.7 2.140 2.165 2.474 a
pro-3c anti-b 10.75 0 (1.57) 12.28 0 (1.64) −61.51 30.62 0 (1.98) 56.1 179.9 108.1 2.389 1.911 2.596 b
pro-3c syn-d 14.18 5.00 15.70 5.06 −61.75 34.11 5.47 71.0 308.7 105.4 2.187 2.128 2.614 d
pro-3c syn-c 9.18 0 10.64 0 −60.37 28.64 0 27.2 154.0 106.8 2.117 2.133 2.431 c
pro-3d anti-a 13.31 2.26 14.92 2.43 −63.36 33.81 3.06 13.7 246.9 107.8 2.107 2.180 2.466 a
pro-3d anti-b 11.05 0 (1.12) 12.49 0 (1.09) −61.24 30.75 0 (1.65) 53.9 177.2 108.0 2.335 1.951 2.572 b
pro-3d syn-d 14.56 4.63 16.08 4.68 −61.58 34.44 5.34 70.2 307.7 105.3 2.156 2.140 2.601 d
pro-3d syn-c 9.93 0 11.40 0 −59.37 29.10 0 29.0 156.8 106.3 2.108 2.138 2.434 c
pro-3e anti-a 13.69 2.40 15.33 2.62 −62.12 33.85 3.66 19.4 252.1 108.0 2.083 2.177 2.457 a
pro-3e anti-b 11.29 0 (0.81) 12.71 0 (0.80) −58.63 30.19 0 (1.04) 44.7 168.1 108.0 2.209 2.043 2.497 b
pro-3e syn-d 14.93 4.45 16.56 4.65 −61.75 34.97 5.82 70.9 308.8 104.3 2.087 2.140 2.573 d
pro-3e syn-c 10.48 0 11.91 0 −57.82 29.15 0 34.1 162.1 106.7 2.102 2.123 2.431 c
pro-3f anti-a 13.11 1.25 14.70 1.26 −63.52 33.64 2.38 22.5 256.9 108.6 2.033 2.185 2.445 a
pro-3f anti-b 11.86 0 (0.82) 13.44 0 (0.90) −59.77 31.26 0 (1.86) 45.0 168.3 107.6 2.055 2.056 2.495 b
pro-3f syn-d 13.67 2.63 15.34 2.80 −63.89 34.39 4.99 72.4 309.6 104.0 2.049 2.144 2.563 d
pro-3f syn-c 11.04 0 12.54 0 −56.55 29.40 0 34.6 161.8 105.9 2.055 2.137 2.417 c
pro-3g anti-a 10.10 1.19 11.55 0.77 −62.85 30.29 1.10 20.3 243.8 108.4 2.142 2.200 2.475 a
pro-3g anti-b 8.91 0 (1.19) 10.77 0 (1.15) −61.78 29.19 0 (0.87) 58.2 179.8 108.0 2.392 1.912 2.597 b
pro-3g syn-d 14.30 6.58 16.24 6.62 −65.34 35.72 7.40 61.3 300.9 106.9 2.094 2.116 2.529 d
pro-3g syn-c 7.72 0 9.62 0 −62.72 28.32 0 24.6 155.0 105.5 2.100 2.164 2.443 c
pro-3h anti-a 10.48 1.44 12.20 1.46 −69.56 32.94 2.73 19.4 252.1 108.7 2.134 2.191 2.476 a
pro-3h anti-b 9.04 0 (1.51) 10.74 0 (2.43) −65.30 30.21 0 (2.07) 56.5 178.6 107.7 2.296 1.987 2.574 b
pro-3h syn-d 12.99 3.07 14.71 3.04 −64.13 33.83 3.78 70.7 308.9 103.9 2.138 2.180 2.587 d
pro-3h syn-c 7.47 0 8.31 0 −66.51 28.14 0 39.1 167.7 107.4 2.165 2.113 2.457 c

aColumns with ΔΔE⧧ (ΔΔH⧧ and ΔΔG⧧) give the differences between the two pro-anti and pro-syn cases. In parentheses are given the differences
between the most stable pro-syn and pro-anti species.

Table 3. Reaction and Activation Enthalpies (kcal mol−1) for
the Mukaiyama Reaction between Aldehyde 2a and
Simplified Acetals Derived from Compound 1 As Evaluated
with the IEFPCM/M06-2X/6-31G* Method (T = 298.15 K;
P = 1 bar)

reaction 1 reaction 2 reaction 3 reaction 4

ΔH⊖ −36.8 −37.5 −23.0 −23.2
ΔH⧧ 12.9 10.5 23.8 22.5
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DFT calculations show that (i) the 3 syn product is both the
kinetic and the thermodynamic product and that (ii) the
diastereoselectivity of the uncatalyzed reaction is larger than
observed for the reaction catalyzed by HgI2

12 and it is inverted
with respect to the latter. These calculations have substantiated
the fact that solvents with larger dielectric constants increase
the activation barrier but reduce the diastereoselectivity. They

have also confirmed the preference for the concerted reaction
over the stepwise reactions as well as the key role of the
OSiMe3 group in geminal on lowering the activation barrier and
increasing the energy of reaction. Moreover, the study of the
concerted mechanism highlights four types of cyclic transition
states (Ta, Tb, Tc, Td). The Tb conformation is the most stable
pro-anti transition state whereas Tc is a most stable pro-syn.

Figure 2. anti and syn reaction paths [IEFPCM(toluene)/M06-2X/6-31G(d)] for the concerted mechanism of the Mukaiyama reaction between
C,O,O-tris(trimethylsilyl)ketene acetal 1 and aldehyde 2a.

Figure 3. Energy profile [IEFPCM(toluene)/M06-2X/6-31G(d)] for the stepwise versus concerted mechanisms of the reaction between
compounds 1 and 2a.

Scheme 4. Mukaiyama Reactions between Aldehyde 2a and Acetals Derived from 1
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Both Tb and Tc correspond to the migration of the SiMe3 group
attached to Oα, i.e., on the opposite side to the SiMe3
substituent. Then, comparison between Tb and Tc as well as
between their corresponding product, 3 anti and 3 syn, leads to
conclude that, for all substituents, the syn reaction path is
located at lower energy (Gibbs enthalpy) than the anti reaction
path.
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