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Effects of a Sublethal and
Transient Stress of the
Endoplasmic Reticulum on the
Mitochondrial Population
KAYLEEN VANNUVEL, MARTINE VAN STEENBRUGGE, CATHERINE DEMAZY,
NOËLLE NINANE, ANTOINE FATTACCIOLI, MAUDE FRANSOLET, PATRICIA RENARD,
MARTINE RAES, AND THIERRY ARNOULD*
Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur

(UNamur), Namur, Belgium

Endoplasmic reticulum (ER) and mitochondria are not discrete intracellular organelles but establish close physical and functional
interactions involved in several biological processes including mitochondrial bioenergetics, calcium homeostasis, lipid synthesis, and the
regulation of apoptotic cell death pathways. As many cell types might face a transient and sublethal ER stress during their lifetime, it is thus
likely that the adaptive UPR response might affect the mitochondrial population. The aim of this work was to study the putative effects of a
non-lethal and transient endoplasmic reticulum stress on the mitochondrial population in HepG2 cells. The results show that thapsigargin
and brefeldin A, used to induce a transient and sublethal ER stress, rapidly lead to the fragmentation of the mitochondrial network
associated with a decrease in mitochondrial membrane potential, O2

•� production and less efficient respiration. These changes in
mitochondrial function are transient and preceded by the phosphorylation of JNK. Inhibition of JNK activation by SP600125 prevents the
decrease in O2

•� production and the mitochondrial network fragmentation observed in cells exposed to the ER stress but has no impact
on the reduction of the mitochondrial membrane potential. In conclusion, our data show that a non-lethal and transient ER stress triggers a
rapid activation of JNK without inducing apoptosis, leading to the fragmentation of the mitochondrial network and a reduction of O2

•�

production.
J. Cell. Physiol. 231: 1913–1931, 2016. � 2015 Wiley Periodicals, Inc.

The endoplasmic reticulum (ER) is a multifunctional organelle
that participates in various biosynthetic and signaling pathways,
of which the primary function is synthesis, folding, and quality
control of the proteins of the secretory pathway (Berridge,
2002;Groenendyk andMichalak, 2005). The ER is also themajor
site of Ca2þ storage in the cell and plays an important role in the
synthesis of cholesterol, steroids, and various lipids contributing
to various cell membrane structures (Baumann andWalz, 2001;
Fu et al., 2012). ER homeostasis is thus essential to maintain cell
function and survival and cells are extremely sensitive to
physiological conditions that disturb the normal ERenvironment
or demand an increase in protein synthesis, maturation, and
folding in the secretory pathway (Dufey et al., 2014; Lee and
Ozcan, 2014). For example, a physiological ER stress occurs in a
variety of normal cellular processes, such as the differentiationof
B lymphocyte (Gass et al., 2002; Cenci and Sitia, 2007), lipid
metabolism in the liver (Zheng et al., 2010; Wang and Kaufman,
2014), or in pancreatic b-cells involved in high-rate insulin
synthesis (Papa, 2012; Sun et al., 2015).

ER stress related to accumulation of unfolded proteins is
defined as a cellular state in which the capacity of the ER is
overwhelmed by a protein overload and/or a disruption of its
folding capacity (Hetz, 2012; Urra et al., 2013). Many
physiological and/or environmental perturbations including
accumulation of misfolded and aggregated proteins (Benyair
et al., 2011; Snapp, 2012), redox changes (Delic et al., 2012;
Landau et al., 2013), alterations in Ca2þ homeostasis (Sammels
et al., 2010), glucose deprivation (Iwawaki and Oikawa, 2013;
de la Cadena et al., 2014) or viral infection (Pineau et al., 2009)
are known to trigger the activation of a conserved adaptive
signaling pathway, called the er-unfolded protein response
(UPRer). This response involves signaling pathways activated by
transmembrane sensors at the luminal face of ER membrane
and initiation of a transduction cascade in attempt to restore
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cellular homeostasis (Walter and Ron, 2011). Three ER-
resident transmembrane proteins have been identified as
sensors of ER stress that initiate the UPRer:PERK (protein
kinase RNA-like endoplasmic reticulum kinase), IRE1 (inositol-
requiring kinase I), and ATF6 (activating transcription factor 6)
(for comprehensive and recent reviews see (Wakabayashi and
Yoshida, 2013; Brewer, 2014)). These sensors are usually
maintained in an inactive state by a major ER chaperone, BiP
(immunoglobulin heavy chain-binding protein)/Grp78
(Hamman et al., 1998). Under conditions of ER stress, BiP is
released from the ER sensors, allowing activation of the UPR
(Bertolotti et al., 2000). Both IRE1 and PERK homodimerize
upon release of BiP and undergo autophosphorylation, leading
to the production of active transcription factors, XBP-1, and
ATF4, respectively (Ma et al., 2002; Li et al., 2010). In addition,
ATF6 is transported to the Golgi where it is cleaved
proteolytically into an active transcription factor (Shen and
Prywes, 2004). XBP-1, AT4, and ATF6, in turn, activate
downstream target genes to restore ER homeostasis.
Depending on the severity and the duration of the stress, and
especially when homeostasis cannot be restored, the UPR
switches to induce cell death caused by either mitochondria-
dependent or -independent apoptosis (Urra et al., 2013;
Vannuvel et al., 2013). Mitochondria are essential organelles for
ATP production by oxidative phosphorylation, for the
synthesis of many important metabolites (amino acids,
steroids, phospholipids, . . .), the participation to the b-
oxidation of free fatty acids and the regulation of calcium
homeostasis (Duchen, 2004). Besides their role in cell
metabolism and survival, it is now well demonstrated that
mitochondria play a key role in the integration of cell death
signals (Regula et al., 2003; Bras et al., 2005).

Over the past few decade, the traditional view of the ER and
mitochondria as individual, separate and independent entities
has profoundly changed and it is now evident that both, the ER
and mitochondria, are highly dynamic interconnected
organelles that undergo continuous spatial and structural
reorganization affecting organelle functions (Lackner, 2014;
Westrate et al., 2015). Indeed, recent studies demonstrated
that organelle morphological changes have an effect on function
and could be involved in several pathologies such as type 2
diabetes, neurodegenerative disorders, and cardiovascular
diseases (Galloway and Yoon, 2013; Burte et al., 2015; Iqbal and
Hood, 2015; Kucharz et al., 2013).

More specifically, both organelles establish physical tight
contacts throughout their networks, called the mitochondria-
associatedmembranes (MAMs), involved in Ca2þ exchange and
in the transfer of metabolites including lipids, regulating
biological functions, such as lipid homeostasis, mitochondrial
metabolism, and apoptotic signaling (Marchi et al., 2014; Vance,
2014). Thus, the ER-mitochondria contacts build up a platform
orchestrating inter-organelle communication that is important
for the coordination of cellular functions. In fact, it is now
established that ER wraps around mitochondria and mediates
mitochondrial division at contact sites controlling
mitochondrial dynamics (Friedman et al., 2011; Ohta et al.,
2014). Given the importance of these close interactions, a
stress induced in the ER could have an impact on the biology of
mitochondria allowing prosurvival adaptations or initiation of a
proapoptotic response, depending on the duration and/or
intensity of the ER stress. Although, so far, the vast majority of
the studies in the field were focused on chronic and severe ER
stress shown to trigger mitochondria-dependent apoptosis
(Hom et al., 2007; Baumgartner et al., 2009; Yen et al., 2012),
recently, Bravo and co-workers demonstrated that, during the
early adaptive phase of a sustained severe ER stress, the
number of ER-mitochondria contact points increases whereas
both networks are re-localized toward the perinuclear area
(Bravo et al., 2011). These authors also suggest that increasing

ER-mitochondria connections promote Ca2þ release from the
ER to mitochondria, a process known to stimulate
mitochondrial metabolism by the activation of Ca2þ-regulated
dehydrogenases involved in the tricarboxylic acid (TCA) cycle.
The bioenergetic capacity of the cell would thus be improved,
as well as the energetic resources contributing favorably to the
cellular adaptation to ER stress (Bravo et al., 2011).

However, the putative mechanisms involved in the
maintenance of cell survival during a mild non-lethal and
transient ER stress are not yet fully understood. In this study, the
effects of a mild and transient ER stress on mitochondrial
bioenergetics and dynamicswere analyzed in amodel of cultured
humanhepatoma cells.Moreprecisely,weused twowell-known
ER stress inducers: thapsigargin (TG), an inhibitor of the SERCA
pumps, inhibiting the entry of calcium in the ER lumen leading to
ER stress due to a depletion of calcium (Lytton et al., 1991) and
brefeldin A (BFA), an inhibitor of the transport of proteins from
the ER to the Golgi apparatus causing an accumulation of
proteins within the ER (Fujiwara et al., 1988; Slomiany et al.,
1993). We provide evidence that a mild-ER stress induced by
these agents, activates the UPR without triggering apoptosis.
Wealso show that a non-lethal stress provokes fragmentationof
the mitochondrial network accompanied with a decrease in the
mitochondrial membrane potential, mitochondrial O2

•�

production and respiration, suggesting an adaptation of the cell
to the applied stress. These changes are reversible as a recovery
of mitochondrial functions back to normal is observed after a
resting period during which cells are no longer exposed to the
ER stress. Finally, the mitochondrial network fragmentation and
reductionofO2

•� production in response to theERstressmight
be dependent on the rapid and transient activation of JNK, as the
inhibition of this Ser/Thr kinase prevents these changes without
affecting the ER stress-induced reduction of the mitochondrial
membrane potential.

Materials and Methods
Cell culture and reagents

Human hepatoma cells (HepG2 cells) were cultured in Dulbecco’s
modified Eagle’s medium (DMEM, Gibco, Life Technologies,
Carlsbad,CA) supplementedwith 10%of FBS (fetal bovine serum) in
a 5%CO2 humidified 37°C incubator. At 70% confluence, cellswere
trypsinized and subcultured in 24-, 12-, and 6-well culture plates or
25 or 75 cm2 culture flasks, according to the experimental or
maintainance needs of cell culture (Corning, Inc., New York, NY).

Cells were seeded and 24 h later, ER stress was induced with
50 nM thapsigargin (TG, Sigma–Aldrich, Saint-Louis, MO) or
500 nM brefeldin A (BFA, B7651, Sigma–Aldrich) for the indicated
incubation times. In some experiments, to allow a recovery period,
cells were first pre-incubated with TG or BFA for 6 or 10 h before
replacing the media by complete fresh medium. JNK
phosphorylation inhibition was performed by pre-incubating cells
for 1 h with 40mM SP600125 (Tocris Bioscience, Bristol, UK).

LDH release

TG and BFA toxicity was assessed bymonitoring LDH release using
a Cytotoxicity Detection kit (Roche Molecular Biochemical, Basel,
Switzerland) according to the manufacturer’s protocol. The day
prior to the assay,HepG2cellswere seeded in12-well culture plates
(Corning) at a density of 75,000 cells per well. The cells were
incubated with different concentrations of TG or BFA for 6 or 10 h,
respectively (chosen as the maximum incubation times that do not
display cell death markers, data not shown). At the end of the
incubations, fresh completemediumþ 10%FBSwas added for 42or
38 h for TG- or BFA-treated cells, respectively. The culture media
from incubated cells were centrifuged (Centrifuge 5415R 5,
Eppendorf, Hamburg, Germany) for 5min at 2,000 rpm to pellet the
cell fragments and apoptotic bodies. Adhering and pelleted cells
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were then lysed in PBS containing 10% Triton X-100 (Sigma–
Aldrich). A positive control was used by incubating cells with 50mM
etoposide for 16 h followed by a recovery period of 32 h. The
percentages of LDH release were calculated as: LDH activity in
media (1)þ LDH activity in pelleted cells (2)/(1)þ (2)þ LDH
activity of remaining adhering cells in the wells. Results are
presented in percentages of release as means� SD for three
independent experiments (n¼ 3).

Western blotting analysis

The abundance of proteins and their modified form was analyzed
using fluorescence-based Western blot detection (Li-Cor
Biosciences, Lincoln, NE) (Gingrich et al., 2000; Lewis et al., 2003).
HepG2 cells were seeded at a density of 1.106 cells in 25 cm2

culture flasks and the next day, cells were incubated in the
presence of 50 nM TG or 500 nM BFA. Total cell lysates were
prepared in DLA (Dye Labeling Amino acid) buffer (7M urea, 2M
thiourea, 4% CHAPS, 30mM Tris; pH 7.4) supplemented with
Complete Protease Inhibitor Cocktail (Roche, Basel, Switzerland)
and 4% phosphatase inhibitor cocktail (25mM Na3VO4, 250mM
4-nitrophenylphosphate, 250mM glycerophosphate, 125mM
NaF). Protein concentration was determined using the 660 nm
Pierce assay kit (Thermo Fisher Scientific, Waltham, MA). An
amount of 15mg of total cell lysates were resolved by gel
electrophoresis using 4–12% Bis-Tris precast gels (Novex, Life
Technologies). The proteins were then electrotransferred
(semi-dry device) for 2 h onto PVDF (PolyVinylDieneFluoride,
Amersham, GE Healthcare Europe, GmbHDiegem, Belgium)
membranes (Merck Millipore, Bellerica, MA). Unspecific binding
sites were blocked by incubating the membranes for 1 h at room
temperature with blocking solution (Li-Cor Odyssey Infrared
Imaging System blocking buffer diluted twice in PBS).Western blot
analysis was performed using the primary antibodies listed in
Table 1, secondary antibodies coupled to Infrared dyes (1:7500, Li-
Cor Biosciences) and by detecting infrared fluorescence (Odyssey
scanner, Li-Cor Biosciences). The fluorescence intensity of the
bands corresponding to the protein of interest was quantified
using the Odyssey V3.0 application software (Li-Cor Biosciences)

and normalized by the fluorescence intensity of the bands
corresponding to the immunodetection of a-tubulin or b-actin
used as loading control.

Transient transfection and luciferase assay

HepG2 cells were transiently co-transfected with a luciferase
reporter plasmid driven by the promoter region of BiP and a
plasmid containing a reporter gene coding for b-galactosidase
generously given by Prof. Mori (Yoshida et al., 2001). Cells were
seeded in 12-well plates (Corning) at a density of 250,000 cells/
well. Cells were co-transfected for 4 h with 0.5mg of luciferase
reporter plasmid, 0.75mg of XBP1 plasmid, and 0.75mg of DNA
reporter plasmid using Superfect (Qiagen, Hilden, Germany). After
24 h post-transfection, cells were then incubated in the presence
of 50 nM TG for 6 h or 500 nM BFA for 10 h. At the end of the
incubation, medium was replaced by fresh DMEM medium
containing 10% FBS for 18 or 14 h for TG- or BFA-treated cells,
respectively. Luciferase activity was then measured by
luminescence using a spectrofluorimeter. Positive and negative
controls were cells co-transfected with a plasmid containing the
luciferase reporter gene and an expression plasmid coding for an
inactive (unspliced) or active form (spliced) of XBP1 (Yoshida et al.,
2001). Results are expressed as relative luminescence units (RLU)
normalized for b-galactosidase activity and represent the
means� SD for three independent experiments (n¼ 3).

Analysis of mitochondrial morphology

Cells were seeded in Lab-Tek II culture chambers (Nalge Nunc
International, Lab-Tek Brand Products, NY) at a density of 20,000
cells per chamber. After 24 h, cells were incubated in the presence
or in the absence of 50 nMTGor 500 nMBFA for different periods.
At the end of the incubation time, media were removed and cells
were washed with KRH buffer (Krebs–Ringer Hepes
buffer:125mM NaCl, 5mM KCl, 1.3mM CaCl2, 1.2mM MgSO4,
25mM Hepes, pH 7.4). Cells were then incubated for 30min at
37°C with 100 nM Mitotracker1 Green FM probe (Molecular
Probes, Life Technologies) diluted in KRHþ 2% BSA. Live cells

TABLE 1. List of antibodies used

Target Manufacturer Reference Dilution

a-tubulin Sigma–Aldrich T5168 1:7500
b-actin Sigma–Aldrich A5441 1:7500
b-subunit ATP synthase Molecular Probes, Life Technologies A21350 1:1000
BiP/Grp78 BD Biosciences 610979 1:1000
Cytochrome c BD Pharmingen 556433 1:1000
Drp1 BD Biosciences 611113 1:1000
eIF2a Cell Signaling 9722 1:500
Fis1 Sigma-Aldrich HPA017430 1:1000
HADHA Abcam ab54477 1:1000
IRE-1 Novus Biological NB100-2324 1:1000
JNK Cell Signaling 9252 1:1000
K63Ub Cell Signaling 5621 1:1000
Mff Sigma–Aldrich HPA010968 1:5000
Mfn1 Sigma–Aldrich WH0055669M4 1:1000
Mfn2 Abcam ab50838 1:1000
Mfn2 Santa Cruz Biotechnology sc-100560 1:1000
MiD49/SMCR7 ProteinTech 16413-1-AP 1:2000
MiD51/SMCR7L ProteinTech 20164-1-AP 1:2000
MnSOD2 Merck Millipore 06-984 1:1000
mtHSP70 Enzo Life Sciences ALX-804-077 1:1000
Opa1 BD Biosciences 612607 1:1000
Phospho-eIF2a Cell Signaling 3597 1:200
Phospho-IRE-1 Novus Biological NB100-2323 1:500
Phospho-JNK Cell Signaling 9251 1:500
TOM20 BD Biosciences 612278 1:5000
TOM40 Santa Cruz Biotechnology sc-11414 1:1000
PARP-1 BD Pharmigen 552597 1:1000
Caspase 3 Cell Signaling 9662 1:1000
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were observed using confocal microscopy (TCS SP5 II, Leica
Microsystems, Wetzlar, Germany). The length of the
mitochondrial fragments was determined by calculating the aspect
ratio (AR, defined as the major axis/the minor axis of
mitochondrion) of mitochondrial objects in the entire cell sections
using the Image J 64 software according to De Vos and Sheetz
(2007). The degree of branching of the mitochondrial network was
also calculated by measuring the form factor (defined as [Pm

2]/
[4pAm]), where Pm is the length of the mitochondrial outline and
Am is the area of the mitochondrion fragment (Mortiboys et al.,
2008). Analyses were performed on at least 100 events/cell, n� 40
cells from three independent experiments.

Mitochondrial membrane potential and mitochondrial
O2

•� quantifications by flow cytometry

Mitochondrial membrane potential was assessed with TMRE
(tetramethylrhodamine ethyl ester, perchlorate; Molecular
Probes, Life Technologies) fluorescent probe in HepG2 cells
incubated in the presence or in the absence of 50 nMTGor 500 nM
BFA. Cells were seeded in 12-well culture plates (Corning, Inc.) at
a density of 250,000 cells/well. At the end of the incubation with
the ER stressors or after a recovery period of 18 or 10 h, cells were
incubated for 30min at 37°C with 25 nM TMRE. Cells were then
rinsed with ice-cold PBS, trypsinized using trypsin-EDTA (Gibco,
Life Technologies), centrifuged and resuspended in 500ml of
Hepes buffer (10mM Hepes; pH 7.4, 150mM NaCl, 5mM KCl,
1mM MgCl2.6H20). Cells were then rapidly analysed by flow
cytometry with a FACScalibur (BD Biosciences), using the FL2-H
channel. Data were processed using the BD CellQuestTM Pro
software. MCFR (Mean Channel Fluorescence Ratio) was
determined for each condition by calculating the ratio between the
mean fluorescence intensity and the mean value of
autofluorescence intensity measured for the corresponding
unlabelled cells, used as negative controls. Results are expressed as
relative fold change to the corresponding control and represent
means� SD for three independent experiments (n¼ 3).

The relative production of mitochondrial superoxide anion
radicals was measured in HepG2 cells incubated as described
above. At the end of the incubations, cells were loaded for 20min
at 37°C with 5mM MitoSOXTM Red fluorescent specific dye
(Molecular Probes, Life Technologies) diluted in complete HBSS
(Hanks’s Balanced Salt Solution) buffer (0.137M NaCl, 5.4mM
KCl, 0.25mMNa2HPO4, 0.44mMKH2PO4; pH 7.4, 1.3mMCaCl2,
1.0mM MgSO4, 4.2mM NaHCO3). When indicated, antimycin A-
treated cells (10mM for 10min) were used as positive controls and
FCCP-treated cells (20mM for 20min) as negative controls. Cells
were then rinsed with PBS, trypsinized using trypsin-EDTA
(ethylenediaminetetraacetic acid) (Gibco, Life technologies),
centrifuged, and resuspended in 500ml of HBSS buffer. Cells were
analysed by flow cytometry with a FACScalibur (BD Biosciences),
using the FL2-H channel and data were processed using the BD
CellQuestTM Pro software. MCFR was determined for each
condition by calculating the ratio between the MitoSox mean
fluorescence intensity and the mean value of autofluorescence
intensity measured for the corresponding unlabeled cells, as a
negative controls. Results are expressed as relative fold change to
the corresponding control and represent means� SD for three
independent experiments (n¼ 3).

Mitochondria respiration assays

The extracellular flux Analyser XF96 (Seahorse Bioscience, North
Billerica, MA) was used to measure the oxygen consumption rate
(OCR) as described previously (Wanet et al., 2014) in HepG2 cells
incubated with 50 nM TG or 500 nM BFA. The day prior to the
assay, cells were seeded in an XF cell mito stress 96-well
microplate at a density of 20,000 cells/well. A XF-cell mito stress
test (Seahorse Bioscience) was performed according to the

manufacturer’s instructions and using the following chemical
concentrations: 2mM oligomycin, 0.5mM FCCP (carbonyl cyanide
4-(trifluoromethoxy) phenylhydrazone), 1mM antimycin A, and
1mM rotenone. Once measurements were performed, cells were
lysed in 0.5NNaOH andOCRmeasurements were normalized to
the protein content of the well. Basal respiration was calculated by
substracting the non-mitochondrial oxygen consumption (OCR
following the addition of both antimycin A and rotenone) to the
basal OCR. For each condition, eight technical replicates were
performed in two independent experiments.

ATP content determination

Cells were seeded in 6-well culture plates (Corning, Inc.) at a
density of 500,000 cells/well. After 24 h, cells were incubated in the
presence or in the absence of 50 nM TG or 500 nM BFA for
different periods and followed by a recovery period. ATP content
was measured using a luciferin–luciferase reaction assay. Cells
were permealized for 10 s with 500ml of ATP-releasing agent
(Sigma–Aldrich). The solution was recovered and diluted 800
times in pure water before being incubated with an ATP assay mix
solution (Sigma–Aldrich) at a 1:1 ratio (vol/vol). Relative light units,
based on emitted photons were quantified using a luminometer
(FB12 Luminometer from Berthold Detection Systems), and
results were normalized for protein content determined by Folin
assay.

Mitochondrial matrix calcium concentration
measurement

Mitochondrial matrix calcium concentration ([Ca2þ]mt) was
measured in HepG2 cells with the Rhod-2 AM fluorescent probe
(R1245MP, Molecular Probes, Life Technologies). Cells were
seeded in a black 96-well Imaging plate (353219, BDBiosciences) at
a density of 7,500 or 5,000 cells/well for short or long periods of
time, respectively. After 24 h, cells were incubated in the presence
or not of 50 nM TG or 500 nM BFA diluted in fresh complete
medium for different incubation and recovery periods. For the last
60min, 5mM Rhod-2 AM probe was added to the medium. Cells
were rinsed with complete medium (DMEMþ 10% FBS) and
fluorescence was measured with a BD pathway 855 bioimager (BD
Biosciences). To measure the mitochondrial calcium
concentration, micrographs of labeled cells were taken and the
image was segmented in such a way that each cell represents a ROI
(region of interest). Fluorescence was then measured in each ROI
and the mean calculated for each well for each condition. The
results were expressed as fluorescence (AU, Arbitrary Units)
representing means� SD. For each condition, eight technical
replicates were performed in three independent experiments.

Gene expression and real-time RT-qPCR (reverse
transcription-quantitative PCR)

HepG2 cells were seeded at a density of 1.106 cells in 25 cm2

culture dishes (Corning, Inc.). The next day, cells were incubated in
the presence or not of 50 nM TG or 500 nM BFA for different
periods of time as described before. Total RNA was extracted
usingQIAGENRNeasy mini kits andQIAcube equipment (Qiagen,
Venlo, the Netherlands) according to the manufacturer’s
instructions. An equivalent of 1mg total RNA was then reverse
transcribed into mRNA using the cDNA first strand synthesis kit
Transcriptor First Hand cDNA synthesis kit (Roche Applied
Science, Pensberg, Germany). RT-qPCR was performed using
SYBR Green PCR Master mix (Roche), and the Fis1-F, 50-
AATGATGACATCCGTAAAGGC-30 (Integrated DNA
Technologies, Coralville, IA) and 23 kD-F, 50-
GCCTACAAGAAAGTTTGCCTATCTG-30 (Integrated DNA
Technologies) primers (designed using Primer Express 1.5
software) used at the optimal concentration in an ABI 7900 HT
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Fast Real Time PCR System (Applied Biosystem, Thermo Fisher
Scientific Leusden, The Netherlands). The process starts by a
10min 95°C hold stage, followed by the PCR stage (40 cycles at
95°C for 15 sec and 60°C for 1min) and ends by the melting curve
stage (95°C for 15 sec, 60°C for 1min, and 95°C for 15 sec) by
using an ABI PRISM 7000 SDS thermal cycler (Applied Biosystems).

All results were normalized to the mRNA abundance of the 23
kD used as the reference gene. Relative mRNA abundance was
quantified using the threshold cycle method (2-DDCtmethod) and
expressed relatively to control cells (de Longueville et al., 2003).

Statistical analyses

Data from at least three independent experiments is presented as
means� SD and the significance of differences betweenmeans was
evaluated by two-way ANOVA, using the Holm–Sidak tests as
determined by the software SigmaStat (Jandle Scientific, Erkrath,
Germany). Differences between means were only considered
statistically significant when P< 0.05 or less.

Results
Set up of conditions in which TG and BFA activate UPR
without inducing apoptosis

In order to study the impact of a sublethal ER stress on the
mitochondrial population, we first set up a model in which UPR
activation could be activated without major signs of cell death.
HepG2 cells were thus incubated with different concentrations
of thapsigargin (TG) or brefeldin A (BFA), two widely used ER
stressors (Lee et al., 2012; Moon et al., 2012; Foldi et al., 2013;
Win et al., 2014) and we assessed the cytotoxicity by a LDH
release assay (Fig. 1A). TG induces LDH release in a
concentration-dependent way ranging between 7% (25 nM)
and 15% (100 nM), whereas the positive control,
corresponding to HepG2 cells treated with 50mM etoposide,
reached 20.5%. When cells are incubated with BFA (50–
500 nM), no toxicity was observed as the percentages of LDH
release remained under 5% whatever the concentration tested
(Fig. 1A). We next looked for the activation of ER stress
markers in HepG2 cells incubated with TG (Fig. 1B) or BFA
(Fig. 1C). The phosphorylation of the translation initiation
factor eIF2a (phospho-eIF2a) is slighlty increased in cells
incubated for 6 h with TG at least at the highest concentrations,
but the phosphorylation was transient and not maintained after
a 18 h recovery period (Fig. 1B). The phosphorylation of eIF2a
is also more pronounced in cells incubated with BFA for 10 h
than in TG-treated cells, but again, barely dectable at the end of
a 14 h recovery period (Fig. 1C). The abundance of BiP was also
increased in cells incubated with TG (Fig. 1B) or BFA (Fig. 1C)
but only after the recovery periods. However, even if we
observe an increase in the abundance of BiP/Grp78 protein in
cells exposed to a recovery period, we were unable to
determine whether it is due to the recovery period itself or if it
would have been observed for a prolonged incubation time
with themolecule as this could not be testedwithout increasing
dramatically the toxicity. The overexpression of the chaperone
seems thus delayed in TG- and BFA-exposed cells (Fig. 1B and
C). To confirm the activation of the UPR in cells exposed to TG
or BFA, HepG2 cells were transiently co-transfected with a
luciferase reporter plasmid driven by the promoter of BiP
(Yoshida et al., 2001) (Fig. 1D). We observed an increased
activation of the BiP promoter in cells incubated with BFA from
50–500 nM (Fig. 1D). The activation measured in TG-treated
cells was more pronounced and even stronger than in the
positive control cells co-transfected with a plasmid containing
the luciferase reporter gene and an expression plasmid coding
for an active form (spliced) of XBP1 (Fig. 1D).

Based on these results, we selected 50 nM TG for 6 h and
500 nM BFA for 10 h, followed or not by a recovery period

without stressor, to induce sublethal ER stress. We further
checked the absence of apoptotic markers in cells incubated in
these conditions by assessing the status of cleaved PARP-1 and
cleaved caspase-3 (Supporting Information Fig. S1A) as well as
DNA fragmentation (Supporting Information Fig. S1B). Even if
we observed a very slight cleavage of caspase-3 in cells
incubated 6 h with TG followed by 18 h of recovery, for the
other conditions, we did not observe any cleavage of neither
caspase-3 nor PARP-1 and were unable to detect any increase
in DNA fragmentation inHepG2 cells incubatedwith either TG
or BFA, whether the markers were analyzed readily after the
incubation with the stressor or after a recovery period up to
2 days after the beginning of the incubation with the ER
stressor. Cells incubated with 50mM etoposide for 16 h and
maintained 2 days before the analysis of the markers showed
caspase-3 and PARP-1 cleavage as well as a strong DNA
fragmentation (Supporting Information Fig. S1A and B).

As it has been reported that some UPR markers might be
very rapidly activated (Prostko et al., 1993; DuRose et al.,
2006), we also studied the abundance of BiP and the
phosphorylated forms of either eIF2a (P-eIF2a) or IRE1 (P-
IRE1) in cells incubated for shorter periods with the ER
stressors. We observed a statistical increase in P-eIF2a in cells
incubated with BFA as soon as 1 h after the addition of the
molecule and the phosphorylation was sustained for up to 10 h
but disappeared after the recovery period (Fig. 2A). In these
conditions, the abundance of the phosphorylated form of IRE1
was significantly increased after a long period (10 h) of
incubation with BFA, whereas the abundance of BiP in BFA-
treated cells was only increased after the recovery period
(Fig. 2A). The effect of TG on the activation of UPR markers
was faster and stronger as a phosphorylation of eIF2a and IRE1
was already found after 30min of incubation (Fig. 2B). The
abundance of P-eIF2a decreased progressively over time
whereas P-IRE1 gradually increased for up to 6 h of incubation
and was completely lost after the recovery period. The
abundance of BiP was only increased during the recovery
period in TG-treated cells (Fig. 2B). In conclusion, these results
indicate that it is possible to activate a mild and transient UPR
stress response with TG or BFA that triggers rapidly the
phosphorylation of eIF2a and IRE1 and is compatible with cell
survival. However, in these conditions, as shown in Figures 1
and 2, it takes longer to detect an increase in the abundance of
BiP, a step reported to be necessary for the cells to cope with
the stress (Fu et al., 2007; Lin et al., 2007; Walter et al., 2015).

Sublethal ER stress induces mitochondrial fragmentation

It is generally accepted that induction of a severe and prolonged
ER stress triggers apoptosis and has a dramatic impact on the
mitochondrial population (Deniaud et al., 2008; Zhang et al.,
2008; Cosentino and Garcia-Saez, 2014). However, the effect
of a transient and sublethal ER stress on mitochondria is still
largely unknown. As mitochondrial modifications observed
before apoptosis are usually dealing with mitochondrial
dynamics disturbances and, more specifically, fragmentation
(Hom et al., 2007; Cosentino and Garcia-Saez, 2014; Iqbal and
Hood, 2014), we first decided to analyze the putative effect of a
non-lethal ER stress on mitochondrial morphology.
Mitochondrial network morphology was assessed by
fluorescence confocal microscopy in cells incubated or not
with the ER inducers, stained with 100 nMMitoTracker Green,
a fluorescent probe that specifically stains mitochondria
regardless of themembrane potential (Pendergrass et al., 2004)
(Fig. 3A). Control cells display an elongated and interconnected
mitochondrial network whereas cells incubated with TG or
BFA display a more fragmented mitochondria population with
accumulation of rod-like structures. Quantitative analysis of
these observations demonstrated a highly significant decrease
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Fig. 1. Induction of the Unfolded Protein Response (UPR) using thapsigargin and brefeldin A. HepG2 cells were incubated with 25–100nM
thapsigargin (TG) or with 50–500nM brefeldin A (BFA) for 6 or 10h, respectively. LDH release assay was assessed after 42 or 38 h of recovery
following the incubations with TG or BFA, respectively. Etoposide 50mM for 16h followed by a recovery period of 32 h was used as a positive
control. Results represent means�SD for three independent experiments and are expressed in percentages of release. NS: not significant; ��,
���: significantly different from CTL cells with P< 0.01 or <0.001, respectively. B: Cells were incubated with 25–100nM TG for 6h followed or
not by a recovery period and the abundance of UPR markers (phospho-eIF2a and BiP) was analyzed by Western blot. Signal intensity was
quantified and normalized to the abundance of a-tubulin (loading control) and results are expressed in fold change, n¼ 1. C: Cells were
incubated with 50–500nM BFA for 10h followed or not by a recovery period and the abundance of UPR markers (Phospho-eIF2a and BiP) was
analyzed by Western blot. Signal intensity was quantified and normalized to the abundance of a-tubulin (loading control) and results are
expressed in fold change, n¼ 1. D: In some conditions, HepG2 cells were co-transfected with a luciferase reporter plasmid driven by the
promoter region of BiP and a plasmid containing a reporter gene coding for b-Galactosidase. Cells were incubated with 25–100nM TG or
50–500nM BFA for 6 or 10 h and followed by a recovery period of 14 or 18 h, respectively. Luciferase activity was measured by fluorescence.
CTL� and CTLþ conditions represented negative and positive controls for which cells were co-transfected with a plasmid containing the
luciferase reporter gene and an expression plasmid coding for an inactive (unspliced) or an active form (spliced) of XBP1. These cells used as
negative and positive controls were thus transfected but not exposed to TG or BFA. Results are expressed as relative luminescence units
(RLU) normalized for b-Galactosidase activity and represent the means�SD for three independent experiments (n¼ 3).
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in the the elongation of mitochondria (aspect ratio, P< 0.01 or
0.001) and in mitochondrial branching (form factor, P< 0.001),
in TG- or BFA-treated cells (Fig. 3B). We also have to notice
that the slight but highly significant increase in fragmentation of
the mitochondria is a very rapid phenomenon that occurs
within the first 30min of incubation with the stressors, and is

transiently prolonged during the recovery periods as illustrated
in Figure 3. However, when cells treated with TG for 6 h or
BFA for 10 h are allowed to recover for longer periods of time
(66 and 62 h, respectively), the morphology of mitochondria is
back to normal (data not shown). Although we do not have the
explanation for the prolonged changes of mitochondria

Fig. 2. Early UPR activation after TG- or BFA-induced ER stress. A: Cells were incubated with 500 nM BFA for 0.5, 1, 2, or
10 h or for 10 h followed by a 14 h recovery period. B: Cells were incubated with 50 nM TG for 0.5, 1, 2, or 6 h or for 6 h
followed by a 18 h recovery period. A and B: The abundance of several UPR markers (Phospho-eIF2a , phospho-IRE1 and
BiP) was analyzed by Western blot. Signal intensity was quantified and normalized to the abundance of a-tubulin (loading
control). Results are expressed in fold change and represent means �SD (n ¼ 3).
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morphology in response to transient sub-lethal ER stress
inducers, kinetic and dynamic aspects of molecular effectors
controlling fusion and fission events might be taken into
account in the delayed response observed on mitochondria
morphology. As a positive control, cells were pre-incubated for
30minwith 20mMFCCP, an uncoupling agent known to induce

a strong fragmentation of the mitochondrial network in HeLa
and CV1 cells (Pletjushkina et al., 2006) and thus a lower aspect
ratio and form factor (Fig. 3B). These observations allowed us
to conclude that even a short, non-lethal ER stress has an
important effect on mitochondrial morphology, reflected by an
increase in mitochondria fragmentation.

Fig. 3. Sublethal ER stress induces mitochondrial fragmentation. A: Representative confocal micrographs of mitochondrial morphology
displayed after staining with 100nM Mitotracker Green in HepG2 cells incubated in the presence or not of 50 nM TG or 500nM BFA for
different periods of time (0.5, 1, 2, and 6 or 10h, followed or not by a recovery period of 18 or 14h, respectively). FCCP at 20mM was used for
30min as a positive control for inducing mitochondrial fragmentation. B: The length or the degree of branching of the mitochondrial
fragments was characterized by determining the Aspect Ratio (AR) or the Fom factor (FF) on micrographs using the ImageJ 64 software as
described in the Materials and Methods section. Results are expressed as aspect ratio and represent means�SD (at least 100 events/cell,
n� 40 cells from three independent experiments). ��, ���, or $$$: significantly different from CTL cells with P< 0.01 or <0.001, respectively.
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Sublethal ER stress affects mitochondrial functions

Whether mitochondrial fragmentation is a cause or a
consequence of apoptosis is still under debate (Breckenridge
et al., 2003; Karbowski et al., 2004; Homet al., 2007). However,
it is well demonstrated that fragmentation of the mitochondrial
population is accompanied with changes in mitochondrial
membrane potential and in mitochondrial Ca2þ loading,
suggesting mitochondrial dysfunctions.

We first analyzed, byWestern blot, the abundance of several
mitochondrial proteins that exert various mitochondrial
functions such as mt-HSP70 (translocation and folding of
imported proteins), the b-subunit of ATP synthase (oxidative
phosphorylation), HADHA (hydroxyacyl-CoA
dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA
hydratase) (fatty acid b-oxidation), or SOD2 (superoxide
dismutase 2) (antioxidant activity) in HepG2 cells incubated
with 50 nM TG or 500 nM BFA for 6 or 10 h, followed by a
recovery period of 42 or 38 h, respectively, but no effect on the
abundance of these proteins could be detected, nomatter what
the condition of interest (Supporting Information Fig. S2).

As it was demonstrated that, during the adaptive response
to ER stress, modifications of mitochondrial bioenergetics
could be detected before apoptosis (Bravo et al., 2011), we
next decided to analyze the putative impact of a sublethal ER
stress on mitochondrial membrane potential, respiration and
ATP content (Fig. 4A–C).

First, the mitochondrial membrane potential was analyzed
by flow cytometry on cells treated with 50 nM TG or 500 nM
BFA and loaded with 25 nM TMRE. As shown in Figure 4 A, the
mitochondrial membrane potential is rapidly (from 30min of
incubation) and significantly decreased in cells incubated in the
presence of TG while the reduction of mitochondrial
membrane potential is only observed later in BFA-treated cells.
After the recovery period, it is important to emphasize the fact
that a lower mitochondrial membrane potential is still
observed for BFA-treated cells (14 h of recovery) while the
membrane potential is back to normal in cells incubated with
TG after 18 h of recovery. As a positive control, cells have been
incubated with FCCP, a protonophore, that uncouples
mitochondrial respiration from ATP production (Luvisetto
et al., 1987) triggering a strong decrease in the mitochondrial
membrane potential (Fig. 4A).

To investigate the impact of a non-lethal and transient TG-
or BFA-induced ER stress on mitochondrial respiration, we
examined the real-time oxymetric changes (mitochondrial
oxygen consumption rate in time [OCR]) using a Seahorse
XF96 bioenergetic analyzer. OCR was measured in basal
condition, after the addition of oligomycin A (an ATP synthase
inhibitor) in order to evaluate the coupling efficiency of the
respiratory chain, in the presence of FCCP (to evaluate the
spare repiratory capacity of cells), and with a combination of
antimycin A and rotenone (inhibitors of mitochondrial
complexes III and I, respectively). All these conditions were
performed in order to calculate and substract the non-
mitochondrial oxygen consumption from measurements
(Supporting Information Fig. S3A and B) (Brand and Nicholls,
2011). We found that the basal respiration was rapidly but
transiently decreased in TG-treated cells (50 nM) when
compared with control cells (Fig. 4B). Indeed, after a 6 h
treatment, OCRwas back to normal and even increased after a
recovery period of 18 h. Similarly, basal respiration was
decreased in cells incubated for 1 h with 500 nM BFA, while the
oxygen consumption in cells treated for 10 h is increased and
still slightly increased after a 14 h recovery period (Fig. 4B).
Moreover, the coupling efficiency, representing the fraction of
the basal respiration that is used for ATP production presented
the same pattern (data not shown). Together, these results
demonstrate that, rapidly after the initiation of a non-lethal and

sublethal ER stress, cells seem to reduce oxygen consumption
while, when adapted to the ER stress or during recovery, cells
have a more efficient OXPHOS system. In addition to theOCR
assessment, we also analyzed the ECAR (extracellular
acidification rate), but no differences between control versus
TG- or BFA-treated cells could be observed over the time
(Fig. 4B). We also measured cellular ATP content in cells
treated with TG or BFA, but no changes could be observed in
the ATP content in BFA-treated cells while a significant
increase in the ATP content was observed only in cells
incubated in the presence of TG for 6 h followed by a recovery
period of 18 h (Fig. 4C). Cells exposed to a non-lethal and
transient ER stress do not see their ATP content decreased, an
observation that could be explained by either the maintenance
of ATP production, a compensating glycolytic activation
(unlikely as the acidification of the extracellular media is not
observed) or the adjustment and reduction of the ATP-
dependent processes preventing ATP consumption and thus
sparing ATP content.

Effects of a sublethal ER stress on mitochondrial calcium
concentration [Ca2þ]mt and mitochondrial superoxide
anion radicals (mt O2

•�) production

Because a reduced mitochondrial membrane potential might
affect the mitochondrial Ca2þ buffering capacity and/or
mitochondrial mtO2

•� production (Eom et al., 2010; Joshi and
Bakowska, 2011), we first quantified the mitochondrial matrix
calcium concentration [Ca2þ]mt, using the fluorescent Rhod-2
probe (Fig. 5A). A significant increase in the [Ca2þ]mt in cells
exposed to 50 nM TG was observed even after the recovery
period while no change could be detected in [Ca2þ]mt in BFA-
treated cells (Fig. 5A). We also measured the cytosolic calcium
concentration in HepG2 cells treated for 1, 5, and 10min with
50 nM TG or 500 nM BFA and pre-loaded with Rhod-3, a
fluorescent probe used to capture rapid changes in cytosolic
calcium concentration and quantified the fluorescence
intensity in a BD pathway TM 855. As expected, we observed
that the free cytosolic calcium concentration ([Ca2þ]c) is
rapidly increased in TG-treated cells while no increase and
even a slight decrease in [Ca2þ]c is found in BFA-treated cells
(data not shown).

We next quantified the mitochondrial production of
mtO2

•� in TG- or BFA-treated cells using the MitoSOXTM

fluorescent dye (Fig. 5B). We found that the production/
abundance of mtO2

•� is lower in TG-treated cells (Fig. 5B).
The rapid and significant reduction of mtO2

•� detection is
correlated with the reduction in mitochondrial membrane
potential observed for HepG2 cells exposed to TG (Fig. 4A). In
BFA-treated cells, a significant decrease in mtO2

•� production
was also observed but the decrease was less severe and only
observed after a longer incubation period (1 h vs. 30min for
TG) (Fig. 5B). As positive and negative controls, cells were
incubated for 15min with 10mM antimycin A, an inhibitor of
the complex III of the respiratory chain known to induce
mtO2

•� production (Chen et al., 2003) or for 30min with
20mM FCCP, a mitochondrial uncoupler known to reduce
mtO2

•� production in vitro and in vivo (Caldeira da Silva et al.,
2008; Guimaraes et al., 2012) (Fig. 5B).

Sublethal ER stress induces mitochondrial fragmentation
but does not depend on changes in the abundance of
proteins involved in fusion/fission mechanisms

In order to get a better insight in the mechanisms involved in
mitochondrial fragmentation caused by a mild ER stress, we
studied the abundance of the different keyplayers described to
regulate the dynamics of the mitochondrial network (Mishra
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Fig. 4. Sublethal ER stress affects mitochondrial functions. A: The mitochondrial membrane potential was analysed in HepG2 cells incubated
with 50nM TG or 500nM BFA for different periods of incubation, followed or not by a recovery period, using the specific mitochondrial
membrane potential probe TMRE. Cells were stained or not (to allow autofluorescence determination from cells without dye) with 25nM
TMRE for 30min and fluorescence was analysed by flow cytometry. Results are expressed as MCFR and are presented as means�SD (n¼ 3).
NS: not significant; ���: significantly different from CTL cells with P< 0.001. B: OCR changes in response to oligomycin, FCCP, and antimycin
A in combination with rotenone were used to calculate the basal respiration in HepG2 cells treated with 50nM TG or 500nM BFA for
different periods of incubation, followed or not by a recovery period. Data is presented as average OCR in pMoles/min.mg (n¼ 2 independent
experiments, eight wells for each condition). C: The ATP content was determined in HepG2 cells incubated with 50nM TG or 500nM BFA for
different periods of incubation, followed or not by a recovery period. The ATP content was estimated using the luciferin–luciferase reaction
assay as described in the Materials and Methods section. The ATP content, expressed relatively to the control cells, is presented as
means�SD (n¼ 3). NS: not significant; ��: significantly different from CTL cells with P< 0.01.
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and Chan, 2014; Roy et al., 2015). The abundance of Fis1
(Fig. 6A–C) and Drp1 (controlling fission events), and Mfn1,
Mfn2, and Opa1 (regulating fusion events) was quantified by
Western blotting and RT-qPCR. The analyses revealed no
changes in the total abundance of mitochondrial fission
proteins (Fis1, Drp1) or fusion proteins (Mfn1, Mfn2 andOpa1)
in HepG2 cells incubated with TG (Fig. 6A and Supporting
Information Fig. S4A). In addition, no changes at the mRNA
level of these fission and fusion effectors were observed (data
not shown). In BFA-treated cells, we only observed a significant
difference in the abundance of Fis1 protein for cells incubated
for 10 h followed by a 14 h recovery period (Fig. 6B and
Supporting Information Fig. S4B)while a significant difference at
themRNA level is already observed after a 10 h incubation with
themolecule (Fig. 6C). Based on these results, we hypothesized
that mitochondrial fragmentation observed in BFA-treated
cells might result from a fission mechanism rather than from a

lack of fusion events. Because the mechanism of mitochondrial
fission could be due to the recruitment of cytosolic Drp1 at the
outer mitochondrial membrane by Fis1 (Yu et al., 2005), we
wondered whether Drp1 could be differentially targeted to
mitochondria in cells incubated with the ER-stress inducers
even in the absence of a change in total Drp1 abundance. To
test this hypothesis, we looked for a putative co-localization
between Drp1 and Fis1. Semi-quantitative analysis of co-
localization (using the ImageJ 64 software) in cells incubated
with BFA and immunostained for these proteins revealed no
change in the recruitment of Drp1 by Fis1 (Supporting
Information Fig. S5A and B). These results suggest that
increased mitochondrial fragmentation in ER-induced stress
cells is unlikely to be the consequence of an increased
recruitment of Drp1 at the OMM. While several post-
translational modificiations, such as phosphorylation of Ser 616
(Qi et al., 2011; Strack et al., 2013; Cho et al., 2014; Yu et al.,

Fig. 5. Sublethal ER stress affects mitochondrial calcium concentration [Ca2þ]mt and mitochondrial O2
•� (mtO2

•�) production. A: The
mitochondrial calcium concentration was measured in HepG2 cells incubated with 50nM TG or 500 nM BFA for different periods of
incubation, followed or not by a recovery period, using the specific Rhod-2 AM probe. In the last 60min of incubation, cells were stained with
5mM Rhod-2 AM and fluorescence was measured with a BD pathway 855 bioimager. Results are expressed as Fluorescence (AU) and
represent means�SD (n¼ 3). NS: not significant; ���: significantly different from CTL cells with P< 0.001. B: The mtO2

•� production was
assessed in HepG2 cells incubated with 50nM TG or 500 nM BFA for different periods of incubation, followed or not by a recovery period,
using the specific mitochondrial MitoSOXTM Red dye. Cells were stained or not (to allow autofluorescence determination from cells without
dye) with 5mM MitoSOXTM Red dye for 20min. Fluorescence was measured by flow cytometry. As a positive control, cells were incubated
with 10mM antimycin A for 10min while cells incubated with 20mM FCCP for 20min were used as a negative control. Results are expressed as
fluorescence MCFR and are presented as means�SD (n¼ 3). NS: not significant; ��, ���: significantly different from CTL cells with P< 0.01 or
with P< 0.001, respectively.
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2011) or Ser 637 (Chang and Blackstone, 2007; Cereghetti
et al., 2008) have been identified to control the function of
Drp-1 in mitochondria fragmentation, we could not observe
any changes in the phosphorylation status of Drp1 on these
two residues in HepG2 cells incubated with TG or BFA (data
not shown).

In order to determine whether Fis1 plays a role in the
fragmentation of the mitochondrial network in cells incubated
with the ER-stress inducers, we silenced the expression of Fis1
using a siRNA approach. Western blotting analysis revealed a

strong decrease in the abundance of Fis1 protein in HepG2
cells 24 h post-transfection with a pool of four specifics siRNAs
(siFis1) when compared with a control pool of siRNA (siRF)
(Supporting Information Fig. S6A). However, the inhibition of
Fis1 expression did not reverse the mitochondrial
fragmentation observed in TG- or BFA-treated cells
(Supporting Information Fig. S6B and C).

As Fis1 does not seem to play a role in the fragmentation
observed in HepG2 cells exposed to ER-stress inducers, we
next decided to study the abundance of the other fission actors

Fig. 6. Effects of a sublethal ER stress on the abundance of major regulators of mitochondrial dynamics. A: The abundance of Fis1 was
determined by fluorescenceWestern blot analysis on 15mg of clear cell lysates prepared from HepG2 cells incubated in the presence or in the
absence of 50 nM TG (A) or of 500nM BFA (B) for 6 or 10h, respectively, followed or not by a recovery period. Fluorescent signal intensity was
quantified and normalized to the abundance of b-actin (loading control). Results are expressed in fold change and represent means�SD
(n¼ 3) (A) (n¼ 4) (B). NS: not significant; �: significantly different from CTL cells with P< 0.05. C: Total RNA was extracted from HepG2 cells
incubated with 500nM BFA for 10h and followed by a recovery period, reverse transcribed, and amplified by real-time RT-qPCR in the
presence of Fis1 primers and SYBR green. 23 kDa was used in the calculation as a reference gene for data normalization. Results are expressed
in fold change and represent means�SD (n¼ 3), � or ���: significantly different from CTL cells with P< 0.05 or <0.001, respectively.
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that could interact with Drp1, such as Mff, Mid49, and Mid51 as
it has been recently reported that in eukaryotic cells, Fis1 might
not be the major effector of fission (Otera et al., 2010; Palmer
et al., 2013). Because these proteins are known to be anchored
in the OMM, we performed Western blotting analyses on
mitochondria-enriched fractions, expecting a change in the
abundance of these proteins (Supporting Information Fig. S7).
However, no changes in the mitochondrial abundance of these
proteins could be found in BFA-treated cells when compared
with control cells. As no changes in the abundance of these
proteins was observed, we did not look further for their
possible co-localization with Drp1.

Involvement of JNK phosphorylation in ER stress-induced
changes of mitochondrial O2

•� content and morphology

Several signaling pathways have been reported to link ER stress
and mitochondrial dependent cell death pathways (Vannuvel
et al., 2013). Among them, the IRE-1-TRAF2-ASK1-JNK
pathway has recently been shown to impair mitochondrial
respiration and decrease mtO2

•� production triggering
apoptosis by a mechanism dependent on the interaction with
Sab (SH3 homology associated BTK binding protein) (Win
et al., 2014).

As shown in Figure 2, we observed a rapid and strong
phosphorylation of IRE1 in cells treated with TG (Fig. 2A) and a
moderate phosphorylation of IRE1 in BFA-treated cells
(Fig. 2B). Therfore, we analyzed, by Western blot, the
abundance of the phosphorylated 46 and 54 kDa forms of JNK
in lysates of cells incubated or not with 50 nM TG or 500 nM
BFA for different incubation times followed or not by a
recovery period of 18 or 14 h, respectively (Fig. 7A and B). A
strong and rapid phosphorylation of JNKwas observed for cells
incubated with TG (Fig. 7A) that perfectly correlates with the
rapid and strong activation of the IRE1 pathway (Fig. 2A). A less
strong and more transient phosphorylation of JNK is also
observed in cells incubated with BFA (Fig. 7B).

To assess the involvement of JNK phosphorylation on ER
stress-induced mitochondrial morphological and functional
modifications, we pre-treated the cells for 1 h with 40mM
SP600125, a well described JNK inhibitor (Bogoyevitch and
Arthur, 2008). In these experimental conditions, a complete
inhibition of JNK phosphorylation was observed (data not
shown).We then evalutated the effects of the JNK inhibitor on
the changes in mitochondrial membrane potential,
mitochondrial O2

•� production, and morphology in cells
treated with the ER stressors (Fig. 8A–C, respectively). No
effect of JNK inhibition on the decrease of mitochondrial
membrane potential could be observed in cells treatedwith TG
while a slight (but significant) reduction was found for cells
treated with BFA (Fig. 8A). Importantly, the inhibition of JNK
seems to limit the decrease in mitochondrial O2

•� production
in cells incubated with TG or BFA. In cells treated with BFA,
even if the decrease in mtO2

•� content is less severe, the
recovery is almost complete when JNK phosphorylation is
inhibited while the JNK inhibitor only slightly (by 10–20%), but
significantly, reduces the decrease in mtO2

•� production in
TG-treated cells (Fig. 8B). These results are in agreement with
data previously obtained by Lee showing that inhibition of JNK
phosphorylation with SP600125 is able to increase mtO2

•�

production in cells exposed to DNA damage (Lee et al., 2010).
Finally, in order to determine whether JNK phosphorylation

has an impact on the fragmentation of mitochondria in cells
exposed to a non-lethal and transient ER stress, we analysed
the effect of JNK inhibition in cells exposed to TG or BFA on
themorphology of the organelle (Fig. 8C). The quantification of
the aspect ratio of mitochondrial network in cells treated with
TGor BFA revealed a significant increase in the aspect ratio and
thus, a reduced mitochondrial fragmentation, when cells were

also incubated with the JNK inhibitor. Altogether, these results
show a correlation between the reduced mtO2

•� production
and the increased fragmentation of mitochondria and suggest
that both biological responses are under the control of
activated JNK in HepG2 cells exposed to a transient and non-
lethal ER stress.

Discussion

In this study, we demonstrated that a sublethal and transient ER
stress provokes the fragmentation of the mitochondrial
network accompanied with perturbations of some
mitochondrial functions that could be, at least partly, JNK-
dependent. Over the past decade, evidence has accumulated
demonstrating that the mitochondrial population exhibits
functional and morphological changes in response to
endoplasmic reticulum stress associated with several chronic
diseases such as type 2 diabetes or neurodegenerative diseases
(Lindholm et al., 2006; Papa, 2012). However, these few studies
were dealing with severe ER stress leading to mitochondrial
alterations that trigger apoptosis (Hom et al., 2007; Deniaud
et al., 2008; Grimm, 2012). Recent evidence shows that an
intimate molecular communication does exist between ER and
mitochondria at the MAM contact sites, favoring molecular
exchanges under stressing conditions (Arruda et al., 2014;
Grimm, 2012). For example, while in the early phase of UPR,
calcium buffered by mitochondria seems crucial in the attempt
to reestablish calcium homeostasis in the cell during the
adaptive ER response, transfer of Ca2þ from ER to
mitochondria is also essential in inducing mitochondria-
dependent cell death in prolonged responses to ER stress
(Bravo et al., 2011). UPRer can take place in normal cellular
developmental processes that increase the demand for protein
folding capacity of the ER as observed for instance during B-
lymphocyte differentiation into plasma B-cells that secrete
large amounts of immunoglobulins (Gass et al., 2002; Cenci and
Sitia, 2007). Pancreatic b-cells, due to insulin synthesis and
secretory activity, are also highly exposed and known to be
particularly sensitive to ER stress (Laybutt et al., 2007; Song
et al., 2008). However, differentiating/or differentiated cells are
equipped with stringent checkpoint mechanisms to elicit rapid
adaptive responses and face the ER stress by increasing their ER
volume and the expression of UPR targets including the ER
chaperones BiP and Grp94 as well as the ERAD actors for
degradation of unfolded proteins (Calfon et al., 2002; Gass
et al., 2002; Iwakoshi et al., 2003).

Besides cell signaling that favors or inhibits adaptive UPR
during cell adjustment to a sublethal and transient ER stress,
metabolism and more specifically mitochondrial adjustment
might also help cells to cope with mild and non-lethal ER
stressing conditions. The first line of evidence supporting the
participation ofmitochondria to this process came from a study
showing that mitochondrial metabolism is stimulated during
the adaptive phase of the ER stress (Bravo et al., 2011), a
phenomenon that depends crucially on physical interactions
between ER and mitochondria favoring Ca2þ transfer between
both organelles (Bravo et al., 2011).

In this study on HepG2 cells, we analyzed the effect of a
mild and transient ER stress induced by TG or BFA that does
not lead to apoptosis (as assessed by the absence of cleavage
of caspase-3, PARP-1, and DNA fragmentation) on the
mitochondrial population. We show that, in HepG2 cells
incubated with 50 nM TG or 500 nM BFA, the abundance of
phospho-eIF2a, phospho-IRE1, and BiP increases evidencing
the activation of the three UPR uptstream sensors even if the
intensity and time-course of activation are different (Figs. 1
and 2). In addition, the activation of the transcription factor
sXBP1 was also observed in cells exposed to TG or BFA
(Fig. 1D).

JOURNAL OF CELLULAR PHYSIOLOGY

S U B L E T H A L E R S T R E S S A N D M I T O C H O N D R I A 1925



We next studied the impact of a non-lethal ER stress on
mitochondrial bioenergetics (mitochondrial membrane
potential, OCR and ATP content) and observed different
responses (in terms of magnitude and time-course) to the
stress induced by either TG or BFA.

TG, an irreversible inhibitor of the SERCA pumps, is widely
used at high concentration (1–5mM) to study the pathways
involved in ER stress-induced apoptosis by a mechanism that

would involve either JNK/p38MAPK triggering the subsequent
activation of the calpain/caspase-12 pathway (Huang et al.,
2014) or apoptosis triggered via a reduction of the
mitochondrial membrane potential, an increase in the mtO2

•�

production leading to the opening of the MPTP (Deniaud et al.,
2008; Zhang et al., 2008).

In this study, HepG2 cells incubated in the presence of TG
responded rapidly and strongly by decreasing the

Fig. 7. ER stress-induced phosphorylation of JNK. A: The abundance of the phosphorylated form of JNK was analyzed by Western blot on
15mg of clear cell lysates prepared from HepG2 cells incubated in presence of 50 nM TG (A) or 500nM BFA (B) for different incubation times
and followed or not by a recovery period. Signal intensity was quantified and normalized to the abundance of b-actin (loading control). Results
are expressed in fold change and represent means�SD (n¼ 3). NS: not significant; �, ��, or ���: significantly different from CTL cells with
P< 0.05; <0.01, <0.001, respectively.
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Fig. 8. Inhibition of JNK phosphorylation with SP600125 restores basal functions and morphology of mitochondria after an ER stress.
A: The mitochondrial membrane potential was analyzed in HepG2 cells pre-incubated in the presence of 40mM SP600125 for 1 h and then
incubated with 50 nM TG or 500 nM BFA for different period using the mitochondrial membrane potential probe TMRE. Cells were stained
or not (to allow auto-fluorescence determination from cells without dye) with 25 nM TMRE for 30min and fluorescence was analyzed by
flow cytometry. Results are expressed as MCFR and are presented as means�SD (n¼ 3). NS: not significant; $: significantly different from
appropriate CTL cells with P< 0.05; ���, ###, or $$$: with P< 0.001. B: The mtO2

•� content was assessed in HepG2 cells pre-incubated in
the presence of 40mM SP600125 for 1 h and then incubated with 50 nM TG or 500 nM BFA for different periods of time using the
mitochondrial MitoSOXTM Red dye. Cells were stained or not with 5mM MitoSOXTM Red dye for 20min. Fluorescence was measured by
flow cytometry. Results are expressed as fluorescence MCFR and are presented as means�SD (n¼ 3). NS: not significant; $: significantly
different from appropriate CTL cells with P< 0.05; �� or $$: P< 0.01 and ���, ###, or $$$: P< 0.001. C: The length (or Aspect Ratio, AR) of
the mitochondrial fragments was analyzed in HepG2 cells pre-incubated in the presence of 40mM SP600125 for 1 h and then incubated with
50 nM TG or 500 nM BFA for different periods using the probe Mitotracker Green. The AR was determined on micrographs using the
ImageJ 64 software as described in the Materials and Methods section. Results are expressed in Aspect ratio and represent means�SD (at
least 100 events/cell, n� 40 cells from three independent experiments). NS: not significant; � or #: significantly different from appropriate
CTL cells with P< 0.05; ��: P< 0.01; ��� or $$$: P< 0.001.
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mitochondrial membrane potential, reducing the mtO2
•�

production and respiration and by increasing the matrix
calcium concentration without inducing apoptosis (Figs. 4 and
5). These effects are reversible as they were no longer
observed after a recovery period. Indeed, after an 18 h resting
period, the basal respiration and the ATP content were
increased in TG-treated cells, meaning that cells faced the
stress, relying even more on OXPHOS to produce ATP after
the stress. BFA exerted milder effects on mitochondrial
functions as only a slight decrease in the respiration (assessed
by real time OCR) and mtO2

•� production were observed at
the early incubation time points. In addition, in BFA-treated
cells, while the mitochondrial respiration is slightly increased
after a recovery period, it does not have any impact on global
ATP content while a TG-treatment does (Fig. 4C). Moreover,
not only is the effect of the BFA-induced stress milder but some
changes on mitochondrial parameters are delayed as we
detected a decrease in mitochondrial membrane potential only
in HepG2 cells incubated with BFA for 10 h and after the
recovery period (Figs. 4 and 5). Finally, contrary to TG, BFA did
not affect the mitochondrial matrix Ca2þ concentration
(Fig. 5A) (Deniaud et al., 2008).

It is important to emphasize that, in our experimental
conditions, we observed a decrease in the mitochondrial
membrane potential associated with a decrease in the mtO2

•�

detection while in studies using high concentrations of ER
stressors triggering apoptosis, a decrease in the mitochondrial
membrane potential is usually associated with an increase in
ROS production (Choi et al., 2010; Wang and Welsh, 2014).

These observations could be explained by the activation of a
mild uncoupling that lowers the mitochondrial membrane
potential as a possible strategy for cell adaptation and
protection against ROS production and oxidative stress
(Murphy, 2009). These authors proposed that an increase in
mitochondrial membrane potential (hyperpolarization) would
lead to an increase in electron leak from the electron transport
chain (ETC) and thus to a higher production of superoxide
radical anion and other ROS-derivatives (Murphy, 2009). On
the contrary, a mild uncoupling increases the flux of electrons
in the ETC as well as the oxygen consumption, leading to a local
decrease in oxygen concentration and mitochondrial proton
motive force, thus decreasing mitochondrial ROS production.
This mechanism could explain how a reduced mitochondrial
membrane potential is associated with a lower mitochondrial
ROS production (Brand et al., 2004; Mailloux and Harper,
2011). Activation of this mechanism could thus be seen as a
protective adjustment against a mild and non lethal ER stress.

Taken together, these results show that a mild and
transient ER stress affects several functional parameters of
mitochondria keeping the severity and time-course of
modifications compatible with cell survival, preventing
apoptosis. Because a sustained ER stress can induce apoptosis
and because apoptosis is often accompanied by
morphological changes of the mitochondrial network such as
fragmentation (Breckenridge et al., 2003; Hom et al., 2007),
we measured the reticulation status of the mitochondrial
network in HepG2 exposed to a mild ER stress (Fig. 3A and
B) and indeed observed a rapid fragmentation of the network
in cells exposed to either TG or BFA.

To unravel the underlying mechanisms in this mitochondrial
fragmentation, we assessed the abundance of the actors
involved in the regulation of mitochondrial morphology. So far,
in eukaryotes, several proteins have been identified as
regulating those events. Among them, Mfn1 and Mfn2 are two
GTPases involved in the fusion of the OMM (Koshiba et al.,
2004). Fusion of the IMM and maintenance of the cristae is
ensured by the Opa1 GTPase (Song et al., 2009; Mishra et al.,
2014). Mitochondrial fission in mammals is mainly mediated by
Drp1, a cytosolic GTPase that can be recruited to the OMM

and potentially binds to four mitochondrial receptor proteins:
Fis 1, MFF, MiD49, and MiD51 (Loson et al., 2013; Palmer et al.,
2013). We first checked the abundance of all these actors in
total cell extracts (Fig. 6 and Supporting Information Fig. S4) or
in mitochondria-enriched fractions (Supporting Information
Fig. S7), but we could not see any changes in samples prepared
from cells incubated with TG (Fig. 6A and Supporting
Information Fig. S4A) or BFA (Supporting Information Fig. S4B),
except a strong increase in the abundance of Fis1 in BFA-
treated cells after a 14 h of recovery (Fig. 6B and C). Because
Fis1 could recruit Drp1 to trigger mitochondrial fission, we
also analyzed the co-localization of these two proteins in cells
incubated in presence of BFA (Supporting Information Fig. S5A
and B) but no change in the recruitment of Drp1 by Fis1 was
observed. Moreover, it is unlikely that the increased
expression of Fis1 plays a significant role in mitochondrial
fragmentation observed in cells exposed to mild ER stress as
silencing of Fis1 (Supporting Information Fig. S6B andC) did not
reverse the mitochondrial fragmentation observed in BFA- or
TG-treated cells. We, therefore, focused our attention on
some putative post-translational mechanisms involved in
fragmentation known to be independent on changes in the
abundance of the mitochondrial dynamics actors. Indeed,
besides its role in mitochondrial fusion, Mfn2 is also present at
the contact points between ER and mitochondria (de Brito and
Scorrano, 2008; Garcia-Perez et al., 2011). We hypothesized
that a mislocalization of this protein would weaken, at least
partially, the physical interactions between ER and
mitochondria, disturbing the communication between the two
organelles, leading to mitochondrial dysfunction. Mfn2 is
known to be K63-polyubiquitinylated by MITOL, a
mitochondrial ubiquitin ligase (Sugiura et al., 2013). This non-
degradative polyubiquitinylation regulates the formation of
mitochondria-ER bridges at the MAM junctions (Sugiura et al.,
2013). We thus performed immunoprecipitations of Mfn2 on
mitochondria-enriched fractions from cells incubated or not
with BFA and observed the presence of K63-linked
polyubiquitin chains coupled to Mfn2. However, no change in
the abundance of these K63-linked polyubiquitin chains was
observed in BFA-treated cells when compared with control
cells (data not shown).

Several signaling mechanisms have been linked to ER stress
(Vannuvel et al., 2013), among which IRE1, not only as a dual
enzyme, but also as a platform leading to the sequential
activation of the TRAF2-ASK1-JNK pathway, resulting in the
activation of transcription factors such as CHOP or p53 that
up-regulate the expression of genes actively involved in cell
death such as Bim (Zheng et al., 2013; Jiang et al., 2015). A
recent study demonstrated that, in hepatocytes and HeLa cells,
tunicamycin or BFA-induced ER stress activates the IRE1-JNK
pathway leading to the phosphorylation of JNK and subsequent
interaction with Sab (SH3 homology associated BTK binding
protein) at the OMM, a key event in the perturbation of
mitochondrial respiration and in cell death induced by ER stress
(Win et al., 2014). We found that JNK is strongly and rapidly
(but transiently) phosphorylated in TG-treated cells (Fig. 7A).
JNK phosphorylation in BFA-treated cells is also slightly
increased after a 30min incubation (Fig. 7B). We next showed
that when JNK was inhibited in the presence of SP600125,
mitochondrial fragmentation was not observed anymore and
the signals for mtO2

•� detection was less reduced in both BFA-
and TG-treated cells even if the inhibitor had no effect on the
mitochondrial membrane potential (Fig. 8A–C). These results
demonstrate that changes induced in mitochondrial
morphology after a mild and non lethal ER stress are not
reducing the ATP content and are mediated, at least partly, by
the subsequent activation of JNK. Even if activation of JNK is
known to be mainly pro-apoptotic (Verma and Datta, 2012;
Huang et al., 2014; Win et al., 2015), several studies
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demonstrated that the activation of JNK could also be pro-
survival (Yang and Chan, 2009; Lee et al., 2010). Indeed, JNK
phosphorylates several substrates in response to different
stresses such as Bcl-2 on Ser70, a post-translational
modification that is required for its full and potent anti-
apoptotic activity (Ito et al., 1997; Deng et al., 2001). Moreover,
Bcl-2 phosphorylation on Ser70 by JNK has a critical role in
maintaining cell cycle progression and in preventing premature
senescence in MCF7 breast carcinoma cells (Lee et al., 2010).
More recently, studies also demonstrated that ER-
mitochondria contact sites act as a platform providing the
membranes for the autophagosomes involved in autophagy
(Betz et al., 2013; Hamasaki et al., 2013). Indeed, accumulating
evidence suggests that ER stress triggers autophagy which may
determine cell fate by protecting cells from destruction or by
inducing cell death (Shi et al., 2011; Su et al., 2013). A recent
study demonstrated that ER stress induced with tunicamycin in
breast cancer cells triggers the IRE1-JNK-Beclin1 pathway
which attenuates ER stress by clearing ubiquitinylated proteins
and decreasing apoptosis (Cheng et al., 2014). Altogether,
these studies suggest that cells could trigger a pro-survival
autophagy mechanism at the ER-mitochondria contact points
to deal with the activation of the UPR after an ER stress.

In summary, we demonstrated that TG or BFA, two specific
chemical inducers used at low concentrations, mimicking a mild
and transient ER stress in HepG2 cells, caused a rapid alteration
of mitochondrial morphology and of several mitochondrial
functions that do not necessarily affect the global ATP content.
Some of these modifications are, at least partially, dependent
on transient JNK phosphorylation. Future work should
determine whether the activation of JNK is pro-survival, a
process that could rely on either Bcl-2 phosphorylation at
Ser70 or on the activation of pro-survival autophagy. In this
study, we thus characterized a potential signaling pathway
potentially involved in physiological ER stress compatible with
cell survival, a condition still poorly studied when compared
with pro-apoptotic ER stress usually characterized by intense
and prolonged ER stress. In the future, this signaling pathway
should also be studied in more relevant biological systems and
conditions in which adaptive responses are expected such as in
pancreatic b-cells producing high amounts of insulin to meet
demands in response to insulin resistance or in cell survival
mechanisms allowing plasma B-cells to produce high amount of
antibodies in response to infection.
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