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Determination of protein reduced electrostatic models from smoothed molecular 
electrostatic potentials

Laurence Leherte, Daniel P. Vercauteren
Laboratoire de Physico-Chimie Informatique, Groupe de Chimie Physique Théorique et Structurale,

University of Namur - Belgium (FUNDP)

1. Location of “CG” points
A hierarchical merging algorithm, based on the idea of Leung et al. [10], is used to 
locate local maxima and minima in a MEP function V, as a function of the degree of 
smoothing t:
1. At scale t = 0, each atom of a molecular structure is considered as a local maximum 

or minimum of V. All atoms are thus considered as the starting points of the merging 
procedure.
2. As t increases from 0.0 to a given maximal value, each point moves continuously along 
a gradient path to reach a location in the 3D space where:

On a practical point of view, this consists in following the trajectory of the points 
within the MEP function calculated at t according to Equation:

2. Molecular electrostatic potential

3. Determination of CG charges

This is achieved through the program QFIT [12] to get “CG” point charges fitted from 
an unsmoothed MEP grid, considering the following constraints: the total molecular 
charge and dipole.
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4. Determination of backbone “CG” charges

a) Construction of Gly15 in an extended conformation (Ω = 180°, Φ = -139°, Ψ
= 135°) using SMMP05 [13], a Monte Carlo/Simulated Annealing program.

b) Application of the hierarchical merging/clustering algorithm

t = 0.0 bohr2, isoMEP: -0.1, 0.1 e-/bohr

t = 0.95 bohr2, isoMEP: -0.03, 0.03 e-/bohr

t = 1.35 bohr2, isoMEP: -0.03, 0.03 e-/bohr

q+
MEP extrema =

“CG” point

q-

6. Application to potassium ion channel KcsA (1bl8.pdb)
• Positioning of “CG” points through QUATFIT, a superposition algorithm [16], using the above
templates and the PDB structure of KcsA
• Extra (+) and (–) charges on terminal N and O � 1492-point model (total charge = +4 e-)

• reduced model
1492 point charges
µX = 1255.2 
µy = 496.1
µz = 183.6 D
rmsdV = 7.6 kcal/mol 
rmsdµ = 45.5 D

• When the model is based on only one “CG” for each
AA backbone, the two-minima region does not show 
up, and the zero-potential is displaced (blue curve).
• Reduced point charge-based profile looks similar
to the all-atom one, except for a « damping » 
effect (red vs. black curve).

• all-atom model
5888 atoms
µX = 1237.7 
µy = 496.1 
µz = 141.5 D

IsoMEP: -0.1, 0.1 e-/bohr
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Introduction
The design of coarse grain (CG) models [1] and their corresponding potential functions 
[2] for protein computational studies is currently an active field of research, 
especially in solving long-scale dynamics problems such as protein folding, protein-
protein docking, … For example, to eliminate fast degrees of freedom, it has been 
shown that one can rely on CG representations only, or on mixtures of CG and more 
detailed descriptions [3,4] in order to significantly increase the time step in molecular 
dynamics (MD) simulations. Among the parameters involved in CG potentials, the 
electrostatic interactions are of major importance [5] since they govern local and 
global properties such as their stability [6], their flexibility [7], …

In this poster, we present an approach to design and evaluate reduced point charge 
models obtained from smoothed molecular electrostatic potentials (MEP). In a 
previous approach [8], electron density (ED)-based “CG” were determined through a 
merging/clustering procedure of atom trajectories generated in progressively 
smoothed ED distribution functions. In the present work, atoms are clustered 
according to their trajectories defined in a smoothed MEP function, more particularly 
the Amber potential reported in [9]. A fitting algorithm is applied to evaluate “CG”
charges. 5. Determination of “CG” charges of amino acid side chains

c) Charge fitting vs. unsmoothed MEP as a function of t:

a) Construction of Gly7-AA-Gly7 in an extended conformation (Ω = 180°, Φ = -139°, Ψ = 
135°) with various AA rotamers [14] using SMMP05 [13].  Examples:

 Conformation χ1 (°) χ2 (°) χ3 (°) χ4 (°) Occurrence (%) 

Arg g-, t, g-, g- 300 180 300 300 9.5 

 g-, t, g-, t 300 180 300 180 11.9 

 g-, t, g+, t 300 180 60 180 12.2 

 g-, t, t, t 300 180 180 180 12.2 

Asn t, Nt 180 0   11.1 

 t, Og- 180 300   21.3 

 t, Og+ 180 60   23.6 

b) Use of “CG” points obtained at t = 1.35 bohr2 (see sections 1 and 2)

c) “CG” charge fitting with additional constraints: Gly15 charges (see section 3) except
for the points located on the central AA.  Examples:
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7. Conclusions, on-going work
• A “CG” model built from a smoothed MEP

• seems to be a more significant electrostatic model than a description based on AA centers-of-
mass, for simulating electrostatic effects close to the protein � a more complete CG model 
would involve distinct steric and electrostatic centers
• can be derived for any set of point charges (Amber99, Gromos43A1 also set)

• Transferability has to be confirmed (in progress)
• Easy interfacing with APBS [17], a Poisson-Boltzmann equation solver (tests in progress)


