
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

RuCORD: Rule-based Composite Operation Recovering and Detection to Support
Cooperative Edition of (Meta)Models
Koshima, Amanuel; Englebert, Vincent

Published in:
MODELSWARD 2015 - 3rd International Conference on Model-Driven Engineering and Software Development,
Proceedings

Publication date:
2015

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Koshima, A & Englebert, V 2015, RuCORD: Rule-based Composite Operation Recovering and Detection to
Support Cooperative Edition of (Meta)Models. in MODELSWARD 2015 - 3rd International Conference on Model-
Driven Engineering and Software Development, Proceedings: France, Angers, 9 - 11 February 2015.
SciTePress, pp. 585-591, 3rd International Conference on Model-Driven Engineering and Software
Development, MODELSWARD 2015, Angers, Loire Valley, France, 9/02/15.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/326271454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/rucord-rulebased-composite-operation-recovering-and-detection-to-support-cooperative-edition-of-metamodels(c4f6332b-0944-49da-b095-1d0d7030e5af).html

RuCORD: Rule-based Composite Operation Recovering and Detection
to Support Cooperative Edition of (Meta)Models

Amanuel Koshima and Vincent Englebert

PReCISE Research Center, University of Namur, Belgium

{amanuel.koshima, vincent.englebert}@unamur.be

Keywords: model refactoring, rule-based refactoring, composite operation detection

Abstract: The cooperative edition of (meta)models may be enacted by the exchange of change operation journals be-

tween the participants. But these are often composed of atomic operations (create, delete, set, . . .) that have

no useful meaning for the users. Hence, detecting and recovering composite operations is a crucial step to help

users understand the history of their (meta)models in terms of higher level operations. As a result, conflict de-

tection, reconciliation, and merging of modeling artifacts will be improved. In addition, composite operations

can also be used to generate model migration instructions that can automatically migrate instance models.

1 INTRODUCTION

Model Driven Engineering (MDE) approach
raises the level of abstraction of software develop-
ment from code-centric to model-centric (Bézivin,
2005). In (Kühne, 2006), a model is defined as “[. . .]

an abstraction of a (real or language-based) system

allowing predictions or inferences to be made”. In-
deed, models can be used to perform analysis, valida-
tion, simulation, and source code generation (Bézivin,
2005).

MDE uses Domain Specific Modeling Languages
(DSML) to comprehend requirements of software ap-
plications within a specific domain. G. Booch et
al. wrote “the full value of MDA is only achieved

when the modeling concepts map directly to domain

concepts rather than computer technology concepts”

(Booch et al., 2004). It helps to reduce accidental
complexities of a development of software system by
letting domain experts to focus on specific concepts
which are related to their field of expertise instead of
underlying platforms (software/hardware). This ap-
proach has already proved its usefulness in many ap-
plication areas (Kelly and Tolvanen, 2008).

In MDE, concepts are defined at different abstrac-
tion levels such as models, meta-models and meta-
meta-models. A meta-meta-model is a DSML ori-
ented toward software development methods and al-
lows the definition of modeling languages, for exam-
ple, MOF (Object Management Group (OMG), 2002)
and EMF/Ecore (Steinberg et al., 2009). Finally,
meta-models are DSML instances that specify a set

of rules to construct valid instance models (Gonzalez-
Perez and Henderson-Sellers, 2008).

Modeling complex systems is far-fetched to
achieve for a single user, it’s very often the matter of
groups of stakeholders with specific specializations.
They need thus to cooperate together with respect to
their respective viewpoints. But like any other soft-
ware artifact, DSMLs evolve along with their do-
main, but also due to new requirements, error correc-
tions, or iterations in the understanding of the domain
(Bézivin, 2005; Meyers and Vangheluwe, 2011). It’s
thus important to facilitate the collaborative work of
engineers at all the levels of abstraction, that is, to
support concurrent edition of models but also of their
DSML. This leads to specific and interesting chal-
lenges.

In our research, we are investigating a particu-
lar kind of collaborative work with the following hy-
potheses: 1) meta-models can be considered as spe-
cialized models, 2) users cooperate by exchanging
(meta-)models as autonomous self-contained chunks
of information, and 3) users wish to cooperate in a
“loose” way (i.e. asynchronous). These use cases
are encountered in many situations such as inter-
enterprise cooperation, normalisation workgroups,
outsourced contracts, etc. Supporting this activity en-
tails several challenges such as model comparison,
conflict detection, models reconciliation and merging,
and model migration. They are discussed in (Koshima
et al., 2013).

Model comparison is an important activity to iden-
tify differences (aka. delta) between evolving mod-

eling artifacts. Deltas are used to perform con-
flict detection, reconciliation, and merging activities
(Koshima and Englebert, 2014; Langer et al., 2013).
Operation-based and state-based tactics are the two
widely used approaches to find deltas between two
versions of a (meta)model (Mens, 2002; Altman-
ninger et al., 2009).

State-based approaches derive deltas from two
successive versions of (meta)models by comparing
their states (Mens, 2002; Altmanninger et al., 2009)
while change-based approaches focus only on mod-
ifications performed on the (meta)models (Mens,
2002; Altmanninger et al., 2009). These operations
are then used to compute deltas between two succes-
sive versions.

Operations constituted in deltas improve users un-
derstanding about the evolution of modeling artifacts
(Langer et al., 2013). These operations can be clas-
sified as atomic, refactoring, or composite change
operations (Langer et al., 2013). Atomic operations

(i.e., creation, addition, deletion, update) are low level
operations and it is a cognitively challenging task
for users to understand and re-construct high level
changes (which might reflect the intention of modifi-
cations) from primitive changes. Hence, atomic oper-
ations do not scale (Langer et al., 2013). A composite

change operation denotes any type of in-place model
transformation that executes all its children operations
within one transaction (Langer et al., 2013).

Refactoring operations are composite operations
that modify internal structures of software artifacts
(i.e., models) without changing their external behav-
ior (Mens and Taentzer, 2007). This kind of operation
helps to improve the understanding of modifications
and intentions of a user who performed changes. The
recovering of refactoring operations is an important
activity in model management (Langer et al., 2013)
and is even a crucial task to ensure collaborative mod-
eling.

Meta-model adaptation might cause instance
models inconsistent. Instance models might not any-
more satisfy the set of rules and constraints specified
by the meta-model. Therefore, models need to be co-
evolved with their respective meta-models in order to
preserve the conformance between models and meta-
models (Herrmannsdoerfer, 2009). Indeed, complex
operations, which adapt a meta-model, can be cou-
pled with model adaptation instructions to migrate
instance models (Herrmannsdoerfer, 2009). Detect-
ing such complex operations helps to identify a set of
model migration instructions (Vermolen et al., 2012)
that transform instance models.

This article presents the principles of a framework
to recover composite operations that denote refactor-

ing tasks from histories recorded in a journal. This in-
formation is required to guide users when they have to
reconcile concurrent (meta)model versions produced
by cooperative editing tasks. Indeed the reconcilia-
tion process may oblige users to choose between con-
current and conflicting operations (e.g. two modifica-
tions on the same resource). Confronted with atomic
operations, this decision may be impossible to take,
since operations have no pertinent meaning from the
user’s viewpoint.

The paper is organized as follows: Section 2
presents the objective of the work and Section 3
describes the related work to detect and recover
both refactoring and complex operations. Addition-
ally, Section 4 gives a detailed description about the
proposed framework, RuCORD. Finally, Section 5
presents the future research direction and conclusion.

2 Objective

Figure 1 depicts a sample Petri net meta-model
along with a journal of atomic operations. When co-
operative frameworks use a change-based approach
to merge and reconcile concurrent versions, users are
confronted with this information that may prove very
difficult to understand. Indeed, it is not related to
users intents but to a technical API. Users mostly rea-
son about modifications in terms of high level opera-
tions (i.e., refactoring or composite operations). For
example, one refactoring operation like “refine a class
into subtypes” may concern one hundred atomic oper-
ations that wouldn’t have any meaning for the users.
When they have to solve a conflict, they would pre-
fer to accept or refuse the “refinement” operation and
certainly not each atomic operation that constitutes it.
There is thus a cognitive gap between the primitive
operations and the mental setup of the modelers about
changes.

The objective of this work is to recover and de-
tect composite operations (including refactoring op-
erations) from a journal composed of primitive op-
erations. In addition, the detected complex opera-
tions can be used to specify model migration instruc-
tions that co-evolve instance models along with meta-
model adaptation (Vermolen et al., 2012).

3 Related Work

Much research work has already be done to de-
tect refactoring and complex change operations in the
context of object oriented programming. Demeyer et

Figure 1: A Petri net meta-model and atomic meta-model adaptation operations

al. proposed a method to detect refactoring opera-
tions from successive versions based on change met-
rics (Demeyer et al., 2000). Besides, Dig et al. pre-
sented a RefactoringCrawler framework that uses a
combination of syntactic analysis and semantic anal-
ysis to detect refactoring operations (Dig et al., 2006).

Composite operations can also be included as part
of the development environment and they will be
tracked whenever they are executed (Herrmannsdoer-
fer, 2009). However, this approach might produce a
wrong list of composite operations, which contains
some composite operation that are nullified by latest
operations (Langer et al., 2013; Koshima et al., 2013).
Besides, it cannot detect refactoring operations that
are performed manually (Langer et al., 2013).

Operation-based collaborative modeling may can-
onize change operations to speed up the transfer of
data and to facilitate the merging process. As a result,
operations that are superseded by new ones can thus
be cleaned from the history (i.e. the record of change
operations). Hence, canonization of composite op-
erations could produce a different type of composite
operations that might not be defined by the model-
ing environment. Solving this problem requires to re-
group primitive operations into other composite op-
erations manually, that is a tedious and difficult task.
Moreover, removing atomic changes from a compos-
ite operation might invalidate its constraints (Koshima
et al., 2013). Hence, there should be a tool support to
specify composite operations.

Prete et al. use refactoring template rules to re-

cover refactoring operations between two program
versions (Prete et al., 2010). In another work, Xing
et al. (Xing and Stroulia, 2006) proposed an approach
to detect refactoring operations based on UMLDiff.
This is a domain specific algorithm (UML-aware) that
compares the structural changes between two succes-
sive versions of class models and drives their differ-
ences (Xing and Stroulia, 2005). Queries are applied
on deltas so as to detect different complex change op-
erations. However, this approach is limited to a spe-
cific modeling language (Langer et al., 2013). Ver-
molen et al. also demonstrated a modeling language
specific approach that reconstructs complex meta-
model adaptation operations (Vermolen et al., 2012)
. In (Langer et al., 2013), Philip et al. presented
an approach that automatically detects composite op-
erations between two successive models, which are
defined in any Ecore (Steinberg et al., 2009) based
modeling languages. However, their approach does
not provide a facility to aggregate composite changes
from another composite change(s).

Nevertheless, this raises interesting challenges.
An automatic composite operation detection mech-
anism might find results that don’t reflect users in-
tentions. It would neither allow users interaction to
identify the correct composite operations that reflect
his/her intent. For instance, a user may wish to re-
move some atomic change operations from a compos-
ite operation while keeping the constraints of the com-
posite operation. Indeed, an automatic process nec-
essarily tries to compute the largest set of operations

while recovering a composite operation. Neverthe-
less, some operations could be irrelevant because they
were executed with a different intent or in distinct
stages. Besides, s/he might also add or remove ratio-
nale of changes attached to specific changes based on
a new context of composite change operation. Hence,
we argue that interactive composite change detection
approach could improve the final result. However,
the approach presented in (Prete et al., 2010; Xing
and Stroulia, 2006; Langer et al., 2013; Vermolen
et al., 2012) don’t support user interactions to itera-
tively identify composite change operations.

4 RuCORD

RuCORD is an interactive rule-based composite
operation detection and recovery framework. It is in-
tegrated within Eclipse and works with models ex-
pressed with EMF. Like the approach presented in
(Langer et al., 2013) (see Section 3), RuCORD can
work with any modeling language based on Ecore.
RuCORD uses a rule-based engine to detect and to
recover composite operations. Indeed, the definitions
of composite operations are encoded as rules and they
are stored in the rule-base, whereas deltas between
two successive versions of a (meta)model are trans-
lated into facts in the fact-base. Afterwards, the Java
Expert System Shell (Jess) rule engine (Hill, 2003) is
used to identify the possible sets of composite oper-
ations. RuCORD also provides an interactive facility
so that users can guide the detection and recovery pro-
cess.

The aim of our work consists in recovering and
detecting composite operations from a set of can-
onized operations, which are recorded during the
(meta)model editing phase. Nevertheless, the work
can also be used to find composite operations from
diffs computed using state-based comparison. Fig-
ure 2 describes the proposed framework. When-
ever a user adapts a (meta)model, edit operations are
recorded in a history formally defined by the Di-
CoMEF meta-model (Koshima and Englebert, 2014).
Later, these operations are canonized and translated
into Jess facts by using a model-to-text transforma-
tion engine, Java Emitter Template JET (Foundation,
2014).

The definition of the composite operation patterns
is written as a list of Jess rules. During the execution,
when a rule’s left hand side is satisfied, a new fact,
which represents a composite operation, is asserted
into the fact base. Composite operation facts can also
be aggregated into larger facts. The result of this in-
ference is a hierarchical representation of composite

Figure 2: A rule-based composite operation detection and
recovery steps

change operations.

The inference process may be non-deterministic.
Indeed, the analysis engine may identify overlapping
composite operations. It then displays the result to a
user who can then select the “best” composite opera-
tion, that is, the one which reflects his/her intentions.
Besides, if rationale1 of modifications are attached to
change operations, the engine asks the user to verify
if the rationale is still valid for the new composite
operation. Indeed, a user can remove atomic opera-
tions from the proposed composite operation as long
as constraints of the composite operations are satis-
fied.

The analysis engine examines dependencies be-
tween change operations and ordered composite op-
erations. Of course, it uses the “require” relationship
specified in (Koshima and Englebert, 2014) to iden-
tify the pre-condition of atomic and composite opera-
tions so as to order them. Hence, a user can sequen-
tially execute an ordered list of composite operations
on a base version of a (meta)model and studies their
effect. Moreover, the analysis engine updates the fact-
base based on the user’s decisions and the Jess engine
re-executes the rules until there is no more overlap-
ping operations (composite operations that belong to
different paths of a tree can’t share the same opera-

1A rationale is an extra information that provides some
explanation about a decision, this information can be a text
or any multimedia file for instance. This functionality is
supported by the DiCoMEF framework.

tion(s)).
The appendix shows a code snippet of Jess facts

that represents a set of operations. They create two
classes (State and Transition) and one attribute
(name). Besides, it specifies a creation rule and ag-
gregation rules. For example, a composite operation,
that creates an attribute, contains atomic operations
such as create attribute, set name, set type, set lower
bound, set upper bound, and other modifier operations
related to the same attribute.

5 Conclusion and future work

This article has presented a framework to recover
refactoring operations from canonized operations or
deltas. This framework is flexible enough to allow
users to guide the result based on her/his preferences.
Users can remove parts of composite operations de-
tected by the analysis engine as long as the validity
of the composite operations are preserved. The anal-
ysis rule can add/remove rationale of modifications
to/from composite operations based on the user con-
firmation. It also analyzes dependencies among com-
posite changes and orders them. Users can add their
own composite operation patterns in defining their
own Jess rules.

In the future work, we will study the analysis en-
gine of RuCORD and integrate it with the DiCoMEF
framework (Koshima and Englebert, 2014). Besides,
we will encode different composite operations speci-
fied in (Herrmannsdoerfer, 2009) and evaluate the Ru-
CORD framework.

REFERENCES

Altmanninger, K., Seidl, M., and Wimmer, M. (2009). A
Survey on Model Versioning Approaches. Technical
report, Johannes Kepler University Linz.

Bézivin, J. (2005). On the unification power of models.
Software and System Modeling, 4(2):171–188.

Booch, G., Brown, A. W., Iyengar, S., Rumbaugh, J., and
Selic, B. (2004). An MDA Manifesto.

Demeyer, S., Ducasse, S., and Nierstrasz, O. (2000). Find-
ing refactorings via change metrics. SIGPLAN Not.,
35(10):166–177.

Dig, D., Comertoglu, C., Marinov, D., and Johnson,
R. (2006). Automated detection of refactorings in
evolving components. In Proceedings of the 20th
European Conference on Object-Oriented Program-
ming, ECOOP’06, pages 404–428, Berlin, Heidel-
berg. Springer-Verlag.

Foundation, T. E. (2014). JET (java emitter templates).
http://www.eclipse.org/modeling/m2t/?project=jet.

Gonzalez-Perez, C. and Henderson-Sellers, B. (2008).
Metamodelling for Software Engineering. John Wi-
ley, New York.

Herrmannsdoerfer, M. (2009). Operation-based versioning
of metamodels with COPE. In Proceedings of the
2009 ICSE Workshop on Comparison and Versioning
of Software Models, CVSM ’09, pages 49–54, Wash-
ington, DC, USA. IEEE Computer Society.

Hill, E. F. (2003). Jess in Action: Java Rule-Based Systems.
Manning Publications Co., Greenwich, CT, USA.

Kelly, S. and Tolvanen, J.-P. (2008). Domain-Specific Mod-
eling. Enabling full code generation. Wiley-IEEE
Computer Society Pr.

Koshima, A. and Englebert, V. (2014). Collaborative edit-
ing of emf/ecore metamodels and models: Conflict
detection, reconciliation, and merging in dicomef. In
Proc. of the MODELSWARD 2014, Lisbon, Portugal.

Koshima, A., Englebert, V., and Thiran, P. (2013). A recon-
ciliation framework to support cooperative work with
dsm. In Reinhartz-Berger, I., Sturm, A., Clark, T., Co-
hen, S., and Bettin, J., editors, Domain Engineering,
pages 239–259. Springer Berlin Heidelberg.

Kühne, T. (2006). Matters of (meta-)modeling. Software
and System Modeling, 5(4):369–385.

Langer, P., Wimmer, M., Brosch, P., Herrmannsdörfer, M.,
Seidl, M., Wieland, K., and Kappel, G. (2013). A pos-
teriori operation detection in evolving software mod-
els. J. Syst. Softw., 86(2):551–566.

Mens, T. (2002). A state-of-the-art survey on software
merging. IEEE Trans. Softw. Eng., 28:449–462.

Mens, T. and Taentzer, G. (2007). Model-driven software
refactoring. In Dig, D., editor, 1st Workshop on Refac-
toring Tools, WRT 2007, in conjunction with 21st Eu-
ropean Conference on Object-Oriented Programming,
July 30 - August 03, 2007, Berlin, Proceedings, pages
25–27.

Meyers, B. and Vangheluwe, H. (2011). A framework for
evolution of modelling languages. Sci. Comput. Pro-
gram., 76(12):1223–1246.

Object Management Group (OMG) (2002).
Meta Object Facility(MOF) Specification.
http://www.omg.org/spec/MOF/1.4/PDF.

Prete, K., Rachatasumrit, N., Sudan, N., and Kim, M.
(2010). Template-based reconstruction of complex
refactorings. In Proceedings of the 2010 IEEE Inter-
national Conference on Software Maintenance, ICSM
’10, pages 1–10, Washington, DC, USA. IEEE Com-
puter Society.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2nd edition.

Vermolen, S. D., Wachsmuth, G., and Visser, E. (2012).
Reconstructing complex metamodel evolution. In
Proceedings of the 4th International Conference on
Software Language Engineering, SLE’11, pages 201–
221, Berlin, Heidelberg. Springer-Verlag.

Xing, Z. and Stroulia, E. (2005). UMLDiff: An algorithm
for object-oriented design differencing. In Proceed-
ings of the 20th IEEE/ACM International Conference

on Automated Software Engineering, ASE ’05, pages
54–65, New York, NY, USA. ACM.

Xing, Z. and Stroulia, E. (2006). Refactoring detection
based on UMLDiff change-facts queries. In Proceed-
ings of the 13th Working Conference on Reverse En-
gineering, WCRE ’06, pages 263–274, Washington,
DC, USA. IEEE Computer Society.

APPENDIX

; ;

; ; ; ; A t e m p l a t e t h a t r e p r e s e n t s

; ; ; ; t h e DiCoMEF h i s t o r y meta−model

; ;

(d ef t emp la t e va lueChange (s l o t name)
(s l o t changeID)
(s l o t e l em en t)
(s l o t f e a t u r e)
(s l o t v a l u e)
(s l o t o ldValue))

(d ef t emp la t e nonDele t eChange (s l o t name)
(s l o t changeID)
(s l o t t y p e)
(s l o t e l em en t)
(s l o t f e a t u r e)
(s l o t t a r g e t)
(s l o t s o u r c e))

(d ef t emp la t e d e l e t e C h a n g e (s l o t name)
(s l o t changeID)

(m u l t i s l o t e l em en t)
(s l o t f e a t u r e)
(s l o t t a r g e t))

(d ef t emp la t e c r e a t e R e f a c t o r i n g
(s l o t name)
(s l o t c o n s t r a i n t)
(m u l t i s l o t changes))

; ;

; ; ; ; ; A s s e r t i o n o f f a c t s

; ;

(d e f f a c t s p r i m i t i v e C h a n g e s
(nonDele t eChange (changeID ” 01 ”)

(t y p e ” EClass ”)
(e l em en t ” Pt−1”)
(name ” C r e a t e ”)

(f e a t u r e ” e E c l a s s i f i e r ”)
(t a r g e t ”Pt−PK”))

(va lueChange (changeID ” 02 ”)
(e l em en t ” Pt−1”)
(name ” S e t ”)
(f e a t u r e ”name ”)
(v a l u e ” P l a c e ”))

(nonDele t eChange (changeID ” 03 ”)
(t y p e ” EClass ”)

(e l em en t ” Pt−2”)
(name ” C r e a t e ”)
(f e a t u r e ” e E c l a s s i f i e r ”)
(t a r g e t ”Pt−PK”))

(va lueChange (changeID ” 04 ”)
(e l em en t ” Pt−2”)
(name ” S e t ”)
(f e a t u r e ”name ”)

(v a l u e ” T r a n s i t i o n ”))
(nonDele t eChange (changeID ” 05 ”)

(t y p e ” E A t t r i b u t e ”)
(e l em en t ” Pt−3”)
(name ” C r e a t e ”)
(f e a t u r e ” e S t r u c t u r a l F e a t u r e s ”)
(t a r g e t ” Pt−1”))

(va lueChange (changeID ” 06 ”)
(e l em en t ” Pt−3”)

(name ” S e t ”)
(f e a t u r e ”name ”)
(v a l u e ” name ”))

(va lueChange (changeID ” 07 ”)
(e l em en t ” Pt−3”)
(name ” S e t ”)
(f e a t u r e ” eType ”)
(v a l u e ” E S t r i n g ”))

(va lueChange (changeID ” 08 ”)
(e l em en t ” Pt−3”)
(name ” S e t ”)
(f e a t u r e ” uperaBound ”)
(v a l u e ” 1”))

(va lueChange (changeID ” 10 ”)
(e l em en t ” Pt−3”)
(name ” S e t ”)
(f e a t u r e ” lowerBound”)
(v a l u e ” 1”)))

. . .

; ;

; ; ; ; ; J e s s Ru les t h a t encodes Compos i t e

; ; ; ; ; o p e r a t i o n s Change p a t t e r n

; ;

; ; ; a c r e a t i o n r e f a c t o r i n g r u l e

(d e f r u l e c r ea t e−m ode lElem en t

? c1 <− (nonDele t eChange (name ” C r e a t e ”) (t y p e ? t) (e l em en t ? i d))
? c2 <− (va lueChange (name ” S e t ”) (e l em en t ? i d))
=>
(a s s e r t F a c t s (c r e a t e $ ” c r e a t e R e f a c t o r i n g ” ? i d ? t ? c1 ? c2)))

; ; ; a c r e a t i o n r e f a c t o r i n g r u l e

(d e f r u l e c r ea t e−m ode lElem en t
? c <− (nonDele t eChange (name ” C r e a t e ”) (t y p e ? t) (e l em en t ? i d))
=>

(a s s e r t F a c t s (c r e a t e $ ” c r e a t e R e f a c t o r i n g ” ? i d ? t ? c)))

. . .

; ;

; ; ; ; ; U t i l i t y J e s s Ru les and F u n c t i o n s t h a t a g g r e g a t e f a c t s

; ;

; ; ; ; ; ; ; T h i s f u n c t i o n merges two l i s t s

; ; ; ; ; ; ; −t h e f i r s t e l e m e n t i s t h e l e n g t h o f t h e f i r s t l i s t

; ; ; ; ; ; ; −t h e second e l e m e n t i s t h e l e n g t h o f t h e second l i s t

; ; ; ; ; ; ; − l i s t 1 and l i s t 2 added i n t o $? args

(d e f f u n c t i o n mergeChanges ($? a r g s)
(bind ? l e n 1 (n th$ 1 ? a r g s))
(bind ? l e n 2 (n th$ 2 ? a r g s))
(bind ? end1 (+ 2 ? l e n 1))
(bind ? end2 (+ ? end1 ? l e n 2))

(bind $? chg1 (subseq$? a r g s 3 ? end1))
(bind $? chg2 (subseq$? a r g s (+ ? end1 1) ? end2))
(bind $? temp (c r e a t e $? chg1))
(f oreach ? c ? chg2

(i f (not (member$? c ? temp)) then
(bind ? temp (i n s e r t $? temp (+ (l en g t h $? temp) 1) ? c))))

(re t u rn ? temp))

; ; ; ; ; t h i s r u l e a g g r e g a t e s f a c t s and

; ; ; ; ; i t a l s o r e t r a c t s c h i l d r e n f a c t s

(d e f r u l e m er ege−c r ea t es
? c1 <− (c r e a t e R e f a c t o r i n g (name ?x)

(c o n s t r a i n t ? i d) (changes $? cgs1))
? c2 <− (c r e a t e R e f a c t o r i n g (name ?x)

(c o n s t r a i n t ? i d) (changes $? cgs2))
(t e s t (not (eq ? cgs1 ? cgs2)))
=>

(bind $? i n t e r s e c t i o n (i n t e r s e c t i o n $? cgs1 ? cgs2))

(bind ? l e n (l en g t h $? i n t e r s e c t i o n))
(i f (and (> ? l e n 0) (= (l en g t h $? cgs1) ? l e n)) then

(r e t r a c t ? c1)
e l s e (i f (and (> ? l e n 0) (= (l en g t h $? cgs2) ? l e n)) then

(r e t r a c t ? c2)
e l s e

(bind ? p1 (l en g t h $? cgs1))
(bind ? p2 (l en g t h $? cgs2))

(bind ? merged (mergeChanges (c r e a t e $? p1 ? p2 ? cgs1 ? cgs2)))
(a s s e r t F a c t s 2 (c r e a t e $ ” c r e a t e R e f a c t o r i n g ” ? i d ? x ? merged))
(r e t r a c t ? c1)
(r e t r a c t ? c2))))

; ;

; ; ; ; ; J e s s Fac t s ;

; ;

Fact−1 (nonDele t eChange (name ” C r e a t e ”)
(changeID ” 01 ”)
(t y p e ” EClass ”)
(e l em en t ” Pt−1”)
(f e a t u r e ” e E c l a s s i f i e r ”)
(t a r g e t ”Pt−PK”) (s o u r c e n i l))

Fact−2 (va lueChange (name ” S e t ”)
(changeID ” 02 ”)
(e l em en t ”Pt−1”)
(f e a t u r e ”name ”)

(v a l u e ” Net ”)
(o ldVa lue n i l))

Fact−3 (nonDele t eChange (name ” C r e a t e ”)
(changeID ” 03 ”)
(t y p e ” EClass ”)
(e l em en t ” Pt−2”)
(f e a t u r e ” e E c l a s s i f i e r ”)
(t a r g e t ”Pt−PK”)

(s o u r c e n i l))

Fact−4 (va lueChange (name ” S e t ”)
(changeID ” 04 ”)
(e l em en t ”Pt−2”)
(f e a t u r e ”name ”)
(v a l u e ” T r a n s i t i o n ”)
(o ldVa lue n i l))

Fact−5 (nonDele t eChange (name ” C r e a t e ”)
(changeID ” 05 ”)
(t y p e ” EClass ”)
(e l em en t ” Pt−3”)
(f e a t u r e ” e E c l a s s i f i e r ”)
(t a r g e t ”Pt−PK”)
(s o u r c e n i l))

Fact−6 (nonDele t eChange (name ” C r e a t e ”)
(changeID ” 06 ”)
(t y p e ” E S t r u c t u r a l F e a t u r e ”)
(e l em en t ” Pt−4”)
(f e a t u r e ” e S t r u c t u r a l F e a t u r e s ”)
(t a r g e t ” Pt−1”)
(s o u r c e n i l))

Fact−7 (va lueChange (name ” S e t ”)

(changeID ” 07 ”)
(e l em en t ” Pt−4”)
(f e a t u r e ” name ”)
(v a l u e ”name ”)
(o ldValue n i l))

Fact−8 (va lueChange (name ” S e t ”)
(changeID ” 08 ”)

(e l em en t ” Pt−4”)
(f e a t u r e ” eType ”)
(v a l u e ” E S t r i n g ”)
(o ldVa lue n i l))

Fact−9 (va lueChange (name ” S e t ”)
(changeID ” 09 ”)
(e l em en t ” Pt−4”)
(f e a t u r e ” uperaBound ”)

(v a l u e ”1”)
(o ldVa lue n i l))

Fact−10 (va lueChange (name ” S e t ”)
(changeID ” 10 ”)
(e l em en t ” Pt−4”)
(f e a t u r e ” lowerBound”)
(v a l u e ”1”)
(o ldVa lue n i l))

Fact−11 (c r e a t e R e f a c t o r i n g (name ” C r e a t e E S t r u c t u r a l F e a t u r e ”)
(c o n s t r a i n t ” Pt−4”)
(changes <Fact−6>))

Fact−12 (c r e a t e R e f a c t o r i n g (name ” C r e a t e E C l a s s ”)
(c o n s t r a i n t ” Pt−3”)
(changes <Fact−5>))

Fact−13 (c r e a t e R e f a c t o r i n g (name ” C r e a t e E C l a s s ”)
(c o n s t r a i n t ” Pt−2”)
(changes <Fact−3><Fact−4>))

Fact−14 (c r e a t e R e f a c t o r i n g (name ” C r e a t e E C l a s s ”)
(c o n s t r a i n t ” Pt−1”)
(changes <Fact−1><Fact−2>))

