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Observation Thinning In Data Assimilation Computations

Serge Gratton∗, Monserrat Rincon-Camacho†, Ehouarn Simon‡, and Philippe L. Toint§

February 21, 2014

Abstract

We propose to use an observation-thinning method for the efficient numerical solution of
large-scale incremental four dimensional (4D-Var) data assimilation problems. This decom-
position is based on exploiting an adaptive hierarchy of the observations. Starting with a
low-cardinality set and the solution of its corresponding optimization problem, observations
are successively added based on a posteriori error estimates. The particular structure of the
sequence of associated linear systems allows the use of a variant of the conjugate gradient
algorithm which effectively exploits the fact that the number of observations is smaller than
the size of the vector state in the 4D-Var model. The new algorithm is tested on a 1D-wave
equation and on the Lorenz-96 system, the latter one being of special interest because of its
similarity with Numerical Weather Prediction (NWP) systems.

Keywords: Data assimilation, numerical algorithms, multilevel optimization, a posteriori
errors.

1 Introduction

Because of their ubiquitous application, data assimilation techniques for weather forecasting have
been the subject of intensive study in the last decennies. In particular, dedicated numerical
methods have been the subjet of much research : the large-dimensional nature and structure of
the problem have prompted the proposal of a number of specialized algorithms, amongst which the
influential and widely-used incremental 4D-VAR method (Courtier, Thépaut and Hollingsworth,
1994). In this method, a quadratically regularized optimization problem is solved, whose objective
is to fit the modelled trajectory of the atmosphere’state to a potentially large set of observations.
As most variants of the Gauss-Newton algorithm (see Gratton, Lawless and Nichols, 2007 for
the connection with this classical tool), the 4D-VAR algorithm requires the sequential (possibly
approximate) solution of linear least-squares subproblems. Each of these subproblems typically
involves a number of variables sometimes considerably larger than the number of (linearized)
observations. As a consequence, and in view of the very significant computational effort necessary
for its solution, it is highly desirable to exploit the lower dimensionality of the observation space.
Moreover, if it is at all possible to reduce this dimension by “thinning” the observation set, the
benefit obtained by this dimension reduction is amplified.

In what follows, we present an algorithm for the solution of the 4D-VAR subproblem in which
this cumulative advantage may be obtained. As will be described below, the goal of limiting
the linear algebra computations to the lower-dimensional observation space can been achieved by
using a “dual iterative method”. The thinned observation set will be defined using a hierarchy
of observations, from coarsest to finest level. Starting from the coarsest set of observations,
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observations from the next level will be included in the observation set according to the influence
they have on the solution, as measured by an estimate on the solution variation between two
consecutive levels.

Our technique is similar in spirit to techniques well-known in the multigrid and mesh refine-
ment literature (see Rincon-Camacho (2011), Brandt (1973) and McCormick (1984)). The main
contribution of this paper is to rewrite this technique in a dual space associated with 4D-Var
minimization problem (which is also the observation space), and to combine it with an efficient
quadratic solver. Our approach notably differs from previous work (Daescu and Navon, 2004,
or Cardinali, Pezzulli and Andersson, 2004, for instance) in the sense that it is not required to
solve the problem on the finest level to select the influential observation but merely to compute
residual estimate along the grid levels. The paper is structured as follows: Section 2 introduces
the 4D-Var vocabulary and the considered hierarchy of observations. Section 3 then covers the
associated error estimates and Section 4 presents the new algorithm. Section 5 discusses its ap-
plication to a one-dimensional nonlinear wave equation and to the Lorenz96 model. Conclusions
and perspectives are discussed in Section 6.

2 The problem and associated observation hierarchy

Consider the nonlinear least-squares problems in 4D-Var data assimilation, whose objective is to
find an initial vector state at an initial time denoted as x = x(t0) ∈ IRn. The structure of the
problem is as follows:

min
x∈IRn

1
2‖x− xb‖2B−1 + 1

2

Nt∑
j=0

‖Hj(x(tj))− yj‖2R−1
j

(2.1)

where the squared norm ‖x‖2M is induced by the inner product xTMx for a symmetric positive
definite matrix M ∈ IRl×l and a vector x ∈ IRl. Here xb ∈ IRn is the background vector, which is
an a priori estimate. The vector yj ∈ IRmj is the vector of observations at time tj and Hj is the
operator modeling the observation process at the same time. The state vector x(tj) satisfies the
nonlinear model of evolution x(tj) =M0→j [x(t0)]. The matrix B ∈ IRn×n is a symmetric positive
definite matrix representing the background-error covariance and the matrix Rj ∈ IRmj×mj is also
a symmetric positive definite matrix representing the observation-error covariance at time tj .

The nonlinear least-squares problem (2.1) is solved iteratively. A possible approach could be
based on a Newton method in which a quadratic approximation of the cost function would be
computed using second order derivatives. However this approach is impractical for large scale
problems, due to the cost of computing the quadratic models. Practical (first order) algorithms
are rather based on a linearization of the nonlinear observation operator Hj(x(tj)) at the iterate
xk (which for the moment we denote only by x), leading to the optimization problem

min
δx∈IRn

1
2‖x− xb + δx‖2B−1 + 1

2‖H δx− d‖2R−1 (2.2)

where R = diag(R0, R1, . . . , RNt) ∈ IRm×m, d ∈ IRm denotes the concatenated misfits over time
yj −Hj(x(tj)) and H ∈ IRm×n is the concatenated version of the linearized observation process

d =


d0

d1

...
dNt

 ∈ IRm, H =


H0

H1M0→1

...
HNtM0→Nt

 ∈ IRn×m.

Here Hj and M0→j are a (possibly approximate) linearization of the observation operator Hj and
the model M0→j around x = xk(t0) respectively.

Diverse techniques for solving problem (2.1) have been proposed, see for instance Courtier
et al. (1994) for the so called incremental method which is equivalent to applying a truncated
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Gauss-Newton iteration to problem (2.1) (see Gratton et al., 2007). The general algorithm is the
following:

Algorithm 2.1 Incremental 4D-Var

1. Initialize x0 = xb ∈ IRn and set k = 0.

2. Compute xk(tj) from xk(t0) = xk by running the nonlinear model M from time t0 to tNt .

3. Calculate the vectors dk,j = yj −Hj(xk(tj)) for j = 1, . . . , Nt.

4. Find an approximate solution δxk of the minimization problem (2.2), where x = xk, H = Hk

and d = dk.

5. Update the current solution as xk+1 = xk + δxk.

6. Set k := k + 1. If convergence is not achieved return to Step 2.

This algorithm is known as the outer loop and the minimization step (Step 4) as the inner loop.
Our interest is to reduce the cost of this optimization problem. Termination criteria for the outer
and inner loops of this algorithm are discussed in Gratton et al. (2007).

It is most natural to solve the subproblem in Step 4 of Algorithm 2.1 directly in the space of
dimension n, the size of x. This technique is referred to as the primal approach. At variance, the
quadratic optimization problem (2.2) may be rewritten in a space of dimension m, the number
of observations. This is known as the dual approach and it is especially useful when m is signifi-
cantly smaller than n, in which case the second term in (2.2) is of relatively low rank compared to
the first. A first approach of this type is the Physical-space Statistical Analysis System (PSAS)
method (see Courtier, 1997), where the “low rank” observation term in (2.2) is handled by using a
Sherman-Morrison formula and applying the standard conjugate-gradient algorithm (see Hestenes
and Stiefel, 1952, or Golub and Van Loan, 1996, Section 10.2, p. 520) to the reduced system. This
method has the drawback of not maintaining the inherent monotonicity of the conjugate-gradient
algorithm in IRn, thereby making any stopping rule of the inner minimization difficult to define (see
El Akkroui, Gauthier, Pellerin and Buis, 2008, or Gratton, Gürol and Toint, 2010). Fortunately, a
better alternative is available, where the conjugate-gradient algorithm is reformulated in IRm using
the inner product defined by the metric HBHT in order to guarantee the desired monotonicity
properties without incurring additional cost. This technique, known as the Restricted Precondi-
tioned Conjugate Gradient method (RPCG, see Gratton and Tshimanga, 2009 and Gratton et al.,
2010), provides an efficient numerical procedure where substantial computing gains are obtained
when m� n. We refer the reader to the cited publications for details.

Our aim in this work is to make the best possible use of this dual technique and to propose
an adaptive observations’ strategy for solving the data assimilation problem (2.1). Suppose that
we have a large set of m observations O which can be decomposed into a hierarchical collection
of sets {Oi}ri=0, each with cardinality mi, such that

Oi ⊂ Oi+1 and mi < mi+1 (i = 0, . . . , r − 1)

where, by convention, Or = O and mr = m. To each set of observations Oi we associate a misfit
vector yi ∈ IRmi (by selecting the relevant components in the vector y), and the corresponding
observation-error covariance matrix Ri. Given {Oi}ri=0, we may therefore consider the hierarchical
collection of minimization problems

min
x∈IRn

1
2‖x− xb‖2B−1 + 1

2‖Hi(x)− yi‖2R−1
i

, i = 0, . . . , r, (2.3)

where the vector Hi(x) denotes the nonlinear observation operator associated with the set of
observations Oi concatenated over time.

Thus our objective is to construct the collection {Oi}ri=0 such that the sequential solution of
the problems (2.3) is obtained at significantly lower cost compared to solving (2.2) directly, while
at the same time maintaining equivalent accuracy requirements.
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3 Mathematical analysis

Our adaptive method is based on the exploitation of a posteriori bounds for the error between the
solutions obtained using few observations or many. In particular, we are interested in comparing
the accuracy of the solutions of problems (2.3) for Oi and Oi+1. For simplicity of notation, we
denote these sets as Oc a set with mc observations and Of a set containing mf observations such
that mc < mf and Oc ⊂ Of , where the indices c and f stand for ‘coarse’ and ‘fine’, respectively.
The ‘fine’ optimization problem (2.3) is given, for the starting point x, by

min
δxf∈IRn

1
2‖x+ δxf − xb‖2B−1 + 1

2‖Hfδx− df‖2R−1
f

(3.4)

where df = yf −Hf (x) and Hf is the linearized version of the observation process at x involving
the set of observations Of . We may reformulate (3.4) as a convex quadratic problem with linear
equality constraints given by

min
δxf∈IRn, vf∈IR

mf

1
2‖x+ δxf − xb‖2B−1 + 1

2‖vf‖2R−1
f

, subject to vf = Hfδxf − df , (3.5)

see Gratton et al. (2010). The Lagrange function corresponding to this reformulated problem is
given by

L(δxf , vf , λf )
def
= 1

2‖x+ δxf − xb‖2B−1 + 1
2‖vf‖2R−1

f

− λTf (Hfδxf − vf − df ).

Using this function, the optimality conditions for problem (3.5) can then be expressed as

∇δxfL(δxf , vf , λf ) = B−1(x+ δxf − xb)−HT
f λf = 0,

∇vfL(δxf , vf , λf ) = R−1
f (vf ) + λf = 0,

∇λfL(δxf , vf , λf ) = vf −Hfδxf + df = 0,

which leads to the system
HT
f λf = B−1(x+ δxf − xb),
−λf = R−1

f (Hfδxf − df ).
(3.6)

Gratton et al. (2010) and Gratton and Tshimanga (2009) show that the solution of this system
can be obtained by solving

(R−1
f HfBH

T
f + Imf )λf = R−1

f (df −Hf (xb − x)), (3.7)

or, equivalently,
(HfBH

T
f +Rf )λf = df −Hf (xb − x), (3.8)

for λf and then substituting in the second equation of (3.6) for δxf and vf .
We now compare the solution (δxf , λf ) to the solution of the coarse level minimization problem

min
δxc∈IRn

1
2‖x+ δxc − xb‖2B−1 + 1

2‖Γf (Hfδxc − df )‖2
R−1
c
, (3.9)

where Γf is the restriction operator Γf : IRmf → IRmc from the fine observation space to the
coarse one. For the purpose of the calculus, let Πc be the prolongation operator from the coarse
observation space to the fine one such as

Πc
def
= σfΓTf (3.10)

for some σf > 0. The coarse level minimization problem reads

min
δxc∈IRn

1
2‖x+ δxc − xb‖2B−1 + 1

2‖ΠT
c (Hfδxc − df )‖2

R̄−1
c
, (3.11)
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with R̄−1
c = ( 1

σf
)2R−1

c . As above, we reformulate (3.11) as a convex quadratic problem with linear

equality constraints, and obtain

min
δxc∈IR

n
, vc∈IR

mc

1
2‖x+ δxc − xb‖2B−1 + 1

2‖vc‖2R̄−1
c
, subject to vc = ΠT

c (Hfδxc − df ), (3.12)

whose Lagrangian function is given by

L(δxc, vc, λc)
def
= 1

2‖x+ δxc − xb‖2B−1 + 1
2‖vc‖2R̄−1

c
− λTc (ΠT

c Hfδxc − vc −ΠT
c df ).

The optimality conditions now become

HT
f Πcλc = B−1(x+ δxc − xb),
−λc = R̄−1

c ΠT
c (Hfδxc − df )

(3.13)

These conditions may again be solved by computing λc such that

(R̄−1
c ΠT

c HfBH
T
f Πc + Imc)λc = R̄−1

c ΠT
c (df −Hf (xb − x)). (3.14)

Since the dimension of the system (3.14) is smaller than that of the system (3.7), solving problem
(3.11) is (often much) cheaper than solving problem (3.4). The RPCG algorithm mentioned in the
previous section derives its efficiency by using the formulation (3.14) rather than (3.7), see Gratton
et al. (2010) and Gratton and Tshimanga (2009). Note that both algorithms (conjugate gradient
on (3.4) preconditioned by B or RPCG) generate the same iterates in exact arithmetic and that
the main gain is obtain by the fact that RPCG explores the structure of a smaller quadratic
optimization problem.

After obtaining the solution (δxc, λc), our objective is now to compute the difference between
the (still unknown) λf and Πcλc in order to identify the set of observations where this difference
is large. Our intention is then to construct the “fine” problem from the “coarse” one by adding to
the coarse the observations that are singled out by this comparison. Our motivations for building
a criterion based on the Lagrange multipliers λ are twofold. First, they provide information on
the variations of the cost function due to perturbations in the right hand side of the constraint,
e.g. changes in the observation values or network: for a small perturbation ε, one has that
J(x(ε)) = J(x(0))− λT ε+O(‖ε‖2) - see Nocedal and Wright (1999) for instance. Secondly, they
are directly linked to the primal solution thanks to the operator BHT : δx = xb−x+BHTλ. Thus,
the norm (associated to some positive definite matrix) of the difference between the theoretical
optimal increment δx of the primal problem and an approximation δx̃ is nothing more than the
norm, associated to a different positive definite matrix, of the difference between the theoretical
optimal Lagrange multipliers λ and its approximation λ̃: ‖δx− δx̃‖M = ‖λ− λ̃‖HBMBHT .

We start by computing the difference between λf and Πcλc in the energy norm ‖.‖HfBHTf +Rf

associated with the system (3.8), separating the desired expression in two terms. More precisely, if
λ is the exact solution of the quadratic problem, the k-th iterate of conjugate gradient minimizes
the distance to λ in this energy norm. This norm is therefore often used when analyzing the
conjugate gradient method (see Arioli (2004) for instance). Using (3.6) and (3.13), we define

E1
def
= ‖λf −Πcλc‖2Rf
= 〈Rf (λf −Πcλc) ,−R−1

f (Hfδxf − df )−Πcλc〉

= 〈λf −Πcλc,−Hfδxf + df −RfΠcλc〉,

and

E2
def
= ‖λf −Πcλc‖2HfBHTf
= ‖HT

f λf −HT
f Πcλc‖2B

= 〈B(HT
f λf −HT

f Πcλc), B
−1(x+ δxf − xb)−HT

c Πcλc〉

= 〈λf −Πcλc, Hf (x− xb) +Hfδxf −HfBH
T
f Πcλc〉.
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By adding these errors E1 and E2 we obtain that

E1 + E2 = 〈λf −Πcλc,−Hfδxf + df −RfΠcλc〉

+ 〈λf −Πcλc, Hf (x− xb) +Hfδxf −HfBH
T
f Πcλc〉

+ 〈λf −Πcλc, Hfδxc −Hfδxc〉

= 〈λf −Πcλc, df −RfΠcλc −Hfδxc〉

+ 〈λf −Πcλc, Hf (x− xb + δxc)−HfBH
T
f Πcλc〉.

But the first equation of (3.13) multiplied by HfB gives that

HfBH
T
f Πcλc = Hf (x− xb + δxc), (3.15)

and hence that
〈λf −Πcλc, Hf (x− xb + δxc)−HfBH

T
f Πcλc〉 = 0 (3.16)

Therefore, one has

E1 + E2 = 〈λf −Πcλc, df −Hfδxc −RfΠcλc〉 (3.17)

Let M be a positive definite matrix. The equation (3.17) can read

E1 + E2 = 〈M1/2(λf −Πcλc),M
−1/2(df −Hfδxc −RfΠcλc)〉

Thus, we obtain

E1 + E2 ≤ ‖λf −Πcλc‖M‖df −Hfδxc −RfΠcλc)‖M−1

Furthermore, one has
E1 + E2 = ‖λf −Πcλc‖2Rf+HfBfHTf

(3.18)

Thus, choosing M equal to the matrix Rf + HfBfH
T
f , the previous inequality leads to the a

posteriori error bound

(E1 + E2)1/2 ≤ ‖df −Hfδxc −RfΠcλc‖(Rf+HfBHTf )−1

or equivalently
E1 + E2 ≤ ‖df −Hfδxc −RfΠcλc‖2(Rf+HfBHTf )−1

However, the computation of the inverse of Rf + HfBH
T
f is not an easy task in the variational

data assimilation framework due to the nature of B (complex matrix-vector operator) and can be
very expensive. If one rather considers using M = Rf , we obtain that

E1 + E2 ≤ ‖λf −Πcλc‖Rf ‖df −Hfδxc −RfΠcλc)‖R−1
f

Because Rf and HfBH
T
f are positive semi-definite matrices, one has

‖λf −Πcλc‖2Rf ≤ ‖λf −Πcλc‖2Rf+HfBHTf

resulting in

E1 + E2 ≤ ‖λf −Πcλc‖Rf+HfBHTf
‖df −Hfδxc −RfΠcλc)‖R−1

f

and thus, using (3.18),
E1 + E2 ≤ ‖df −Hfδxc −RfΠcλc‖2R−1

f

(3.19)

As a consequence, the left-hand side of this inequality (the sought error estimate) can be
bounded above using inequality (3.19), giving the following a posteriori error.
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Theorem 3.1 Let δxf be the solution to the problem (3.5) and λf the corresponding Lagrange
multiplier to the constraint in (3.5) such that the couple (δxf , λf ) satisfies (3.6). Analogously,
let δxc be the solution to (3.12) and λc the corresponding Lagrange multiplier such that (δxc, λc)
satisfies (3.13). Then the a posteriori error bound satisfies the inequality

‖λf −Πcλc‖2Rf+HfBHTf
≤ ‖df −Hfδxc −RfΠcλc‖2R−1

f (3.20)

Note that the bound (3.20) does not involve the computation of λf or δxf .
The use of an a posteriori error bound depending on a primal-dual problem in adaptive finite

elements was studied in Section 12.2 (p. 100) of Rincon-Camacho (2011).
In the next section we describe how to make use of the bound (3.20) in order to algorithmically

construct the ‘fine’ problem from the ‘coarse’ one.

4 A new adaptive algorithm

Starting from a small set of observations Oc, our goal is to add only significant observations
to produce Of so that the a posteriori error (3.20) is reduced. Our strategy is to define an

auxiliary set of potential fine observations Õf from which the observations in Of are selected.
However, describing our strategy (and algorithm) requires additional assumptions on the hierarchy
of (potential) observations. More specifically, we complete our assumptions as follows.

• The observations correspond to localizations in some underlying continuous measurable “ob-
servation space”.

• The coarse observation set partitions the observation space in a finite number of cells {cj}pcj=1

of measures {wj}pcj=1.

• The auxiliary set Õf is constructed by considering all observations in Oc with the addition
of a single additional potential observation point in the interior of each cell. The cell is said
to be associated with this additional potential observation.

• There exists a prolongation operator Π̃c from Oc to Õf such that, for each potential observa-

tion oj in Õf \Oc, Π̃c defines the value of this observation only in terms of the observations

of the associated cell cj . As expected, we define Π̃c = σf Γ̃Tf .

We illustrate these assumptions by a 2D example: suppose that the observation space is the plane
and the coarse observation set Oc is the rectangular ‘grid’ shown in Figure 4.1 (a): the cells are
elementary rectangles in this grid, whose measure is given by their surface. We may then define
Õf as the grid shown in Figure 4.1 (b), which we obtained by locally adding a new potential
observation in the center of each rectangle and four additional ones on its boundary (effectively
doubling the mesh in every direction). The observations in Of (as shown in Figure 4.1 (c)) can

then be extracted from Õf .

In this example, the restriction operator Γ̃f can be defined as the usual full weighting oper-
ator associated with bilinear interpolation prolongations (which justifies the introduction of the
boundary points). This full-weighting restriction operator is given, on every grid node, by the
stencil

1

16

 1 2 1
2 4 2
1 2 1

 . (4.21)

We presented our approach on a 2D example, that is well suited to observation on the surface
of the Earth. Note that this technique would also apply for other observation types, such as
satellite along-track data. In this case, the observations can be located along track of a satellite,
in which case the cells could be arcs located on the track. Note also that for convenience of
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(a) Coarse observation set Oc (b) Auxiliary observation set Õf

(c) Fine observation set Of

Figure 4.1: Auxiliary observations

the representation, we considered regularly spaced observations in picture 4.1. This is not a
requirement of the method. All what we need is a hierarchy involving cells in the observation set.

In order to achieve our goal to select ‘important’ observations from Õf , we need to compute
localized error indicators (3.20). We define them as

ηj
def
= wj 〈(d̃f − H̃fδxc − R̃f Π̃cλc)|j , (R̃−1

f (d̃f − H̃fδxc − R̃f Π̃cλc))|j〉,

where d̃f , H̃f , R̃f are constructed from the set of observations Õf and where the symbol |j denotes
the restriction of the associated quantity to the cell cj . Note that the η’s correspond to the term
on the right-hand side of (3.20). This bound was obtained by solving the optimization problem
(3.11) in which the original cost function has be rewritten in order to involve the transpose of Πc

the prolongation operator and the modified observation error covariance matrix rather than the
restriction operator Γf . It does not impact the optimal increment δxc because the optimization
problems (3.9) and (3.11) are equivalent. However, the Lagrange multiplier λc obtained solving
(3.11) is equal to the one obtained solving (3.9) scaled by 1

σf
.

In order to decide which cells will be chosen to include a new interior potential observation,
we use the bulk chasing strategy (also known as Dörfler marking, see, for instance, Dörfler, 1996,
Morin, Nochetto and Siebert, 2000, Logg, Mardal and Wells, 2012). For a constant θ1 ∈ (0, 1), we
construct a minimal set Sη such that

θ1

 p∑
j=1

ηj

 ≤ ∑
k∈Sη

ηk (4.22)

where p is the amount of observations in Õf . In practice this construction is carried out by
progressively constructing each set using a greedy heuristic which includes first the non-included
cell with maximal indicator value.

Once Sη is constructed, we decide that a cell k of Oc is ‘refined’ if k ∈ Sη, meaning that the

observations associated with the corresponding cell in Õf are added to the set Oc to construct the
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new set Of . More formally,

Of
def
= Oc ∪

 ⋃
k∈Sη

ok

 . (4.23)

Thus, starting with a small set of observations O0, we progressively add observations using the
method just described, resulting in the following algorithm.

Algorithm 4.1 An algorithm using adaptive observations

1. Set i = 0, initialize x and the coarse observation set O0.

2. Find the solution (δxi, λi) to the problem

min
δxi∈IRn

1
2‖xi + δxi − xb‖2B−1 + 1

2‖Hiδxi − di‖2R−1
i

, (4.24)

by approximately solving the system

(R−1
i HiBH

T
i + Imi)λi = R−1

i (di −Hi(xb − xi)) (4.25)

using RPCG and then setting δxi = xb − xi +BHT
i λi.

3. Given the set of observations Oi, construct the auxiliary set Õi+1 such that the conditions
described at the beginning of this section hold.

4. For each cell cj of observation set Oi compute the error indicators

ηj = wj 〈(d̃i+1 − H̃i+1δxi − R̃i+1Π̃iλ̃i)|j , (R̃−1
i+1(d̃i+1 − H̃i+1δxi − R̃i+1Π̃iλ̃i))|j〉

with λ̃i a modified Lagrange multiplier.

5. Build the set Sη such that

θ1

pi+1∑
j=1

ηj

 ≤ ∑
k∈Sη

ηk

using the bulk chasing strategy.

6. Construct the set Oi+1 as

Oi+1 := Oi ∪

 ⋃
k∈Sη

ok


7. Update x← x+ δxi.

8. Increment i and return to Step 2.

We note that the computation of (δxi, λi) in Step 2 corresponds to applying the RCPG al-
gorithm to (4.24), thereby making this computation essentially dependent on m, the number of
observations, which the algorithm maintains as small as necessary by design.

Furthermore, we introduced a modified Lagrange multiplier λ̃i in Step 4 because λi is obtained
solving (4.24) which corresponds to the original coarse resolution problem (3.9) and not (3.11).
At convergence of the RPCG algorithm, one has that λ̃i = 1

σf
λi, and so, a simple scaling of

the Lagrange multiplier λi has to be done before computing the error estimate. However, we
might prefer to approximately solve (4.25) in order to reduce the computational costs of the
assimilation. In that case, the scaling factor 1

σf
has to be properly introduced in the definition of

the cost function and the algorithm RPCG. Both strategies - scaling the final Lagrange multiplier
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(a) Initial x0 := u0(z)
(b) Dynamical system over

space and time

Figure 5.2: Nonlinear 1D Wave equation

or introducing the scaling factor in the cost function and RPCG - led to similar results in our
numerical experiments.

We also note that the bulk of the remaining work is in the computation of the error indicators
in Step 4, as this requires the product of H̃i+1 with δxi.

Similar methods for constructing adaptive grids are the multi-level adaptive technique (MLAT)
studied in Brandt (1973) and the fast adaptive composite grid (FAC) presented in McCormick
(1984).

5 Numerical experiments

5.1 Two test problems

This section is devoted to showing the performance of our new adaptive algorithm on two test
cases. The first one is a one-dimensional wave equation system, which we refer to as the 1D-Wave
model from now on. The dynamics on this model are governed by the following nonlinear wave
equations:

∂2

∂t2
u(z, t)− ∂2

∂z2u(z, t) + f(u) = 0,

u(0, t) = u(1, t) = 0,

u(z, 0) = u0(z), ∂
∂t
u(z, 0) = 0,

0 ≤ t ≤ T, 0 ≤ z ≤ 1,

(5.26)

where we have chosen f(u) = µeηu. The spatial discretization involves 360 grid points, resulting
in ∆x ≈ 2.8 · 10−3. We also set T = 1 and ∆t = 1

64 . In this case we look for the initial function
u0(z), which corresponds to x in the data assimilation problem (2.1). We illustrate in Figure 5.2
(a) the initial state vector u0 (x = u0) and the evolution of the system in Figure 5.2 (b) (view
from the top) where the space domain corresponds to the horizontal axis and the time domain to
the vertical axis.

Our second example is the model referred as Lorenz96 presented in Lorenz and Emanuel (1998).
The variable ū is a vector of N -equally spaced entries around a circle of constant latitude, i.e.
ū(t) = (u1(t), u2(t), . . . , uN (t)). The N -dimensional system is determined by the following N
equations

duj
dt

=
1

κ
(−uj−2uj−1 + uj−1uj+1 − uj + F ), j = 1, . . . N, (5.27)

where F and κ are constants independent of j. To form a cyclic chain, we set uN = u0, u−1 = uN−1

and uN+1 = u1. This system is known to have a chaotic behaviour over time depending on the
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(a) Coordinate system
(b) Initial x0 := (u1(0), u2(0), . . . , uN (0))

(c) Dynamical system
over space and time

(d) Window of assimilation

Figure 5.3: Lorenz96 problem

parameters N , F and κ (see for instance Karimi and Paul, 2009) For a given set of parameters N ,
F and κ for which a stable behavior is observed, i.e. where data assimilation can be performed,
we consider then the following dynamical system:

duj+θ
dt

=
1

κ
(−uj+θ−2uj+θ−1 + uj+θ−1uj+θ+1 − uj+θ + F ), j = 1, . . . N, θ = 1, . . . ,Θ, (5.28)

where θ and Θ are integers. Thus, the new size of the vector ū(t) is N×Θ, which may be specified
as large as needed in our numerical experiments. The dynamical system is plotted for N = 40,
F = 8, κ = 120 and Θ = 10, using the coordinate graph described in Figure 5.3 (a). For an initial
state x = ū(0) as that shown in Figure 5.3 (b) the system develops over time as described in
Figure 5.3 (c) (view from the top). As we observe that the system becomes chaotic after a certain
time, we consider a reduced window of assimilation plotted in Figure 5.3 (d). The time length of
the assimilation window is T = 120 and ∆t = 1

80 .
Twin experiments are performed in order to assess the performances of the suggested algorithm:

a true state or reference simulation is built by running the model from a given initial condition.
In both cases, the background is built from the initial true state by adding a noise following the
normal distribution N (0, σ2

b ). In the same way, the observations are generated by adding to the
true state a noise following the normal distribution N (0, σ2

o). We chosen σb = 0.2 and σo = 0.05
in the wave1D model, and σb = 0.2 and σo = 0.1 in the Lorenz96 system. The background and
observation error covariances matrices are assumed to be diagonal: B = σ2

b In and R = σ2
oIp,

with σb and σo the variances of the normally distributed noise present in the background and the
observations respectively, and In and Ip the identity matrices of dimension n and p.
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5.2 Results

We now provide numerical results using Algorithm 4.1, which uses the RPCG algorithm in Step 3,
as was mentioned in Section 2. When tuning the accuracy parameter for stopping the inner
iterations, we noticed that it was suitable to choose a value in the middle of the log-scale range. In
the case of the 1DWave equation the range of the parameter is more or less defined by [10−4, 10−1],
thus we choose 10−2, while the range is approximately [10−6, 10−1] in the case of the Lorenz96
model, and we chose the value 10−4 in our experiment.

For the 1DWave problem, we depict the background vector in a black dashed line together
with the true solution as a red line, in Figure 6.4 (a). The result given by our algorithm is
plotted as a blue line in Figure 6.4 (b). Both lines are almost indistinguishable highlighting the
good performances of the algorithm to retrieve the true solution. The background vector and the
true solution are plotted in Figure 6.5 (a) and the result given by our algorithm is presented in
Figure 6.5 (b) for the Lorenz96 model.

In order to observe the adaptive nature of the algorithm, for an intermediate iteration i, we
display two consecutive sets of observations Oi and Oi+1 in Figures 6.6 (a)-(b) and 6.7 (a)-(b) for
the 1DWave and the Lorenz96 respectively. In order to appreciate the impact of the local error
indicators defined in Step 4, we also illustrate, in Figures 6.6 (d) and 6.7 (e), the local behaviour
of the error between the prolongation of the current λi to the set Oi+1 and the true λ̃i+1, as given
by

εj = wj

〈
(λ̃i+1 −Πiλi)|j , [(R̃i+1 + H̃i+1BH̃

T
i+1)(λ̃i+1 −Πiλi)]|j

〉
,

together with that of the local error indicator itself (ηj is displayed Figures 6.6 (c) and 6.7 (c)).
In the case of the 1DWave equation we observe in Figure 5.2 (a) that the peak in the middle

of the signal produces a dynamical reaction over space and time, shown in part (b) of the same
figure. The error ηj in Figure 6.6 (c) is larger in the regions of strong dynamical activity, whose
identification is clear in Figure 6.6 (a)-(b) which shows the evolution of the observation sets. At
this level i, large values of ηj are also present at the bottom of (c) resulting in the selection of
observations at the right boundary of the spatial domain. In Figure 6.6 (d), we also observe that
the regions where the difference εj is large coincide with those where ηj is also large in Figure 6.6
(c). However, the error ηj strongly overestimates the difference εj as noted by the large difference
in amplitude between these two quantities.

In the case of the Lorenz96 model where the initial signal has also a peak in the middle
(Figure 5.3 (b)), the high dynamics are on the edge of the space and time graph (Figure 5.3 (d)).
In this case the quantity ηj also provides indication of where more observations are needed. In
Figure 6.7 (c), it corresponds to the spatial area located at the edge of the outer circle (end of the
assimilation window) and on the bottom of the domain during the second half of the simulation,
for which the high dynamics is poorly represented. We also note that the distance εj in Figure 6.7
(d) is quite consistent with ηj even if the larger values of εj tend to be more located in the left
side of the domain.

In Figures 6.8 and 6.9, we compare the performance of the new algorithm with the simple use
of uniform observations and a benchmark method where a pre-established hierarchy of uniform
distributed and progressively denser observations sets is used in Algorithm 4.1 (skipping Steps 4-6).
This last method bypasses the new adaptive features of the method and its associated computing
cost. For this comparison, we define, for a given iterate x resulting from Step 7 of Algorithm 4.1,
the cost function as the value of the function in (2.3) when i = r, i.e. when all the possible
observations are used. We then plot the evolution of this cost function (in logarithmic scale)
against the number of observations used and the associated flop (floating-point operations) counts
for the three algorithms. The curves for the uniform case do not correspond to an algorithm,
but show the accuracy and computational costs associated with directly solving the problem on a
uniform grid for each specific size.

We observe that the new method achieves a smaller cost function (plotted in red) than that
obtained by using uniformly distributed observations (plotted in blue) in both cases, or the bench-
mark (plotted in black) in the Lorenz96 system. In this case, the selection of the observations
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leads to a faster decrease of the cost function against the number of observations and computing
costs. So, the final cost function achieved by the benchmark is obtained by the new algorithm
assimilating 10 time less observations and for a computing cost divided by 10. In the 1DWave
equation, similar cost functions are achieved by the benchmark and the new algorithm. However,
the new algorithm is almost 50% cheaper than the benchmark in terms of the number of assimi-
lated observations and computing costs. This is explained by the fact that most observations used
by the adaptive algorithm are in regions of space where their contribution to accuracy is largest.

Finally, we plot the evolution with time of the Root Mean Square (RMS) error of the optimized
solutions obtained during the last minimization:

RMS(t) =
1

n

√√√√ n∑
k=1

(xt(t, k)− x(t, k))2

where t is the time, n is the dimension of the state vector, and xt and x are the true and optimized
solutions. The magenta line corresponds to the RMS error of the background, which means the
solution without assimilating data. For the 1DWave equation, we note that both the benchmark
and adaptive algorithms lead to the best solutions. For the Lorenz96 system, the best solution is
obtained with the new algorithm for which the smallest cost function is achieved due to a fastest
decrease. It leads to a better control of the error growth of the solution over the assimilation
window.

Computational experience not reported here also indicates that the effect of the choice of
starting value of x does not affect significantly the hierarchy of observation sets beyond the fact
that observations concentrate in regions of high dynamical activity. We also found that [0.4, 0.7]
appears to be an adequate range for the parameter θ1 in (4.22), yielding a satisfactory rate of
inclusion of new observations at each iteration.

Both results on accuracy and computational costs are therefore highly encouraging.

6 Conclusions and perspectives

An algorithm for the solution of the 4D-VAR problem is proposed, which identifies the influential
data and exploits this identification to improve on computing efficiency. The cpu-time gains are
obtained for two cumulative reasons, the first being that the available number of observations is
used very effectively, and the second the fact that the cost of the subproblem solution is significantly
reduced by the use of dual-space conjugate-gradient techniques like RPCG. Numerical experience
has been presented on two nonlinear test problems, and the results are encouraging.

Further refinements of the algorithm could be considered, such as the use of adaptive precondi-
tioners in the subproblem solver, and continued experience with the method is of course desirable
to assess its true potential. Extensions of these ideas in other domains are also possible: we think
in particular of data assimilation problems in frameworks where each state of the system is itself
an image on which adaptive reconstruction techniques could be applied. Moreover, our analysis
relies on upper-bounds on the error on Lagrange multipliers associated with the observation in
the 4D-Var minimization problem. These upper-bounds are based on a repeated use of the trian-
gular and Cauchy-Schwarz inequalities. Our paper shows that based on these techniques, we can
obtain a very efficient scheme to dynamically add observations in the course of the minimization.
Further work in other Data Assimilation platforms would be needed to explore the relevance of
the approach in other settings.

The authors believe that the hierarchy of observations described here may also be of interest in
the more general framework of designing adaptive observation strategies. Indeed the new method
proposed is able to isolate important observations from less important ones at a computational
cost which is less than as single solution of the 4D-VAR problem involving all observations at the
fine level, a unique feature to the authors’ knowledge. This line of development is the object of
ongoing research.
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(a) Background vector
and true initial u(0)

(b) True u(0)
and algorithm solution

Figure 6.4: Results: Nonlinear 1D Wave equation

(a) Background vector
and true initial u(0)

(b) True u(0)
and algorithm solution

Figure 6.5: Results: Lorenz96
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(a) Oi

−→

(b) Oi+1

(c) ηj (d) εj

Figure 6.6: Observations set and adaptive errors
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(a) Oi

−→

(b) Oi+1

(c) ηj (d) εj

Figure 6.7: Observations set and adaptive errors
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(a) Cost function versus number of observations (b) Cost function versus flops

(c) Optimized solution : RMS error versus time

Figure 6.8: Performance of the algorithm on the nonlinear wave equation
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(a) Cost function versus number of observations (b) Cost function versus flops

(c) Optimized solution : RMS error versus time

Figure 6.9: Performance of the algorithm on the Lorenz96 problem
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