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ABSTRACT
Constraint-based testing is an automatic test case generation
approach where the tested application is transformed into
constraints whose solutions are adequate test data. In previ-
ous work, we have shown that this technique is particularly
well-suited for testing SQL applications, as the semantics
of SQL can be naturally transformed into standard SMT
constraints, using so-called relational symbolic execution. In
particular, we have demonstrated such testing to be possible
in practice with current solver techniques for small-scale ap-
plications. In this work, we identify the main challenges and
provide research directions towards constraint-based testing
of full-scale SQL applications. We investigate the additional
research work needed to integrate relational and dynamic
symbolic execution, handle properly dynamic SQL, generate
tractable SMT constraints for most SQL applications, detect
SQL runtime errors and deal with non-deterministic SQL.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Symbolic execution, Testing tools (e.g., data generators, cov-
erage testing); F.4.1 [Mathematical Logic and formal
languages]: Mathematical Logic—Logic and constraint pro-
gramming ; H.2.3 [Database Management]: Languages—
Query languages

General Terms
Verification

Keywords
Test data generation, Fault localization, Symbolic execution,
SMT solvers, Quantifiers, Databases, SQL
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1. INTRODUCTION
Symbolic execution [25] is a program analysis that basically

executes the program’s code over symbolic values instead
of concrete ones. This technique has been advocated as an
efficient software testing approach [7, 8], as it can be used
to provide the tester with a representative set of test inputs
(and outputs) for a code under test. Such a testing approach
has recently gained a renewed interest, because of the rise of
dynamic symbolic execution [18] and of important advances
in constraint solving, namely using SMT solvers [14].

Among recent research in the field, symbolic execution has
been investigated (e.g. [27, 28, 29, 32, 16, 38, 26, 30, 31])
for testing SQL applications, i.e. programs that mix code
with SQL operations to interact with a relational database.
Dealing with SQL is a non-trivial extension of known sym-
bolic execution techniques, notably because of the complex
structure of relational databases and the complex behavior of
SQL statements [29]. In our recent work [27, 28, 29], we have
proposed relational symbolic execution as an adequate mean
to overcome these difficulties. This approach was successfully
experimented [29] over a set of small-scale SQL applications.

In this paper, we identify the main challenges and pro-
vide research directions towards testing of full-scale SQL
applications, using relational symbolic execution. Section 2
details the relational symbolic execution approach. Section
3 introduces a sample SQL application to test and presents
research directions to scale the approach, by discussing the
elements in the sample application that our approach cannot
currently handle. Finally, section 4 provides some concluding
remarks.

2. RELATIONAL TESTING OF SQL APPS
The symbolic execution of an application means processing

the application’s statements over symbolic values, instead
of concrete ones. For each control dependency met in the
code, the symbolic execution can proceed along any of the
possible paths and generate constraints upon the symbolic
values such that when the program’s variables have concrete
values satisfying these constraints, the real execution would
proceed along the selected path. For each path covering a full
execution of the application, the constraints collected along
can be regrouped in a so-called path-constraint. In the context
of testing an application, one can use symbolic execution to
generate the path-constraints for a set of paths in the code



that satisfy a given coverage criterion [43]. Solving these path-
constraints then provides the tester with a representative set
of concrete test values for the considered application.

By introducing relational symbolic execution [27, 28, 29],
we have extended classical symbolic execution to generate
test data for SQL applications. SQL applications are pro-
grams that mix classical code with SQL code to read and
write, using SQL transactions, into a relational database,
subject to data integrity constraints. We have defined a core
subset of the Java and SQL languages for writing such SQL
applications and written a relational symbolic evaluator [29]
for this language, i.e. a set of formal rules to generate the cor-
responding constraints during the symbolic execution of any
application in the language. This evaluator is relational as it
is based on a relational view of the tested application. In this
view, every table in the database is seen as an application’s
variable typed as a mathematical relation. Similarly, each
SQL statement is seen as a relational operation over these
relational variables and the traditional application’s variables.
The behavior of such relational operations can then be nat-
urally described by SMT constraints [2] mixing quantifiers
with uninterpreted function and array theories (AUFLIA
logic), as explained in [15]. These behavioral constraints can
be combined with constraints enforcing that every relational
variable satisfies the database’s integrity constraints (like
the primary key, foreign key or check constraints), as these
last constraints are typically defined in the same constraint
logic [12]. This approach was experimented [29] over ten
thousands paths in eighteen SQL applications, for a total of
five hundred lines of code, including eighty SQL statements.
The constraints were successfully and quickly solved using
the Z3 solver [13], producing meaningful test data. Alternate
approaches are either limited to a reduced part of SQL [16]
or they require to transform the SQL code into traditional
application code [9, 32], so increasing dramatically the num-
ber of paths to be explored [9] and making impossible the
detection of unfeasible paths in the original code [29].

In short, our work over relational symbolic execution
proves, for a core Java/SQL language, that the full seman-
tics of applications mixing SQL and classical code can be
translated into standard SMT constraints, and demonstrates
that these constraints can be properly handled by existing
solvers, at least for small applications. However, several
challenges still need to be overcome to use the approach for
more realistic and demanding SQL applications. First, in
our current approach, we have always performed relational
symbolic execution independently of any concrete execu-
tion. Nevertheless, integration with dynamic analysis has
been recognized as very beneficial for symbolic execution
to work well in practice [7, 8, 18]. Secondly, the approach
cannot handle dynamically-crafted SQL code, which is very
frequent in practice. Thirdly, general constraint generation
rules for the complete SQL language might be difficult to
define in practice, because of the complexity and variability
of the SQL syntax and semantics. In the the same time,
constraint solvers might fall short to solve the constraints
generated for the complete SQL semantics over large ap-
plications. Fourthly, the approach cannot properly detect
SQL runtime errors, which constitute an important marker
of faults in SQL applications. Finally, the approach cannot
properly handle non-deterministic SQL code, which can be
common in practice. The remainder of this paper discusses

in details each of these five challenges, which are treated
respectively in the five subsections 3.2, 3.3, 3.4, 3.5 and 3.6.

3. ISSUES IN RELATIONAL TESTING

3.1 A Faulty SQL Application to Test
We introduce here the sample faulty SQL application from

Figure 1 as a basis for the subsequent discussion over the five
main challenges faced by relational symbolic execution. This
application describes code as it could have been extracted
from library software. It is composed of the Java method
removeBookShelf and of the SQL DDL code describing the
part of the library database touched by the method, i.e. the
table shelf. In this table, a shelf is described by a technical
identifier (an integer), by its label (a string of maximum 50
characters), by the number of books it contains (an integer
which must be positive) and by the moment where it is
planned to be reordered (which can be null). When a book
is definitely removed from the library, several Java methods
are called in the library’s software to update the library’s
database. Among those, the removeBookShelf method is
supposed to decrease by one the number of books in the shelf
from which the book was removed. If this book was the last
one, the shelf is removed from the database. In practice, the
removeBookShelf method receives the label of the shelf and a
connection to the database and retrieves the current number
of books in the shelf from the database. If this number is
greater than one, it is updated in the database, otherwise
the shelf’s row is deleted.

Three SQL-related faults are present in this application.
First, the method mistakenly supposes that the SELECT
query will always return one and only one row. Secondly, the
UPDATE statement decreases the number of books by two
instead of one. Finally, there is a syntax error in the SQL
code of the DELETE statement (doubled WHERE token).

3.2 Static vs Dynamic Symbolic Execution
In our previous work [28, 29], relational symbolic execution

was performed independently of any concrete execution. A set
of paths in the code was statically selected and symbolically
executed to generate test data. The main advantage of such
a static symbolic execution [25] is that it only requires the
database’s schema or some parts of it, where a dynamic
approach requires to run the code on a functional database.
Access to such a database might not be easy at testing time
and the repeated calls to the Database Management System
(DBMS) will make the testing process slower. Works have
tried to alleviate this problem by using a mock database [38].

Nevertheless, dynamic symbolic execution (e.g. [19, 6, 35])
has benefited from an important wave of popularity in recent
years [7, 8]. [17] formally compares the respective power of
static and dynamic symbolic execution. In a nutshell, the
dynamic approach is more powerful because it has a natural
access to concrete values and can use them to replace the
parts of the code that cannot be symbolically executed (e.g.
calls to programs whose source is unavailable, or statements
that generate undecidable constraints). This last process
is called concretization. Nevertheless, a similar (and even
more powerful) ability can be conceptually integrated, with
some practical difficulties, within the static approach, using
higher-order test generation [17]. As discussed in the next
subsections, concretization can be beneficial for symbolic
execution of SQL, notably to handle some exotic or com-



Figure 1: A faulty SQL application that removes a book from a shelf in a library database.

CREATE TABLE shelf (
id INTEGER NOT NULL,
label NVARCHAR2(50) NOT NULL,
numberOfBooks INTEGER NOT NULL,
nextReordering TIMESTAMP(2),
CONSTRAINT sPK

PRIMARY KEY (id),
CHECK(numberOfBooks > 0));

1 void removeBookShelf (Connection con,int theShelf) throws SQLException {
2 String condition = ”WHERE label =”+theShelf;
3 ResultSet rs = con.createStatement().executeQuery(”SELECT numberOfBooks
4 FROM shelf”+condition);
5 rs .next();
6 int booksNumber = rs.getInt(”numberOfBooks”);
7 if (booksNumber > 1) {
8 con.createStatement().execute(”UPDATE shelf
9 SET numberOfBooks=numberOfBooks−2”

10 +condition);
11 } else {
12 con.createStatement().execute(”DELETE FROM shelf WHERE”+condition);}}

plex parts of the language or to make easier the symbolic
execution of dynamically-crafted SQL statements. As a con-
sequence, the integration of relational symbolic execution
with dynamic symbolic execution and with higher-order test
generation should be realized and compared. In the remain-
ing part of this subsection, we briefly show that building a
unified relational and dynamic symbolic execution algorithm
is conceptually straightforward.

A unified relational and dynamic symbolic execution algo-
rithm would start by populating the database with random
but valid content. In order to do so, it could use relational
symbolic execution to translate the database’s schema into
constraints over symbols representing the initial content of
the database’s tables. Any solution to these constraints would
constitute a valid input content for the database. Secondly,
the algorithm would run the SQL application by providing it
with a connection to the database and with random values
for the input parameters. The application’s execution would
proceed normally, but the code would be instrumented so
that the executed statements would be symbolically executed
in parallel, thereby generating the corresponding contraints
along with the concrete execution, using a relational symbolic
evaluator. Once the code completely executed, the input and
output values and the database’s initial and final contents
would be saved as a test case. Then, the algorithm would
consider the generated constraints and flip some of them in
order to produce constraints that would enforce the execution
of an unexplored path. These constraints would be solved
to produce new concrete inputs for the database and for the
input parameters. The whole process would be repeated
with these new inputs. The algorithm would stop when a
sufficient [43] number of paths would have been explored.

3.3 Handling Dynamically-Crafted SQL
The relational symbolic evaluator that we proposed in

[29] was designed in the context of static SQL, whereas the
removeBookShelf method from Figure 1 uses dynamic SQL,
making the direct use of the constraint generation rules from
[29] impossible for testing this application. Static and dy-
namic SQL [12] are the two existing interaction paradigms
between an application and a DBMS. In static SQL, the syn-
tactic structure of the SQL statement is completely defined
statically. The value of the constants in the typed expres-
sions used in this statement can be defined parametrically at
compile time as a function of the application’s variables. In
dynamic SQL, the application builds dynamically a character
string containing the SQL statement’s code, which is parsed
and executed at runtime. Conceptually, symbolic execution
is only possible for static SQL, as the symbolic evaluator will

always need the syntactic structure of the SQL code, as well
as a precise definition of the relation enforced by the SQL
code between the application’s variables and the database’s
content, in order to be able to generate constraints. Nev-
ertheless, in practice, the dynamic SQL code can often be
normalized, for a given execution path in the code, into an
equivalent static SQL code. This normalization is even easier
if a possible runtime value for the string variable containing
the SQL code is known for the considered path. As a simple
illustrating example, if we consider a path in the removeBook-
Shelf method that we would like to execute symbolically, the
dynamic SELECT statement can be replaced by a static
SQL statement ”SELECT numberOfBooks FROM shelf
WHERE label = X” where the value of parameter X is
defined as equal to the value of the theShelf parameter. The
constraint generation rules from [29] can then be applied on
this normalized version of the path’s code.

However, path normalization of dynamic SQL into static
SQL is not always possible, as dynamic SQL allows to use
the application’s inputs as parts of the syntactic structure of
the dynamically-crafted SQL code. In some applications, the
whole SQL statement can even be loaded as a string from the
database itself. Such cases are particularly problematic, as
symbolic execution computes inputs from code analysis and
is thus not designed for applications whose code is part of the
input. Integration between symbolic execution and partial
evaluation [23] could be an interesting research direction for
solving this problem. Partial evaluation basically optimizes a
piece of code by precomputing statically all the parts of the
code that depend on inputs which are known at compile time.
In an SQL application, by choosing appropriate concrete
values for those parts of the inputs that are used to define the
syntactic structure of the dynamic SQL statements, one could
use partial evaluation to produce representative specialized
versions of the original application that can be properly
evaluated symbolically. Interleaving symbolic execution and
partial evaluation has already been studied in another context
by [5]. Detecting which parts of the application’s inputs
should be made concrete could benefit from existing work
(e.g. [21, 37]) over detection of SQL injections, i.e. well-
known malicious code injection techniques exploiting the use
of application’s inputs in dynamic SQL as an attack vector.

3.4 Building and Solving Constraints for SQL
An important point to notice in the constraints generated

using the constraint generation rules that we proposed in
[29] is the extensive use of quantifiers. These are necessary
to capture the full semantics of SQL applied over tables
containing relations whose cardinality is unknown and un-



bounded. SQL is indeed essentially syntactic sugar for the
operators of relational algebra [11, 12], whose expressiveness
has been proven equivalent to a quantified subset of first-
order logic, called domain-independent relational calculus
[1]. If first-order logic is not decidable in general [10, 40],
some SMT solvers (e.g. Z3 [13]) benefit from ongoing de-
velopments in heuristics aimed at solving sets of quantified
constraints. In our previous work, experiments have shown
that the Z3 solver is sufficiently powerful to efficiently solve
the constraints generated by relational symbolic execution
over small-scale SQL applications, written in our small subset
of Java and SQL, allowing only core programming operations
and integers as only primary type. We investigate here a
more general constraint-based testing of SQL applications.

SQL applications, like the one of Figure 1, can mix various
operations over various datatypes, such as strings, binary
objects, numeric values and timestamps. Conversions be-
tween these types are also common, like at line 2 of the
removeBookShelf method from Figure 1, where an integer
is converted into a string. Symbolic execution of these op-
erations requires the development of solvers able to handle
quantified SMT constraints combining in new ways trusted
theories, like the integer, real, array or bit-vector theories
with new string and timestamp theories. Several works have
studied the particular problem of multi-granularity temporal
constraint solving (e.g. [3]) and several string constraint
solvers have been developed (e.g. [22, 24, 41]). Research is
ongoing (e.g. [42, 4, 33, 34, 39, 36]) towards a proper solving
of string contraints inter-related with other kinds of con-
straints, in the context of symbolic execution. As the use of
quantifiers and of various operations over various datatypes
makes the target logic complex and generally undecidable,
symbolic execution of SQL should be tailored to generate
very efficient sets of constraints, expressed in parts of the
logic that are decidable or optimized for the heuristics used
by the solver. Building such a symbolic evaluator is made
difficult by the fact that the syntax and semantics of SQL is
large and complex, and can vary strongly in practice between
different DBMS’s versions and manufacturers. A research
direction for overcoming these difficulties is using relational
algebra as an intermediate language for symbolic execution
of SQL: the original SQL code would be compiled into a min-
imal relational algebra, and then the algebraic code would
be translated into logical constraints. Algorithms translating
SQL statements into equivalent combinations of a core set of
relational algebra’s operators have already been developed,
in the context of DBMS design [12]. Equivalence between
relational algebra and logic is well defined since the birth
of relational databases [11]. In practice, this idea should be
refined, as SQL is more powerful [12] than relational algebra,
since it allows non-relational constructs like rows ordering
and aggregation, null values, built-in or user-defined func-
tion calls, etc. The intermediate language should thus be
extended by a minimal set of operators for describing the
most common non-relational parts of SQL. Function calls
could be symbolically executed as normal procedural code.
Concretization could be the last-ditch solution to handle
exotic or too complex parts of SQL.

3.5 Detecting SQL Runtime Errors
Runtime errors can be frequent in SQL applications [12], as

there is no compile-time integration between the application’s
code and the DMBS’s code. When the DBMS encounters

an error while processing an application’s request, it warns
the application by throwing a runtime error. Some of these
errors can be caused by a fault in the application, like sub-
mitting a syntactically wrong dynamic SQL code, misusing
the DMBS’s API, accessing an empty cursor, violating the
database’s integrity constraints or writing values in a different
format than specified by the database’s schema. Relational
symbolic execution should thus be extended to treat every
SQL statement (and DBMS’s API call) as a kind of switch/
case statement dealing with a set of possible runtime errors,
typically of the form:

switch (SQL Statement) {
case violates the ith integrity constraint of the schema :
throw new SQLException(”Constraint ... violated”);
case contains a syntax error :
throw new SQLException(”Syntax error: ...”);
...
default:
Execute statement. }

Two major challenges are, first, to detect, for a given state-
ment, what kinds of runtime error can occur, and, secondly,
to infer the constraints that drive the execution towards a
particular kind of runtime error being raised or not.

As an example, symbolic execution should detect that the
getInt method at line 6 of the removeBookShelf method from
Figure 1 can throw an SQLException, if called on an empty
ResultSet. If we model each datatype in the application by
integers and replace the dynamically-crafted SELECT state-
ment by equivalent static SQL, the symbolic evaluator from
[29] can be applied to generate constraints driving the exe-
cution towards such a faulty ResultSet access. Solving these
constraints would show that they are satisfiable (for example,
if the database is empty at method’s start, whatever the
other inputs are) and allows thus to detect the fault concern-
ing the SELECT statement, which can return less than one
row for some inputs. Similarly, satisfiable constraints can be
generated for the path leading to a violation of the database’s
CHECK constraint by the UPDATE statement at line 8 (vio-
lation occurs if the selected shelf contains two books), which
is a hint at the fault signaled for the UPDATE statement
(with a correct code, decreasing the number of books by one,
no constraint violation would be possible and the generated
constraints would be unsatisfiable). Finally, considering a
unified relational and dynamic symbolic execution algorithm,
any concrete execution of the method taking the else branch
at line 11 will throw an SQLException, because of the syntax
error in the DELETE statement. Statical detection of such
syntax errors in dynamic SQL code has been studied in [20].

3.6 Handling Non-Deterministic SQL
Non-determinism creeps in many places in the SQL se-

mantics [12]. A common example is the undefined order in
which a SELECT statement can return the selected rows.
For example, let us consider two runs of the removeBookShelf
method from Figure 1 over 66 as input value for parameter
theShelf and the following content for the table shelf :

id label numberOfBooks nextReordering
1 ”66” 560 9/9/15 11:00:00
3 ”66” 1 8/9/15 9:10:00

Both rows are selected by the SELECT query at line 3 but let
us suppose that they are returned in different order between



the two runs. During the first run, the value 560 is returned
by the getInt method at line 6, triggering the execution of
the then branch of the if statement. During the second run,
the value 1 is returned by the getInt method, triggering the
execution of the else branch of the if statement. This is
problematic for symbolic execution, as it shows that non-
deterministic SQL can allow a single application’s input to
trigger different execution paths in the code and to produce
different outputs. Moreover, such a non-deterministic be-
havior of the whole application should be detected as it can
be a hint at an underlying design fault in the code. In this
particular case, the fault hinted at is the previously signaled
fault concerning the SELECT statement, which can return
more than one row for some inputs.

A common way to handle such a non-determinism in sym-
bolic execution is to constrain the order in which the rows
are returned by the SELECT statement as if it was one
of the method’s inputs. In such a way, any solution to a
path-constraint would define a particular row order and thus
trigger the execution of a single path in the code, producing
a single possible output. Moreover, one can subsequently
execute the method by varying the row order, while keeping
the other inputs constant, to detect if the taken path and the
produced output are affected. Other well-known examples of
non-deterministic SQL are queries based on the current date
in temporal databases, whose result can vary depending on
when the query is executed, or insertion of new rows using
fields values randomly selected by the DBMS. In both cases,
the current date and the randomly selected field values can
be considered as inputs of the tested application as well.

4. CONCLUDING REMARKS
Symbolic execution is a particularly well-suited technique

for testing SQL applications, as the semantics of SQL has
been built over relational algebra and first-order logics, and
can thus be naturally expressed using standard SMT con-
straints. In our previous work, we have shown that such
a constraint-based testing of SQL applications was possi-
ble with current solver techniques, at least for small-scale
applications.

In this work, we have identified the main challenges and
provided research directions towards constraint-based testing
of full-scale SQL applications. If one-click testing of any
SQL application might never be possible, notably because of
the complexity and the variability of the still evolving SQL
language, automating testing of most SQL applications might
be possible with reasonable effort. This will notably require
some additional research work to properly handle dynamic
SQL (using concretization and partial evaluation), generate
tractable constraints (using relational algebra as intermediate
language and leveraging the power of new generations of
SMT solvers), detect SQL runtime errors (using efficient
error analysis and translation into constraints) and deal with
non-deterministic SQL (by making the non-deterministic
choice an application’s input).
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