
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Building a bridge between Goal-Oriented Requirements with KAOS and event-B
System Specifications
Devroey, Xavier

Publication date:
2010

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Devroey, X 2010, 'Building a bridge between Goal-Oriented Requirements with KAOS and event-B System
Specifications', Master.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/publications/building-a-bridge-between-goaloriented-requirements-with-kaos-and-eventb-system-specifications(0aa122ad-9d16-4c8d-a7c6-00ddcbe8bf95).html

Facultés Universitaires Notre-Dame de la Paix, Namur
Faculté d'Informatique

Année académique 2009-2010

Building a bridge between

Goal-Oriented Requirements

with KAOS and Event-B

System Speci�cations

Xavier Devroey

Promoteur : Wim Vanhoof
Maître de stage : Christophe Ponsard

Mémoire présenté en vue de l'obtention du grade de
master en sciences informatiques

Résumé

Ce mémoire présente des techniques pour lier des modèles d'exigences ori-
entés buts (GORE) et des spéci�cations formelles exprimées en termes plus
opérationnel. Plus particulièrement, l'objectif était de produire une méthode
permettant de dériver un modèle Event-B à partir d'un modèle KAOS qui
s'appuie au maximum sur les possibilités de ces langages, qui garantisse une
traçabilité �ne et qui soit la plus automatisée possible.

Après l'analyse d'un certain nombre d'approches existantes, aucune méth-
ode ne semble répondre au problème. Par conséquent une approche alterna-
tive a été conçue en se concentrant principalement sur la mise en correspon-
dance d'agents GORE et de machines Event-B.

Le travail repose entièrement sur UML-B pour la dérivation des modèles
de données. Des extensions récentes d'Event-B traitant de la décomposi-
tion de machine sont aussi utilisées. Une machine initiale correspondant au
modèle de données KAOS est d'abord créée. Cette machine est l'équivalent
du système entier, capable de controler toutes les données. La machine ini-
tiale est ensuite décomposée en machines agent, exprimées de manière plus
�ne en se basant sur leurs capacités de contrôler certaines données. En-
�n, le comportement des machines agent est ra�né pour correspondre au
comportement déclaré dans le modèle KAOS.

L'approche a été partiellement implémentée dans un prototype qui utilise
des technologies de transformation de modèle à modèle (EMF - ATL), et
validée sur di�érents cas.

Mots clés

Event-B, KAOS, ingénierie des exigences, ingénierie dirigée par les modèles,
méthodes formelles, méthodes orientées buts

i

Abstract

This master thesis presents techniques for connecting requirements models
expressed in a goal-oriented requirements engineering (GORE) paradigm into
more operational speci�cations expressed in Event-B. More speci�cally, the
objective was to produce a method that derives an Event-B model from
a KAOS model, that relies on the semantics of those two languages, that
guarantee a �ne-grained traceability and that is as automatic as possible.

After reviewing a number of existing approaches, none of those methods
seem to answer the problem. Consequently an alternative approach was de-
signed with the central focus of mapping GORE agents to Event-B machines.

The work fully relies on the UML-B work for mapping data models.
Recent Event-B extensions about machine decomposition are also used to
decompose an initial system level machine into more �ner grained agent
machines based on their ability to control a speci�c piece of information.
Finally the agent machines are re�ned to match the behaviour declared in
the KAOS model.

The approach has been partially implemented in a prototype that uses
model to model transformation technologies (EMF - ATL), and has been
validated on di�erent cases.

Keywords

Event-B, KAOS, requirements engineering, model driven engineering, formal
methods, goal orientation

ii

Avant-propos

Je remercie toutes les personnes qui ont participé directement ou
indirectement à la réalisation de ce mémoire :

En particulier Wim Vanhoof, professeur à la faculté d'Informatique
des Facultés Universitaires Notre-Dame de la Paix de Namur et
promoteur de ce mémoire, qui s'est toujours montré à l'écoute
et très disponible, pour l'aide et le temps qu'il a bien voulu me
consacrer.

Christophe Ponsard, responsable du département Software &
System Engineering au CETIC et responsable de mon stage, pour
son aide tout au long de la rédaction de ce mémoire, ses conseils
et son expérience.

Le personnel du CETIC pour leur accueil et les professeurs des
Facultés Universitaires Notre-Dame de la Paix de Namur pour le
savoir qu'ils m'ont transmis durant ces trois années.

En�n, j'adresse mes plus sincères remerciements à mes parents,
pour leur soutien inconditionnel et la patience dont ils ont fait
preuve et à tous mes proches et amis, qui m'ont soutenu et en-
couragé au cours de la réalisation de ce mémoire.

iii

Contents

Résumé i

Abstract ii

Avant-propos iii

Contents vi

1 Introduction 1

2 Requirements Engineering 4
2.1 Overview of Requirements Engineering 4

2.1.1 Problems Context . 5
2.1.2 Requirements Engineering Concerns 7

2.2 Overview of Goal Oriented Requirements Engineering 7
2.2.1 Goal . 8
2.2.2 Agent . 9
2.2.3 Domain Properties and Hypothesis 10

2.3 KAOS: a Goal-Oriented Method 11
2.3.1 Mine Pump Example 11
2.3.2 Goal Model . 12
2.3.3 Object Model . 16
2.3.4 Formal Layer Using Linear Temporal Logic 17
2.3.5 Responsibility Model 20
2.3.6 Operation Model . 22
2.3.7 KAOS's Supporting Tool 26

3 Formal Modelling for Speci�cations 28
3.1 Overview of Formal Methods 28
3.2 Event-B: a Formal Speci�cation Language for System Design 30

3.2.1 General Overview . 31
3.2.2 Machines and Contexts 32
3.2.3 Proof Obligation Rules 38
3.2.4 Event-B Model Decomposition Techniques 41

iv

CONTENTS v

3.2.5 Event-B's Supporting Tool 44
3.2.6 Requirements Engineering and Event-B 45

4 KAOS to Event B: Proposed Approach 47
4.1 Presentation of the Approach 47

4.1.1 Overview . 48
4.1.2 Final Result . 49
4.1.3 Example . 51

4.2 Step 1: Derivation of Event-B Context and Machine from
KAOS Object Model . 52
4.2.1 Object Types and Attributes 53
4.2.2 Associations and Specializations 53
4.2.3 General Update Event 55
4.2.4 Example: Initial Machine and Context for the Mine

Pump . 55
4.3 Step 2: Decomposition of the Initial Model According to Agents 58

4.3.1 State-Based Decomposition Applied to the Initial Ma-
chine . 59

4.3.2 Example: Decomposing the Initial Machine for the
Mine Pump . 60

4.4 Step 3: Implementing Requirements and Expectations As-
signed to an Agent . 61
4.4.1 Environment Agents and Internal Variables 63

4.5 Di�erent Kinds of Re-compositions 64
4.6 Traceability Between KAOS and Event-B 66

4.6.1 De�nitions . 66
4.6.2 Initial Machine and Context 67
4.6.3 Agent Machines and their Re�nements in the Event-B

Model . 68
4.6.4 General Rule . 69

4.7 What happens if . 70
4.7.1 . . . an element is added in the KAOS object model? . . 70
4.7.2 . . . an element is removed from the KAOS object model? 71
4.7.3 . . . an agent is added in the KAOS model? 71
4.7.4 . . . an agent is removed from the KAOS model? 71
4.7.5 . . . a control link is added in the KAOS model? 72
4.7.6 . . . a control link is removed from the KAOS model? . 72
4.7.7 . . . a monitor link is added in the KAOS model? 72
4.7.8 . . . a monitor link is removed from the KAOS model? . 73
4.7.9 . . . a newly created requirement/expectation is assigned

to an agent? . 73
4.7.10 . . . a requirement/expectation assigned to an agent is

modi�ed? . 73

CONTENTS vi

4.7.11 . . . a responsibility links is moved from an agent to an-
other? . 74

4.8 A First Implementation . 74
4.8.1 The ATLAS Transformation Language 75
4.8.2 Ecore Meta-Model . 77
4.8.3 Actual State, Limits and Future Implementations . . . 77

5 KAOS to Event B: existing approaches 79
5.1 Expressing KAOS Goal Models with Event-B: A. Matoussi . . 79

5.1.1 First Phase . 80
5.1.2 Second Phase . 83

5.2 From Goal-Oriented Requirements to Event-B Speci�cation:
B. Aziz et al. 85
5.2.1 Notion of Triggered Event 86
5.2.2 Operationalisation Patterns 89

5.3 Deriving Event-based Security Policy from Declarative Secu-
rity Requirements: R. De Landtsheer 89
5.3.1 Linear Temporal Logic Formula 90
5.3.2 Polpa . 90
5.3.3 Derivation Procedure 91
5.3.4 Syntactic Changes from Polpa to Event-B 96

5.4 Comparison of the Approaches with our Proposed Approach . 97
5.4.1 Traceability . 98
5.4.2 Models Evolution . 98
5.4.3 Scalability . 100
5.4.4 Restrictions . 100
5.4.5 Summary . 102

6 Conclusion 104

A Mine pump example 106

Glossary 119

List of �gures 123

List of tables 124

Listings 125

Bibliography 129

Chapter 1

Introduction

Application development is classically de�ned as a process decomposed in
several phases. The �rst one is the requirements engineering phase which
aims at capturing the requests of the client and writing them down in a
requirements document. In the second phase, the speci�cation phase, a sys-
tem that responds to the requirements of the client will be imagined and
described in a speci�cations document. The third phase is the design phase
where the speci�cations are re�ned to get a precise architecture of the future
application. The last phase is the coding phase, where the architecture is
implemented using a programming language.

As the chosen programming language is the formalism used for the cod-
ing phase, the other phases will have their own language, e.g. class diagrams
and sequence diagrams for the design phase. Those languages may be less
or more formal according to their purposes and stakeholders, i.e. people in-
volved in the application development, that will read and use them. For
instance, natural language may be used for the requirements document and
a purely mathematically based language may be used for the speci�cations of
the system. All languages have their advantages and disadvantages, natural
language may be easily understood by the client that will validate the re-
quirements document, but it may be ambiguous for the analyst that will have
to establish speci�cations based on this document. On the contrary, mathe-
matically based languages are unambiguous, but are hard to understand for
non-specialists.

Another major side of a development process are the tests taking place
at di�erent moments in the process. Tests will generally occur at the end of
a phase, e.g. testing the code to ensure that it is bug-free or testing that the
di�erent elements described in the design have e�ectively been implemented.
According to the used language, the tests will be more or less automated.
One of the problems usually encountered with tests in a development process
is the test's coverage, especially with the source code which is usually too big
to be completely tested. This may be problematic, in the case of a critical

1

CHAPTER 1. INTRODUCTION 2

system where a failure in the system may have important consequences, going
from recovery issues to money or even human lives loss.

One way to overcome this is to use formal methods in the speci�cation
and/or the design phases. As we will see in chapter 3, a formal method uses
a formal language composed of syntax with a semantic relying on a math-
ematical substratum and a proof theory de�ning rules for inferring useful
information. For instance, if we use a formal method to establish the speci�-
cations, it will be possible to prove that the speci�cations are correct, i.e. the
speci�cations are consistent and correct with themselves, but without taking
care whether the speci�cations meets the requirements or not. If we want to
prove such a thing, the requirements have to be written in a formal language
compatible with the language used to express the speci�cations. The reader
could easily understand here that using formal speci�cations may be quite
heavy, as well for the analyst which will have to write down the speci�ca-
tions, as for the client, usually non-expert in the used formal language, that
will have to validate them.

To avoid such a situation, the idea is to have an uninterrupted chain
between the requirements, expressed in such a way that they are easily un-
derstood by the client, and the source code. In this case, the speci�cations
would be formally derived from the requirements, the design is formally de-
rived from the speci�cations and the code is automatically generated from
the design. Such derivation chains already exist partially. In Event-B, a
formal method used for the speci�cation phase and based on a re�nement
strategy, a general model is re�ned to be made more precise with a proof
at each re�nement that the concrete model does not contradict the abstract
one. When the model is precise enough, a B model based on the B-Method,
also sometimes called Classical-B, may be automatically generated. As for
Event-B, Classical-B is based on a re�nement strategy where the model is
made more concrete at each step. When the B model is precise enough,
the source code may be automatically generated. Contrary to handwritten
source code, this generated code has been proved equivalent to the speci�ca-
tion expressed in the general Event-B model and is thus bug-free, although
it may contain what we may call business errors. Business errors are com-
ing from a "modelisation error", e.g. misunderstanding of the requirements
expressed by the client.

In this case we have an uninterrupted chain between the speci�cations
and the source code, but there is still a gap between requirements and
speci�cations. As the requirements have to be formalized in a way or
another, we chose here to use KAOS: a goal oriented methodology. As for
Event-B, KAOS is based on a re�nement strategy. Starting from high-
level goals saying why the future system has to be build, arriving at a set
of requirements and expectations saying how the future system will ful�l
those goals and who will be involved in this ful�lment (the implied agents).
KAOS also include a formal layer by permitting the de�nition of the goals,

CHAPTER 1. INTRODUCTION 3

requirements and expectations with linear temporal logic formula.
This thesis is structured as follows: chapter 2 will present the main

concepts that may be found in requirements engineering, more particularly
goal oriented requirements engineering and KAOS. Chapter 3 will introduce
the notion of formal method and will present in more details the Event-B
method. In chapter 4 we design our approach to build a bridge between
KAOS and Event-B that ful�ls a number of objectives as none of the exist-
ing approaches (presented in chapter 5) could meet them all. A comparative
discussion is also presented at end of chapter 5. Chapter 6 will conclude by
summarising the problem, highlighting contribution, pointing some limits
and sketching some possible further work to address them.

Chapter 2

Requirements Engineering

This chapter introduces general notions used in requirements engineering.
The �rst section describes what requirements engineering is about. The sec-
ond section introduces goal oriented requirements engineering, a goal driven
approach to perform tasks that can be found in a requirements engineer-
ing process. The last section describes KAOS, a goal oriented requirements
engineering method. Most of this chapter is inspired on van Lamsweerde's
book [van Lamsweerde, 2009].

2.1 Overview of Requirements Engineering

Requirements engineering is concerned about the de�nition and the under-
standing of a problem. In more details, it is focused on the discovering,
understanding, formulation, analysis and consensus formulations of the why,
what and who dimensions of the problem. Figure 2.1 presents the links
between the di�erent dimensions in a synthetic way.

Why-dimension

The Why-dimension wants to de�ne why the problem needs to be solved.
It is expressed in terms of goals that must be reached by the system under
development. It includes the analysis of each alternative with its advantages
and disadvantages and the management of con�icts between di�erent points
of view and self-interests in order to have a coherent set of goals.

What-dimension

The What-dimension is interested in the functional services that the system-
to-be should provide to satisfy the objectives de�ned in the why-dimension.
Those services may be automated in software or may be manual procedures
and generally rely on the assumptions made on the system to work correctly.

4

CHAPTER 2. REQUIREMENTS ENGINEERING 5

Figure 2.1: Why, what and who dimensions [van Lamsweerde, 2009]

They will have to respect some constraints about performance, security, us-
ability, interoperability and cost.

Who-dimension

The Who-dimension establishes the responsibilities between the services and
the human, software and hardware components of the system-to-be. When
di�erent possibilities exist for an assignment of a responsibility, the advan-
tages and disadvantages will be evaluated reminding that di�erent possibil-
ities may lead to di�erent more or less automated systems.

2.1.1 Problems Context

Problems generally come with a particular context larger than the problems
themselves. This context may be part of a complex organizational, technical
or physical world with its own rules. The main goal of a project will be to
construct a machine to resolve a problem and thus improve the context.

Figure 2.2 presents a general view of a machine and its environment. The
environment is part of the context on which the e�ects of the machine can
be seen. The machine is composed of a software and hardware part, and
interacts with the environment through shared phenomena. Those phenom-
ena are monitored or controlled by the machine in order to implement the
speci�cations [Lapouchnian, 2005,van Lamsweerde, 2009].

CHAPTER 2. REQUIREMENTS ENGINEERING 6

Figure 2.2: General view of a machine and its environment [van Lamsweerde,
2009]

De�nitions

Before going further, we give some de�nitions proposed by van Lamsweerde
and Lapouchnian in [van Lamsweerde, 2009,Lapouchnian, 2005] :

A System is a set of components each one interacting with another in
order to meet a global objective. What we will call the system-as-is is the
system before the construction of the machine. The system-to-be will denote
the system as it should be when the machine, also called software-to-be, will
be implemented and working.

The notion of descriptive statement is de�ned by van Lamsweerde in [van
Lamsweerde, 2009] as:

"Descriptive statements state properties about the system that
hold regardless of how the system behaves. It holds typically be-
cause of some natural law or physical constraint".

The notion of prescriptive statement is de�ned by van Lamsweerde in [van
Lamsweerde, 2009] as:

"Prescriptive statements state desirable properties about the sys-
tem that may hold or not depending on how the system behaves.
Such statement needs to be enforced by system components".

Requirements, also called system requirements, are prescriptive state-
ments formulated in terms of environment phenomena that describe desired
conditions over those phenomena. They will be enforced by the software-to-
be and other system components.

Speci�cations, also called software requirements, are prescriptive state-
ment formulated in terms of phenomena shared between the software and the
environment. Those statements will be enforced exclusively by the software-
to-be.

Domain properties are properties of the environment which are expected
to always hold regardless of the system's behaviours and even regardless of
whether there will be any software-to-be or not.

CHAPTER 2. REQUIREMENTS ENGINEERING 7

Assumptions , also called expectations, are generally prescriptive state-
ments formulated in terms of environment phenomena that have to be sat-
is�ed by agents in the environment.

The link between all those elements may be formulated as follow [van
Lamsweerde, 2009]:

Specifications,Domain properties,Assumptions |= Requirements

This can be read:

"If the speci�cations are satis�ed by the software, the assumptions
are satis�ed by the environment, the domain properties hold and
all those statements are consistent with each other,
then the requirements are satis�ed by the system".

2.1.2 Requirements Engineering Concerns

Requirements engineering is concerned with the left set in �gure 2.2, it cap-
tures and describes speci�cations, assumptions, domain properties and re-
quirements. Requirements engineering does not care about the how-dimension,
which states how the speci�cations will be implemented by the software. This
dimension is part of the software-design process.

We can now have the general de�nition of requirements engineering give
by van Lamsweerde in [van Lamsweerde, 2009]:

"Requirements engineering is a coordinated set of activities for
exploring, evaluating, revising and adapting the objectives, capa-
bilities, qualities, constraints and assumptions that the system-
to-be should meet based on problems raised by the system-as-is
and opportunities provided by new technologies".

2.2 Overview of Goal Oriented Requirements En-

gineering

Goal Oriented Requirements Engineering (GORE) is a goal driven approach
to perform tasks de�ned in a requirement engineering process. Contrary to
requirements engineering techniques concerned with "late-phase", like use-
case modelling, where initial functional requirement statements are clari�ed
and analysed to detect ambiguities, incompleteness or inconsistencies, the
GORE approach mainly address the Why-dimension of the system-to-be [van
Lamsweerde, 2009,Letier, 2001].

It is focused on system objectives as a core abstraction and captures
this abstraction through goals. The main concern will be the exploration of
the user's goals and the analysis of the di�erent possible systems which may
satisfy those goals [van Lamsweerde, 2009,Letier, 2001]. Two complementary
frameworks working with goals exist:

CHAPTER 2. REQUIREMENTS ENGINEERING 8

NFR is concerned with the evaluation and selection of alternatives respecting
qualitative non-functional goals, e.g. usability, performance, accuracy,
security [Chung et al., 2000].

KAOS is concerned with the generation of alternative systems from high level
goals expressed in linear temporal logic [Letier, 2001].

In the remainder of this work, we will rather explore the KAOS point of
view than NFR, e.g. the de�nition of soft-goal and non-functional goal which
are identical within NFR [Chung et al., 2000], but are two distinct concepts
in a KAOS context.

2.2.1 Goal

As said before, GORE is all about goals, but what is a goal? A goal is
expressed as a prescriptive statement about an objective the system has to
reach through the cooperation of its agents. Goals may be formulated at
di�erent levels of abstraction, from high level strategic concerns, to low level
technical concerns.

During the elicitation process, goals will be re�ned into sub-goals that
contribute to the realization of the parent goal. Goals may also be abstracted
into a more general parent goal to which they contribute. The �ner-grained
a goal is, the fewer agents it will need to be satis�ed. It is important to
underline here that a GORE process is generally not a top-down approach,
some goals are identi�ed and from them, sub-goals and parent goals will
appear from elicitation.

Goal Taxonomies

There exist several goal taxonomies used to facilitate elicitation, one of the
most common is the distinction between functional goals and non-functional
goals:

Functional goals express the intention hidden behind a system service.
For instance, an information goal "Notify the Accounts department that an
invoice can be sent to the Client" is a functional goal concerned with keeping
the Accounts department agent informed about system states.

Non functional goals express a quality or constraint on a service or the
development process. It may be about safety, security, performance, cost,
etc. For instance "Products have to be sent to the client maximum four days
after they have been ordered" is a time performance goal.

This distinction between functional and non-functional goals, which are
goal categories, is a fuzzy classi�cation used in the elicitation process to
check if all aspects of the system-to-be have been considered. It must not be
confused with the distinction between behavioural and soft-goals, which are
goal types:

CHAPTER 2. REQUIREMENTS ENGINEERING 9

A Soft-goal prescribes preferences among alternative system behaviours.
Its satisfaction cannot be established in a clear-cut sense, but a well-de�ned
satisfaction measure criterion has to be given. Sub-types have been de�ned.
Among the most frequently used ones: improve, increase, reduce, maximize
and minimize. They correspond to di�erent types of measure criteria.

A behavioural goal prescribes the desired behaviour in a declarative way.
It implicitly de�nes the maximal set of admissible states. Sub-types cor-
responding to particular behaviours have been de�ned. Among the most
frequently used: achieve, cease, maintain and avoid. Figure 2.3 shows this
classi�cation in a synthetic way.

The goal type classi�cation is a semantic classi�cation, in the sense that
a goal can be satis�ed by the system behaviour in a clear-cut sense or not.

Figure 2.3: Goal type taxonomy [van Lamsweerde, 2009]

The most commonly used behavioural goal type is the Achieve one, which
states that sooner-or-later a certain condition will be reached. The Cease
goal type states that sooner-or-later the negation of a certain condition will
be true. Maintain and Avoid types state that a certain condition will always
or never be true.

Improve soft-goal types states that a certain condition should be en-
hanced. Increase and Reduce types are used with a quantity criterion while
Maximize and Minimize are used with the most general notion of objective
function. More details about soft-goal types can be found in [van Lam-
sweerde, 2009].

2.2.2 Agent

Agents are active components of the system playing a role to satisfy some
goals. They are able to make choices and are characterized by behaviour.
They will have to restrict this behaviour to an adequate control (reading

CHAPTER 2. REQUIREMENTS ENGINEERING 10

and/or writing) of system items in accordance with a behaviour described
in the requirement document.

To be satis�ed, a goal may need the cooperation of several agents; there-
fore the system's behaviour will correspond to the parallelization of the sys-
tem's agents' behaviours. Agent behaviour is composed of a sequence of
state transitions for the items under the control of the agent. Those items
are state variables, corresponding to a functional pair (x, v) where x is the
variable and v its value. The system state will correspond to the aggregation
of variables' states characterizing the system, meaning that goals will have to
be formulated in terms of shared phenomena between agents. A phenomena
will always be controlled (written) by one agent and monitored (read) by
another.

An agent may be a person, a role in an organization, a device, an existing
software or a software-to-be. A distinction is made between environment's
agents and agents of the software-to-be. Goals under the responsibility of
the former one become expectations. They express an expected behaviour
from an agent of the environment needed to ful�ll the parent goal. They
can't be enforced by the software-to-be. Goals under the responsibility of
software-to-be agents, also called system agents, become requirements. They
express an expected behaviour of the software-to-be [van Lamsweerde, 2001].

2.2.3 Domain Properties and Hypothesis

Figure 2.4: Statement typology with goals [van Lamsweerde, 2009]

Goals need agents to be ful�lled, they are expressed for a particular sys-
tem in its particular environment. The intrinsic nature of that environment
with its laws may naturally satisfy goals. For instance, the goal "Getting
accurate price from Supplier" may be satis�ed by the environment property
"Supplier publish accurate merchandise's prices on their website". Therefore,
GORE also includes the notions of domain property and hypothesis.

A domain property is a descriptive statement that is true independent of
the system, e.g. the speed of light is 299 792 458 m/s.

CHAPTER 2. REQUIREMENTS ENGINEERING 11

A hypothesis is a descriptive statement satis�ed by the environment of
the system, e.g. company is closed on Sunday.

Figure 2.4 shows a statement typology with goals.

2.3 KAOS: a Goal-Oriented Method

KAOS is a goal-oriented method used in the software requirements engineer-
ing process. It describes requirements using four sub-models: a goal model, a
responsibility model, an object model and an operation model. KAOS stand
for Knowledge Acquisition in autOmated Speci�cation or Keep All Objects
Satis�ed and is supported by a tool called Objectiver [Respect-IT, 2009].
The KAOS language itself is described in a meta-model which also contains
meta-constraints. The most important ones that will be used afterwards are
presented in this section. For more informations, the interested reader could
refer to one of the works this section is mainly inspired from: van Lam-
sweerde's work [van Lamsweerde, 2001,van Lamsweerde, 2009], Letier's the-
sis [Letier, 2001] or Objectiver manuals [CEDITI, 2003,Respect-IT, ,Respect-
IT, 2009].

2.3.1 Mine Pump Example

Figure 2.5: Mine Pump and Pump Controller system [Letier, 2001]

To illustrate the di�erent points in the remainder of this work, we will
use a mine pump example presented in �gure 2.5 and inspired from [Letier,
2001]. In this example, we have a mine that has to be kept safe from �ooding
and avoid an explosion. For this we have a mine pump that starts pumping
if the water level is too high and if there is no methane detected. Here is the
informal problem statement:

Water percolating into a mine is collected in a sump to be pumped
out of the mine. Two water level sensors detect when water is

CHAPTER 2. REQUIREMENTS ENGINEERING 12

above a high and below a low level, respectively. A pump con-
troller switches the pump on when the water reaches the high
water level and o� when it goes below the low water level. The
mine has another sensor to monitor the methane level. An alarm
must be raised if any of these levels becoming critical so that the
mine can be evacuated. To avoid the risk of explosion, the pump
must be operated only when the methane level is below a critical
level.

2.3.2 Goal Model

The main concept in this model is the goal, represented by a blue parallelo-
gram in diagrams, which corresponds to an objective the considered system
should satisfy through the cooperation of its agents. It is formulated in a
prescriptive statement at a certain level of abstraction.

The goal model will serve as a basis for other models and is usually
the �rst one that is elaborated in a KAOS requirements elicitation process.
An initial set of goals in the model can be discovered by techniques like
analysing the current objectives and problems in the system-as-is, searching
for goal-related keywords in elicitation material, instantiate the di�erent goal
categories (see section 2.2.1), etc.

Figure 2.6: Abstract Milestone-driven re�nement pattern

Once an initial set of goals are discovered, they will be abstracted and
re�ned through new requirements elicitations. To guide this process, the
analyst can use a catalogue of re�nement patterns. One of the most common
ones is the milestone-driven re�nement, used when a target condition can
be reached from a current condition with an intermediate condition, the
milestone. Figure 2.6 shows the abstract de�nition of this pattern where the
TargetCondition, CurrentCondition and MilestoneCondition will have to
be instantiated.

AND/OR Graph

Goals are arranged in a AND/OR graph where goal re�nement nodes, rep-
resented by a yellow circle, will be used to connect a goal, saying why
sub-goals are needed, to a set of sub-goals saying how the parent goal

CHAPTER 2. REQUIREMENTS ENGINEERING 13

Figure 2.7: Mine pump example's goal re�nement

will be ful�lled. Figure 2.7 shows an example of re�nement where a goal
Maintain[SafeMine] corresponding to a general requirement "keeping a
mine safe", will be achieved by "keeping people in the mine safe" and "keep-
ing the devices in the mine correct and operational".

In a goal diagram, non-leaf goal nodes correspond to OR-nodes whereas
re�nement nodes, represented by yellow circles, correspond to AND-nodes.
In the case of a OR-node, it is said satis�ed if one of its descendants is
satis�ed. In the case of a AND-node, it is said as satis�ed if all its descen-
dants are satis�ed. For instance in �gure 2.8, the parent goal Achieve[Keep
people informed] is satis�ed if "an e-mail address is registered when the
user subscribed to the service" and "an e-mail is send when a new event is
organised", or if "a cellphone number is registered when the user subscribed
to the service" and "an sms is sent when a new event is organised".

AND-Re�nement

To check the goal model, three criteria are de�ned for the AND-re�nement:
completeness, consistency and minimality. They can be used as a tool for
further elicitation and should be veri�ed for mission critical goals by using
formal techniques such as theorem proving, the use of catalogue of formal
re�nement patterns or SAT solver technologies.

Criterion (Completeness). The satisfaction of all sub-goals G1, ..., Gn should
be su�cient for the satisfaction of the parent goal G in view of all known do-

CHAPTER 2. REQUIREMENTS ENGINEERING 14

Figure 2.8: A KAOS AND/OR graph example

main properties and hypothesis. The lattes will be represented by the set
Dom.

{G1, ..., Gn, Dom} |= G

Where A |= B means that B is satis�ed in any circumstance where all
expressions in A are satis�ed.

Criterion (Consistency). The sub-goals G1, ..., Gn, domain properties and
hypothesis in Dom may not contradict each other.

{G1, ..., Gn, Dom} 6|= false

Criterion (Minimality). If one of the sub-goals Gi in the re�nement G1, ..., Gn

is missing, the satisfaction of the parent goals G is no longer always guaran-
teed .

∀i : 1 6 i 6 n, {G1, ..., Gi−1, Gi+1, ..., Gn, Dom} 6|= G

OR-Re�nement

OR-re�nement is used to represent alternative options in a goal model. In
this case, a parent goal can be satis�ed by satisfying all sub-goals from any
of the alternative re�nements. Those alternatives will usually lead up to
di�erent versions of the modelled system.

The goal model with its OR-re�nements will serve as a basis to evaluate
the di�erent possibilities. By discussing with the stakeholders the advantages
and disadvantages, evaluating the di�erent softgoals and their satisfaction
rate if one alternative or another is taken. After negotiation with the decision
takers, one alternative will be selected for the speci�cation of the system.

Con�icts

When elaborating the goal model, there may be divergences between the
di�erent goals. Those divergences capture potential con�icts, represented by

CHAPTER 2. REQUIREMENTS ENGINEERING 15

a red �ash in KAOS, where some statement becomes logically inconsistent if
a boundary condition becomes true. Roughly, goals {G1, ..., Gn} are diver-
gent, given a set of domain properties and hypothesis Dom, if there exists a
boundary condition B such as:

{G1, ..., Gn, B,Dom} |= false
whereas {G1, ..., Gn, Dom} |= true

A more complete de�nition of divergence can be found in [van Lamsweerde,
2009].

Those con�icts must be resolved, but not necessary in a early phase of
requirements elaboration. Indeed, they may be a source of useful information
for further elicitations.

Agents

KAOS makes the distinction between software-to-be agents and environment
agents. Both are represented as �at hexagons, with a little picture of a man
into it to denote environment agents. Leaf-goals under the responsibility
of those agents become expectations represented by a yellow parallelogram
with a bold border. Goals under the responsibility of software-to-be agents,
also called system agents, become requirements represented by a blue paral-
lelogram with a bold border too. See subsection 2.3.5 to have more details
about agents and their responsibilities.

The visual separation of environment agents and software-to-be agents,
and between expectations and requirements allows to visually distinguish
parts that will be implemented in the software-to-be and parts that will
have to be ensured by the environment.

Other Concepts

The other main concepts that can be found in a KAOS goal diagram are
the soft goal represented by a blue parallelogram with dotted borders, the
domain property represented by a purple pentagon, the obstacles represented
by a red parallelogram, the obstruction link between an obstacle and a goal
and the resolution link between a goal and an obstacle. Figure 2.9 shows the
graphical representation of KAOS main concepts, with the relations between
elements of the goal model and elements coming from other models that will
be described in the following sub-sections. More information about all those
elements can be found in [Letier, 2001,van Lamsweerde, 2009].

2.3.3 Object Model

The object model is constructed in parallel with the goal model as soon as
the latter becomes precise enough. The idea here is to identify and give a

CHAPTER 2. REQUIREMENTS ENGINEERING 16

Figure 2.9: KAOS main concepts [Respect-IT, 2009]

precise de�nition for every object, relationship or attribute coming from the
goal elicitation.

Formally speaking, an object in KAOS may be an entity that is a passive
object, an association that is a subordinate object, an agent that is an active
and autonomous object capable to execute operations or an event that is an
instantaneous object that exists in one state only of the system. The IsA
relation may be used to express inheritance between objects. The object
modelling rectangle of �gure 2.9 shows the graphical representation of those
di�erent elements.

Every object has a name and a de�nition. A set containing all the object's
instances is implicitly declared for each object. If the object is an association,
it de�nes a mathematical relationship between n objects, each one will have
a role that de�nes its function in the relation and a cardinality that de�nes
the minimum and maximum number of instances of the association in which
a given object instance can be involved simultaneously. As in UML, an
association may be a simple association, an aggregation or a composition,
and may be directed or not. It is important to note that the cardinalities
of an association may only describe domain properties and not objectives of
the system, e.g. "not more than hundred books per category" is an objective
the system should meet, it will not be represented as a maximal cardinality
in the object model.

The remaining entities represented in the object model are the attributes.
They have a name, a de�nition and a range of values. An attribute is de�ned
for an object and can be seen as a function, total or not, from the set of object
instances to the set of possible values de�ned for the attribute.

In KAOS, a meta-constraint between the goal model and the object

CHAPTER 2. REQUIREMENTS ENGINEERING 17

model states that [Letier, 2001]:

Meta-constraint 2.3.1 (Consistency rule between object and goal model).
Every vocabulary element used in the de�nition of goals must be declared in
the object model.

2.3.4 Formal Layer Using Linear Temporal Logic

KAOS uses linear temporal logic to express formal de�nitions and annota-
tions in the di�erent models. In those formal de�nitions, variables corre-
spond to arbitrary object instances, e.g. in ∀tr1 : Train variable tr1 rep-
resents arbitrary instances of the Train entity, and functions are used to
represent attributes and binary associations, e.g. ∀tr1 : Train, speed(tr1) <
MAX_SPEED means that for all instances of Train, the actual speed must
be lower than a MAX_SPEED constant. As recall, objects are described
in the object model which regroups all the notions manipulated in the goal
model.

Each variable x has a value v which corresponds to a tuple of values for its
attributes and the relations in which the corresponding object participates.
The state of a variable is de�ned as a functional pair (x, v). In the same way,
the system state is de�ned as a tuple (X,V), where X is a tuple of variables
x and V is the tuple of corresponding values v for the variables in X.

Linear temporal logic allows to refer to future and past states of the
system by introducing the notion of history. A history H is a function
H : N → State(X) assigning to every time point i in N the system state at
that point. State(X) is the set of all possible values for the variables in X.

De�nition 2.3.1 (Temporal assertion satisfaction). If a temporal assertion
P is satis�ed by a history H at time position i, we say that :

(H, i) |= P

If i is the initial position 0, then the assertion P is said to be satis�ed by the
entire history H :

(H, 0) |= P

Correctness of the de�nitions and annotations will have to be satis�ed by
the history H of the system at a certain time position i. Those de�nitions
and annotations may be expressed as state assertions, that is a predicate
which is true in the current state, but will more probably be a temporal
assertion, recursively build from state assertions, temporal operators, logical
connectives and quanti�ers.

CHAPTER 2. REQUIREMENTS ENGINEERING 18

State Assertions

State assertions are build from atomic predicates connected through classical
logic connectors (and ∧, or ∨, not ¬, implies →, and equivalent to ↔) and
quanti�ers (for all ∀ and there exists ∃). The atomic predicates are composed
of terms connected by relational operators, e.g. greater than or equal >, or
associations de�ned in the object model, e.g. Borrows(b1, c1) where b1 is
an instance of Book and c1 an instance of Client. Terms are built from
constants, variables and function symbols applied to terms. Those functions
can be mathematical functions, like the arithmetic operators, or attributes
declared in the object model.

For instance, a security requirements stating that the water level in a
mine must always be lower than a maximal level could be translated in :

∀m1 : Mine
waterLevel(m1) < MAX_WATER_LEV EL

Assuming that waterLevel is an attribute of the entity Mine and
MAX_WATER_LEV EL is a constant value.

Temporal Assertions

Temporal assertions are build recursively from state assertions, temporal
operators, logical connectives and quanti�ers. Contrary to state assertions,
they do not only refer to the current state but also to previous and future
states. The tables 2.1 and 2.2 summarize the time operators used with KAOS
and they associated semantics.

Table 2.1: Future time operators
Notation Informal Explanation Semantic
♦P Sooner or later P (H, i) |= ♦P i� ∃j, j > i :

(H, j) |= P

�P Always P (H, i) |= �P i� ∀j, j > i :
(H, j) |= P

P U Q Always P until Q (H, i) |= P U Q i� (∃j, j > i :
(H, j) |= Q) ∧ (∀k, i 6 k < j :
(H, k) |= P)

P W Q Always P unless Q (H, i) |= P W Q i� ((H, i) |= P
U Q) ∨ ((H, i) |= �P)

◦P Next P (H, i) |= ◦P i� (H, i+ 1) |= P

P ⇒ Q P entails Q Equivalent to �(P → Q)

P ⇔ Q P is congruent to Q Equivalent to �(P ↔ Q)

CHAPTER 2. REQUIREMENTS ENGINEERING 19

Table 2.2: Past time operators
Notation Informal Explanation Semantic
�P Once P (H, i) |= �P i� ∃j, j 6 i :

(H, j) |= P

�P P has always been (H, i) |= �P i� ∀j, j 6 i :
(H, j) |= P

P S Q Always P in the past
since Q

(H, i) |= P S Q i� (∃j, j 6 i :
(H, j) |= Q) ∧ (∀k, j < k 6 i :
(H, k) |= P)

P B Q Always P in the past
back to Q

(H, i) |= P B Q i� ((H, i) |= P
s Q) ∨ ((H, i) |= �P)

•P Previously P (H, i) |= •P i� (H, i − 1) |= P
with i > 0

@P To P Equivalent to (•¬P) ∧ P

For example, a requirement saying that "for a mine, an alarm has to be
triggered as soon as methane is detected in the mine" could be translated in:

∀m1 : Mine

methane(m1) = true⇒ ◦ bell(m1) = ON

Assuming that methane and bell are attributes of the Mine entity and ON
is a constant value.

Bounded Time Operators

Requirements like the one in the example here are rare, a more realistic
version of it may be: "for a mine, an alarm has to be triggered in the
three seconds following methane detection". Although such bounded time
operators are not present in classical temporal assertions. To express such
requirements, KAOS uses three kinds of bounded time operators.

Relative time bound refers to a time distance from the current state.
The requirement given above is an example of such time bound. To de�ne
such relative time bounds, a temporal distance function between states must
be introduced:

dist : N× N→ D where D = {d|∃n : d = n× u}
dist(i, j) = |j − i| × u

Where u corresponds to the chosen time unit, e.g. second, microsecond, days,
week, etc. Note here that if multiple time unit are used, they are implicitly
converted into the smallest one. Time operator ♦6dP will correspond to
Sooner or later within deadline d, P . The semantics becomes:

CHAPTER 2. REQUIREMENTS ENGINEERING 20

(H, i) |= ♦6dP i� ∃j, j > i ∧ dist(i, j) 6 d : (H, j) |= P

where d ∈ D. Our requirement " for a mine, an alarm has to be triggered in
the three seconds following methane detection " will be translated into:

∀m1 : Mine

methane(m1) = true⇒ ♦63 sec. bell(m1) = ON

With a unit time u corresponding to one second.

Absolute time bound is used for requirements that refer to an absolute
time system, e.g. "Book copies shall be returned by the end of the year for
inventory". To do this, every time point of the system has to be associated
to the actual time in Time. It is done by a clock function:

clock : N→ Time

clock(i) = clock(0) + dist(0, i)

Time operator ♦6ctP will correspond to Sooner or later before clock time ct,
P . The semantics becomes:

(H, i) |= ♦6ctP i� ∃j, j > i ∧ clock(j) 6 ct : (H, j) |= P

Where ct ∈ Time.

Variable dependant time bound allows to refer to state variables of
the object model, attributes or associations, whose values may change over
time. Those kinds of variable time bounds are generally the most used
in requirements, e.g. "For every cinema, reservations are closed three hours
before the beginning of the projection" refers to projections p in a cinema and
to the beginning of the projection p.T ime. Variables may express relative
time bounds, like a delay, or absolute time bounds, like a �xed date. The two
functions dist(i, j) and clock(i) will be used to de�ne such time bounds. For
a state variable sv expressing a delay the semantics of the operator ♦6d(sv)P
is:

(H, i) |= ♦6d(sv)P i� ∃j, j > i : (H, j) |= P

And ∀k, i 6 k 6 j : clock(k)− clock(i) 6 V ALH,k(d(sv))

Where V ALH,k(d(sv)) corresponds to the value of the variable
dependent deadline d(sv) at time position k along history H

For a state variable sv expressing a �xed real time point the semantics of
the operator ♦6ct(sv)P is:

(H, i) |= ♦6ct(sv)P i� ∃j, j > i : (H, j) |= P

And ∀k, i 6 k 6 j : clock(k) 6 V ALH,k(ct(sv))

Where V ALH,k(ct(sv)) corresponds to the value of the variable
dependent clock time ct(sv) at time position k along history H

CHAPTER 2. REQUIREMENTS ENGINEERING 21

2.3.5 Responsibility Model

The responsibility model presents the di�erent agents of the system and
their responsibility in terms of desired behaviours. Declaring a responsibility
assignment of a goal to an agent intuitively means that the agent is the only
one required to restrict its behaviour so as to ensure the goal. Responsibility
assignments are graphically represented by a link with a red circle. They
provide a criterion for stopping the goal re�nement process. As stated before,
a goal assigned to a software agent becomes a requirement, while a goal
assigned to an environment agent becomes an expectation, also sometimes
called assumption.

Criterion (Stopping goal re�nement process). A goal assigned as the re-
sponsibility of a single agent must not be re�ned further.

Control and Monitor Links

The intuitive meaning of a responsibility assignment says that the agent
behaviour is able to ful�l the assigned goal. It means that the agent is able
to read and modify elements of the object model according to the de�nition
of the goal. On the other side an agent may be responsible for a goal if and
only if it has the capabilities to read and write elements used in the goal's
de�nition. Those capabilities are captured in the model through Monitor
and Control links. The former links an agent to an element of the object
model if the agent can read this element. The second links an agent to an
element of the object model if the agent can modify this element. To avoid
interference problems between concurrent executions of agents, the following
meta-constraint is de�ned.

Meta-constraint 2.3.2 (Single control). An element of the object model
may be controlled by at most one agent.

Agent behaviours are made more explicit in the operation model where
the operations needed to ful�l a goal are declared and linked to the goal
through operationalization links. A meta-constraint states that the agent
responsible for the goal will be the one performing those operations that
operationalize that goal.

Agent Diagram

Agent's capabilities and responsibilities are presented in an agent diagram.
For instance, �gure 2.10 presents the agent diagram of a pump controller,
used in a mine to avoid �ooding. The PumpController is monitoring the
Mine.waterLevel andMine.methane attributes and controlling theMine.pump
attribute. According to the water level and the presence or not of methane,
the PumpController will launch or stop the pump. The pump controller

CHAPTER 2. REQUIREMENTS ENGINEERING 22

Figure 2.10: Agent diagram: pump controller

example will be more systematically introduced in the beginning of chapter
4.

Context Diagram

Another kind of diagram can be used to present both agent capabilities and
how information will �ow in the system. The context diagram is sometimes
used in an early phase of the elicitation process, e.g. a management system
where information �ows from one agent to another. It also usually facilitates
the responsibility assignment. Figure 2.11 presents the context diagram for
the mine pump example where according to some sensor's data a pump is
switched on or o� and an alarm may be triggered to notify miners of the
presence of methane in the mine.

Figure 2.11: Context diagram: mine pump

2.3.6 Operation Model

As explained in the previous sections, an agent will have a declared behavior
corresponding to a sequence of state transitions for the object attributes
and associations that the agent controls. Those transitions correspond to
executions of operations performed by the agent.

CHAPTER 2. REQUIREMENTS ENGINEERING 23

Figure 2.12: Starting the pump operation model

The operation model presents the operations which have a name, a de�ni-
tion, a domain pre-condition and a domain post-condition with their inputs
and outputs and the agent that performs it. The domain pre-condition of
an operation characterizes the input states when the operation is applied
and the domain-post-condition of an operation characterizes the class of
output states when the operation has been applied. Both pre-conditions
and post-conditions do not care about required conditions for goal satis-
faction, e.g. for an operation StartPump, the domain pre-condition will be
m : Mine,m.pump = off and the domain post-condition will be m :
Mine,m.pump = on, the condition here does not care if methane is de-
tected before starting the pump or not.

An operation is linked to a leaf goal by an operationalization link and to
an agent by a performance link with the meta-constraint:

Meta-constraint 2.3.3 (Responsibility). The agent performing the opera-
tion must be responsible of the operationalized goal.

On a diagram, as in �gure 2.12, it will correspond to the two links, on
operationalization link with a blue circle and a responsibility link with a red
circle, linked to the same leaf-goal. Note here that an agent performing an
operation has to have the ability to monitor the inputs of the operation and
control its outputs.

Meta-constraint 2.3.4 (Input/Output). The agent performing the opera-
tion must have capability to monitor the inputs and control the output of the
operation.

CHAPTER 2. REQUIREMENTS ENGINEERING 24

For convenience reasons, those links are not always explicitly represented
in the model but become implicit when an agent is linked to an operation
through a performance link.

Required Conditions for Operationalization Link

To ensure goal satisfaction by executing the operations, an operationalization
link, linking an operation to a leaf goal, has three associated conditions:

• Required pre-condition which is a necessary condition expressed over
the input states for the application of the operation to satisfy the linked
goal. If this condition and the domain pre-condition are true, the
operation may be executed. For example the pre-condition associated
to the StartPump operationalization link in �gure 2.12 will be m :
Mine,m.methane = false.

• Required trigger-condition which is a su�cient condition expressed over
the input states for the application of the operation to satisfy the
linked goal. If this condition and the domain pre-condition are true,
the operation has to be executed. For example the trigger-condition
associated to the StartPump operationalization link in �gure 2.12 will
be m : Mine,m.waterLevel = high ∧m.methane = false.

• Required post-conditions which are an additional e�ect of the operation
must have to ful�l the operationalized goal.

A meta-constraint says that:

Meta-constraint 2.3.5 (Required conditions). For an operationalization
link, required trigger-condition implies required pre-condition.

If this constraint was not ful�lled, it could lead to required trigger-
condition and domain pre-conditions being both true while the required
pre-condition is false. The meta-constraint can be respected by simply re-
placing the required trigger-condition by the conjunction of required trigger-
condition and required pre-condition.

An operation can also operationalize more than one leaf goal. In this case,
if the domain pre-condition holds, the operation may be executed if all of its
required pre-conditions are true and as-soon-as one of its trigger-conditions
is true. The global required trigger-condition becomes the disjunction of all
the required trigger-conditions and the global required pre-condition becomes
the conjunction of all required pre-conditions. According to the required con-
ditions meta-constraint, the global required trigger-condition has to imply
the global required pre-condition.

The interpretation of the operation model is as follows:

For a goal G under the responsibility of an agent A,

CHAPTER 2. REQUIREMENTS ENGINEERING 25

for every operation O operationalizing G, agent A must
guarantee that operation O is applied when O's domain pre-
condition holds

� as soon as one of O's required trigger-condition holds
and only if all O's required pre-conditions hold,

� so as to establish O's domain post-condition together
with all O's required post-conditions.

Formal Interpretation

Operations, like other elements of the KAOS language, may be formally
de�ned using linear temporal logic. This may be interesting to do model
checking, particularly for critical components.

An Operation op corresponds to relations between input and output vari-
ables according to the domain pre-condition and the domain post-condition:

[|op|] =def DomPre(op) ∧ ◦DomPost(op)

Where [|c|] is a notation corresponding to the linear temporal formula giving
the semantics of c, and DomPre(op) and DomPost(op) are op's domain
pre-condition and post-condition.

In the same way, the de�nition of op's required pre-conditions ReqPre,
required trigger-conditions ReqTrig and required post-conditions ReqPost
are:

R ∈ ReqPre(op) : [|R|] =def (∀∗)[|op|]⇒ R

R ∈ ReqTrig(op) : [|R|] =def (∀∗)DomPre(op) ∧R⇒ [|op|]
R ∈ ReqPost(op) : [|R|] =def (∀∗)[|op|]⇒ ◦R

Where (∀∗) means that all free variables in its scope are universally quan-
ti�ed. Remember here that in the context of linear temporal logic formula,
P ⇒ Q is equivalent to �(P → Q).

For example, for the StartPump operation:

• m : Mine, DomPre(StartPump) ≡ m.pump = off

• m : Mine, DomPost(StartPump) ≡ m.pump = on

• m : Mine, ReqPre(StartPump) ≡ m.methane = false

• m : Mine, ReqTrig(StartPump) ≡ m.waterLevel =
high ∧m.methane = false

The semantics of the operation is then:

• m : Mine, [|StartPump|] =def m.pump = off∧◦m.pump =
on

CHAPTER 2. REQUIREMENTS ENGINEERING 26

For the required condition, we have that:

• m : Mine, [|ReqPre|] =def (m.pump = off ∧ ◦m.pump =
on)⇒ m.methane = false

• m : Mine, [|ReqTrig|] =def (m.pump = off∧m.waterLevel =
high∧m.methane = false)⇒ (m.pump = off∧◦m.pump =
on)

As for goal re�nement, completeness, consistency and minimality criteria
are de�ned to check whether a set of operations correctly operationalize a
requirement or an expectation.

Criterion (Correct goal operationalization). Let R1, ..., RN be the required
conditions de�ned on the operations operationalizing a goal G. This opera-
tionalization is correct if and only if:

[|R1|], ..., [|Rn|] |= G (Completeness)

[|R1|], ..., [|Rn|] 6|= false (Consistency)

G |= [|R1|], ..., [|Rn|] (Minimality)

This criterion may be used to verify the operationalization, e.g. with a
SAT solver to �nd counterexample for formula [|R1|]∧...∧[|Rn|]∧Dom∧¬G.

Di�erence Between Goals and Operations in KAOS

In KAOS, there is a di�erence between goals and operations. Both express
constraints over system state transitions, but a goal expresses constraints on
sequences of transitions while an operation expresses constraints on a single
transition.

It is important to understand that an operation is not "something" that
leads the system from one state A to another state B, but a restriction on
all the possible system state transitions from A to B to those permitted by
the operation.

2.3.7 KAOS's Supporting Tool

Objectiver [Respect-IT, 2009] is a tool that supports the KAOS method.
The four sub-models are present in it with other tools like a query editor to
interrogate a model with a SQL-like syntax, a use-case model generator to
generate UML use case diagrams [OMG, 2009a,OMG, 2009b] from operation
models and an EMF connector to permit external applications to connect to
Objectiver and get the currently edited KAOS model in a XMI format1.

1This last feature has been used in our prototype presented in section 4.8 where EMF
and XMI are also explained

CHAPTER 2. REQUIREMENTS ENGINEERING 27

Figure 2.13: Objectiver print screen of the mine pump example [Respect-IT,
2009]

Figure 2.13 shows a print screen of the mine pump example encoded with
Objectiver. The concept index tree one the top left shows all the elements
present in the KAOS model. The diagram editor on the right part shows
the currently edited Goal model and PumpController agent diagrams. The
property editor on the bottom left part of the print screen is used to edit
properties of the concept currently selected in the concept index tree.

Chapter 3

Formal Modelling for

Speci�cations

This chapter introduces the notion of formal modelling with, in the �rst
section, a general overview of formal methods. The second section focus
on a particular formal method, Event-B, used to model systems as discrete
transition systems.

3.1 Overview of Formal Methods

Formalization has been steadily growing in computer sciences for years, �rst
used for program speci�cations, it is now used for speci�cations in the large
as in Event-B which can, as we will see, be used to specify a complete system
and its context. Before going into details, we give a short overview of the
current formal method scene inspired from [Abrial, 2010,Ball, 2008,Clarke
and Wing, 1996,van Lamsweerde, 2000,Monin and Hinchey, 2003].

Formal methods aim at producing formal speci�cations which are de�ned
as "the expression, in some formal language and at some level of abstraction,
of a collection of properties some system should satisfy" [van Lamsweerde,
2000]. The properties that should be satis�ed will classically be discovered
during the requirements phase. The speci�cations are expressed in a formal
language composed of syntax with a semantics relying on a mathematical
substratum and a proof theory de�ning rules for inferring useful information
from the speci�cation. For example, in the elaboration of a compiler, the
used language for describing a grammar may be BNF, relying on the theory
of formal languages and automata. The bene�t of a rigorous semantics is
the absence of ambiguities and thus a better communication between the
stakeholders implied in a system and its development. Note that it may be
useful to use multilingual speci�cations, with good consistency management,
to address the di�erent classes of consumers and their backgrounds.

Formal speci�cations are precise and may be formally veri�ed to ensure

28

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 29

consistency and correctness. Pay attention here that precise does not mean
formal. A speci�cation can be precise and yet not formally veri�able [van
Lamsweerde, 2000]. In the classical development process, if a mistake is
discovered in a "late-phase", e.g. bugs in the �nal product are typically
such mistakes; this mistake will generally be more di�cult to repair. This
is why reliable speci�cations are so important [Monin and Hinchey, 2003].
Especially if a failure in the system may have important consequences, go-
ing from recovery issues to money or even human lives loss. By having
consistency and correctness being proved for a given speci�cation, a lot of
mistakes may be avoided; for instance mistakes due to inattention, mistakes
coming from bad reasoning, etc. Moreover, being precise, the speci�cation
is non-ambiguous and mistakes due to bad communication between di�er-
ent stakeholders can be avoided, assuming that the di�erent stakeholders
understand the semantics of the formal language used to write down the
speci�cation of the system.

Veri�cations in formal methods can be classi�ed into two general families
[Clarke and Wing, 1996]. The �rst one, called model checking, will verify
that a desired property holds in a �nite model. This veri�cation in made
by an exhaustive state space search that is guaranteed to �nish since the
model is �nite. The second one, called theorem proving, will �nd a proof
for a property from the description of the system. This may be done using
axioms and inference rules of the mathematical logic in which the system
and desired properties are expressed. Each step in the proof appeals to
those axioms and rules, and possibly derives de�nitions and intermediate
lemmas.

The choice of a formal method will depend on several factors, like the
system scope, the kinds of property, the level of abstraction, etc. A classi-
�cation of formal speci�cations, according to the paradigm they rely on, is
proposed by van Lamsweerde in [van Lamsweerde, 2000] :

• A history-based speci�cation presents the maximal set of admissible
histories of a system, its behavior, over time. It uses time operators to
express temporal logic assertions about system objects. For example
the formal layer used in KAOS.

• State-based speci�cations describe the admissible states for a system at
some arbitrary snapshot. The properties are expressed in invariants,
constraining the system objects at any snapshot, and pre- and post-
assertions constraining the application of system operations at any
snapshot. Pre-assertions capture weakest necessary conditions on input
states for an operation to be applied, while post-assertions capture
strongest e�ect conditions on output states if an operation is applied.
This category contains languages such as Z [ISO/IEC, 2002], VDM
[Jones, 1990] or B [Abrial, 1996,Schneider, 2001], the ancestor of Event-
B.

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 30

• Transition-based speci�cations describe required transitions from state
to state. The properties are speci�ed by a set of transition functions
in a state machine. A transition function for a system object gives,
for each input state, triggering event and eventually pre-condition, the
corresponding output state. Statecharts [OMG, 2009b, p. 525] are
included in this category of formal speci�cations.

• Algebraic speci�cations specify a system as a structured collection of
mathematical functions. This collection usually contains constructor
functions, used to create simple elements, and additional functions
having a de�nition based on the constructor functions. For example,
an algebraic speci�cation of the Booleans will have true and false as
constructor functions and all other classical operators like ∧, ∨, etc.
as additional functions. Languages based on the Common Algebraic
Speci�cation Language [Bidoit and Mosses, 2004], a speci�cation lan-
guage constructed with the aim to subsume many existing speci�cation
languages and based on �rst-order logic with induction, enter in this
category.

• Operational speci�cations characterize a system as a structured collec-
tion of processes that can be executed by some more or less abstract
machine. Petri net and process algebras [Hoare, 1985] belong to this
category.

The number of developments using formal methods, and success sto-
ries going with them, is growing each year, and contrary to the commonly
accepted idea, the cost spend to obtain such higher quality products de-
creased [van Lamsweerde, 2000]. Despite that fact, the main lack in formal
methods is the absence of constructive methods for building correct spec-
i�cations for complex systems in a safe, systematic and incremental way.
Actual techniques generally pay no attention to the upstream of the soft-
ware lifecycle and the products, like the requirements document, from which
the formal speci�cation is coming.

3.2 Event-B: a Formal Speci�cation Language for

System Design

The goal of formal modelling techniques is to specify an unambiguous system
in such a way that it could be formally veri�ed to guarantee consistency and
correctness. Such a speci�cation will, in case of Event-B, lead to a coded
system correct by construction, where the �nal code will be the result of a
process starting from a very general model that will be re�ned into more
detailed model, re�ned in its turn, etc.

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 31

Event-B is one of those techniques used to model discrete transition sys-
tems. This section is largely inspired by Abrial's and Baal's works [Abrial,
2010,Ball, 2008], the RODIN deliverable 3.2 [Métayer et al., 2005] and Robin-
son's concise Event-B summary [Robinson, 2009].

3.2.1 General Overview

Event-B is issued from a simpli�cation and an extension of the B-Method,
also called Classical-B [Abrial, 1996, Schneider, 2001]. Both of them are
mathematical approaches for developing formal models of systems.

Event-B models are discrete models made of states, represented by state
variables, constants and invariants over these variables, and transitions ac-
tivated under certain conditions. Transitions, also called events, are condi-
tioned by a guard constructed over the variables and constants, representing
the necessary condition for the occurrence of the event and de�ned by ac-
tions that describe how the variables will be modi�ed after the occurrence
of the event. The variables and constants de�nitions and manipulations rely
on set theory, while conditions are expressed using propositional and predi-
cate calculus. A model will describe the active part in a machine, with the
variables, invariants and events, but it will also describe the environment
or context of this active part, with the static properties of the system. The
model is thus a closed model able to exhibit actions and reactions between
a machine and its context.

An event, which is de�ned as an observable transition of state variables
takes no time. As a direct consequence, two events can't occur at the same
time. An informal execution interpretation of an Event-B model can be the
next:

• If no guards are true, the model execution stops and the system is said
deadlocked.

• If one or more guards are simultaneously true, one corresponding event
may occur and the state is modi�ed accordingly to the actions de�ned
for the event.

This introduces some kind of non-determinism and in Event-B, no assump-
tions are made concerning the chosen event when more than one guard is
simultaneously true. If the model has at most one guard true at all time, it
is said to be deterministic. An Event-B model execution does not have to
�nish and may run forever.

To manage the complexity, models will be constructed incrementally
thanks to abstraction and re�nement, starting from an abstract model grad-
ually re�ned into a more precise and concrete model. This re�nement process
will introduce more and more variables in the model. To handle this, the
abstract model may be decomposed into independent parts. The re�nement

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 32

process will guaranty that the concrete model is coherent with the abstract
model.

The Event-B method uses proof obligations to check consistency and
correctness of the model, e.g. proving the coherence between an abstract
model and its re�nement. Those prove obligations may be generated and
partially or completely proved by an automated tool [RODIN, 2010]. To do
this, the properties of the speci�cation will be used and failures will give
indications about what may be wrong in the model. There are two large
families of proof obligations:

• The invariants preservation property which states that under those
invariants and the event guards, the invariants still hold after execution
of the events actions, or in other words conditions over state variables
have to be always true.

• The second family is the reachability property which states that events
where the guard is not necessary true will be executed in a certain �nite
period.

More informations about proof obligations will be given in subsection 3.2.3.

3.2.2 Machines and Contexts

Figure 3.1: Machine and context structures

Event-B models are constructed using two kinds modelling elements, ma-
chines and contexts. Machines are used to represent the active part of the
system, while context can be used to parametrize the model, e.g. attribute's
domains or entity instances in the real world. A model containing only con-
texts will represent a pure mathematical structure. If the model only con-
tains machines it means that it is un-parametrized. Classic Event-B models
mix both machines and contexts, linked together like in �gure 3.2.

The link between two machines is a re�nement link, describing the fact
that the re�ning machine is more concrete that the re�ned one. A machine
can only re�ne at most one other machine and putting such a link will add
proof obligations to the model.

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 33

Figure 3.2: Machines and contexts links

Contexts can be linked to zero, one or more contexts through extension
links, meaning that all the sets and constants of the extended contexts can
be used in the extending context e.g. in �gure 3.2 the context CONTEXT_2

can use sets and constants de�ned in contexts CONTEXT_1 and CONTEXT_3.
This notion is transitive, e.g. CONTEXT_2 can also use sets and constants from
CONTEXT_0.

A Machine may see zero, one or more contexts, meaning that the con-
stants and sets de�ned in those contexts can be used in the machine. Like
the transitivity of context extension links, a machine can implicitly see all
the contexts extended by an explicitly seen context, e.g. in �gure 3.2 ma-
chine MACHINE_3 can use sets and constants from CONTEXT_1, CONTEXT_2
and CONTEXT_3. If the machine re�nes another machine, the number of its
explicitly or implicitly seen contexts must be as large as the one of the re-
�ned machine, e.g. the link between MACHINE_2 and CONTEXT_1 is necessary
because of the link between MACHINE_1 and CONTEXT_1. Put together, the
"extends" and "re�nes" relationships must not contain any cycle.

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 34

Context

Figure 3.3 shows the general structure for contexts in Event-B models. Every
context has a name which is unique in a model and a list of extended contexts
with zero, one or more identi�ers corresponding to the extended contexts
names.

CONTEXT <name>

EXTENDS <context_identi�er_list>

SETS

< set_identifier_list >

CONSTANTS

< constant_identifier_list >

AXIOMS

< label >: < predicate >

THEOREMS

< label >: < predicate >

END

Figure 3.3: Context structure

The SETS clause introduce the names list of carrier sets which de�nes
pairwise disjoint types. Those carrier sets are not empty and can be de-
ferred or enumerated by constants. If the carrier set is an enumerated set,
the enumeration will be declared by an axiom over the set and constants ac-
cessible in the machine, e.g. the BOOL set provided by default contains TRUE
and FALSE and represents the Boolean domain. The constant identi�ers in-
troduced by the CONSTANTS clause are unique in the context and all extended
contexts, e.g. TRUE and FALSE are constants provided by default.

The axioms have a label and a predicate formulated over constants and
sets e.g. the expression partition(BOOL,{TRUE},{FALSE}) means that the
BOOL set is partitioned into two subsets: {TRUE} and {FALSE}. In other
words, BOOL = {TRUE,FALSE} ∧ TRUE 6= FALSE. Those predicate
will serve as hypotheses in all proof obligations.

Contrary to axioms, theorems are propositions that have to be proved,
using the local axioms, axioms and theorems from extended contexts and
theorem that have been proved before the theorem to be proved. The labels
of axioms and theorems have to be unique.

Here is an example of context for the mine pump brie�y presented in the
previous chapter. A more complete version of this context will be described
in chapter 4.

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 35

Listing 3.1: Mine pump context

CONTEXT MineContext
SETS

ONOFF, LEVEL
CONSTANTS

ON, OFF, LOW, MEDIUM, HIGH
AXIOMS

axm1 : partition(ONOFF , {ON }, {OFF})
axm2 : partition(LEVEL, {LOW }, {MEDIUM }, {HIGH })

END

Machine

Figure 3.4 shows the general structure for machines in Event-B models. Ev-
ery machine has a name which is unique in a model and may re�ne another
machine, identi�ed by its name. A machine can see zero, one or more con-
texts and use the constants and sets explicitly or implicitly de�ned in those
contexts.

MACHINE <name>

REFINES <abstract_machine_identi�er>

SEES <context_identi�er_list>

VARIABLES

< variable_identifier_list >

INVARIANTS

< label >: < predicate >

THEOREMS

< label >: < predicate >

EVENTS
<event_list>

END

Figure 3.4: Machine structure

The clause VARIABLES introduces the list of variables of the machine.
Their names are all distinct, but unlike contexts, some variables may be
the same as some variables in the abstract machine if they have the same
name. Variables may appear in invariants predicates. When a variable of
the abstract machine appears in an invariant of the concrete machine, this
invariant is said to be a glueing invariant, glueing the state space of concrete
machine to the one of the abstract machine. As for the context, theorems of
the machine will have to be proved, using the axioms and theorems of seen

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 36

contexts, invariants and theorems of the abstract machine, and invariants
and theorems that have been proved before the theorem to be proved in
the machine. As for context, labels of theorems and invariants have to be
unique.

In Event-B machines, one can also use the notion of VARIANTS, but this
will not be explored in the remainder of this work. We refer the interested
reader to [Abrial, 2010].

Here is an example of machine for the mine pump brie�y presented in the
previous chapter. A more complete version of this machine will be described
in chapter 4.

Listing 3.2: Mine pump machine

MACHINE PumpControllerMachine
SEES MineContext
VARIABLES

pump
bell
methane
waterLevel

INVARIANTS
inv1 : pump ∈ ONOFF
inv2 : bell ∈ BOOL
inv3 : methane ∈ BOOL
inv4 : waterLevel ∈ LEVEL

EVENTS
END

Event

Events are introduced in a machine by the EVENTS keyword. Figure 3.5 gives
the general form of an event. An event has a name, a status and may re�ne
one or more events of the abstract machine if there is one. Generally, status
is omitted for ordinary events.

The any clause introduces zero, one or more parameters for the event. It
corresponds to a universally quanti�ed new variable. Guards, which are the
necessary conditions for the event to occur, follow the where clause. Note
that this clause is sometimes replaced by when if there is no parameter for
the event.

When an event re�nes another one, parameters of the abstract event
introduced by the clause any may disappear in the concrete event. In this
case, a witness has to be provided for each parameter which is initialized with
a non-deterministically chosen value in the abstract event, e.g. a parameter
taking a non-deterministic value in a set that has disappeared in the concrete
event to set the value of this parameter in the concrete event. A witness must
also be provided if a variable of the abstract machine that has disappeared
in the concrete machine, is used in the abstract event, i.e. if the variable is

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 37

Event <event_identi�er> =̂

Status { ordinary , convergent , anticipated }

extends <event_identi�er_list>

any
< parameter_identifier_list >

where
< label >: < predicate >

with
< label >: < witness >

then
< label >: < action >

end

Figure 3.5: Event structure

present after the VARIABLES clause in the abstract machine and is used in
the event of the abstract machine and is absent after the VARIABLES clause in
the concrete machine. This witness is indicated after the with clause and is
constituted of a label and a predicate involving the concerned parameter or
variable. This predicate can be deterministic, if for a parameter or variable
a it has the form a = E with E free of a, or non-deterministic.

Finally, the then keyword introduces the list of actions of the event. As
all actions are performed simultaneously, a single variable can be modi�ed
in at most one action to avoid inconsistencies. There are three kinds of
actions, the �rst one is deterministic and the second and third ones are
non-deterministic.

• The simple assignment action x := E replace the occurrences of x
by the expression E. A special form of this substitution exists for
functions: f(x) := E means that the expression f at point x, takes
the value E. This is a shorthand for f := f C− {x 7→ E}, where C− is
the overriding operator.

• The choice by predicate action x :| P arbitrarily chooses a value for
the variable x, such that the predicate P is satis�ed. In P , often
called before-after predicate, the value of the variable before the action
is represented by x and the value of the variable after the action is
represented by x′.

• The choice from set x :∈ S arbitrary chooses a value from the set S.
This is the same as the choice predicate x :| x′ ∈ S.

Sometimes, when the set of actions is empty for an event, this set is
represented by the skip keyword. For notational convenience, multiple single

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 38

actions x := E, x := F may be grouped into an equivalent multiple action
notation x, y := E,F .

Every machine has at least one event called Initialisation. This event
is called once and is used to set the initial values of the variables. It may
have only actions and it is the �rst event called in a machine.

Below is an example of events for the mine pump brie�y presented in the
previous chapter. A more complete version of this machine will be described
in chapter 4.

Listing 3.3: Mine pump machine

EVENTS
Initialisation

begin
act1 : pump, bell ,methane,waterLevel := OFF ,FALSE ,FALSE ,LOW

end
Event high_water_detected =̂

when
grd1 : waterLevel = HIGH
grd2 : methane = FALSE

then
act1 : pump := ON

end
Event low_water_detected =̂

when
grd1 : waterLevel = LOW

then
act1 : pump := OFF

end
Event updateMethane =̂

any
status

where
grd2 : status ∈ BOOL

then
act1 : methane := status

end
Event updateWaterLevel =̂

any
level

where
grd2 : level ∈ LEVEL

then
act1 : waterLevel := level

end
Event methane_detected =̂

when
grd1 : methane = TRUE

then
act1 : pump := OFF

end
END

A summary of Event-B expressions notations can be found in [Robinson,
2009].

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 39

3.2.3 Proof Obligation Rules

Proof obligations de�ne what has to be proved in an Event-B model. There
are eleven kinds of proof obligation rules that can be generated from a model,
and partially or totally proved by automatic tools like RODIN [RODIN,
2010].

A complete description of the proof obligations can be found in [Abrial,
2010], the most interesting ones are presented hereafter. Since all actions can
be represented as a choice by predicate action with a before-after predicate,
for what follows, all actions are normalized under this form. To explain the
proof obligations, we will consider a machine M(s, c, v) where s denotes the
seen sets, c the seen constants and v the variables of the machine. Ax(s, c)
represents the seen axioms and theorems and Inv(s, c, v) represents the local
invariants and theorems.

Invariant Preservation The invariant preservation proof obligation rule
ensures that each invariant of a machine is preserved by each event.

For each invariant inv and event evt with a guard Guard(s, c, v, x),
where x represents the parameters of the event, and a before-after predi-
cate BAP (s, c, v, x, v′) where v′ is the values of the variables after the event,
and invariant inv(s, c, v), we will have to prove that:

Axioms and theorems Ax(s, c)
Invariants and theorems Inv(s, c, v)
Guards of the event Guard(s, c, v, x)
Before-after predicate of the event BAP (s, c, v, x, v′)
` `
Modi�ed Speci�c Invariant inv(s, c, v′)

Modi�ed Speci�c Invariant represents the considered invariant inv with up-
dated variables v′.

Feasibility This proof obligation rule ensures that for variables v of a ma-
chine, non-deterministic actions are feasible, i.e. the before-after predicates
of those actions are declared in such a way that a value can e�ectively be
found for the variables v. For each event evt and each before-after predicate
BAP (s, c, v, x, v′) of a non-deterministic action act, we will have to prove
that:

Axioms and theorems Ax(s, c)
Invariants and theorems Inv(s, c, v)
Guards of the event Guard(s, c, v, x)
` `
∃v′ · Before-after predicate ∃v′ ·BAP (s, c, v, x, v′)

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 40

Guard Strengthening To be sure that when a concrete event is enabled,
then so is the corresponding abstract one, this proof obligation guarantees
that the concrete guard of the concrete event is stronger than the abstract
one in the abstract event.

Witnesses are used in re�ning events to assign a value to parameters and
variables that have disappeared during the re�nement. The concrete event is
thus made more precise than the abstract one since if parameters and vari-
ables has disappear, it means that their values has been �xed to a constant.
For each concrete event evt with a witness predicate Wit(x, y, s, c, w), where
y represents the parameters of the abstract event and w the variables of the
abstract machine, re�ning an abstract event evtabs with an abstract guard
Guardabs(s, c, w, y), we will have to prove that:

Axioms and theorems Ax(s, c)
Abstract invariants and theorems Invabs(s, c, w)
Concrete invariants and theorems Inv(s, c, v, w)
Concrete event guards Guard(s, c, v, x)
Witness predicates for parameters Wit(x, y, s, c, w)
` `
Abstract event speci�c guard Guardabs(s, c, w, y)

The abstract invariants and theorems are represented by Invabs(s, c, w)
and the concrete invariants and theorems are represented by Inv(s, c, v, w),
with variables v declared in the concrete machine and seeing the abstract
variables w, coming from the abstract machine, in case of a glueing invariant
for instance.

Guard Merging In the same way, when a concrete event is merging two
abstract events, this proof obligation ensure that the guard of the con-
crete event is stronger than the disjunction of the guards of the abstract
events. For each event evt re�ning two abstract events evt1abs with a guard
Guard1abs(s, c, w, y) and evt2abs with a guard Guard2abs(s, c, w, y), we will
have to prove that:

Axioms and theorems Ax(s, c)
Abstract invariants and theorems Invabs(s, c, w)
Concrete event guards Guard(s, c, v, x)
` `
Disjunction of abstract guards Guard1abs(s, c, w, y)

∨Guard2abs(s, c, w, y)

Simulation Proof The guard strengthening proof obligations ensure that
when a concrete event is enabled, so is the abstract one. It does not care
about the actions of the events. The simulation proof obligation is con-
cerned with this point, by verifying that in a concrete event, the actions are

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 41

correct simulations of the actions of the abstract event. Correct simulation
meaning that what the concrete event does is not contradictory with what
the abstract event does. For each concrete event evt re�ning an abstract
event evtabs and each abstract action actabs with a before-after predicate
BAPabs(s, c, w, y, w

′), we will have to prove that:

Axioms and theorems Ax(s, c)
Abstract invariants and theorems Invabs(s, c, w)
Concrete invariants and theorems Inv(s, c, v, w)
Concrete event guards Guard(s, c, v, x)
Witness predicate for parameters Wit(y, s, c, v, x, v′)
Witness predicate for variables Wit(w′, s, c, v, x, v′)
Concrete before-after predicate BAP (s, c, v, x, v′)
` `
Abstract before-after predicate BAPabs(s, c, w, y, w

′)

Non-deterministic Witness Witnesses are used in re�ning events to as-
sign a value to parameters and variables that have disappeared during the
re�nement. This proof obligation rule ensures, for a parameter or variable
x, that this value really exists regarding the witness predicate. For each
concrete event evt and each abstract parameter y, we will have to prove
that:

Axioms and theorems Ax(s, c)
Abstract Invariants and theorems Invabs(s, c, w)
Concrete Invariants and theorems Inv(s, c, v, w)
Concrete event guards Guard(s, c, v, x)
` `
∃y · Witness ∃y ·Wit(y, s, c, v, x)

Theorem Proof Theorems are usually used to simplify proofs and make
automatic proof obligations resolutions easier. This last proof obligation rule
is concerned with the proof of those theorems in the di�erent machines and
contexts of the model.

3.2.4 Event-B Model Decomposition Techniques

The traditional Event-B approach is for now quite linear and not very modu-
lar. Works are currently ongoing to solve those problems [Abrial, 2009,But-
ler, 2009,Pascal and Silva, 2009] by decomposing an Event-B model. Decom-
position makes it possible to manage the complexity of models that increases
through the re�nement process.

Pascal and Silva present in [Pascal and Silva, 2009] a description of the
two techniques used to split a machine into smaller pieces. The �rst one,

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 42

called Event-Based decomposition or B-style decomposition encapsulates the
variables in di�erent machines together with the events or parts of events
that concern those variables. A variable will thus not appear in more than
one machine. The events that have been split will need to be synchronized
in order to ensure the functionalities of the original machine. The synchro-
nization will take place by an exchange of inputs and outputs between the
synchronized machine's events. Figure 3.6 shows how a machine M is split
into two machines M1 and M2 with a shared event e2. The Event-Based
decomposition will not be explored further here and more details about this
decomposition can be found in [Butler, 2009].

Figure 3.6: Event-Based decomposition [Pascal and Silva, 2009]

The second technique, called State-Based decomposition or A-style de-
composition [Pascal and Silva, 2009] splits the variables in di�erent machines.
A variable may thus be present in more than one machine. Such a variable
is called shared variables. One of the machines will be the one which e�ec-
tively updates a shared variable. To keep the other machines synchronised,
a special event, called external event, will be added to those other machines.

Shared variables must be kept synchronized between the di�erent ma-
chines if they are re�ned. A simple way to overcome this is to forbid data
re�nement. Data re�nement takes place when a variable is re�ned in a sub-
machine using a glueing invariant. As proved by Abrial in [Abrial, 2009],
the system can be rebuilt into a single machine at the end of the process.
In practice this will rarely be done since the di�erent machines will lead to
di�erent software components.

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 43

State-Based Decomposition

Figure 3.7: Decomposition of a general machine into two sub-machines

In the State-Based decomposition, for a general machine, variables and
events will be distributed to several machines with some of those variables
present in more than one machine decomposing the general machine. It is
important to notice here that the machines are not re�ning the general ma-
chine, but are decomposing it. When a machine B re�nes another machine
A, it means that B is more concrete than A and that the proof obligations
are ful�lled. In the case of decomposition, the variables, events and invari-
ants coming from the decomposed machine, are simply copy-pasted in the
decompositions, i.e. the decomposing machines. In the machines, a distinc-
tion is made between the internal variables used only in a particular machine
and the shared variables used in more than one machine.

Figure 3.7 shows an example of decomposition, a machine A has an event
evtA called internal event that will modify the value of a shared variable
and another machine B has an internal event evtB using the variable's value
in its guard. To express the fact that the variable is not a constant in B, an
external event evtExtA will be added to B corresponding to an abstraction
of the internal event evtA in A. The added event evtExtA is present in B to
synchronize the update of the shared variable in the general machine between
machine A and machine B. As when an abstract event is re�ned by a concrete
event, triggering the concrete event evtA implies that its abstraction extEvtA

is also triggered.
It is clear that shared variables coming from the general machine may be

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 44

replicated in more than one machine decomposing it. The problem is that
each machine could normally re�ne its variables and the same replicated
variable could be re�ned in one way in one re�nement and in another way
in another re�nement. If this happens, the two sub-machines can't commu-
nicate any longer as they are not using the same convention on the shared
variable. Such a variable has a special status in the sub-machines where
they reside saying that this variable has always to be present in the state
space of any re�nement of the machine. A shared variable can thus not be
data-re�ned or if it is, the variable has to be re�ned in the same way in each
sub-model using the variable, which can be heavy.

The same argument is used with external events. Those events are
present to notify that a shared variable has not a constant value. This
external event will have a concrete implementation in one machine, where
this event is an internal event, and will stay abstract in all other machines.
As for shared variables, an external event may not be re�ned.

3.2.5 Event-B's Supporting Tool

Figure 3.8: RODIN editor: print screen of the mine pump example [RODIN,
2010]

RODIN [RODIN, 2010] is a tool that supports the Event-B method. It
is based on the Eclipse platform and includes an Event-B machine/context
editor and a proof obligation tool. The proof obligation tool generates the

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 45

Figure 3.9: RODIN proof obligations tool: print screen of the mine pump
example [RODIN, 2010]

proof obligations for the di�erent elements of the Event-B model and helps
to automate the proofs as much as possible.

Figure 3.8 shows a print screen of the mine pump example encoded with
RODIN. One the left side, the project explorer shows the di�erent Event-B
projects with the machines and contexts into each one. On the right side,
an explorer shows the di�erent elements of the currently selected machine or
context. On the center of the screen, the machine/context editor allows to
edit the currently opened machine/context. On the bottom of the screen, the
property editor allows to edit the properties of the opened machine/context.

Figure 3.9 shows a print screen of RODIN's proof obligations tool. On
the right side, the Event-B explorer shows the di�erent proof obligations
that has been proved in green or that has to be proved in brown. On the
left side, the proof obligation tree shows the di�erent steps of the currently
opened proof. On the center of the �gure, the goal frame shows what has
to be actually proved at the currently selected node of the proof obligation
tree. The frame on the top shows the di�erent hypothesis taken to reach
the selected node of the proof obligation tree. At the bottom of the frame,
the proof control view contains the buttons which can be used to perform
an interactive proof, e.g. adding a hypothesis or using an auto-prover.

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 46

3.2.6 Requirements Engineering and Event-B

Event-B is used to model complete systems. A general development process
could be the creation of an Event-B model from requirement documents.
This model will be re�ned until this speci�cation is �ne-grained enough to
generate B, using the RODIN2B tool for instance. The generated B speci�ca-
tion will then be re�ned in turn to make automatic code generation possible,
providing programs formally derived from an Event-B model. The problem
here is the gap between the requirements and the initial Event-B model.
Requirements will be translated into Event-B. This translation is usually
non-systematic and non-repeatable and relies principally on the skills of the
analyst. If we don't deny that the talent of the person in charge of the initial
Event-B speci�cation is important, it is perhaps possible to facilitate his job
by bringing some methodological perspective in the process. Such attempts
actually exist and we will brie�y present here some of them.

Abrial describes in [Abrial, 2010] a parallel between requirements ex-
pressed in a requirements document and de�nitions and theorems as they
can be found in mathematical books. According to him, requirements doc-
uments should, as in those books, separate explanatory text from reference
text, which will constitute the requirements as they will be used latter in
the development lifecycle. The reference text is constituted by a set of short
statements written using natural language. Each one of them has an asso-
ciate number, for traceability purposes, and a label qualifying the nature of
the requirement, e.g. FUN for functional requirement, ENV for environment
requirement, SAF for safety requirement, etc.

Siemens uses a similar method, described in [Falampin et al., 2009]. Sys-
tem requirement speci�cations correspond to documents written in natural
language. An Event-B model is manually derived from those documents,
using a re�nement plan. This plan's purpose is to help modelling and proof
by describing the modelling choices and an abstraction ordering of the re-
quirements. As underlined by [Falampin et al., 2009], the main properties,
e.g. avoiding collisions in a train transportation system, are usually not ex-
plicitly explained, but all the functionalities of the system will be means to
reach those properties. This implies that an additional abstraction work is
needed when the re�nement plan is written.

Other approaches, like the one proposed by Bosch [Lecomte, 2009] that
uses Michael Jackson's problem frames, exists. Chapter 5 will present three
of those approaches. They use KAOS and its linear temporal logic formal
layer to express requirements and then translate them to Event-B models.

Chapter 4

KAOS to Event B: Proposed

Approach

This chapter presents our approach to construct an Event-B model starting
from requirements expressed in a KAOS model. A number of techniques
to translate a goal requirement model into an Event-B model already exist.
Those will be exposed and compared to our approach in chapter 5.

4.1 Presentation of the Approach

We propose in our work a semi-formal method to build a bridge between a
KAOS model and an Event-B model. To build this method, we start with
the following general objectives:

• Method will work from KAOS to Event-B

• A �ne grained traceability should be provided

• Method should be automated when possible

• Iterative/incremental development should be possible

• Method should respect KAOS and Event-B semantics

• Method should be at least semi-formal

With those points in mind, we de�ne our method, where starting from
the requirements expressed in a KAOS model, we will build step by step
an Event-B model where each element will be justi�ed by a requirement.
This justi�cation will be implemented through traceability links between the
two models. A set of rules will be de�ned to keep the links between the
models consistent. By working so, the KAOS model may be incomplete and
enriched later, even if the elaboration of the Event-B model has started. The
construction process may thus be iterative and incremental. The analyst can

47

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 48

switch between the two models and modify them, as long as the traceability
rules are respected.

4.1.1 Overview

Figure 4.1: Proposed method overview

Figure 4.1 presents an overview of our method. The KAOS model is
constructed using di�erent views, leading to di�erent kinds of models linked
together:

• In the �rst step, starting from the KAOS object model, an initial
Event-B machine and an initial Event-B context are created to repre-
sent the data and very general update events are declared in the initial
machine to represent the fact that those data evolve in time.

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 49

• In the second step, the initial machine is decomposed using a special
mechanism called state base decomposition explained in subsection
4.3.1, so that for each agent in the KAOS model, exists a machine in
the Event-B model associated to this agent. Let us call such a machine
an agent machine.

This agent machine will get, during the decomposition process, some
variables and events coming from the initial machine representing el-
ements of the KAOS object model. Those variables and events will
correspond to the elements of the KAOS object model that the KAOS
agent monitors or controls.

• The third step is, for each agent machine, to derive in a sub-machine
re�ning the agent machine, the events from the requirements/expecta-
tions assigned to the KAOS agent associated to the agent machine. The
requirements/expectations are coming from the KAOS agent's respon-
sibility model. As explained in section 2.2.2, a KAOS agent will exert
an adequate control on the system items to reach its assigned goals.
The system items correspond to the di�erent elements of the KAOS
object model, and the adequate control on those items, described on
the requirements/expectations, is made explicit through the control
and monitor links declared in the KAOS agent's responsibility model.

This last step is not automatic in our method and will need the skills of
the analyst. The goal here was not to automatically derive a complete
Event-B model from the KAOS model but rather giving a frame and
directions to derive Event-B from requirements, with traceability links
to justify and explain the elements of the Event-B model by elements
coming from the requirements.

4.1.2 Final Result

Figure 4.2 presents how the Event-B model created by the process will be
structured. To make the model more readable, the sees links between each
agent machine and their sub-machines and the initial context are not repre-
sented.

Applying the process to a KAOS model with an object model O and
{a1, ..., an} agents will result in an Event-B model with: an initial machine

representing the data manipulated by the system coming from O with gen-
eral update events to represent the fact that those data evolve; an initial

context describing the data types used in O; a set of agent machines {AM1
, ..., AMn} where each agent machine corresponds to a KAOS agent.

Those agent machines will decompose the initial machine. An update
event coming from he initial machine will be an internal event, that may
be re�ned in sub-machines, in an agent machine if the agent controls the
KAOS element from which the update event comes from. An update event

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 50

Figure 4.2: Final result of the proposed method

will be an external event, that may not be re�ned in sub-machines, in an
agent machine if the KAOS agent monitors the KAOS element from which
the update event comes from.

For each agent machine AM corresponding to a KAOS agent a, a re�ne-
ment AMRef is created. The requirements/expectations under the respon-
sibility of a will be implemented in AMRef by variables, invariants and/or
events. If a requirement/expectation updates an element of the KAOS ob-
ject model, all the events implementing this requirement/expectation will
re�ne the update event corresponding to that KAOS element. This update
event must be external in the agent machine and thus correspond to a KAOS
element controlled by a.

Each time an element of the Event-B model is derived from an element of
the KAOS model, a traceability link is recorded to glue the two models. To

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 51

preserve consistency between the two models, those links will have to follow
some rules described hereafter.

The derivation of the initial machine and context is presented in section
4.2. The decomposition into agent machines is described in section 4.3.
Section 4.6 presents the traceability links between the KAOS model and
the Event-B model with a list of criteria to keep the links between the two
models consistent. In section 4.7, some examples describe what will happen
if one model is modi�ed.

4.1.3 Example

Figure 4.3: Mine pump goal model

In the remainder of this chapter, we will use the mine pump example in-
troduced in chapter 2 to illustrate the di�erent steps of the proposed method.

Figure 4.3 presents the goal model and the di�erent agents responsible for
the requirements and expectations. Figure 4.4 shows a view of the respon-
sibility model with controlled and monitored objects: the PumpController
controls the pump attribute and monitors the methane and waterLevel at-

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 52

Figure 4.4: Mine pump responsibility model

tributes, the AlarmController controls the bell attribute and monitors the
methane attribute, the WaterLevelSensor controls the waterLevelAttribute,
the MethaneSensor controls the methane attribute and the Miner monitors
the bell attribute.

4.2 Step 1: Derivation of Event-B Context and Ma-

chine from KAOS Object Model

In KAOS, every concept used in a de�nition in the goal model has to be
de�ned in the object model. This means that when the goal model is com-
plete, all predicates used in the formal de�nition of goals and in particular
requirements and expectations have been de�ned in the object model [van
Lamsweerde, 2009,Landtsheer, 2007b]. It seems thus interesting to translate
in a way or another the object model to Event-B, so concepts manipulated
in formulas have an equivalent in the Event-B model.

As Event-B uses set theory to de�ne and manipulate data, the KAOS
object model could be quite easily transformed into an Entity-Relationship-
Attribute model (ERA). Tools like DB-Main [REVER, 901] can automati-
cally transform such a model into a relational model compliant with rela-
tional databases. The relational nature of the diagram allows getting an
Event-B model from it with a simple syntactic transformation. Moreover,
as relational databases are the most used database management systems,
the relational diagram could be used to generate SQL data de�nition code.
But, this method implies more than one transformation and the generated
data de�nition in the Event-B context and machine may be more di�cult to
manipulate.

Snook et al. de�ne in [Snook and Butler, 2006, yah Said et al., 2009]

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 53

a method to transform a UML Class diagram into a classical B machine.
This method may be adapted, in fact it can almost be applied as-is, to
transform the KAOS Object model which corresponds to a simpli�ed UML
Class diagram to an Event-B machine and its associated context.

From now on we will take the following conventions: the name of the
KAOS model elements will be those de�ned in the KAOS meta-model [van
Lamsweerde, 2009] which corresponds to the concepts presented in section
2.3 on page 11.

4.2.1 Object Types and Attributes

A set OBJECT_SET of all possible objects belonging to a certain object type is
de�ned in the initial context for each object type. The set OBJECT of all the
existing instances known by the system of a certain object type is de�ned
in the initial machine, that will see the initial context, and belongs to the
powerset denoted P of OBJECT_SET:

OBJECT ∈ P(OBJECT_SET)

The domains of the attributes are de�ned in the initial context. In par-
ticular, non standard types or enumerated domains are speci�ed in com-
prehension or in extension. Attributes are represented in the Machine by a
partial or total function according to the multiplicity of the attribute, from
an element of the OBJECT set to an element of the domain of the attribute.
The table 4.1 gives the transformation rules for the di�erent multiplicities
of an attribute of object type O. In this table, P1(TY PE) represents the
non-empty subsets of TY PE, it is equivalent to P(TY PE) \ {∅}.

Table 4.1: Transformation rules for KAOS Attributes
KAOS at-
tribute

Corresponding function Event-B Invariant

a : TYPE [1..1] Total function to TYPE a ∈ O→ TY PE

a : TYPE [0..1] Partial function to TYPE a ∈ O 7→ TY PE

a : TYPE [1..n] Total function to non-empty sub-
set of TYPE

a ∈ O→ P1(TY PE)

a : TYPE [0..n] Total function to subsets of TYPE a ∈ O→ P(TY PE)

4.2.2 Associations and Specializations

Association They may be directed or not and will be represented in the
initial machine by functions. Table 4.2 on page 57 gives the transformation
rules for the di�erent kinds of directed associations. An undirected associa-
tion corresponds to two opposite directed associations and can be managed

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 54

as two directed associations with an additional invariant saying that if on
exists, then the other exists too. For an association linking A to B with
multiplicities [a1..a2] and [b1..b2]

A �a1..a2����������b1..b2�B

The result in Event-B will be :

A set AtoB according to the rules in table 4.2
A set BtoA according to the rules in table 4.2

An additional invariant:
∀x, y ·(x ∈ A ∧ y ∈ B)⇔ (AtoB(x) = y ⇔ BtoA(y) = x)

Figure 4.5: N-Ary Association are seen as an Entity with N directed Asso-
ciations

As shown in �gure 4.5, an n-ary association will be seen as an entity with
N directed associations to the di�erent objects of the n-ary association.

Specialization In case of specialization, instances usually belong to one
and only one sub-object type and sub-objects instances are disjoint. As
stated by Snook and Butler [Snook and Butler, 2006], when translating from
KAOS to Event-B, the instances of the sub-objects will be declared as a sub-
set of super-object's current instances. For instance, three object types, one
Parent and two sons Son1 and Son2 specializing Parent will be translated
in Event-B as three variables PARENT, SON1 and SON2 in the machine and one
set PARENT_SET in the context. The three fallowing invariants will be added
to the machine:

PARENT ∈ P(PARENT_SET)
SON1 ∈ P(PARENT)
SON2 ∈ P(PARENT)
SON1 ∩ SON2 = ∅

The Specialization may be more precise, e.g. in case of a total special-
ization where all the instances must be one of a sub-object type then the
sub-objects instances sets cover the set of super-object instances and the
following invariant is added:

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 55

SON1 ∪ SON2 = PARENT

4.2.3 General Update Event

In addition to the variables and invariants created to represent the di�er-
ent elements coming from the KAOS object model, the initial machine will
also contain general update events to represent the fact that those elements
may evolve in time. Each element of the KAOS object model will thus be
translated by a set of variables, a set of invariants and one update event.

An update event will have actions that update the variables correspond-
ing to the associated KAOS element. In an automated generation, those
actions will preserve the invariants generated in this step, but it may be
more precise (for now this precision has to be added manually to the Event-
B model).

For example, as shown in listing 4.2, the attribute switch with a domain
State = {ON,OFF} will be translated in the initial machine by a variable
switch with an invariant switch ∈ STATE, where STATE is a set de�ned in
the initial context containing the constants ON and OFF. In place of having an
update event updateSwitch with an action de�ned as a before-after predicate
saying that switch′ ∈ STATE, we may have a more precise action de�ned
as a before-after predicate saying that if switch = ON then switch′ = OFF
or if switch = OFF then switch′ = ON . So, not only values at a given
state are constrained, but also state transitions.

4.2.4 Example: Initial Machine and Context for the Mine
Pump

By applying the procedure described in this section to the mine pump ex-
ample, we get the initial context from listing 4.1 and an initial machine from
listing 4.2 describing the objects of the KAOS object model. The initial ma-
chine includes the attributes and the update events for all those attributes,
note here that in the listing 4.2 only the update method for the pump at-
tribute has been shown. The update method of others attributes follows the
same pattern. The complete machines of this example can be found in annex
A.

Listing 4.1: Mine pump example: Initial context

CONTEXT MineContext
SETS

ONOFF, LEVEL, MINE_SET

CONSTANTS
ON, OFF, LOW, MEDIUM, HIGH, M

AXIOMS

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 56

axm1 : partition(ONOFF , {ON }, {OFF})
axm2 : partition(LEVEL, {LOW }, {MEDIUM }, {HIGH })
axm3 : partition(MINE_SET , {M })

END

Listing 4.2: Mine pump example: Initial machine

MACHINE MinePump
SEES MineContext
VARIABLES

MINE, pump, bell, methane, waterLevel
INVARIANTS

inv1 : MINE ∈ P(MINE_SET)
inv2 : pump ∈ MINE →ONOFF
inv3 : bell ∈ MINE → BOOL
inv4 : methane ∈ MINE → BOOL
inv5 : waterLevel ∈ MINE → LEVEL

EVENTS
Initialisation

begin
act1 : MINE , pump, bell ,methane,waterLevel := ∅,∅,∅,∅,∅

end
Event updatePump =̂

General update event for the pump attribute de�ned in the KAOS
object model
any

m
where

grd1 : m ∈ MINE
grd2 : pump(m) = ON ∨ pump(m) = OFF

then
act1 : pump : |(pump(m) = OFF ∧ pump′ = (pump C− {m 7→

ON }))
∨ (pump(m) = ON ∧ pump′ = (pump C− {m 7→

OFF}))
end

END

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 57

Table 4.2: Transformation rules for KAOS directed Associations [Snook and
Butler, 2006]
The two object types are A and B and a1..a2 → b1..b2 in the table
represents the multiplicities for an association :

A �a1..a2�������b1..b2�> B
According to our convention, the objects sets in Event-B will be called A

and B.

The disjoint macro in the table is de�ned as:
(∀a1, a2·(a1 ∈ dom(AtoB) ∧ a2 ∈ dom(AtoB) ∧ a1 6=

a2⇒AtoB(a1) ∩ AtoB(a2) = ∅))

KAOS as-
sociation
multiplic-
ity

Corresponding function Event-B Invariant

0..∗ → 0..1 Partial function to B AtoB ∈ A 7→B

0..∗ → 1..1 Total function to B AtoB ∈ A→B

0..∗ → 0..∗ Total function to subset of B AtoB ∈ A→ P(B)

0..∗ → 1..∗ Total function to non-empty sub-
set of B

AtoB ∈ A→ P1(B)

0..1→ 0..1 Partial injection to B AtoB ∈ A 7�B

0..1→ 1..1 Total injection to B AtoB ∈ A�B

0..1→ 0..∗ Total function to subsets of B

which don't intersect
AtoB ∈ A → P(B) ∧
disjoint

0..1→ 1..∗ Total function to non-empty sub-
sets of B which don't intersect

AtoB ∈ A→ P1(B) ∧
disjoint

1..∗ → 0..1 Partial surjection to B AtoB ∈ A 7�B

1..∗ → 1..1 Total surjection to B AtoB ∈ A�B

1..∗ → 0..∗ Total function to subsets of B

which cover B
AtoB ∈ A → P(B) ∧
union(ran(AtoB)) =
B

1..∗ → 1..∗ Total function to non-empty sub-
sets of B which cover B

AtoB ∈ A→ P1(B) ∧
union(ran(AtoB)) =
B

1..1→ 0..1 Partial bijection to B (partial in-
jection de�ned for all the ele-
ments of B)

AtoB ∈ A 7� B ∧
∀b·(b ∈ B ⇒ (∃a·(a ∈
A ∧ (a 7→ b) ∈ AtoB)))

1..1→ 1..1 Total bijection to B AtoB ∈ A��B

1..1→ 0..∗ Total function to subsets of B

which cover B without intersect-
ing

AtoB ∈ A → P(B) ∧
union(ran(AtoB)) =
B ∧ disjoint

1..1→ 0..∗ Total function to non-empty sub-
sets of B which cover B without
intersecting

AtoB ∈ A→ P1(B) ∧
union(ran(AtoB)) =
B ∧ disjoint

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 58

4.3 Step 2: Decomposition of the Initial Model Ac-

cording to Agents

At the end of the �rst step of our process, we get an initial context and an
initial machine representing the KAOS object model. All elements (Object,
Attributes and Associations) of a given KAOS object model will be trans-
lated in the initial machine in one ore more variables, one or more invariants
and one event representing the update of the element.

Decomposition makes it possible to manage the complexity of models
increasing through the re�nement process. It may be interesting to have an
early decomposition to break an initial machine into smaller pieces pertinent
with the KAOS agents. This idea has been inspired by Ball's thesis [Ball,
2008], where the behaviour of TROPOS1 agents modelling concurrent sys-
tems in a distributed environment is transposed into Event-B machines. In
our case, this choice is made because the KAOS meta-model says that an
association or an attribute can be controlled by one and only one agent [van
Lamsweerde, 2009, Landtsheer, 2007b, Letier, 2001]. The idea is thus to
have separate machines with the attributes monitored and controlled by the
agent. Remind that an attribute or association is controlled by an agent
if the agent performs one or more operations that modify the attribute or
association value. An attribute or association is monitored by an agent if
the attribute or association is an input of one or more operation performed
by the agent.

However, the Event-Based decomposition (see sub-section 3.2.4 on page
41) used by Ball in its approach may not be used in our case, because a
variable coming from the initial machine will be present in more than one
machine decomposing the initial machine since the attribute or association
associated to this variable may be monitored by more than one agent. The
State-Based Decomposition seems to suit our problem better.

The agent machines will get, during the decomposition process, some
variables and events coming from the initial machine representing elements
of the KAOS object model. Those variables and events will correspond to
the elements of the KAOS object model that the KAOS agent monitors or
controls. Let us call "an event in an agent machine updating an element of
the object model, that the KAOS agent associated to the machine controls"
a control event. An event in an agent machine updating an element of the
object model, that the KAOS agent associated to the machine monitors will
be called amonitor event. The monitor events are put in an agent machine to
represent the fact that a certain element of the object model, monitored by
the KAOS agent, may be modi�ed in time. Control events will be the events
e�ectively triggered by the KAOS agent associated to the machine. Control
events will be the only events e�ectively re�ned in sub-machines re�ning the

1A goal oriented modelisation language [Bresciani et al., 2004]

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 59

agent machine. Both monitor and control events are coming from the initial
machine through the decomposition process.

4.3.1 State-Based Decomposition Applied to the Initial Ma-
chine

We propose to use the State-Based decomposition after the creation of the
initial machine and context from the KAOS object model, as presented in sec-
tion 4.2, with one agent machine per KAOS agent. The reason of this choice
is simple, the KAOS meta-model states that an attribute or association can-
not be controlled by more than one agent [van Lamsweerde, 2009, Letier,
2001, Landtsheer, 2007b]. So it means that in Event-B, a shared variable
will be updated in at most one agent machine, while an external event may
be placed with each variable coming from the KAOS object model in zero,
one or more other agent machines.

The following algorithm gives the di�erent agents machines decomposing
an initial machine InitM with an initial context InitC according to a given
KAOS responsibility model:

• For each KAOS agent ag:

� Create an agent machine AgM

� Declare the InitC context as seen by the AgM machine

� For each element elem of the KAOS object model monitored but
not controlled by ag:

∗ Copy the variables of InitM corresponding to this elem in
AgM and mark those variables as shared

∗ Copy the update event of InitM corresponding to this elem
in AgM and mark this event as external

� For each element elem of the KAOS object model controlled by
ag:

∗ Copy the variables of InitM corresponding to this elem in
AgM and mark those variables as shared

∗ Copy the update event of InitM corresponding to this elem
in AgM and mark this event as internal

� For each invariant Inv of InitM:

∗ If Inv uses only variables present in AgM, i.e. variables corre-
sponding to an element of the KAOS object model controlled
or monitored by the agent ag, then copy Inv in AgM

Note here that an update event will be replicated as an internal event
in one agent machine and to external events in zero, one or more agent
machines. At this step, all those events have the same de�nition. Agent

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 60

machines will be re�ned to make the di�erent internal events more concrete.
It means that the update events, and thus the external events de�ned in
other agent machines are indeed abstractions of the concrete internal events
de�ned in one agent machine's re�nements.

4.3.2 Example: Decomposing the Initial Machine for the
Mine Pump

Figure 4.6: Decomposition of the initial machine

The initial machine created for the mine pump will be decomposed into
four agent machines. Figure 4.6 presents this decomposition with the agent

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 61

machines and their shared variables, external and internal events. For no-
tational convenience, the sees link between each agent machine and the
MineContext has been omitted.

4.4 Step 3: Implementing Requirements and Ex-

pectations Assigned to an Agent

Each agent machine has now a list of shared variables with invariants re-
lated to those variables and a list of events representing the evolution in
time of those variables. Those events may be partitioned in internal events
for the variables linked to KAOS elements controlled by the KAOS agent
and external events for the KAOS elements monitored by the KAOS agent.
Only internal events will be made more concrete by re�nement in the agent's
sub-machine according to the KAOS agent's behaviour declared in the KAOS
requirements/expectations, while external events will be re�ned in other ma-
chines.

One requirement/expectation of the KAOS model will be translated in
one or more events, with maybe additional variables and invariants, in the
sub-machine re�ning the agent machine associated to the KAOS agent re-
sponsible for the requirement/expectation. If the requirement/expectation
needs to update some element of the KAOS object model to be satis�ed, as-
suming that the KAOS agent e�ectively controls this element in the KAOS
model, then the update events associated to that element are re�ned by the
events translating the requirement/expectation, making the update more
concrete. This translation is repeated for each requirements or expectations
placed under the responsibility of the agent.

To introduce KAOS requirements/expectations for one agent machine,
we will proceed as follow: First create a re�nement of the agent machine.
Every requirement and expectation under the responsibility of the KAOS
agent may be translated by zero one or more variable, zero one or more
invariants and/or zero one or more events evts in this sub-machine. For
instance, a requirement/expectation saying that the agent has to keep an
error rate value under a certain level may be translated as an invariant in
Event-B. Another requirement/expectation saying that the agent has to up-
date a value of the system according to a value coming from the environment
may be translated as an event in Event-B.

If the requirement/expectation modi�es the value of an element elem of
the KAOS object model, then the events evts implementing the require-
ment/expectation will re�ne the update event declared in the agent machine
and associated to elem. So, every event in the sub-machine updating a vari-
able declared in the parent agent machine will re�ne the update event that
modi�es the value of this variable in the parent agent machine. We assume
here that the KAOS model is consistent and that the re�ned events are all

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 62

internal events, meaning that the KAOS element they are coming from is
e�ectively controlled by the KAOS agent linked to the re�ned agent machine.

Listing 4.3 presents the implementation of the requirements under the re-
sponsibility of the PumpController agent. In this re�nement, the updatePump
internal event is re�ned in three more concrete events: the high_water

_detected event implements the requirement Achieve[Pump Started WHEN
HighWater EXPT if Gas Detected], the low_water_detected event imple-
ments the requirement Achieve[Pump Stopped WHEN LowWater EXPT if
Gas Detected] and the methane_detected event implements the requirement
Achieve[Pump Stopped WHEN LowWater Gas Detected]. This machine and
all the other machines of this example can be found in Appendix A.

Listing 4.3: Mine pump example: PumpController_re�nement machine

MACHINE PumpController_re�nement
REFINES PumpController
SEES MineContext
VARIABLES

methane, waterLevel, pump, MINE
EVENTS
Initialisation

extended
begin

act1 : MINE, pump, methane, waterLevel := ∅,∅,∅,∅
end

Event high_water_detected =̂
Internal Event derived from requirement Achieve[Pump StartedWHEN
HighWater EXPT if Gas Detected]

re�nes updatePump
any

m
where

grd2 : m ∈ MINE
grd1 : waterLevel(m) = HIGH
grd3 : methane(m) = FALSE
grd4 : pump(m) = OFF

then
act1 : pump(m) := ON

end
Event low_water_detected =̂

Internal Event derived from requirement Achieve[Pump StoppedWHEN
LowWater EXPT if Gas Detected]

re�nes updatePump
any

m
where

grd1 : m ∈ MINE
grd2 : waterLevel(m) = LOW
grd3 : pump(m) = ON

then
act1 : pump(m) := OFF

end
Event methane_detected =̂

Internal Event derived from requirement Achieve[Pump StoppedWHEN
Gas Detected]

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 63

re�nes updatePump
any

m
where

grd1 : m ∈ MINE
grd3 : pump(m) = ON
grd4 : methane(m) = TRUE

then
act1 : pump(m) := OFF

end
Event updateMethane =̂

External event ...
Event updateWaterLevel =̂

External event ...
Event addMine =̂

External event ...
END

4.4.1 Environment Agents and Internal Variables

In our approach, shared variables and external events may not be re�ned in
sub-machines due to the State-Based decomposition. This is not a limitation,
because when the KAOS object model evolves, the Event-B model will evolve
too, thanks to the traceability links and rules that will be described in section
4.6. Shared variables and external events are the communication convention
between the di�erent agents. But it is not forbidden for a particular machine
to have internal variables that may be re�ned and that will not be known by
the other machines. This machine may be an agent machine and variables
will then represent internal variables of the agent.

As KAOS software agents will be part of the system-to-be, they cannot
have internal variables because those variables will be part of the system-to-
be too and will thus correspond to an element of the KAOS object model. On
the other hand, KAOS environment agents, pre-exist to the system. They
have an internal behaviour that is not described in the KAOS model. Only
interactions with the system-to-be are described in terms of expectations
and controlled or monitored variables. However, it may be interesting to
describe some parts of the internal behaviour of KAOS environment agents.
To see how the system will react in case of failure of the environment agent
for instance. The environment agent machines may have internal variables
representing error values, error rates, etc.

In our example, the waterLevel KAOS attribute is updated by the
WaterLevelSensor KAOS agent. This agent updates a value of the system-
to-be according to a value coming from the environment and not represented
in the KAOS model. To test the limits of the model and see how it will react
in case of error coming from this sensor, the WaterLevelSensor machine
may have an internal variable representing the e�ective water level, corre-
sponding to the real water level according to which the waterLevel shared
variable is updated. It may also have a variable representing the error rate
when the e�ective water level is measured, etc.

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 64

4.5 Di�erent Kinds of Re-compositions

Figure 4.7: Re-composition of the initial machine

After the implementation of the requirements and expectations, we will
have di�erent kinds of machines: an initial machine, agent machines de-
composing the initial machine, sub-machines re�ning the agent machines,
sub-sub-machines re�ning those sub-machines, etc.

As proved by Abrial in [Abrial, 2009], the system can be rebuilt into
a single machine. As shown in �gure 4.7, this re-composition will take all
the most concrete machines and will rebuild a machine, re�ning the initial
machine where all external events will be replaced by their concrete imple-
mentation. This re-composition is done by putting all the variables, invari-
ants and events of the di�erent machines in the re-composed machine and
by removing the external events and duplicate shared variables. Note that
in case of a re�nement chain, like for Agent 1 in �gure 4.7, this chain will be
bypassed and the events will directly re�ne the events of the initial machine.
This may be done, thanks to the guard strengthening proof obligations (see
section 3.2.3 on page 38), saying that when a concrete event is enabled so is
the abstract event.

The re-composition of the di�erent sub-machines can be done for several
reasons. The main one is probably the need to observe, via an Event-B

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 65

model animator for instance, the behaviour of the whole system. It may act
as a kind of checkpoint, used with the client for instance, to see if what he
expects to have with the KAOS requirement is actually what he really get
from the system, so errors coming from misinterpretations may be detected.
Another possibility is to make a partial re-composition, by re-composing all
the concrete sub-machines re�ning a particular set of agent machines. In
this case, the external events that are not implemented in one sub-machine
will not be removed from the re-composed machine.

Figure 4.8: Mine pump example: re-composition of the initial machine

For instance, rather than having the behaviour of the all system, we may
have the behaviour of the environment by re-composing the sub-machines
re�ning the agent machines associated to a KAOS environment agent. In the
same order of idea, we may have the behaviour of the system-to-be by taking
the sub-machines re�ning the agent machines associated to a KAOS software-
to-be agent. It may also be useful if we want to observe the interactions of

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 66

two particular agents, etc.
In our example, the re-composition of the sub-machines re�ning the agent

machines will give a re-composed machine MinePumpRecomposed, re�ning
the initial machine MinePump with the internal events of the di�erent sub-
machines. Figure 4.8 shows a graphical view of this re-composed machine.
The complete description of this machine can be found in listing A.11 on
page 116 in annex A.

4.6 Traceability Between KAOS and Event-B

The idea here is to have rules to justify elements of the Event-B model by ele-
ments coming from requirements. The goal is to avoid over-speci�cation and
to guaranty that if requirements are discovered or corrected during the elab-
oration of the Event-B model, the requirements documents will be adapted
too to maintain consistency between the speci�cations and the requirements.

4.6.1 De�nitions

Before going further, let us recall some de�nitions coming from chapter 2,
used in this section to express rules hereafter :

• An abstract object in KAOS is an entity, an agent or an event. Both
agent and event may, like in UML, have a "data part" with attributes.

• An attribute's domain in KAOS is a domain of values de�ning the type
of an attribute. This domain may be built-in or user de�ned.

• An N-Ary association in KAOS is an association with a multiplicity
strictly greater than two.

• An undirected association is a bidirectional association.

• An IsA link in KAOS is a specialization link taking place between two
abstract objects.

• A domain property in KAOS is a property guaranteed by the environ-
ment. This property is assumed to be always true.

We also clearly de�ne here what are the initial context and machine :

De�nition 4.6.1. The initial context is the context derived from the KAOS
object model.

De�nition 4.6.2. The initial machine is the machine derived from the
KAOS object model with all its variables, invariants and events justi�ed by
elements of the KAOS object model.

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 67

During the derivation, traceability links are created between the elements
of the KAOS model and the elements of the Event-B model. Those links
are derivation links as de�ned by van Lamsweerde in his hierarchy [van
Lamsweerde, 2009]. A derivation link between two models A and B expresses
the fact that B is build from A under the constraint that A must be satis�ed.
In our case, it means that the speci�cation of the system-to-be expressed in
Event-B (B) has to meet the requirements expressed in KAOS (A). This
kind of link is vertical in the sense that they take place for a single version
of the system, opposed to horizontal links, such as a variant or revision link
that take place between di�erent versions.

De�nition 4.6.3 (Traceability Link). There is a traceability link between
one element of the KAOS model and one or more elements of the Event-B
model if the Event-B elements are derived from the KAOS element. Trace-
ability links may be de�ned as a surjective function: traceability : B � K
where B is the set of Event-B elements belonging to an Event-B model de-
rived from a KAOS model containing the elements in K. K contains all the
KAOS elements of the object model, all the agents with the requirements/ex-
pectations they are responsible for and all the monitor and control links.

4.6.2 Initial Machine and Context

Now that we are done with the vocabulary, let us de�ne rules for the Event-B
model derived from the KAOS model. First, we will de�ne rules for the initial
machine and context. Those two elements are build by the transformations
described in section 4.2. The following rules must be respected to keep the
Event-B model consistent with the KAOS model.

Initial Context

Here are the rules for the sets, axioms and constants that can be found in
the initial context.

Rule 4.6.1. Each carrier set in the initial context must be linked to one
abstract object, or one attribute domain or one N-Ary association.

Rule 4.6.2. Each constant in the initial context must be linked to one at-
tribute's domain.

Rule 4.6.3. Each axiom in the initial context must be linked to one at-
tribute's domain.

Initial Machine

Here are the rules de�ned for the invariants, variables and events de�ned for
the update of those variables.

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 68

Rule 4.6.4. Each variable in the initial machine must be linked to one ab-
stract object or one attribute or one directed association or one undirected
association or one N-Ary association.

Rule 4.6.5. Each invariant in the initial machine must be linked to one
abstract object or one directed association or one undirected association or
an IsA link or an N-Ary association or a domain property.

We will call an update event an event corresponding to the update of
one KAOS element which can be an abstract object, an attribute, an N-Ary
association, a directed association or an undirected association.

Rule 4.6.6. Each event in the initial machine must be an update event and is
thus linked to one abstract object or one attribute or one directed association
or one undirected association or one N-Ary association.

Note that one element in KAOS may be translated in more than one
variable in Event-B, e.g. the undirected association that is transformed into
two sets and an additional invariant.

Rule 4.6.7. Each variable in the initial machine must appear in one and
only one update event.

Rule 4.6.8. Each KAOS element which can be an abstract object, an at-
tribute, an N-Ary association, a directed association or an undirected asso-
ciation must appear in the initial machine.

4.6.3 Agent Machines and their Re�nements in the Event-B
Model

According to our approach, the initial machine will be decomposed in a set
of agent machines. Those agent machines will then be re�ned independently
to describe the behaviour of each KAOS agent of the system under study.
Here are rules for those agent machines.

Machines

An agent machine is a machine decomposing the initial machine. An agent
machine is linked to one KAOS agent. A machine is said as indirectly linked
to an agent if it is re�ning an agent machine or a machine indirectly linked
to an agent. A machine will be said to be linked to an agent if it is an agent
machine or it is indirectly linked to an agent.

Rule 4.6.9. Each machine in the Event-B model that is not the initial ma-
chine must be linked to one agent or must be a re-composition, as de�ned in
section 4.5, of several machines.

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 69

Events

An event is said as linked to a requirement or an expectation if it is directly
linked to a requirement or an expectation or if it is re�ning an event linked
to a requirement or an expectation. Such an event will be part of the imple-
mentation of the requirement or the expectation.

Rule 4.6.10 (Requirements Traceability). Each internal event in the ma-
chines that are not the initial machine or an agent machine must be linked
to a requirement or expectation under the responsibility of the agent linked
to the machine.

Note that a recomposed machine is implicitly linked to all the agents
corresponding to the machines that are part of the re-composition. We will
say that an event c re�nes another event a (c re�nes a) if it re�nes it directly
or if it re�nes a third event b that re�nes the other event a (c re�nes b re�nes
a).

The three following rules are not directly related to traceability links,
but are important to keep the Event-B model consistent with respect to the
KAOS model. It enforces what has been explained in section 4.4 using the
more precise vocabulary introduced at the beginning of this section.

Rule 4.6.11. If an internal event in a machine that is not the initial ma-
chine or an agent machine updates the value of variables corresponding to a
KAOS element, which can be an abstract object, an attribute, an N-Ary as-
sociation, a directed association or an undirected association then the event
must re�ne directly or indirectly the update event de�ned in the agent ma-
chine corresponding to this KAOS element.

Rule 4.6.12. If an internal event in a machine that is not the initial machine
or an agent machine re�nes an update event, the agent linked to the machine
must control the KAOS element linked to this update event, which can be an
abstract object, an attribute, an N-Ary association, a directed association or
an undirected association in the KAOS model.

To ensure the KAOS meta-constraint saying that a KAOS element may
be controlled by at most one agent (see subsection 2.3.5 on page 21), the
following rule is de�ned:

Rule 4.6.13. Each update event in the initial machine may be de�ned as an
internal event in only one agent machine.

4.6.4 General Rule

The last rule to add is the one that links all the others. We said in the
beginning of this section that our goal is to keep the KAOS model consistent

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 70

with the Event-B model, so each element of the Event-B model may be ex-
plained by element(s) of the KAOS model. Note that we haven't considered
the semantic of the generated Event-B model with regard to the semantic
of the KAOS model. However, the idea of decomposing the Event-B initial
machine into several agent machines, where each agent will give a software
component running in parallel with the other components does not seem to
contradict the KAOS semantic of a system, de�ned as the parallelization of
the agent's behaviours. This discussion is left as a future work that has to
be done.

Rule 4.6.14 (Models Consistency). If the rules 4.6.1 to 4.6.13 are respected,
then the Event-B model is consistent with the KAOS model it comes from.
Elements of the Event-B model are e�ectively derived from elements of the
KAOS model and may be explained by them.

4.7 What happens if . . .

One of the advantage of the method we have proposed in this chapter is its
non-monolithic characteristic. The KAOS model may be modi�ed and the
Event-B model will be adapted without re-generating the complete Event-B
model. But going on the other way is also possible, e.g. if omissions are
detected by the speci�cation, an adaptation of the Event-B model may be
transmitted to the KAOS model to keep the requirements consistent with
the speci�cations of the system. This second approach is however less generic
than the �rst one since rules to go from KAOS to Event-B are clearly de-
�ned. This section will be limited to repercussions, in the Event-B model,
of modi�cations in the KAOS model by presenting some cases where the
Event-B model is update following a modi�cation of the KAOS model.

4.7.1 . . . an element is added in the KAOS object model?

Adding an element to the KAOS object model will result in a modi�cation of
the initial machine and context. This element is added according to the rules
described in section 4.2 on page 52 to the initial machine and context and
will be propagated to the agent machines and to the sub-machines re�ning
them.

We assume here that this element is not controlled or monitored by a
KAOS agent, no external event is thus added to an agent machine or its
re�nements. Description of what happens when a control link is added is
described in section 4.7.5. What happens when a monitor link is added is
described in section 4.7.7.

For instance, if we add an mandatory integer attribute depth to the
Mine KAOS object described in subsection 4.1.3, we will update the initial
machine, so it has a new variable depth. With a new invariant depth ∈

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 71

MINE → N and a new update event updateDepth with two parameter m
and l, two guards m ∈MINE and l ∈ N and an action depth(m) := l. Since
the depthKAOS attribute is not controlled or monitored by any KAOS agent,
the depth variable and the updateDepth event will not be transmitted to any
agent machine.

4.7.2 . . . an element is removed from the KAOS object model?

When an element is removed from the KAOS object model, the invariants,
variables, update event, sets and axioms issued from its translation, accord-
ing to the rules described in section 4.2 on page 52, in Event-B are removed
from the initial machine and context, from the agent machines and from their
re�nements. Note that before deleting an element, all the control and mon-
itor links will be removed too. We assume that the KAOS meta-constraint,
imposing that all the elements used to de�ne goals, requirements and expec-
tations must be de�ned in the object model, is respected. An element will
thus not be removed while at least one requirement or expectation is using
it and thus events linked to requirements and expectations will stay correct
in the Event-B model.

4.7.3 . . . an agent is added in the KAOS model?

Adding an agent to the KAOS model means that a new active entity has
been identi�ed. The Event-B model will thus be enriched by a new agent
machine, decomposing the initial machine. When the agent is added, we
assume that it does not monitor or control anything. Those links are added
later in the KAOS model.

4.7.4 . . . an agent is removed from the KAOS model?

Removing an agent from the KAOS model means that an active part of the
system is removed. We assume that all the responsibility links between the
agent and the requirements/expectations will be removed or moved to other
agents before removing it. As an agent may be responsible for a requiremen-
t/expectation if and only if he can control all the data that are modi�ed by
the requirement/expectation and monitor all the data read by the require-
ment/expectation, all the monitor and control links will also probably be
moved before the deletion of an agent.

If an agent is removed from the KAOS model, the corresponding agent
machine and all its sub-machines will be removed from the Event-B model.
If one of those machines has been used in a re-composition, all the events
coming from the machine will be removed from the decomposition. Pay
attention that if the agent was still controlling a piece of data when it is
removed and that one of the deleted event in the re-composition was re�ning

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 72

the update event of this piece of data, the general update event coming from
the initial machine has to be added in the re-composed machine.

4.7.5 . . . a control link is added in the KAOS model?

If a control link is added to the KAOS model, the update event linked to
the controlled KAOS element will become an internal event in the agent
machine corresponding to the KAOS agent. We assume that the KAOS
meta-constraint saying that a piece of data can be controlled by one and
only one agent (see section 2.3.5 on page 21) is respected.

4.7.6 . . . a control link is removed from the KAOS model?

In the Event-B model, when a KAOS agent is controlling a KAOS element,
it means that the update event of this KAOS element is an internal event
in the agent machine linked to the KAOS agent. Removing a control link
means that the KAOS agent can no longer modify a certain KAOS element.
Deleting a control link may only occur in KAOS when the agent is no longer
responsible for requirements/expectations that update the previously con-
trolled element. A more frequent situation will be to move requirements/-
expectations responsibilities to another agent and in the same time, move
control and monitor links needed to be responsible for those requirements/-
expectations to this other agent too.

We assume in what follows that the KAOS agent is no longer responsible
for a requirement/expectations that needs the removed control link to be
ful�lled. It means that in the sub-machine re�ning the agent machine, the
internal update event had the same de�nition as in the agent machine before
deletion of the control link. If the KAOS agent still monitor the previously
controlled KAOS element, then the update event is marked as external in the
agent machine and its re�nements. If there there is no monitor link between
the KAOS agent and the KAOS element, the update event, variables and
invariants linked to this element are deleted from the agent machine and its
re�nements.

4.7.7 . . . a monitor link is added in the KAOS model?

When a monitor link is added to the KAOS model, it means that a KAOS
agent will be noti�ed when a certain KAOS element is updated. In Event-B,
it means that the update event linked to this KAOS element is added as an
external event in the agent machine linked to the KAOS agent and all its
re�nements.

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 73

4.7.8 . . . a monitor link is removed from the KAOS model?

If the KAOS element previously monitored by the KAOS agent is not con-
trolled by this KAOS agent, the external update event, variables and invari-
ants linked to the previously monitored KAOS element will be removed from
the agent machine and all its re�nements.

4.7.9 . . . a newly created requirement/expectation is assigned
to an agent?

If a new requirement/expectation is added to the KAOS model and assigned
to an agent, it means that the agent's behaviour is modi�ed. We assume
here that the agent has e�ectively the ability to control and monitor the
KAOS elements needed to ful�l the requirement/expectation. The internal
and external update events are then already present in the agent machine.
If the agent machine has not been re�ned yet, then the new requirement/ex-
pectation will be implemented during the agent machine re�nement process
with all the other requirement/expectation as described in section 4.4.

If the agent machine has already been re�ned, it means that all the
other requirements/expectations have already been implemented. The new
requirement/expectation will be implemented in the �rst re�nement of the
agent machine as described in section 4.4 and this implementation will be
propagated to all the sub-machines of the agent machine's �rst re�nement.

4.7.10 . . . a requirement/expectation assigned to an agent is
modi�ed?

If a requirement/expectation assigned to an agent is modi�ed in the KAOS
model, it means that the agent's behaviour is modi�ed. We assume here
that the agent has e�ectively the ability to control and monitor the KAOS
elements needed to ful�l the modi�ed requirement/expectation. The internal
and external update events are then already present in the agent machine.
The �rst re�nement of the agent machine, where the requirement/expecta-
tion is implemented, will be modi�ed according to the new de�nition of the
requirement/expectation. This part is not automatic and will rely on the
analyst's skills.

Once the requirement/expectation implementation has been modi�ed in
the �rst re�nement of the agent machine, the proof obligations of the sub-
machines will be regenerated and will have to be proved correct. Those
sub-machines will, in most cases, have to be modi�ed too to �t the new
behaviour of the agent.

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 74

Figure 4.9: Moving responsibility link in Event-B

4.7.11 . . . a responsibility links is moved from an agent to
another?

A responsibility link in KAOS is translated into an event or an invariant in
the machines re�ning directly or not the agent machine. If it is an event,
it re�nes all the update events corresponding to the data that are modi�ed
by the requirement/expectation. The agent has thus the ability to control
those data in the KAOS model. Moving a responsibility from an agent to
another will thus mean that the implied control links will be moved at the
same time.

The events linked to the requirement/expectation are moved from one
machine to another. If the event linked to the requirement/expectation has
already been re�ned in sub-machines, the re�nements may be moved from
the previous agent's "re�nement chain" to the new one by completing the
actual machines and creating new ones if the new chain is shorter than the
previous one. Figure 4.9 shows an example of a re�ned requirement Req1
moved from the agent A to the agent B, where the agent B's machine has
not yet been re�ned. A re�nement B Refinement 2 is created to have the
same re�nement level as agent A's machine.

4.8 A First Implementation

A �rst implementation of the proposed approach has been elaborated using
model to model transformation technologies. This implementation takes on

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 75

input a KAOS model and outputs an Event-B model containing the initial
machine, the initial context and the agent machines decomposing the ini-
tial machine. The implementation of requirements and expectations is not
automated here.

This prototype act as some kind of proof of concept to show that the
proposed approach may be implemented using actual technologies. We will
�rst present those technologies and then discuss the limitations and future
works that have to be done.

4.8.1 The ATLAS Transformation Language

Figure 4.10: ATL transformation structure [Jouault et al., 2008]

The transformation has been implemented in the ATLAS Transformation
Language (ATL)2. It is a model to model transformation language based on
the OMG's QVT speci�cation [OMG, 2007]. It uses both declarative and
imperative constructs. Declarative constructs are preferred but imperative
ones are left to perform complex transformations easier. An ATL transfor-
mation program will correspond to as set of rules de�ning how source ele-
ments are matched to target elements with the initialization of these target

2ATL is now part of the Model to Model project (http://www.eclipse.org/m2m/)
supported by the Eclipse foundation

http://www.eclipse.org/m2m/

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 76

elements [Jouault et al., 2008].
Figure 4.10 shows how an ATL transformation takes place in a synthetic

view. A transformation is an instance of the ATL meta-model and is executed
on a speci�c virtual machine. It is de�ned to take a A meta-model instance
as input, a KAOS model conform to the KAOS meta-model in our case, and
produce a B meta-model instance, an Event-B model conform to the Event-B
meta-model in our case. The A and B meta-models have to be themselves
expressed in a formalism conform to meta-model, Ecore in this case, which is
sometime called meta-meta-model. The KAOS meta-model and the Event-B
meta-model are expressed here in .ecore �les. Ecore is brie�y presented in
the next section.

Listing 4.4: Part of the KAOS to Event-B ATL transformation

1 rule EntityRule {
2 from en t i t y : KAOS! Entity
3 to s e t : SIMPLEEVENTB! Car r i e rSe t (
4 id <− 'ObjModel_ '+en t i t y . name+'

_SET ' ,
5 name <− en t i t y . name+'_SET ' ,
6 <... >) ,
7 v a r i ab l e : SIMPLEEVENTB! Var iab le (<...>) ,
8 i nva r i an t : SIMPLEEVENTB! Inva r i an t (<... >) ,
9 evt : SIMPLEEVENTB! MachineEvent (<...>) ,
10 l i n k : SIMPLEEVENTB! Ent i tyObjectDer ivat ion (

<...>)
11 do{ < . . . >
12 f o r (a t t r i b u t e in en t i t y . a t t r i b u t e s) {
13 thisModule . c r e a t eAt t r i bu t e (a t t r i bu t e ,

e n t i t y) ;
14 }
15 }
16 }

For instance, in listing 4.4 the rule EntityRule describes how a KAOS
Entity will be translated in Event-B. As de�ned in section 4.2, for each KAOS
Entity encounter in the source model, the output Event-B model will contain
a set in the initial context for al the possible entity instances, a variable

in the machine for the instances recorded in the machine, an invariant to
type the variable, a general update event evt updating the variable and
a traceability link. The do part is an imperative construct that will create
the Event-B elements derived from the attributes of the KAOS Entity.

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 77

4.8.2 Ecore Meta-Model

Both input and output models of the ATL transformation are expressed in
.ecore �les. Ecore is a meta-model de�ned in the Eclipse EMF framework3

used to describe models [Budinsky et al., 2003]. The EMF framework o�ers,
among other things, tools and support to generate everything needed to build
a complete editor for an Ecore model, including generation of Java classes
to manipulate a model instance, default XMI serialization4, a user interface
generator, etc.

Figure 4.11: Main concepts of the Ecore model [Budinsky et al., 2003]

Figure 4.11 shows the most important part of the Ecore model. The main
concepts are the EClass that may have one or more super-type, EAttributes
typed as EDataType and may be involved in one or more Ereferences. The
KAOS and Event-B meta-models used in the prototype are thus expressed
in terms of EClass, EAttributes, EDataType and Ereferences.

4.8.3 Actual State, Limits and Future Implementations

In its actual state, the prototype is limited to the �rst and second steps of
our approach. The initial context, the initial machine and its decomposition
in agent machines are automatically derived from a KAOS model. Step
three, where agent machines are re�ned and requirements/expectations are
implemented has to be done manually.

Both the prototype and the method have been applied to the mine pump
example described in chapter 2 and another example which is actually an
exercise, based on the pilot of the Deploy project [Falampin et al., 2009],
that has the same proportions than the mine pump example. In this ex-
ercise, a device has to managed the di�erent driving mode switching (from
fully automated to fully manual) of a train. This other example is not

3http://www.eclipse.org/modeling/emf/
4XML Metadate Interchange de�nes a way to specify model objects in XML documents

http://www.eclipse.org/modeling/emf/

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 78

completely described here, but as an indicator, the KAOS model contained
height requirements/expectations assigned to three agents and in the gen-
erated Event-B model the main agent machine's re�nement has six internal
events used to manage the modes switchings.

The used meta-model for KAOS is the one de�ned for Objectiver [Respect-
IT, 2009] that may be found in the kaos-emf package on the FAUST project's
Sourceforge page5. This package contains both, the KAOS Ecore meta-model
and Java classes to connect a Java application to Objectiver and get the cur-
rently edited KAOS model.

RODIN [RODIN, 2010] has actually an EMF plugin with an Ecore meta-
model, but since there were compatibility problems between this meta-model
and the Eclipse EMF framework, a new meta-model has been de�ned for
Event-B. This new meta-model, called simpleEventB, de�nes basically all
the notions that may be found in Event-B, plus the di�erent traceability
links between KAOS and Event-B elements. The generated model can not
be directly imported in the RODIN tool, and the link between the generated
model and the tool has to be implemented.

To illustrate the prototype let us give some numbers: the de�ned sim-
pleEventB meta-model contains 50 EClasses, 27 are used to re-de�ne the
Event-B meta-model and 23 are used to de�ne the traceability links; the
KAOS meta-model de�ned in the kaos-emf package contains 38 EClasses;
the ATL transformation contains 8 rules and is 542 lines long; the execution
in Eclipse of the ATL transformation for the mine pump example takes 0,007
seconds; the execution in Eclipse of the ATL transformation for the pilot of
the Deploy project example takes 0,009 seconds.

The two main future works for this prototype will be: �rst the imple-
mentation of the traceability checks via the rules described in section 4.6.
This can be achieve using the Eclipse Object Constraint Language plugin6

for instance, which permit to write OCL rules and to evaluate those rules
with an EMF model. Secondly, the formal de�nitions of requirements and
expectations will have to be translated automatically into Event-B. This
could already partially be done, using De Landtsheer's method described in
section 5.3 for formula that use exclusively past time operators.

5http://sourceforge.net/projects/faust/
6OCL - http://www.eclipse.org/modeling/mdt/?project=ocl

http://sourceforge.net/projects/faust/
http://www.eclipse.org/modeling/mdt/?project=ocl

Chapter 5

KAOS to Event B: existing

approaches

This chapter presents three existing methods, currently under research for
some of them, to derive an Event-B model from a KAOS model. The �rst
one, proposed by Matoussi, works on a KAOS goal diagram, containing "Im-
mediate Achieve" goals and built with milestone-driven and or-re�nement
patterns. The second approach, proposed by Aziz et al. introduces the no-
tion of trigger conditions for events to derive an Event-B model from a KAOS
model. The last approach, proposed by De Landtsheer takes linear temporal
logic formula expressed exclusively with past operators on input and pro-
duces an event-based security policy expressed in Polpa. A syntactic change
can translate this Polpa policy to an Event-B model.

The last section of this chapter will present the problems encounter with
those approaches in deriving an Event-B model from a KAOS goal model.
A comparison between the di�erent approaches of this chapter and our pro-
posed approach presented in chapter 4 will be made at the end of this section.

5.1 Expressing KAOS Goal Models with Event-B:

A. Matoussi

Matoussi describes in [Matoussi et al., 2008,Matoussi et al., 2009,Matoussi,
2009,Gervais et al., 2009] a process to transform a KAOS goal model into an
Event-B speci�cation. This process takes as input a KAOS goal model that
is not operationalized and produces an Event-B model corresponding to a
speci�cation that satis�es the requirements described in the input model.

This process is based on re�nement patterns. The idea is that each re-
�nement pattern used in the KAOS model will correspond to a re�nement
step in the Event-B model. Actually the process works with functional "Im-
mediate Achieve" goals which are the most commonly used goal type. Those
goals have to be formally de�ned with an assertion of the form A ⇒ ♦B,

79

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 80

Figure 5.1: Milestone-driven re�nement and Or-re�nement

which says that from a state where A is true, another state where B is true
can be reached someday. The supported patterns, presented in �gure 5.1, are
the milestone-driven re�nement pattern, used when a target condition B can
be reached from a current condition A with an intermediate condition AB
and the or-re�nement pattern, used when a goal can be satis�ed in di�erent
ways.

The process in �gure 5.2 has two phases: the �rst one creates an Event-
B representation of the goal model. The initial Event-B model includes the
de�nition of a context with all the types used for data and the de�nition of
an initial machine. This initial machine represents the root goal G of the
KAOS model and each re�nement in this model has to follow one of the two
patterns described in �gure 5.1. Each re�nement step in the goal model will
correspond to a re�nement step of the Event-B machine, so it produces a
chain of re�ned machines where each machine will correspond to a "stage"
in the goal model.

The second phase formally derives an Event-B speci�cation that satis�es
the requirements expressed in the goal model. To do this, it takes as input
the goal model and the Event-B representation of this model created in the
�rst phase. This second phase correspond to the operationalization process
that can be performed in KAOS and guaranties that operations preserve all
the properties of the goal model. As in the �rst phase, the initial Event-B
model will be de�ned for the root goal G of the model and each re�nement
in the goal model following one of the two patterns will correspond to a
re�nement in the Event-B model.

5.1.1 First Phase

Formally speaking, a KAOS goal is seen as a property that the system has
to establish:

Achieve[G]
A⇒ ♦B

This property will be represented as an event in the Event-B model where
the premise of the implication is transcribed in the initialization event of the

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 81

Figure 5.2: Expressing KAOS with Event-B: overview [Gervais et al., 2009]

machine and the consequence of the implication is transcribed in the then
part of the event EvtG associated to the goal G. An execution of this event
means that the goal G has been satis�ed. The guard of EvtG is set to true
to express the fact that at this level the goal can always be achieved.

Listing 5.1: KAOS expressed in Event-B: initial machine

MACHINE EventBGoalModel_level_0
SEES ModelContext
VARIABLES

Manipulated data
INVARIANTS

inv : Data types de�nitions
EVENTS
Initialisation

begin

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 82

act : A
end

Event EvtG =̂
where

grd : TRUE
then

act : B
end

END

Milestone-Driven Re�nement

In general, when we have a milestone-driven re�nement like the left re�ne-
ment in �gure 5.1, it means that the parent goal G is satis�ed when all the
sub-goals {G1, ..., Gn} have been satis�ed. In �gure 5.1 and in the rest of
this example, n is limited to 2 to avoid complicate and useless explanations.
The EvtG event of the parent machine is re�ned into a new event EvtG tak-
ing as pre-condition the conjunction of the functional post-conditions of the
children, G1 and G2 in this case. The re�nement of goal G following the
pattern described in �gure 5.1 will give the machine represented in listing
5.2.

Listing 5.2: KAOS expressed in Event-B: milestone re�nement machine

MACHINE EventBGoalModel_level_1
REFINES EventBGoalModel_level_0
SEES ModelContext
VARIABLES

Manipulated data
INVARIANTS

inv : Data types de�nitions
EVENTS
Initialisation

begin
act : A ∧AB

end
Event EvtG1 =̂

where
grd : TRUE

then
act : AB

end
Event EvtG2 =̂

where
grd : TRUE

then
act : B

end
Event EvtG =̂
re�nes EvtG

where
grd : AB ∧ B

then
act : B

end
END

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 83

Or-Re�nement

When we have an or-re�nement, it means that the parent goal is satis�ed
when one or more of the sub-goals have been satis�ed. The EvtG event of the
parent machine is re�ned into a new event EvtG' taking as pre-condition a
formula expressing that one or more of the two sub-goals have been satis�ed.
It does not seem to be a generic approach here and the knowledge and
competence of the analyst will play an important role. For instance in the
example case described by Matoussi et al. in [Gervais et al., 2009], the guard
of a re�ned EvtG' event, corresponding to a goal G saying that some elements
have to be localised in one way or another, uses the union of two sets, one
for each of the sub-goals, saying that an element may be localised via GPS
or via WIFI, and compare it to the set of all the elements:

. . .∧LocalisedElements =
(LocalisedByGPSElements ∪ LocalisedByWIFIElements)∧ . . .

5.1.2 Second Phase

In the second phase, functional and non-functional goals are treated the same
way. The main idea here is to say that an operation can be executed while
the associated goal has not been satis�ed (considering the non-functional
properties too), which is the same as while it's post-condition has not been
veri�ed. However, this is not su�cient to ensure that an "Achieve" goal has
been reached. A new event called "closing" is added with a guard equal
to the post-condition (without the non-functional properties) of the goal to
reach. So for the initial machine corresponding to the root goal G we will
have an event EvtOpG that can be executed while G has not been reached and
an event Closing that can be executed when G is satis�ed. This Closing
event will �nalize the system. As in the �rst phase, the machine will be
re�ned following the re�nement pattern used in the goal model and each
level in the goal model will correspond to a machine in the Event-B model.

Note that in their example, Matoussi et al. in [Gervais et al., 2009] are
working with sets and express the negation of the initial goal post-condition
with universal quanti�ers. The initial machine for an "Achieve" goal G with
a formal de�nition A⇒ ♦B will be:

Listing 5.3: Operationalization Event-B: initial machine

MACHINE EventBOperationalSpeci�cation_level_0
SEES ModelContext
VARIABLES

Manipulated data
INVARIANTS

inv : Data types de�nitions
EVENTS

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 84

Initialisation
begin

act : A
end

Event EvtOpG =̂
where

grd : ¬B
then

act : Do something that makes things going further
end

Event Closing =̂
where

grd : B without non-functional properties
then

act : Exit := OK
end

END

As in the �rst phase, the initial model will be re�ned according to the
re�nement patterns used in the goal model. The Closing event is re�ned as
it without modi�cation, and the sub-goals will be translated into events.

Milestone-Driven Re�nement

When a parent goal G is re�ned into sub-goals G1, ..., Gn according to the
milestone-driven re�nement pattern, it means that the goal G can be de-
composed into n steps and that G is satis�ed if the �nal step Gn is reached.
The sub-machine re�ning the initial machine de�ned for the second phase,
like the one described in listing 5.3, will thus have EvtOpG1,...,EvtOpGn de-
clared events where the pre-condition is the negation of the post-condition of
the corresponding EvtGi event declared in the Event-B model coming from
phase one (listing 5.2 in our example). The action will be "something that
makes things going further" to the step Gi+1. Again, the approach does not
seem to be generic, the action that "makes things going further" will depend
of the goal Gi and its de�nition will rely on the analyst's skills. The realiza-
tion of the last sub-goal Gn implies the realization of the patent goal G, so
the last event EvtOpGn will re�ne the EvtOpG event of the parent machine.
The re�nement of goal G following the pattern described in �gure 5.1 will
give a machine:

Listing 5.4: Operationalization Event-B: initial machine

MACHINE EventBOperationalSpeci�cation_level_1
REFINES EventBOperationalSpeci�cation_level_0
SEES ModelContext
VARIABLES

Manipulated data
INVARIANTS

inv : Data types de�nitions
EVENTS
Initialisation

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 85

begin
act : A

end
Event EvtOpG1 =̂

where
grd : ¬AB

then
act : Do something that makes things going further

end
Event EvtOpG2 =̂
re�nes EvtOpG

where
grd : ¬B

then
act : Do something that makes things going further

end
Event Closing =̂
re�nes Closing

where
grd : B without non-functional properties

then
act : Exit := OK

end
END

Or-Re�nement

As for phase one, when we have an or-re�nement, it means that the parent
goal is satis�ed when one or more of the sub-goals have been satis�ed. The
EvtOpG event of the parent machine is re�ned into a new event EvtOpG' taking
as pre-condition the negation of the corresponding event in the Event-B
model of phase one, possibly simpli�ed and where possible ambiguities have
been removed.

The two sub-goals are handled as in the general case by having a pre-
condition equals to the negation of the post condition of the corresponding
event in the model coming from phase one.

5.2 From Goal-Oriented Requirements to Event-B

Speci�cation: B. Aziz et al.

To derive an Event-B model from a KAOS model, Aziz et al. propose to
include in Event-B the notion of triggered event. This new notion will be used
to translate the next (◦) and bounded sooner-or-later (♦6d) time operators
used in the formal de�nition of requirements and expectations in KAOS, into
Event-B events.

The �rst subsection introduces the notion of triggered event described
in [Bicarregui et al., 2008]. The second subsection will then describe the
operationalisation patterns that can be used to derive Event-B from KAOS
requirements and expectations explained in [Aziz et al., 2009].

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 86

5.2.1 Notion of Triggered Event

In Event-B, the guards don't express obligations to execute the events. When
more than one guard is true at the same time, the next executed event is
chosen in a non-deterministic way. It means that scheduling of events is
non-deterministic.

A limited notion of obligation is described by triggers. They are the dual
of guards in the sense that when a guard is false, the event may not occur
while when a trigger is true, the event must occur. In other terms, a trigger
condition for an event is equivalent to a constraint on when other events
are permitted. This constraint can be expressed by adding the negation of
the trigger condition to the guards of all other events. Event-B trigger users
need to pay attention, indeed trigger permit to impose an order of execution.
But, by doing this they also add implicit constraints on the other events.

There a tree kinds of triggered-events, the next-trigger, the eventually-
trigger and the within-trigger. The next-trigger is used for an event that will
be the next performed event as soon as its trigger-condition becomes true.
A within-triggered event will have to be executed within the n next steps,
whereas a step corresponds to the execution of an event. The eventually-
trigger is modelled by within-trigger with a unbounded non-deterministic
choice of n.

NEXT-Trigger

A next-trigger event e with a trigger condition T and an action R is equiv-
alent to a within-trigger with a n equals to 0. It is notated :

EVENT e WHEN T NEXT R END

In comparison with classical Event-B events, using next-trigger events
may imposes to add restrictions on the other guards and trigger conditions
to avoid deadlocks. We explain hereafter the interpretation of two classical
events e1 and e2 used with two trigger-events f1 and f2 in classical Event-B.
The four events are de�ned as :

EVENT e1 WHEN G1 THEN S1 END
EVENT e2 WHEN G2 THEN S2 END
EVENT f1 WHEN T1 NEXT R1 END
EVENT f2 WHEN T2 NEXT R2 END

The negation of the trigger conditions T1 and T2 will have to be added to
the guards G1 and G2 to prevent the other events form being executed when
a trigger has to occurs. But this is not enough, the negation of each trigger
condition will also be added to the other trigger conditions to prevent the
other trigger-events from being executed when one trigger condition is true.
The equivalent of the four events here above in classical Event-B is :

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 87

EVENT e1 WHEN G1 ∧ ¬T1 ∧ ¬T2 THEN S1 END
EVENT e2 WHEN G2 ∧ ¬T1 ∧ ¬T2 THEN S2 END

EVENT f1 WHEN T1 ∧ ¬T2 THEN R1 END
EVENT f2 WHEN T2 ∧ ¬T1 THEN R2 END

A Event-B model composed only with trigger-events and classical-events
will be said deadlock-free if and only if for every next-event ei with trigger
condition Ti, the proposition ¬(Ti ∧ Tj) is true for every j 6= i. For the
example here above, the system is deadlock free if ¬(T1 ∧ T2) is true. As
next-trigger can be seen as a within-trigger with n equals to 0, a more general
de�nition of deadlock-free model is given for within-triggers in [Bicarregui
et al., 2008].

EVENTUALLY-Trigger

As said before, an eventually-trigger event is equivalent to an within-trigger
event with a unbounded non-deterministic choice of n. In practise, the choice
of n is made when the trigger-condition becomes true and so the deadline
will be set at that time and is only known internally. The notation for
eventually-trigger events is :

EVENT e WHEN T EVENTUALLY S END

WITHIN-Trigger

Within-trigger are used for events that have to occur at most n steps af-
ter a certain condition becomes true, as far as this condition is still true
during the steps before the event e�ectively occurs. If the trigger condition
becomes false during the n steps before the event has occurs, the obligation
is cancelled. A within-trigger event is notate as :

EVENT e WHEN T WITHIN n NEXT S END

Triggered-Events with Guards

As for classical events, the triggered events may have a guard. As the trigger-
condition will express the states where the event will have to occur, the
guard-condition will express the states where the event may occur. The
most general triggered event with trigger-condition T and guard-condition
G can be noted:

EVENT e WHEN (T ,G) WITHIN n NEXT S END

To be well formed, when the triggered-event is obliged, then it must be per-
mitted, or in other words T ⇒ G. The classical events will then correspond
to trigger-events with a false condition.

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 88

Re�nement of Triggered-Events

With classical-events, re�ning an abstract event a in a more concrete event
b, noted a v b, means that proof obligations described in section 3.2.3 are
respected. In particular, the guard strengthening proof obligation states that
b's guard is stronger than a's guard, to ensure that when b happens, so do
a.

With triggered-events, there are two things that can be re�ned: the
duration n and the trigger condition T .

Re�nement of duration Re�ning an event of a system means that the
number of the possible states of the system will decrease, making the be-
haviour of the system more precise. In the case of triggered-events, it means
that the maximal number of steps between the moment when the trigger con-
dition becomes true and the moment when the event is e�ectively executed
will decrease during the re�nement process. Formally, if we have T a trigger
condition, S a substitution and m and n two integers such as 0 6 n 6 m,
then:

EVENT e WHEN T EVENTUALLY S END
v EVENT e1 WHEN T WITHIN m NEXT S END
v EVENT e2 WHEN T WITHIN n NEXT S END

v EVENT e3 WHEN T NEXT S END

Re�nement of the trigger predicate If guard-conditions are strength-
ened during a re�nement process, trigger-conditions, which are dual, will be
weakened. This can be explained by the fact that adding a triggered-event
to a model has as e�ect to add the negation of the trigger-condition to all
other events of the model. Weakening a trigger-condition means then that
all other guards will be enforced.

For an abstract trigger-event ea with a trigger-condition Ta and a concrete
event eb with a trigger-condition Tb in a deadlock-free model, if Ta ⇒ Tb,
than we have that:

EVENT ea WHEN Ta WITHIN n NEXT S END
v EVENT eb WHEN Tb WITHIN n NEXT S END

Deadlock Freeness

In classical Event-B, a model is said deadlocked if it reaches a certain state
where no guard is true, meaning that no event can be executed. With
triggered-events, another kind of deadlock is possible if two events must
occur at the same time. To avoid this, Bicarregui et al. [Bicarregui et al.,
2008] introduce the notion of scheduling, which is brie�y explained here.

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 89

Every event can be expressed as a WITHIN-trigger with a certain n.
The idea is to associate an active counter, equals to n, to an event when its
trigger-condition becomes true. This active counter is decreased each time
an event occurs in the model. An event will be schedulable if, when a trigger-
condition become true, there is enough space in the "execution queue" so
that the event may occur, in other words, if there are at most n other active
counters with a value less than or equal to n. In the same way, a model will
be schedulable if all its events are schedulable at all time.

5.2.2 Operationalisation Patterns

Aziz et al. [Aziz et al., 2009] reuse the notion of trigger-events to translate
the next (◦) and bounded sooner-or-later (♦6d) time operators used in the
formal de�nition of requirements and expectations in KAOS, into Event-B
events.

Table 5.1 presents the operationalisation patterns for the three most used
goals types. A and B in the KAOS requirement's formal de�nition repre-
sents �rst-order logical formula de�ned over objects of the KAOS model.
Those objects are translated into variables in the Event-B model and thus
A′ represent the formula equivalent to A de�ned over those variables and B′

represent the generalised substitution derived from predicate B, which will
be seen as the post-condition of the substitution.

Table 5.1: Patterns for Operationalising Requirements into Event-B [Aziz
et al., 2009]
Requirements Formal

De�nition
Event-B Operationalisation

Immediate
Achieve

A⇒ ◦B EVENT e WHEN A′ NEXT B′ END

Bounded
Achieve

A⇒ ♦6dB EVENT e WHEN A′ WITHIN d NEXT B′

END

Unbounded
Achieve

A⇒ ♦B EVENT e WHEN A′ EVENTUALLY B′

END

5.3 Deriving Event-based Security Policy from Declar-

ative Security Requirements: R. De Landtsheer

De Landtsheer proposes in [Landtsheer, 2007a, Landtsheer and Ponsard,
2010] to translate linear temporal logic formula expressed exclusively with
past operators into an event-based security policy expressed in Polpa. A
syntax change can translate this Polpa policy to an Event-B model.

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 90

First we will present the linear temporal logic formulas admitted by this
method. The second subsection brie�y presents the Polpa element used by
the method, more details about Polpa can be found in [Aziz et al., 2008].
The third describes the derivation procedure itself and the last subsection
describes the syntactic changes to switch from Polpa to Event-B.

5.3.1 Linear Temporal Logic Formula

Temporal logic has already been explained in section 2.3.4. Due to the
di�culty to manage the future (foreseen actions, schedule appropriate re-
action, non-computability of in�nite size models, etc.), the formulas here
are restricted to the past (see subsection 5.2 in [Landtsheer, 2007a] for more
details). They may contain:

• Events represented as a predicated over typed variables.

• Logical connectors and ∧, or ∨, not ¬ and implies →.

• Quanti�ers ∀ and ∃ used to specify the type of used variables.

• Temporal operators of the past since S , has always been � and some-
time in the past �.

For instance, a requirement for a �le access control system could be
expressed as follows:

(∀u : Users)(∀f : File)

open(u, f)⇒ ¬forbidden(u, f) S authorized(u, f)

Saying that a �le can be opened by a user if he has received an authorisation
for that �le and if that authorisation has not been revoqued. As explained
in section 2.3.4, P ⇒ Q is used as a shorthand for �(P → Q).

5.3.2 Polpa

Polpa does with a given policy and a queue of events what regular expressions
do with a characters pattern and a given string of characters. It will read a
sequence of events and will accept or reject the events according to a given
policy. We will present here the most important notions used in the rest of
this section. More details about Polpa can be found in [Aziz et al., 2008].
To describe policies, Polpa uses three atomic constructions separated by the
sequencing operator (·):

• Events are noted as in temporal logic, e.g. open(u0, f0) represents an
event in Polpa.

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 91

• Conditions which are non temporal assertions are placed between brack-
ets and checked at runtime. If a condition is false, the events placed af-
terwards won't happen. For instance [NOT_FORB_SINCE_AUT
H(u0, f0)] · open(u0, f0) means that to open a �le, some condition rep-
resented by NOT_FORB_SINCE_AUTH(u0, f0) has to hold.

• Actions are executable instructions used to update the internal state of
the policy. They are represented between curly brackets, e.g. authoriz
ed(u0, f0) · {NOT_FORB_SINCE_AUTH(u0, f0) := true}.

Fragments of the policy may also be enclosed into loops, denoted by the
it(<piece>) keyword and disjunctive compositions, denoted by par(<piece>,
<piece>, ...), expressing the fact that all the pieces of the decomposition are
acceptable. For instance, the Polpa policy generated for the requirement
expressed before using this method will be:
{(∀u : Users)(∀f : File)NOT_FORB_SINCE_AUTH(u, f) := false}·
it(par([NOT_FORB_SINCE_AUTH(u0, f0)] · open(u0, f0),

authorized(u0, f0) · {NOT_FORB_SINCE_AUTH(u0, f0) := true},
forbidden(u0, f0)·{NOT_FORB_SINCE_AUTH(u0, f0) := false}))

5.3.3 Derivation Procedure

The main problem in this transformation is the switch from linear temporal
logic formulas, which are expressed in a state-based logic where each pred-
icate has a value at each time unit, to Polpa, which is an event-based logic
where histories are described by a succession of events. It means that in
event-based logic, there is a mapping between events and time units stat-
ing that each event corresponds to one time unit. It also means that time
progresses only when events happen. To overcome this, at some point in
the transformation, two assumptions are incorporated into the model. The
�rst assumption, also called single input assumption, states that only one
event can happen at a time. The second assumption states that each event is
mapped to a time unit, in other words there is one event between two states
in the model.

Figure 5.3 presents a data �ow diagram of the transformation process.
This transformation can be decomposed into three main steps:

• First, each temporal operator is removed from the initial formula and
replaced by a corresponding state predicate which captures the value
of this temporal operator throughout time.

• Secondly, for each state predicate, a start clause and a step clause are
de�ned. The start clause de�nes the value of the state predicate at the
beginning of the history. The step clause de�nes the value of the state
predicate at each time point according to the previous values and the
events occurring at this time.

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 92

Figure 5.3: Data �ow diagram of the translation process [Landtsheer and
Ponsard, 2010]

• Finally, the assertions and clauses are projected onto the set of events.
The principle of the projection is to take an event and consider that
only this event happens. This is where the switch from state-based
logic to event-based logic is done by using the single input assumption.
Assertions are then simpli�ed according to this assumption.

Isolating Temporal Operators

In this step, the initial assertion is simpli�ed by replacing the temporal
operators by a corresponding state predicate. This state predicate must be
constructed such that the semantics of the temporal operators is respected.
As seen in table 2.2 on page 19, the past operators work with values of the
predicates before a current time position i, but also with the value of those
predicates at the time position i. For instance, �P is true at a time position
i if P is true at all times before i and if P is true at the current time position
i too. In this step, �P will thus be replaced by HISTORICALLY_P ∧P .

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 93

Table 5.2 gives the translation rules for the considered past time operators.

Table 5.2: Step1: translation rules
Temporal operator Substitute

�P HISTORICALLY_P ∧ P

P S Q (P_SINCE_Q ∧ P) ∨Q

�P ONCE_P ∨ P

In the �le access control system requirement, the since operator (PSQ)
is the only past time operator. The considered sub-formula is:

¬forbidden(u, f) S authorized(u, f)

It will be replaced by:

(NOT_FORB_SINCE_AUTH(u, f) ∧ ¬forbidden(u, f))
∨authorized(u, f)

The �nal assertion will be:

(∀u : Users)(∀f : File)

open(u, f)⇒ ((NOT_FORB_SINCE_AUTH(u, f)∧¬forbidden(u, f))
∨authorized(u, f))

De�ning Start and Step Clauses

In this step, a start clause and a step clause are de�ned for each state predi-
cate generated in the �rst step. The start clause de�nes the value of the state
predicate at the beginning of the history. The step clause de�nes the value
of the state predicate at each time point according to the previous values
and the events occurring at this time. The initial assertion is not modi�ed
in this step.

Table 5.3: Step2: generation rules
Temporal operator Start clause Step clause

�P P HISTORICALLY_P ∧ P

P S Q Q (P_SINCE_Q ∧ P) ∨Q

�P P ONCE_P ∨ P

Table 5.3 gives the generation rules for the considered past time opera-
tors. For instance, the state predicateNOT_FORB_SINCE_AUTH(u, f)
will have the start clause:
authorized(u, f)

And the step clause:
(NOT_FORB_SINCE_AUTH(u, f) ∧ ¬forbidden(u, f))
∨authorized(u, f)

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 94

Projecting State-Based Models onto Event-Based Logics

We have now di�erent elements: the simpli�ed initial assertion, a set of start
clauses and a set of step clauses. The switch from state-based to event-based
logic in the model is done at this step, by considering that time progresses
only when events are true and that there is only one true event at the same
time. Each event will be considered in turn and the model will be projected
on this event by considering that all others events are false. In the example,
there are three events: open, authorized and forbidden. The projected
assertion will be simpli�ed and all projections will be regrouped afterwards.
This step may be decomposed in three sub-steps: projecting the start clauses,
projecting the assertion and projecting the step clauses.

Projecting start clauses By convention, no event occurs at the initial
time. Start clauses are simpli�ed by replacing each occurrence of event by
false. All start clauses have the pattern ∀ ∗ STATE_PREDICATE(∗) :=
P (∗) to initialize the value of the state predicates. The simpli�cation will
take place in the right part of the assignment operator and will give for the
example introduced before:

∀u : User

∀f : File

NOT_FORB_SINCE_AUTH(u, f) := false

Projecting assertion on events Each event will be considered in turn,
�xing arbitrary parameters and projecting the assertion on it using the
project(P (x)) function. Projecting the assertion on an event means that
all events are false, except the one considered with its �xed parameters. To
complete this projection, di�erent instantiations to the universally quanti-
�ed variables are considered. The original quanti�cations in the projected
assertion are replaced according to the rules:

project((∀x : X)P (x)) (∀xc : X)project(P (xc)) ∧ ∧eproject(P (xe))
project((∃x : X)P (x)) (∃xc : X)project(P (xc)) ∨ ∨eproject(P (xe))

Where xc is a quanti�ed variable denoting "all the other values than the
ones afterwards" and xe correspond to the constants from the event with
type X. If there is no more quanti�er in P (x), project(P (x)) will simply
return P (x). For the outer quanti�ers, a conjunct or disjunct is added in
the �nal conjunct (after ∧e) or disjunct (after ∨e) if at least one event is
true in it. The reason is that, if no event is true in a sub-formula, then the
sub-formula is constant, so that its value has not changed since the previous
time unit.

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 95

All events will then be simpli�ed according to the principle of projection
saying that only the considered event with the �xed parameters is true.

In the example, the open event will have arbitrary parameters u0 and f0.
The assertion in subsection 5.3.3 will be projected on this event, giving:

(∀uq : User)

(∀fq : File)
open(uq, fq)
⇒ (NOT_FORB_SINCE_AUTH(uq, fq)

∧¬forbidden(uq, fq))
∨authorized(uq, fq)

∧

open(uq, f0)
⇒ (NOT_FORB_SINCE_AUTH(uq, f0)

∧¬forbidden(uq, f0))
∨authorized(uq, f0)

∧ (∀fq : File)

open(u0, fq)
⇒ (NOT_FORB_SINCE_AUTH(u0, fq)

∧¬forbidden(u0, fq))
∨authorized(u0, fq)

∧

open(u0, f0)
⇒ (NOT_FORB_SINCE_AUTH(u0, f0)

∧¬forbidden(u0, f0))
∨authorized(u0, f0)

All events that are not open(u0, f0) are false. After simpli�cation, this

formula became:

(∀uq : User)

(∀fq : File)(
false⇒ NOT_FORB_SINCE_AUTH(uq, fq)

)
∧
(
false⇒ NOT_FORB_SINCE_AUTH(uq, f0)

)

∧ (∀fq : File)
(
false⇒ NOT_FORB_SINCE_AUTH(u0, fq)

)
∧
(
true⇒ NOT_FORB_SINCE_AUTH(u0, f0)

)
The �nal result of the projection is then:

NOT_FORB_SINCE_AUTH(u0, f0)

Similar process is done on the allowed and forbidden events, giving a
simpli�ed condition true, meaning that those events can always be accepted
by the policy.

Projecting step clauses on events Step clauses include an assignment
operator, which can be simpli�ed if the left and right members of the assign-
ment are equal. In that case, the assignment is replaced by a constant true.
The projection of the step clause de�ned in subsection 5.3.3, on the event
authorized(u0, f0) give:

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 96

authorized(u0, f0) · {NOT_FORB_SINCE_AUTH(u0, f0) :=
(NOT_FORB_SINCE_AUTH(u0, f0) ∧ ¬false) ∨ true}

Which can be simpli�ed by:

authorized(u0, f0) · {NOT_FORB_SINCE_AUTH(u0, f0) := true}

The projection on the event forbidden(u0, f0) give:

forbidden(u0, f0) · {NOT_FORB_SINCE_AUTH(u0, f0) := false}

Regrouping

The last step regroups start clauses into an initialization part and regroups
projection of conditions and step clauses by events. A Polpa policy is build
from those projections. The policy generated for the �le access control sys-
tem is :
{(∀u : Users)(∀f : File)NOT_FORB_SINCE_AUTH(u, f) := false}·
it(par([NOT_FORB_SINCE_AUTH(u0, f0)] · open(u0, f0),

authorized(u0, f0) · {NOT_FORB_SINCE_AUTH(u0, f0) := true},
forbidden(u0, f0)·{NOT_FORB_SINCE_AUTH(u0, f0) := false}))
Two more complete examples of derivation can be found in [Landtsheer,

2007a].

5.3.4 Syntactic Changes from Polpa to Event-B

As in Event-B, there are events, actions and guards in the policies generated
by this derivation procedure. The translation from Polpa to Event-B may be
then a simple syntactic change presented in table 5.4. The state predicates
generated by the derivation procedure will become internal variables of the
machine.

Table 5.4: Syntactic changes from Polpa to Event-B [Landtsheer, 2007a]
Polpa element Event-B element
Initialization code INITIALISATION event

Condition · Event · Action Event-B event

Condition in Polpa clause WHERE clause of the Event-B event

Event in Polpa clause Name and parameters (ANY)

Action in Polpa clause THEN clause of the Event-B event

The Event-B machine derived from the generated Polpa policy for the
�le access control system is given in listing 5.5. The seen context, which is
not detailed here, declare the file and user sets.

Listing 5.5: Event-B machine derived from Polpa policy

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 97

MACHINE Simple_Authorization_Scheme
SEES Ctx0
VARIABLES

NOT_FORBIDDEN_SINCE_AUTHORIZED

INVARIANTS
inv1 : NOT_FORBIDDEN_SINCE_AUTHORIZED

⊆ ((file × user)→ BOOL)
EVENTS
Initialisation

begin
act1 : (∀qfile ·qfile ∈ file)(∀quser ·quser ∈ user)

NOT_FORBIDDEN_SINCE_AUTHORIZED(qfile, quser)
:= FALSE

end
Event open =̂

any
f
u

where
grd1 : f ∈ file
grd2 : u ∈ user
grd3 : NOT_FORBIDDEN_SINCE_AUTHORIZED(f , u)

then
skip

end
Event forbidden =̂

any
f
u

where
grd1 : f ∈ file
grd2 : u ∈ user

then
act1 : NOT_FORBIDDEN_SINCE_AUTHORIZED(f , u) :=

FALSE
end

Event authorized =̂
any

f
u

where
grd1 : f ∈ file
grd2 : u ∈ user

then
act1 : NOT_FORBIDDEN_SINCE_AUTHORIZED(f , u) :=

TRUE
end

END

5.4 Comparison of the Approaches with our Pro-

posed Approach

This section compares the three methods presented in this chapter with our
method described in chapter 4. We carry out our comparison based on a
number of criteria and then give a global synthesis under a tabular form.

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 98

5.4.1 Traceability

Traceability is very interesting to bridge a requirement model and a speci�ca-
tion model. To ensure that requirements have e�ectively been translated into
speci�cations, but also, and particularly with formal Event-B speci�cations,
to "explain" the speci�cation by elements coming from the requirements.
It is also very important to have traceability links between requirements
and speci�cations when requirements are discovered or corrected during the
speci�cations phase if incompletenesses or lacks are pointed out by the spec-
i�cations.

• Matoussi's approach works in two steps. First giving an Event-B rep-
resentation of a KAOS model to then operationalize, in the KAOS
sense of the word, this model. All the events de�ned in the �rst step
will correspond to a goal in the KAOS diagram. The traceability is
direct here. In the second step, each event, except the closing event,
will correspond to the operationalization of one goal. The traceability
is direct too.

• In the method proposed by Aziz et al. each requirement/expectation
expressed using one of the three Achieve goal type will be translated
into one trigger-event. Even if traceability issue is not addressed in
the method, the traceability here is direct between one requirement/-
expectation and one trigger-event.

• The traceability issue is not either addressed in De Landtsheer's method.
The traceability here is possible between one linear temporal logic for-
mula expressed using past operators and a set of Event-B elements
(containing variables, invariants, actions in the initialisation event and
events).

• In our proposed approach, traceability between Event-B speci�cations
and KAOS requirements is mandatory to keep the models consistent
with each other. It is guaranteed by a set of traceability rules that has
to be respected. In the prototype we developed , the traceability links
are present in a rede�ned Event-B meta-model and the traceability
rules will be, in future developments, represented as constraints in this
meta-model.

5.4.2 Models Evolution

As explained in the previous sub-section, both requirements and speci�ca-
tions models may evolve, even if the Event-B speci�cations has already been
derived from KAOS requirements, if incompletenesses or lacks are pointed
out by the speci�cations or if the development is incremental for instance.

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 99

It is thus interesting to see if the di�erent methods support evolution of one
model and re�ect this evolution on the other.

• The method proposed by Matoussi is executed once from the KAOS
goal model to give an Event-B speci�cation. Although the �rst phase
may work incrementally, since a re�nement level in the KAOS goal tree
corresponds to a machine re�nement in the Event-B model so the two
models may be re�ned in parallel, this is not the case for the second
phase. Modi�cations in one goal at one level will need to replay the �rst
phase of the method from the goal's re�nement level and the replay
of all the second phase of the method. Going on the other way is also
more di�cult since no traceability mechanisms are de�ned. Re�ecting
a modi�cation of the Event-B model in the KAOS model will be left
for the analyst.

• The method proposed by Aziz et al. supports only one type of incre-
ment: adding a new requirement/expectation expressed using one of
the three Achieve goal type will give a new trigger-event in the Event-
B machine. If one requirement/expectation is modi�ed in the KAOS
model, a corresponding trigger-event will be regenerated and will over-
ride the old one in the Event-B model. In this case too, if the Event-B
model is modi�ed, the analyst will have to manually modify the KAOS
model.

• As for Aziz's et al. method, De Landtsheer's method supports only
one type of increment: a new requirement/expectation with a formal
de�nition expressed using past time operators will give a new set of
Event-B elements. Here too, modifying the formal de�nition of one
requirement/expectation in the KAOS model will need a replay of the
method to get a new set of Event-B elements that will override the
previous set associated to the formal de�nition. If the Event-B model
is modi�ed, it will be very hard to re�ect this modi�cation in the KAOS
model.

• Our proposed method supports incremental development of require-
ments and re�ection of this development in the Event-B model thanks
to the traceability mechanism (see section 4.7 on page 70). This avoid
complete regeneration of the Event-B model each time an element of
the KAOS model is modi�ed. Altough this path has not been explored
further, it is also theoretically possible to re�ect in the KAOS model
changes of the Event-B model. Traceability rules will ensure that the
two models are consistent one with the other and traceability links will
permit to the analyst to see in the KAOS model which elements are
impacted by the changes of the Event-B model.

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 100

5.4.3 Scalability

As Event-B models are for now quite monolithic (see sub-section 3.2.4 on
page 41), it is interesting here to see how the di�erent approaches manage the
complexity and the size of the automatically or semi-automatically generated
the Event-B model.

• In Matoussi's method, everything coming from the KAOS model is
put into two Event-B machines, one for each phase of the method.
The approach is semi-automatic and the increasing size of the Event-B
machine is managed through a re�nement strategy. In the two phases
of the method, an initial machine will be re�ned and complexity will
be added to those machine at each re�nement step.

• In the method proposed by Aziz et al. all the requirements/expecta-
tions expressed using one of the three Achieve goal type will be trans-
lated automatically in trigger-events. All those events will be put in
the same machine. After applying this method, the Event-B model
will thus contain one machine with all the trigger-events coming from
the requirements/expectations.

• In De Landtsheer's method, all the requirements/expectations are au-
tomatically translated into sets of Event-B elements. All those ele-
ments are placed in the same machine that will be the only machine
present in the Event-B model after application of the method.

• In our proposed method the transformation is, in general, semi-automatic.
To manage the size of the di�erent machines present in the Event-
B model, we have chosen to apply an initial decomposition in place
of having decompositions latter in the Event-B speci�cation process.
This initial decomposition has the advantage to be "motivated by re-
quirements", meaning that the agent machines resulting of the decom-
position are linked to the KAOS agents of the KAOS model. Agent
machines are thus more than just machines in the Event-B sense of
the term, they specify the behaviour of a KAOS agent de�ned in the
requirements.

5.4.4 Restrictions

All the methods described in this chapter are limited to a subset of KAOS
elements.

• Matoussi's approach is for now limited to KAOS models using only
one goal type, the unbounded Achieve goals corresponding to the for-
mal de�nition pattern A ⇒ ♦B, and construct exclusively with two
re�nement patterns, the milestone re�nement and the or-re�nement.

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 101

• The method proposed by Aziz et al. uses the notion of trigger-event,
which is not standard in Event-B, to translate the three more used
goal patterns, the immediate Achieve, the unbounded Achieve and the
bounded Achieve into triggered events. Although more patterns can
be discovered, the notion of trigger-event hide a complex mechanism
of event scheduling that may quickly introduce misinterpretation er-
rors. Indeed, introducing an event with a trigger condition means that
restrictions are introduced on all other events.

• De Landtsheer's procedure was created to translate linear temporal
logic into a Polpa policy using Polpa policy language, a language to
express acceptable sequences of events. As underlined by De Landt-
sheer the notions of events, conditions and actions present in Polpa are
similar to those present in Event-B with a syntactic translation. The
limitation is that the procedure works exclusively with the since (A S
B), the always been (�A) and the once (�A) temporal operators. But
since this procedure takes only past linear temporal logic formula on
input, it may only be used to translate a requirement's/expectation's
formal de�nition into Event-B, without taking care of the rest of the
KAOS model.

• In our proposed method, delegating the transformation of the require-
ments/expectations into Event-B speci�cations to the analyst allows
to use unrestricted KAOS constructions. Of course, this means that
step 3 is, for now, not automatic in our approach and that the analyst
will have to manually derive Event-B from KAOS requirements/expec-
tations. This may seem problematic since the misinterpretation error
risk is reintroduced here, but in practice the requirement/expectations
are detailed enough to avoid such errors. Moreover, in practice the
formal linear temporal logic de�nition is not always established for the
requirements/expectations in KAOS models. Usually, the goal type,
which corresponds to a linear temporal logic formula pattern, and the
name of the requirement/expectation is enough to understand what
the goal means, e.g. Achieve[Pump Started WHEN HighWater EXPT
if Gas Detected] will formally mean (HighWater∧¬GasDetected)⇒
♦PumpStarted.

Even if our method is not fully automatic in its description, it is possible
to use at step 3 every method that transforms requirement/expectation into
Event-B. If we use for instance the methods proposed by De Landtsheer or
Aziz et al. at step 3, our method becomes then fully automatic, but will have
to be restricted to the KAOS elements permitted by those method. It is also
possible to combine those methods, transforming past linear temporal logic
formula with De Landtsheer's method and the three kinds of Achieve goals
with Aziz's et al. method.

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 102

5.4.5 Summary

Table 5.5 shows a brief recap of the comparison of our approach presented
in chapter 4 and the three approaches presented in this chapter. Some of
the points have been split in the table to make it more readable: the model
evolution sub-section covers the monolithic1 and increment supports criteria
of the table; the scalability sub-section covers the scalability and automatic
criteria of the table. A more detailed discussion will be presented in the
conclusion chapter of this master thesis.

1By monolithic, we mean that the method does not describe mechanisms to update
one model if the other is modi�ed

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 103

T
ab
le
5.
5:

C
om

p
ar
is
on

of
th
e
d
i�
er
en
t
ap
p
ro
ac
h
es

C
ri
te
ri
o
n

M
a
to
u
ss
i

A
zi
z

e
t
a
l.

D
e
L
a
n
d
ts
h
ee
r

P
ro
p
o
se
d
a
p
p
ro
a
ch

T
ra
ce
a
b
il
it
y

P
os
si
b
le
fo
r
ev
en
ts

P
os
si
b
le

fo
r

tr
ig
ge
r-

ev
en
ts

P
os
si
b
le
fo
r
se
ts
of
E
ve
n
t-

B
el
em

en
ts

M
an
d
at
or
y

to
en
su
re

co
n
si
st
en
cy

b
et
w
ee
n

m
o
d
el
s

M
o
n
o
li
th
ic

Y
es
,

re
-g
en
er
at
io
n

n
ee
d
ed

Y
es
,

re
-g
en
er
at
io
n

n
ee
d
ed

Y
es
,

re
-g
en
er
at
io
n

n
ee
d
ed

N
o,

tr
ac
ea
b
il
it
y

m
ec
h
a-

n
is
m
s
av
oi
d
co
m
p
le
te

re
-

ge
n
er
at
io
n

S
u
p
p
o
rt

in
cr
em

en
t

U
n
id
ir
ec
ti
on
al
,
if

in
th
e

�
rs
t
p
h
as
e

U
n
id
ir
ec
ti
on
al
,

a
n
ew

go
al

w
il
l

gi
ve

a
n
ew

tr
ig
ge
r-
ev
en
t

U
n
id
ir
ec
ti
on
al
,
a
n
ew

fo
r-

m
al

d
e�
n
it
io
n

w
il
l
gi
ve

a
n
ew

E
ve
n
t-
B

el
em

en
ts

se
t

B
id
ir
ec
ti
on
al
,

m
o
d
i�
ca
-

ti
on
s
in

on
e
m
o
d
el

m
ay

b
e
re
�
ec
te
d
in

th
e
ot
h
er

S
ca
la
b
il
it
y

T
w
o

m
ac
h
in
es
,

co
n
-

st
ru
ct
ed

b
y
re
�
n
em

en
t

O
n
e
m
ac
h
in
e

O
n
e
m
ac
h
in
e

In
it
ia
l
d
ec
om

p
os
it
io
n

A
u
to
m
a
ti
c

S
em

i-
au
to
m
at
ic

A
u
to
m
at
ic

A
u
to
m
at
ic

S
em

i-
au
to
m
at
ic

R
es
tr
ic
ti
o
n
s
R
es
tr
ic
te
d
to

Im
m
ed
ia
te

A
ch
ie
ve

go
al
s
an
d
m
il
e-

st
o
n
e
/o
r
re
�
n
em

en
t
p
at
-

te
rn
s

R
es
tr
ic
te
d

to
th
re
e

A
ch
ie
ve

go
al
ty
p
es

G
oa
l
m
u
st

b
e

fo
rm

al
ly

d
e�
n
ed

w
it
h

te
m
p
or
al

p
as
t
op
er
at
or
s

N
o
re
st
ri
ct
io
n
on

in
p
u
t,

b
u
t
w
il
l
n
ee
d

th
e
an
a-

ly
st
's
sk
il
ls

Chapter 6

Conclusion

In this master thesis, we have worked on the key problem of bridging the gap
between requirements and formal speci�cation with a strong model driven
approach. We have explored this problem in the context of the KAOS goal
oriented requirement engineering approach and Event-B, both methods being
industrially used. After having de�ned what we wanted to achieve: a �exible
method, automatic when possible, that support incremental and iterative
development, with respect to the KAOS and Event-B semantics and a �ne
grained traceability. And reviewed existing methods against those criteria,
we proposed our own approach, prototyped it and experimented with it.

Our proposed method is based on the idea of re�ning the KAOS
agent's agent behaviour, produced as outcome of a goal-oriented analysis. As
agent's behaviours are expressed in KAOS as a set of control and monitor
links between the agents and the data declared in the object model. An
initial machine and an initial context are created in Event-B to represent
the KAOS object model in Event-B. Each KAOS agent will be associated
with an agent machine, and the initial machine will be decomposed into
those agent machines. A KAOS agent that controls or monitors a data will
have in its agent machine the variable, invariant and update event derived
from this data declaration. If the agent monitors it, the update will be
marked as external, i.e. the agent will not be responsible of the concrete
implementation of this event and will thus not re�ne it in its sub-machine,
but it will be noti�ed if the data change in time. If the agent controls
the data, the update event will be marked as internal, i.e. the agent will
be responsible of the concrete implementation of this event and will re�ne
it in its sub-machine. Agent machines are then re�ned, and so are their
internal events to make correspond the update of the data to the behaviours
declared in the requirements/expectations placed under the responsibility of
the KAOS agent. This last step is not automatic and will rely on the skills
of the analyst that performs the switch from KAOS to Event-B.

The approach proposed in this master thesis is semi-formal, we rather

104

CHAPTER 6. CONCLUSION 105

preferred here to focus on a �exible way to manage both KAOS require-
ments and Event-B speci�cations than to have a fully automated way to
derive the second from the �rst. One of the reason of this choice was that
even if KAOS includes a formal layer, permitting to de�ne requirements and
expectations using linear temporal logic, this formal de�nition is actually
rarely done in practice. By linking the two models through traceability
links and by constraining those links with a set of traceability rules, chang-
ing one model and keeping the other accurate is more easy. Although, up-
dating the Event-B model when the requirements change is possible with the
three techniques presented in chapter 5 (by regenerating the Event-B model
most of the time), going on the other way is not possible. This has not been
discussed further here, but it is left as an open path for future works. Such
a need may be motivated in an incremental development for instance where
requirements and speci�cations are elaborated step by step.

Another issue is scalability. As Event-B model may be very huge, even
if there are techniques currently under research to decompose an Event-B
model, they don't give a motivated reason or criteria to decompose a model
in a systematic way. In contrast to the methods presented in chapter 5,
where all is put in one or two machines, we propose with our approach to
have a "requirement motivated" initial decomposition of the model. So each
part, i.e. each agent machine, may be re�ned separately and in parallel.

The semantic switch between the KAOS open-world, where all is pos-
sible except what has been explicitly forbidden, to the Event-B closed-world,
where only what has been declared is permitted, has not been discussed here.
However, the idea of decomposing the Event-B initial machine into several
agent machines, where each agent will give a software component running in
parallel with the other components does not seem to contradict the KAOS
semantic of a system, de�ned as the parallelization of the agent's behaviours.
An open question is the signi�cation of a re-composed Event-B machine, as
described in subsection 4.5 on page 64, with regards to the KAOS semantic?

A �rst prototype has been elaborated with the purpose to prove feasi-
bility and automation of the proposed approach. This prototype will need
to be completed, as discussed in section 4.8 on page 74, in particular the
veri�cation of the traceability rules and the implementation of the link to
the RODIN Event-B tool.

Finally, even if it could be already partially achieved by using the pro-
cedure described in section 5.3 on page 89, the method itself will need to
be improved, by establishing a formal derivation of the KAOS requirements
and expectations.

Appendix A

Mine pump example

This annex present the complete machines of the mine pump example de-
scribed in chapter 4.

Listing A.1: Mine pump example: Initial context

CONTEXT MineContext
SETS

ONOFF
LEVEL
MINE_SET

CONSTANTS
ON
OFF
LOW
MEDIUM
HIGH
M

AXIOMS
axm1 : partition(ONOFF , {ON }, {OFF})
axm2 : partition(LEVEL, {LOW }, {MEDIUM }, {HIGH })
axm3 : partition(MINE_SET , {M })

END

Listing A.2: Mine pump example: Initial machine

MACHINE MinePump
SEES MineContext
VARIABLES

MINE
pump
bell
methane
waterLevel

INVARIANTS
inv1 : MINE ∈ P(MINE_SET)
inv2 : pump ∈ MINE →ONOFF
inv3 : bell ∈ MINE → BOOL

106

APPENDIX A. MINE PUMP EXAMPLE 107

inv4 : methane ∈ MINE → BOOL
inv5 : waterLevel ∈ MINE → LEVEL
inv6 : dom(pump) = MINE
inv7 : dom(bell) = MINE
inv8 : dom(methane) = MINE
inv9 : dom(waterLevel) = MINE
inv10 : ∀m ·(m ∈ MINE)⇒ (pump(m) = ON ∨ pump(m) = OFF)
inv11 : MINE ⊆ MINE_SET
inv12 : ∀m ·(m ∈ MINE)⇒

(waterLevel(m) = LOW ∨ waterLevel(m) =
MEDIUM

∨ waterLevel(m) = HIGH)
EVENTS
Initialisation

begin
act1 : MINE := ∅
act2 : pump := ∅
act3 : bell := ∅
act4 : methane := ∅
act5 : waterLevel := ∅

end
Event updatePump =̂

any
m

where
grd1 : m ∈ MINE
grd2 : pump(m) = ON ∨ pump(m) = OFF

then
act1 : pump : |(pump(m) = OFF ∧ pump′ = (pump C− {m 7→

ON }))
∨ (pump(m) = ON ∧ pump′ = (pump C− {m 7→

OFF}))
end

Event updateBell =̂
any

m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : bell(m) := status

end
Event updateMethane =̂

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : methane(m) := status

end
Event updateWaterLevel =̂

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = LOW ∨

waterLevel(m) = MEDIUM ∨
waterLevel(m) = HIGH

then

APPENDIX A. MINE PUMP EXAMPLE 108

act1 : waterLevel : |
(waterLevel(m) = HIGH ∧ waterLevel ′ =

(waterLevel C− {m 7→ MEDIUM }))
∨ (waterLevel(m) = MEDIUM ∧ waterLevel ′ =

(waterLevel C− {m 7→ LOW }))
∨ (waterLevel(m) = MEDIUM ∧ waterLevel ′ =

(waterLevel C− {m 7→ HIGH }))
∨ (waterLevel(m) = LOW ∧ waterLevel ′ =

(waterLevel C− {m 7→ MEDIUM }))
end

Event addMine =̂
when

grd1 : MINE = ∅
then

act1 : MINE := {M }
act2 : pump(M) := OFF
act3 : bell(M) := FALSE
act4 : methane(M) := FALSE
act5 : waterLevel(M) := LOW

end
END

Listing A.3: Mine pump example: PumpController machine

MACHINE PumpController
SEES MineContext
VARIABLES

methane Shared variable, DO NOT REFINE
waterLevel Shared variable, DO NOT REFINE
pump Shared variable, DO NOT REFINE
MINE Shared variable, DO NOT REFINE

INVARIANTS
typing_methane : methane ∈ P(MINE_SET × BOOL)
typing_waterLevel : waterLevel ∈ P(MINE_SET × LEVEL)
typing_pump : pump ∈ P(MINE_SET ×ONOFF)
typing_MINE : MINE ∈ P(MINE_SET)
MinePump_inv1 : MINE ∈ P(MINE_SET)
MinePump_inv2 : pump ∈ MINE →ONOFF
MinePump_inv4 : methane ∈ MINE → BOOL
MinePump_inv5 : waterLevel ∈ MINE → LEVEL
MinePump_inv6 : dom(pump) = MINE
MinePump_inv8 : dom(methane) = MINE
MinePump_inv9 : dom(waterLevel) = MINE

EVENTS
Initialisation

begin
act1 : MINE := ∅
act2 : pump := ∅
act4 : methane := ∅
act5 : waterLevel := ∅

end
Event updatePump =̂

APPENDIX A. MINE PUMP EXAMPLE 109

any
m

where
grd1 : m ∈ MINE

then
act1 : pump : |

((methane(m) = FALSE ∧ waterLevel(m) =
HIGH)⇒ pump′(m) = ON)

∧ (methane(m) = TRUE ⇒ pump′(m) = OFF)
∧ ((methane(m) = FALSE ∧ waterLevel(m) =

LOW)⇒ pump′(m) = OFF)
end

Event updateMethane =̂
External event, DO NOT REFINE
any

m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : methane(m) := status

end
Event updateWaterLevel =̂

External event, DO NOT REFINE
any

m
where

grd1 : m ∈ MINE
then

act1 : waterLevel : |
(waterLevel(m) = HIGH ⇒ waterLevel ′(m) =

MEDIUM)
∧ (waterLevel(m) = MEDIUM ⇒ (waterLevel ′(m) =

LOW ∨ waterLevel ′(m) = HIGH))
∧ (waterLevel(m) = LOW ⇒ waterLevel ′(m) =

MEDIUM)
end

Event addMine =̂
External event, DO NOT REFINE
when

grd1 : MINE = ∅
then

act1 : MINE := {M }
act2 : pump(M) := OFF
act4 : methane(M) := FALSE
act5 : waterLevel(M) := LOW

end
END

Listing A.4: Mine pump example: WaterLevelSensor machine

MACHINE WaterLevelSensor
SEES MineContext
VARIABLES

waterLevel Shared variable, DO NOT REFINE
MINE Shared variable, DO NOT REFINE

INVARIANTS
typing_waterLevel : waterLevel ∈ P(MINE_SET × LEVEL)

APPENDIX A. MINE PUMP EXAMPLE 110

typing_MINE : MINE ∈ P(MINE_SET)
MinePump_inv1 : MINE ∈ P(MINE_SET)
MinePump_inv5 : waterLevel ∈ MINE → LEVEL
MinePump_inv9 : dom(waterLevel) = MINE

EVENTS
Initialisation

begin
act1 : MINE := ∅
act5 : waterLevel := ∅

end
Event updateWaterLevel =̂

any
m

where
grd1 : m ∈ MINE

then
act1 : waterLevel : |

(waterLevel(m) = HIGH ⇒ waterLevel ′(m) =
MEDIUM)

∧ (waterLevel(m) = MEDIUM ⇒ (waterLevel ′(m) =
LOW ∨ waterLevel ′(m) = HIGH))

∧ (waterLevel(m) = LOW ⇒ waterLevel ′(m) =
MEDIUM)

end
Event addMine =̂

External event, DO NOT REFINE
when

grd1 : MINE = ∅
then

act1 : MINE := {M }
act5 : waterLevel(M) := LOW

end
END

Listing A.5: Mine pump example: AlarmController machine

MACHINE AlarmController
SEES MineContext
VARIABLES

bell Shared variable, DO NOT REFINE
methane Shared variable, DO NOT REFINE
MINE Shared variable, DO NOT REFINE

INVARIANTS
typing_bell : bell ∈ P(MINE_SET × BOOL)
typing_methane : methane ∈ P(MINE_SET × BOOL)
typing_MINE : MINE ∈ P(MINE_SET)
MinePump_inv1 : MINE ∈ P(MINE_SET)
MinePump_inv3 : bell ∈ MINE → BOOL
MinePump_inv4 : methane ∈ MINE → BOOL
MinePump_inv7 : dom(bell) = MINE
MinePump_inv8 : dom(methane) = MINE

EVENTS
Initialisation

APPENDIX A. MINE PUMP EXAMPLE 111

begin
act1 : MINE := ∅
act3 : bell := ∅
act4 : methane := ∅

end
Event updateBell =̂

any
m

where
grd1 : m ∈ MINE

then
act1 : bell : |methane(m) = TRUE ⇒ bell ′(m) = TRUE

end
Event updateMethane =̂

External event, DO NOT REFINE
any

m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : methane(m) := status

end
Event addMine =̂

External event, DO NOT REFINE
when

grd1 : MINE = ∅
then

act1 : MINE := {M }
act3 : bell(M) := FALSE
act4 : methane(M) := FALSE

end
END

Listing A.6: Mine pump example: MethaneSensor machine

MACHINE MethaneSensor
SEES MineContext
VARIABLES

methane Shared variable, DO NOT REFINE
MINE Shared variable, DO NOT REFINE

INVARIANTS
typing_methane : methane ∈ P(MINE_SET × BOOL)
typing_MINE : MINE ∈ P(MINE_SET)
MinePump_inv1 : MINE ∈ P(MINE_SET)
MinePump_inv4 : methane ∈ MINE → BOOL
MinePump_inv8 : dom(methane) = MINE

EVENTS
Initialisation

begin
act1 : MINE := ∅
act4 : methane := ∅

end
Event updateMethane =̂

any
m
status

where
grd1 : m ∈ MINE

APPENDIX A. MINE PUMP EXAMPLE 112

grd2 : status ∈ BOOL
then

act1 : methane(m) := status
end

Event addMine =̂
External event, DO NOT REFINE
when

grd1 : MINE = ∅
then

act1 : MINE := {M }
act4 : methane(M) := FALSE

end
END

Listing A.7: Mine pump example: PumpController_re�nement machine

MACHINE PumpController_re�nement
REFINES PumpController
SEES MineContext
VARIABLES

methane Shared variable, DO NOT REFINE
waterLevel Shared variable, DO NOT REFINE
pump Shared variable, DO NOT REFINE
MINE Shared variable, DO NOT REFINE

EVENTS
Initialisation

extended
begin

act1 : MINE := ∅
act2 : pump := ∅
act4 : methane := ∅
act5 : waterLevel := ∅

end
Event high_water_detected =̂

Internal Event
re�nes updatePump

any
m

where
grd2 : m ∈ MINE
grd1 : waterLevel(m) = HIGH
grd3 : methane(m) = FALSE
grd4 : pump(m) = OFF

then
act1 : pump(m) := ON

end
Event low_water_detected =̂

Internal Event
re�nes updatePump

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = LOW
grd3 : pump(m) = ON

then
act1 : pump(m) := OFF

end

APPENDIX A. MINE PUMP EXAMPLE 113

Event methane_detected =̂
Internal Event

re�nes updatePump
any

m
where

grd1 : m ∈ MINE
grd3 : pump(m) = ON
grd4 : methane(m) = TRUE

then
act1 : pump(m) := OFF

end
Event updateMethane =̂

External event, DO NOT REFINE
extends updateMethane

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : methane(m) := status

end
Event updateWaterLevel =̂

External event, DO NOT REFINE
extends updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = LOW ∨

waterLevel(m) = MEDIUM ∨
waterLevel(m) = HIGH

then
act1 : waterLevel : |

(waterLevel(m) = HIGH ∧ waterLevel′ =
(waterLevelC− {m 7→ MEDIUM}))

∨ (waterLevel(m) = MEDIUM ∧ waterLevel′ =
(waterLevelC− {m 7→ LOW}))

∨ (waterLevel(m) = MEDIUM ∧ waterLevel′ =
(waterLevelC− {m 7→ HIGH}))

∨ (waterLevel(m) = LOW ∧ waterLevel′ =
(waterLevelC− {m 7→ MEDIUM}))

end
Event addMine =̂

External event, DO NOT REFINE
extends addMine

when
grd1 : MINE = ∅

then
act1 : MINE := {M}
act2 : pump(M) := OFF
act4 : methane(M) := FALSE
act5 : waterLevel(M) := LOW

end
END

Listing A.8: Mine pump example: WaterLevelSensor_re�nement machine

APPENDIX A. MINE PUMP EXAMPLE 114

MACHINE WaterLevelSensor_re�nement
REFINES WaterLevelSensor
SEES MineContext
VARIABLES

waterLevel Shared variable, DO NOT REFINE
MINE Shared variable, DO NOT REFINE

EVENTS
Initialisation

extended
begin

act1 : MINE := ∅
act5 : waterLevel := ∅

end
Event high_to_medium =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = HIGH

then
act1 : waterLevel(m) := MEDIUM

end
Event medium_to_low =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = MEDIUM

then
act1 : waterLevel(m) := LOW

end
Event low_to_medium =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = LOW

then
act1 : waterLevel(m) := MEDIUM

end
Event medium_to_high =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = MEDIUM

then
act1 : waterLevel(m) := HIGH

end
Event addMine =̂

External event, DO NOT REFINE
extends addMine

when
grd1 : MINE = ∅

then
act1 : MINE := {M}

APPENDIX A. MINE PUMP EXAMPLE 115

act5 : waterLevel(M) := LOW
end

END

Listing A.9: Mine pump example: AlarmController_re�nement machine

MACHINE AlarmConrtoller_re�nement
REFINES AlarmController
SEES MineContext
VARIABLES

bell Shared variable, DO NOT REFINE
methane Shared variable, DO NOT REFINE
MINE Shared variable, DO NOT REFINE

EVENTS
Initialisation

extended
begin

act1 : MINE := ∅
act3 : bell := ∅
act4 : methane := ∅

end
Event trigger_alarm =̂

Internal Event
re�nes updateBell

any
m

where
grd1 : m ∈ MINE
grd2 : methane(m) = TRUE
grd3 : bell(m) = FALSE

with
status : status = TRUE

then
act1 : bell(m) := TRUE

end
Event updateMethane =̂

External event, DO NOT REFINE
extends updateMethane

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : methane(m) := status

end
Event addMine =̂

External event, DO NOT REFINE
extends addMine

when
grd1 : MINE = ∅

then
act1 : MINE := {M}
act3 : bell(M) := FALSE
act4 : methane(M) := FALSE

end
END

APPENDIX A. MINE PUMP EXAMPLE 116

Listing A.10: Mine pump example: MethaneSensor_re�nement machine

MACHINE MethaneSensor_re�nement
REFINES MethaneSensor
SEES MineContext
VARIABLES

methane Shared variable, DO NOT REFINE
MINE Shared variable, DO NOT REFINE

EVENTS
Initialisation

extended
begin

act1 : MINE := ∅
act4 : methane := ∅

end
Event methane_leak =̂

Internal Event
re�nes updateMethane

any
m

where
grd1 : m ∈ MINE

with
status : status = TRUE

then
act1 : methane(m) := TRUE

end
Event addMine =̂

External event, DO NOT REFINE
extends addMine

when
grd1 : MINE = ∅

then
act1 : MINE := {M}
act4 : methane(M) := FALSE

end
END

Listing A.11: Mine pump example: re-composed machine

MACHINE MinePumpReuni�cation
REFINES MinePump
SEES MineContext
VARIABLES

MINE
pump
bell
methane
waterLevel

EVENTS
Initialisation

extended
begin

act1 : MINE := ∅
act2 : pump := ∅
act3 : bell := ∅
act4 : methane := ∅
act5 : waterLevel := ∅

end

APPENDIX A. MINE PUMP EXAMPLE 117

Event addMine =̂
extends addMine

when
grd1 : MINE = ∅

then
act1 : MINE := {M}
act2 : pump(M) := OFF
act3 : bell(M) := FALSE
act4 : methane(M) := FALSE
act5 : waterLevel(M) := LOW

end
Event trigger_alarm =̂

Internal Event
re�nes updateBell

any
m

where
grd1 : m ∈ MINE
grd2 : methane(m) = TRUE
grd3 : bell(m) = FALSE

with
status : status = TRUE

then
act1 : bell(m) := TRUE

end
Event methane_leak =̂

Internal Event
re�nes updateMethane

any
m

where
grd1 : m ∈ MINE

with
status : status = TRUE

then
act1 : methane(m) := TRUE

end
Event high_water_detected =̂

Internal Event
re�nes updatePump

any
m

where
grd2 : m ∈ MINE
grd1 : waterLevel(m) = HIGH
grd3 : methane(m) = FALSE
grd4 : pump(m) = OFF

then
act1 : pump(m) := ON

end
Event low_water_detected =̂

Internal Event
re�nes updatePump

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = LOW
grd3 : pump(m) = ON

then
act1 : pump(m) := OFF

end
Event methane_detected =̂

Internal Event

APPENDIX A. MINE PUMP EXAMPLE 118

re�nes updatePump
any

m
where

grd1 : m ∈ MINE
grd3 : pump(m) = ON
grd4 : methane(m) = TRUE

then
act1 : pump(m) := OFF

end
Event high_to_medium =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = HIGH

then
act1 : waterLevel(m) := MEDIUM

end
Event medium_to_low =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = MEDIUM

then
act1 : waterLevel(m) := LOW

end
Event low_to_medium =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = LOW

then
act1 : waterLevel(m) := MEDIUM

end
Event medium_to_high =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = MEDIUM

then
act1 : waterLevel(m) := HIGH

end
END

Glossary

Agent: Active objects (=processors) performing operations to achieve goals.
The software-to-be is an agent. The agents can also come from the
environment of the software-to-be. Human agents belong to the envi-
ronment.

Agent machine: In chapter 4, an agent machine is a machine decompos-
ing the initial machine and liked to a KAOS agent.

Association: Object the de�nition of which relies on other objects linked
by the association.

Con�ict: A con�ict between goals exists if, under some boundary condi-
tion, the goals cannot be realised all together.

Context: Static part of an Event-B model, used to parametrize the model.

Domain property: Descriptive assertion on objects in the environment
of the software-to-be. Domain invariant or hypothesis. A domain
invariant is a property that is true in each state of a given domain
object, for instance a physical law. A hypothesis is a property on a
domain object supposed to be true.

Entity: Autonomous object (the de�nition of which does not rely on other
objects).

Environment: Part of the universe able to interact with the software-to-
be.

Event: Instantaneous object (alive only in one state) triggering operations
realised by agents.

Event-B: Formal method for system speci�cation. It uses set theory as a
modelling notation and presents systems at di�erent abstraction levels
using the notion of re�nement. Mathematical proof are operated to
verify consistency between re�nement levels.

Expectation: Goat assigned to an agent in the environment.

119

GLOSSARY 120

External event: An external event in a State-Based decomposition is an
event declared in a machine, to keep the value of a shared variable
synchronized with the other machine.

Goal: Prescriptive assertion standing for an objective to meet by means
of cooperating agents; prescribes a set of desired behaviours. Require-
ments and expectations are particular cases of goals.

Input: Relationship showing that an object is used by an operation.

Internal event: An internal event in a State-Based decomposition is an
event declared in a machine, to update the value of a shared variable.

IsA: Relationship between an object and a generalisation of this object.

KAOS: Goal-oriented methodology used in a software requirements engi-
neering process. KAOS stand for Knowledge Acquisition in autOmated
speci�cation or Keep All Objects Satis�ed.

Machine: Active part of an Event-B model that may contains variables
eventually modi�ed by events with respect to the declared invariants.

Model: Abstract representation of a composite system. An Objectiver
model represents a composite system by means of concepts having
several types, mainly objects, desired or not desired properties (goals,
obstacles), and behaviours (operations).

Object: Focus of interest in the composite system being modelled, the
instances of which can be identi�ed separately and the states of which
may evolve. Agents, events and entities are particular case of objects.

Obstacle: Condition (other than a goal) the satisfaction of which may
prevent some goals from being achieved; de�nes a set of undesired
behaviours.

Operation: Speci�es state transitions of objects which are input and/or
output of operations. Operations are performed by agents.

Operationalization: Relationship linking a requirement to operations. Is
valid when each execution of operation (possibly constrained to that
intent) ensures the requirement to be ful�lled. Sets a connection be-
tween desired properties (goals) and behaviours (operations)

Output: Relationship showing that an object is produced by an operation
or modi�ed by it (if the object is also an inputof it).

Re�nement: Relationship linking a goal to other goals named sub-goals.
Each sub-goal contributes to the satisfaction of the re�ned goal. The

GLOSSARY 121

conjunction of all sub-goals must be a su�cient condition to guarantee
the re�ned goal.

Requirement: In goal oriented requirements engineering, it is a goal as-
signed to an agent of the software-to-be.

Responsibility: Relationship between an agent and a requirement/expec-
tation . Is valid when the responsibility for achieving the requiremen-
t/expectation is assigned to an agent.

Shared variable: A shared variable in a State-Based decomposition is a
variable that will be distributed between di�erent machines. It will
be updated by an internal event in one machine that is part of the
decomposition and will be kept synchronized by external events in all
the other machines.

Stakeholder: A person or an organisation concern by a project, that may
be consulted at a moment of this project.

Update event: In chapter 4, an update event is an event representing the
update of an element coming from the KAOS object model.

List of Figures

2.1 Why, what and who dimensions [van Lamsweerde, 2009] . . . 5
2.2 General view of a machine and its environment [van Lam-

sweerde, 2009] . 6
2.3 Goal type taxonomy [van Lamsweerde, 2009] 9
2.4 Statement typology with goals [van Lamsweerde, 2009] 10
2.5 Mine Pump and Pump Controller system [Letier, 2001] 11
2.6 Abstract Milestone-driven re�nement pattern 12
2.7 Mine pump example's goal re�nement 13
2.8 A KAOS AND/OR graph example 13
2.9 KAOS main concepts [Respect-IT, 2009] 15
2.10 Agent diagram: pump controller 22
2.11 Context diagram: mine pump 22
2.12 Starting the pump operation model 23
2.13 Objectiver print screen of the mine pump example [Respect-

IT, 2009] . 27

3.1 Machine and context structures 32
3.2 Machines and contexts links 33
3.3 Context structure . 34
3.4 Machine structure . 35
3.5 Event structure . 36
3.6 Event-Based decomposition [Pascal and Silva, 2009] 42
3.7 Decomposition of a general machine into two sub-machines . . 43
3.8 RODIN editor: print screen of the mine pump example [RODIN,

2010] . 44
3.9 RODIN proof obligations tool: print screen of the mine pump

example [RODIN, 2010] . 45

4.1 Proposed method overview . 48
4.2 Final result of the proposed method 50
4.3 Mine pump goal model . 51
4.4 Mine pump responsibility model 52

122

LIST OF FIGURES 123

4.5 N-Ary Association are seen as an Entity with N directed As-
sociations . 54

4.6 Decomposition of the initial machine 60
4.7 Re-composition of the initial machine 64
4.8 Mine pump example: re-composition of the initial machine . . 65
4.9 Moving responsibility link in Event-B 74
4.10 ATL transformation structure [Jouault et al., 2008] 75
4.11 Main concepts of the Ecore model [Budinsky et al., 2003] . . 77

5.1 Milestone-driven re�nement and Or-re�nement 80
5.2 Expressing KAOS with Event-B: overview [Gervais et al., 2009] 81
5.3 Data �ow diagram of the translation process [Landtsheer and

Ponsard, 2010] . 92

List of Tables

2.1 Future time operators . 18
2.2 Past time operators . 19

4.1 Transformation rules for KAOS Attributes 53
4.2 Transformation rules for KAOS directed Associations [Snook

and Butler, 2006] . 57

5.1 Patterns for Operationalising Requirements into Event-B [Aziz
et al., 2009] . 89

5.2 Step1: translation rules . 92
5.3 Step2: generation rules . 93
5.4 Syntactic changes from Polpa to Event-B [Landtsheer, 2007a] 96
5.5 Comparison of the di�erent approaches 103

124

Listings

3.1 Mine pump context . 34
3.2 Mine pump machine . 36
3.3 Mine pump machine . 38
4.1 Mine pump example: Initial context 55
4.2 Mine pump example: Initial machine 56
4.3 Mine pump example: PumpController_re�nement machine . 62
4.4 Part of the KAOS to Event-B ATL transformation 76
5.1 KAOS expressed in Event-B: initial machine 81
5.2 KAOS expressed in Event-B: milestone re�nement machine . 82
5.3 Operationalization Event-B: initial machine 83
5.4 Operationalization Event-B: initial machine 84
5.5 Event-B machine derived from Polpa policy 96
A.1 Mine pump example: Initial context 106
A.2 Mine pump example: Initial machine 106
A.3 Mine pump example: PumpController machine 108
A.4 Mine pump example: WaterLevelSensor machine 109
A.5 Mine pump example: AlarmController machine 110
A.6 Mine pump example: MethaneSensor machine 111
A.7 Mine pump example: PumpController_re�nement machine . 112
A.8 Mine pump example: WaterLevelSensor_re�nement machine 113
A.9 Mine pump example: AlarmController_re�nement machine . 115
A.10 Mine pump example: MethaneSensor_re�nement machine . . 116
A.11 Mine pump example: re-composed machine 116

125

Bibliography

[Abrial, 1996] Abrial, J.-R. (1996). The B-book: assigning programs to mean-
ings. Cambridge Univ Press.

[Abrial, 2009] Abrial, J.-R. (2009). Event model decomposition. http://

deploy-eprints.ecs.soton.ac.uk/109/.

[Abrial, 2010] Abrial, J.-R. (2010). Modeling in Event-B: System and Soft-
ware Engineering. Cambridge University Press.

[Aziz et al., 2009] Aziz, B., Arenas, A., Bicarregui, J., Ponsard, C., and
Massonet, P. (2009). From goal-oriented requirements to event-b speci�-
cations. In First Nasa Formal Method Symposium, pages 96�105.

[Aziz et al., 2008] Aziz, B., Arenas, A., Martinelli, F., Matteucci, I., and
Mori, P. (2008). Controlling usage in business process work�ows through
�ne-grained security policies. In TrustBus, pages 100�117.

[Ball, 2008] Ball, E. (2008). An Incremental Process for the Development of
Multi-agent Systems in Event-B. PhD thesis, University of Southampton.
http://eprints.ecs.soton.ac.uk/16575/.

[Bicarregui et al., 2008] Bicarregui, J., Arenas, A., Aziz, B., Massonet, P.,
and Ponsard, C. (2008). Towards modelling obligations in event-b. In
ABZ, pages 181�194.

[Bidoit and Mosses, 2004] Bidoit, M. and Mosses, P. D. (2004). Casl
User Manual - Introduction to Using the Common Algebraic Speci�-
cation Language, volume 2900 of Lecture Notes in Computer Science.
Springer. http://www.informatik.uni-bremen.de/cofi/wiki/index.

php/CASL_user_manual.

[Bresciani et al., 2004] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia,
F., and Mylopulos, J. (2004). Tropos: An agent-oriented software de-
velopment methodology. Journal of Autonomous Agents and Multi-Agent
Systems, 8:203�236.

[Budinsky et al., 2003] Budinsky, F., Steinberg, D., Merks, E., Ellersick, R.,
and Grose, T. J. (2003). Eclipse modeling framework. Pearson Education.

126

http://deploy-eprints.ecs.soton.ac.uk/109/
http://deploy-eprints.ecs.soton.ac.uk/109/
http://eprints.ecs.soton.ac.uk/16575/
http://www.informatik.uni-bremen.de/cofi/wiki/index.php/CASL_user_manual
http://www.informatik.uni-bremen.de/cofi/wiki/index.php/CASL_user_manual

BIBLIOGRAPHY 127

[Butler, 2009] Butler, M. (2009). Decomposition structures for event-b. In-
tegrated Formal Methods iFM2009, Springer, LNCS, 5423:20�38.

[CEDITI, 2003] CEDITI (2003). A KAOS Tutorial. http://www.cediti.

be/.

[Chung et al., 2000] Chung, L., Nixon, B. A., Yu, E., and Mylopoulos, J.
(2000). Non-Functional Requirements in Software Engineering. Kluwer
Academic Publishers.

[Clarke and Wing, 1996] Clarke, E. M. and Wing, J. M. (1996). Formal
methods: state of the art and future directions. ACM Comput. Surv.,
28(4):626�643.

[Falampin et al., 2009] Falampin, J., Butler, M., and Fitzgerald, J. (2009).
Deploy deliverable d16: D2.1 pilot deployment in transportation (wp2).
http://www.deploy-project.eu/html/deliverables.html.

[Gervais et al., 2009] Gervais, F., Gnaho, C., Laleau, R., Matoussi, A.,
and Semmak, F. (2009). Tacos livrable l1.2 : Kaos extension with
non-functional properties. http://tacos.loria.fr/drupal/?q=node/74.
Projet TACOS : Trustworthy Assembling of Components: frOm require-
ments to Speci�cation ANR-06-SETI-017 Janvier 2007 - D�ecembre 2009.

[Hoare, 1985] Hoare, C. A. R. (1985). Communicating Sequential Processes.
Prentice-Hall. http://www.usingcsp.com/.

[ISO/IEC, 2002] ISO/IEC (2002). Information technology � z for-
mal speci�cation notation � syntax, type system and seman-
tics. http://standards.iso.org/ittf/PubliclyAvailableStandards/

c021573_ISO_IEC_13568_2002(E).zip.

[Jones, 1990] Jones, C. B. (1990). Systematic software development using
VDM, 2nd ed. Prentice Hall. ISBN 0-13-880733-7.

[Jouault et al., 2008] Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I.
(2008). Atl: A model transformation tool. Science of Computer Program-
ming, 72(1-2):31�39.

[Landtsheer, 2007a] Landtsheer, R. D. (2007a). Deriving event-based secu-
rity policy from declarative security requirements.

[Landtsheer, 2007b] Landtsheer, R. D. (2007b). Elaborating Complete and
Consistent Requirements for Security-Critical Systems. PhD thesis,
Université Catholique de Louvain. http://www.info.ucl.ac.be/~rdl/

thesis/.

http://www.cediti.be/
http://www.cediti.be/
http://www.deploy-project.eu/html/deliverables.html
http://tacos.loria.fr/drupal/?q=node/74
http://www.usingcsp.com/
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
http://www.info.ucl.ac.be/~rdl/thesis/
http://www.info.ucl.ac.be/~rdl/thesis/

BIBLIOGRAPHY 128

[Landtsheer and Ponsard, 2010] Landtsheer, R. D. and Ponsard, C. (2010).
Deriving event-based usage control policies from declarative security re-
quirements models. SEC-MDA 2010.

[Lapouchnian, 2005] Lapouchnian, A. (2005). Goal-oriented requirements
engineering: An overview of the current research. Technical report, Uni-
versity of Toronto.

[Lecomte, 2009] Lecomte, T. (2009). Deploy deliverable d2: D14.03
electronic newsletter. http://www.deploy-project.eu/newsletter/

deploy-newsletter-03.pdf.

[Letier, 2001] Letier, E. (2001). Reasoning about Agents in Goal-Oriented
Requirements Engineering. PhD thesis, Université Catholique de Louvain.

[Matoussi, 2009] Matoussi, A. (2009). Expressing kaos goal models with
event-b. In Proceedings of Formal Methods 2009 Doctoral Symposium,
pages 60�67, Eindhoven, The Netherlands.

[Matoussi et al., 2008] Matoussi, A., Gervais, F., and Laleau, R. (2008). A
�rst attempt to express kaos re�nement patterns with event b. In Proc.
of the Int. Conf. on ASM, B and Z (ABZ). Lecture Notes in Computer
Science, Springer-Verlag, pages 12�14. Springer.

[Matoussi et al., 2009] Matoussi, A., Laleau, R., and Petit, D. (2009). Bridg-
ing the gap between kaos requirements models and b speci�cations. Tech-
nical Report TR-LACL-2009-5, LACL (Laboratory of Algorithms, Com-
plexity and Logic), University of Paris-Est (Paris 12).

[Monin and Hinchey, 2003] Monin, J.-F. and Hinchey, M. G. (2003). Under-
standing formal methods. Springer Verlag.

[Métayer et al., 2005] Métayer, C., Abrial, J.-R., and Voisin, L. (2005).
Rodin deliverable 3.2: Event-b language. http://rodin.cs.ncl.ac.uk/

deliverables/D7.pdf. http://rodin-b-sharp.sourceforge.net.

[OMG, 2007] OMG (2007). Meta object facility (mof) 2.0 query/view/trans-
formation speci�cation. v 1.0.

[OMG, 2009a] OMG (2009a). Omg uni�ed modeling language (omg uml),
infrastructure, v2.2. v 2.2.

[OMG, 2009b] OMG (2009b). Omg uni�ed modeling language (omg uml),
superstructure, v2.2. v 2.2.

[Pascal and Silva, 2009] Pascal, C. and Silva, R. (2009). Event-b model de-
composition: A-style vs. b-style.

[Respect-IT,] Respect-IT. Objectiver Metamodel.

http://www.deploy-project.eu/newsletter/deploy-newsletter-03.pdf
http://www.deploy-project.eu/newsletter/deploy-newsletter-03.pdf
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://rodin-b-sharp.sourceforge.net

BIBLIOGRAPHY 129

[Respect-IT, 2009] Respect-IT (2009). Objectiver. http://www.

objectiver.com/. version 3.0.0.

[REVER, 901] REVER (v 9.0.1). Db-main. http://www.db-main.be.

[Robinson, 2009] Robinson, K. (2009). A concise summary of the
event-b mathematical toolkit. http://wiki.event-b.org/images/

EventB-Summary.pdf.

[RODIN, 2010] RODIN (2010). Rodin platform. http://www.event-b.

org/. version 1.3.

[Schneider, 2001] Schneider, S. (2001). The B-method: an introduction. Pal-
grave Macmillan, Basingstoke.

[Snook and Butler, 2006] Snook, C. and Butler, M. (2006). Uml-b: Formal
modeling and design aided by uml. ACM Trans. Softw. Eng. Methodol.,
15(1):92�122.

[van Lamsweerde, 2000] van Lamsweerde, A. (2000). Formal speci�cation:
a roadmap. In Proceedings of the conference on The future of Software
engineering, pages 147�159. ACM New York, NY, USA.

[van Lamsweerde, 2001] van Lamsweerde, A. (2001). Goal-oriented require-
ments engineering: A guided tour. In RE, page 249.

[van Lamsweerde, 2009] van Lamsweerde, A. (2009). Requirements Engi-
neering: From System Goals to UML Models to Software Speci�cations.
Wiley.

[yah Said et al., 2009] yah Said, M., Butler, M., and Snook, C. (2009). Lan-
guage and tool support for class and state machine re�nement in uml-b.
In FM2009 - 16th International Symposium on Formal Methods, number
LNCS 5, pages 579�595. Springer.

http://www.objectiver.com/
http://www.objectiver.com/
http://www.db-main.be
http://wiki.event-b.org/images/EventB-Summary.pdf
http://wiki.event-b.org/images/EventB-Summary.pdf
http://www.event-b.org/
http://www.event-b.org/

	Résumé
	Abstract
	Avant-propos
	Contents
	Introduction
	Requirements Engineering
	Overview of Requirements Engineering
	Problems Context
	Requirements Engineering Concerns

	Overview of Goal Oriented Requirements Engineering
	Goal
	Agent
	Domain Properties and Hypothesis

	KAOS: a Goal-Oriented Method
	Mine Pump Example
	Goal Model
	Object Model
	Formal Layer Using Linear Temporal Logic
	Responsibility Model
	Operation Model
	KAOS's Supporting Tool

	Formal Modelling for Specifications
	Overview of Formal Methods
	Event-B: a Formal Specification Language for System Design
	General Overview
	Machines and Contexts
	Proof Obligation Rules
	Event-B Model Decomposition Techniques
	Event-B's Supporting Tool
	Requirements Engineering and Event-B

	KAOS to Event B: Proposed Approach
	Presentation of the Approach
	Overview
	Final Result
	Example

	Step 1: Derivation of Event-B Context and Machine from KAOS Object Model
	Object Types and Attributes
	Associations and Specializations
	General Update Event
	Example: Initial Machine and Context for the Mine Pump

	Step 2: Decomposition of the Initial Model According to Agents
	State-Based Decomposition Applied to the Initial Machine
	Example: Decomposing the Initial Machine for the Mine Pump

	Step 3: Implementing Requirements and Expectations Assigned to an Agent
	Environment Agents and Internal Variables

	Different Kinds of Re-compositions
	Traceability Between KAOS and Event-B
	Definitions
	Initial Machine and Context
	Agent Machines and their Refinements in the Event-B Model
	General Rule

	What happens if …
	…an element is added in the KAOS object model?
	…an element is removed from the KAOS object model?
	…an agent is added in the KAOS model?
	…an agent is removed from the KAOS model?
	…a control link is added in the KAOS model?
	…a control link is removed from the KAOS model?
	…a monitor link is added in the KAOS model?
	…a monitor link is removed from the KAOS model?
	…a newly created requirement/expectation is assigned to an agent?
	…a requirement/expectation assigned to an agent is modified?
	…a responsibility links is moved from an agent to another?

	A First Implementation
	The ATLAS Transformation Language
	Ecore Meta-Model
	Actual State, Limits and Future Implementations

	KAOS to Event B: existing approaches
	Expressing KAOS Goal Models with Event-B: A. Matoussi
	First Phase
	Second Phase

	From Goal-Oriented Requirements to Event-B Specification: B. Aziz et al.
	Notion of Triggered Event
	Operationalisation Patterns

	Deriving Event-based Security Policy from Declarative Security Requirements: R. De Landtsheer
	Linear Temporal Logic Formula
	Polpa
	Derivation Procedure
	Syntactic Changes from Polpa to Event-B

	Comparison of the Approaches with our Proposed Approach
	Traceability
	Models Evolution
	Scalability
	Restrictions
	Summary

	Conclusion
	Mine pump example
	Glossary
	List of figures
	List of tables
	Listings
	Bibliography

