Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUR

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

Building a bridge between Goal-Oriented Requirements with KAOS and event-B
System Specifications

Devroey, Xavier

Publication date:
2010

Document Version
Peer reviewed version

Link to publication

Citation for pulished version (HARVARD):
Devroey, X 2010, 'Building a bridge between Goal-Oriented Requirements with KAOS and event-B System
Specifications', Master.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/publications/building-a-bridge-between-goaloriented-requirements-with-kaos-and-eventb-system-specifications(0aa122ad-9d16-4c8d-a7c6-00ddcbe8bf95).html

S N,
N

%,

Facultés Universitaires Notre-Dame de la Paix, Namur
Faculté d’Informatique

®
<9
=5
Q
L=
o

$ Année académique 2009-2010

N

@0\3\‘6 UNIVERe %
e

s

Building a bridge between
Goal-Oriented Requirements
with KAOS and Event-B
System Specifications

Xavier Devroey

Promoteur : Wim Vanhoof
Maitre de stage : Christophe Ponsard

Mémoire présenté en vue de I'obtention du grade de
master en sciences informatiques

Résumé

Ce mémoire présente des techniques pour lier des modéles d’exigences ori-
entés buts (GORE) et des spécifications formelles exprimées en termes plus
opérationnel. Plus particuliérement, I’objectif était de produire une méthode
permettant de dériver un modéle Event-B & partir d’un modéle KAOS qui
s’appuie au maximum sur les possibilités de ces langages, qui garantisse une
tracabilité fine et qui soit la plus automatisée possible.

Apres I’analyse d’un certain nombre d’approches existantes, aucune méth-
ode ne semble répondre au probléeme. Par conséquent une approche alterna-
tive a été concue en se concentrant principalement sur la mise en correspon-
dance d’agents GORE et de machines Event-B.

Le travail repose entierement sur UML-B pour la dérivation des modéles
de données. Des extensions récentes d’Event-B traitant de la décomposi-
tion de machine sont aussi utilisées. Une machine initiale correspondant au
modéle de données KAOS est d’abord créée. Cette machine est ’équivalent
du systéme entier, capable de controler toutes les données. La machine ini-
tiale est ensuite décomposée en machines agent, exprimées de maniére plus
fine en se basant sur leurs capacités de controler certaines données. En-
fin, le comportement des machines agent est raffiné pour correspondre au
comportement déclaré dans le modele KAOS.

L’approche a été partiellement implémentée dans un prototype qui utilise
des technologies de transformation de modéle & modele (EMF - ATL), et
validée sur différents cas.

Mots clés

Event-B, KAOS, ingénierie des exigences, ingénierie dirigée par les modéles,
méthodes formelles, méthodes orientées buts

Abstract

This master thesis presents techniques for connecting requirements models
expressed in a goal-oriented requirements engineering (GORE) paradigm into
more operational specifications expressed in Event-B. More specifically, the
objective was to produce a method that derives an Event-B model from
a KAOS model, that relies on the semantics of those two languages, that
guarantee a fine-grained traceability and that is as automatic as possible.

After reviewing a number of existing approaches, none of those methods
seem to answer the problem. Consequently an alternative approach was de-
signed with the central focus of mapping GORE agents to Event-B machines.

The work fully relies on the UML-B work for mapping data models.
Recent Event-B extensions about machine decomposition are also used to
decompose an initial system level machine into more finer grained agent
machines based on their ability to control a specific piece of information.
Finally the agent machines are refined to match the behaviour declared in
the KAOS model.

The approach has been partially implemented in a prototype that uses
model to model transformation technologies (EMF - ATL), and has been
validated on different cases.

Keywords

Event-B, KAOS, requirements engineering, model driven engineering, formal
methods, goal orientation

il

Avant-propos

Je remercie toutes les personnes qui ont participé directement ou
indirectement & la réalisation de ce mémoire :

En particulier Wim Vanhoof, professeur a la faculté d’Informatique
des Facultés Universitaires Notre-Dame de la Paix de Namur et
promoteur de ce mémoire, qui s’est toujours montré & 1’écoute
et trés disponible, pour 'aide et le temps qu’il a bien voulu me
consacrer.

Christophe Ponsard, responsable du département Software &
System Engineering au CETIC et responsable de mon stage, pour
son aide tout au long de la rédaction de ce mémoire, ses conseils
et son expérience.

Le personnel du CETIC pour leur accueil et les professeurs des
Facultés Universitaires Notre-Dame de la Paix de Namur pour le
savoir qu’ils m’ont transmis durant ces trois années.

Enfin, j’adresse mes plus sincéres remerciements a mes parents,
pour leur soutien inconditionnel et la patience dont ils ont fait
preuve et a tous mes proches et amis, qui m’ont soutenu et en-
couragé au cours de la réalisation de ce mémoire.

1l

Contents

Résumél
[Abstract]

[Avant-propos|

Contents

(1__Introduction|

2 Requirements Engineering]

[2.1 Overview of Requirements Engineering

P12

Requirements Engineering Concerns|

2.2 Overview of Goal Oriented Requirements Engineering|

2.2.2

Agent| Lo

P23

Domain Properties and Hypothesis|

2.3 KAOS: a Goal-Oriented Methodl

[2.3.1 Mine Pump Examplel. 0000
232 GoalModell
2.3.3 Object Model| 0.
[2.3.4 Formal Layer Using Linear Temporal Logic]
[2.3.5 Responsibility Model|
[2.3.6 Operation Model|
[2.3.7 KAOS’s Supporting Tool|

[3 Formal Modelling for Specifications|

3.1 Overview of Formal Methods

3.2 Event-B: a Formal Specification Language for System Design|
I;il2ll E;g llgli!l !!&gl&ig &&l

B23

Proot Obligation Rules|.

B24

Event-B Model Decomposition Techniques|.

v

ii

iii

vi

CONTENTS v

13.2.5 Event-B’s Supporting Tool|. 44

[3.2.6 Requirements Engineering and vent-B| 45

4 KAOS to Event B: Proposed Approach| 47
4.1 Presentation of the Approach| 47
1.1 Overviewl e 48

412 Final Resultl. o000 49

413 Example|.o 51

4.2 Step 1. Derivation of Event-B Context and Machine from |

| KAOS Object Model| 52
4.2.1 Object Types and Attributes 53

4.2.2 Associations and Specializations| 53

4.2.3 General Update Event| 99

4.2.4 Example: Initial Machine and Context tor the Mine |

| Pump| 55
4.3 Step 2: Decomposition of the Initial Model According to Agents| 58
4.3.1 State-Based Decomposition Applied to the Initial Ma- |

[chimel 59
4.3.2 Example: Decomposing the Initial Machine for the |

| Mine Pump| oo 60
4.4 Step 3: Implementing Requirements and Expectations As- |

| signed to an Agent|o L 61
4.4.1 Environment Agents and Internal Variables| 63

4.5 Different Kinds ot Re-compositions| 64
4.6 Traceability Between KAOS and Event-B| 66
4.6.1 Definitions 66

4.6.2 Initial Machine and Contextl. 67

[4.6.3 Agent Machines and their Refinements in the Event-B |

[Modell 68
464 General Ruld 69

4.7 What happens it ...| oL L 70
[4.7.1 ...an element is added in the KAOS object model?|. . 70

4.7.2 ...an element 1s removed from the KAOS object model?| 71

4.7.3 ...an agent is added in the KAOS model?| 71

4.7.4 ...an agent i1s removed from the KAOS model? 71

4.7.5 ... a control inkis added in the KAOS model? 72

4.7.6 a_control link i3 removed from the KAOS model?l . 72

4.7 ... amonitor inkis added 1n the KAOS model?. . . . 72

4.8 .. . a monitor link is removed from the KAOS model? . 73

[4.7.9 ... anewly created requirement/expectation is assigned |

| toanagent?].o 73
[4.7.10 ...a requirement/expectation assigned to an agent is |

modified? 73

CONTENTS vi
[4.7.11 ...a responsibility links is moved trom an agent to an- |

[other?l e 74
4.8 A First Implementation| 74
4.8.1 The ATLAS Transformation Languagel 75

482 FEcore Meta-Modell 77

4.8.3 Actual State, Limits and Future Implementations| . . . 77

b KAOS to Event B: existing approaches| 79
.1 Expressing KAOS Goal Models with Event-B: A. Matoussi|. . 79
b1.1 First Phaselo 80

5.1.2 Second Phasel L. 83

5.2 From Goal-Oriented Requirements to Event-B Specification: |

[B, Azizetal l. 85
15.2.1 Notion of Triggered Event| 86

[9.2.2 Operationalisation Patterns| 89

[9.3 Deriving Event-based Security Policy from Declarative Secu- |

| rity Requirements: R. De Landtsheer|. 89
[9.3.1 Linear Temporal Logic Formula 90

5.3.2 Polpal 90

0.3.3 Derivation Procedurel. 91

15.3.4 Syntactic Changes tfrom Polpa to Event-B| 96

9.4 Comparison of the Approaches with our Proposed Approach| . 97
15.4.1 Traceability| 98

.42 Models Fvolution| oo 98

b.4.3 Scalability|. o 100

0.4.4 Restrictionslo 100

[9.4.5 Summaryl e e 102

6 Conclusion| 104
[A° Mine pump example| 106
119
[List of figures| 123
[List of tables 124
Listings| 125
B1ib D 129

Chapter 1

Introduction

Application development is classically defined as a process decomposed in
several phases. The first one is the requirements engineering phase which
aims at capturing the requests of the client and writing them down in a
requirements document. In the second phase, the specification phase, a sys-
tem that responds to the requirements of the client will be imagined and
described in a specifications document. The third phase is the design phase
where the specifications are refined to get a precise architecture of the future
application. The last phase is the coding phase, where the architecture is
implemented using a programming language.

As the chosen programming language is the formalism used for the cod-
ing phase, the other phases will have their own language, e.g. class diagrams
and sequence diagrams for the design phase. Those languages may be less
or more formal according to their purposes and stakeholders, ¢.e. people in-
volved in the application development, that will read and use them. For
instance, natural language may be used for the requirements document and
a purely mathematically based language may be used for the specifications of
the system. All languages have their advantages and disadvantages, natural
language may be easily understood by the client that will validate the re-
quirements document, but it may be ambiguous for the analyst that will have
to establish specifications based on this document. On the contrary, mathe-
matically based languages are unambiguous, but are hard to understand for
non-specialists.

Another major side of a development process are the tests taking place
at different moments in the process. Tests will generally occur at the end of
a phase, e.g. testing the code to ensure that it is bug-free or testing that the
different elements described in the design have effectively been implemented.
According to the used language, the tests will be more or less automated.
One of the problems usually encountered with tests in a development process
is the test’s coverage, especially with the source code which is usually too big
to be completely tested. This may be problematic, in the case of a critical

CHAPTER 1. INTRODUCTION 2

system where a failure in the system may have important consequences, going
from recovery issues to money or even human lives loss.

One way to overcome this is to use formal methods in the specification
and/or the design phases. As we will see in chapter |3} a formal method uses
a formal language composed of syntax with a semantic relying on a math-
ematical substratum and a proof theory defining rules for inferring useful
information. For instance, if we use a formal method to establish the specifi-
cations, it will be possible to prove that the specifications are correct, i.e. the
specifications are consistent and correct with themselves, but without taking
care whether the specifications meets the requirements or not. If we want to
prove such a thing, the requirements have to be written in a formal language
compatible with the language used to express the specifications. The reader
could easily understand here that using formal specifications may be quite
heavy, as well for the analyst which will have to write down the specifica-
tions, as for the client, usually non-expert in the used formal language, that
will have to validate them.

To avoid such a situation, the idea is to have an uninterrupted chain
between the requirements, expressed in such a way that they are easily un-
derstood by the client, and the source code. In this case, the specifications
would be formally derived from the requirements, the design is formally de-
rived from the specifications and the code is automatically generated from
the design. Such derivation chains already exist partially. In Event-B, a
formal method used for the specification phase and based on a refinement
strategy, a general model is refined to be made more precise with a proof
at each refinement that the concrete model does not contradict the abstract
one. When the model is precise enough, a B model based on the B-Method,
also sometimes called Classical-B, may be automatically generated. As for
Event-B, Classical-B is based on a refinement strategy where the model is
made more concrete at each step. When the B model is precise enough,
the source code may be automatically generated. Contrary to handwritten
source code, this generated code has been proved equivalent to the specifica-
tion expressed in the general Event-B model and is thus bug-free, although
it may contain what we may call business errors. Business errors are com-
ing from a "modelisation error", e.g. misunderstanding of the requirements
expressed by the client.

In this case we have an uninterrupted chain between the specifications
and the source code, but there is still a gap between requirements and
specifications. As the requirements have to be formalized in a way or
another, we chose here to use KAOS: a goal oriented methodology. As for
Event-B, KAOS is based on a refinement strategy. Starting from high-
level goals saying why the future system has to be build, arriving at a set
of requirements and expectations saying how the future system will fulfil
those goals and who will be involved in this fulfilment (the implied agents).
KAOS also include a formal layer by permitting the definition of the goals,

CHAPTER 1. INTRODUCTION 3

requirements and expectations with linear temporal logic formula.

This thesis is structured as follows: chapter [2| will present the main
concepts that may be found in requirements engineering, more particularly
goal oriented requirements engineering and KAOS. Chapter 3] will introduce
the notion of formal method and will present in more details the Event-B
method. In chapter [4] we design our approach to build a bridge between
KAOS and Event-B that fulfils a number of objectives as none of the exist-
ing approaches (presented in chapter [5)) could meet them all. A comparative
discussion is also presented at end of chapter | Chapter [6] will conclude by
summarising the problem, highlighting contribution, pointing some limits
and sketching some possible further work to address them.

Chapter 2

Requirements Engineering

This chapter introduces general notions used in requirements engineering.
The first section describes what requirements engineering is about. The sec-
ond section introduces goal oriented requirements engineering, a goal driven
approach to perform tasks that can be found in a requirements engineer-
ing process. The last section describes KAOS, a goal oriented requirements
engineering method. Most of this chapter is inspired on van Lamsweerde’s
book [van Lamsweerde, 2009).

2.1 Overview of Requirements Engineering

Requirements engineering is concerned about the definition and the under-
standing of a problem. In more details, it is focused on the discovering,
understanding, formulation, analysis and consensus formulations of the why,
what and who dimensions of the problem. Figure 2.1] presents the links
between the different dimensions in a synthetic way.

Why-dimension

The Why-dimension wants to define why the problem needs to be solved.
It is expressed in terms of goals that must be reached by the system under
development. It includes the analysis of each alternative with its advantages
and disadvantages and the management of conflicts between different points
of view and self-interests in order to have a coherent set of goals.

What-dimension

The What-dimension is interested in the functional services that the system-
to-be should provide to satisfy the objectives defined in the why-dimension.
Those services may be automated in software or may be manual procedures
and generally rely on the assumptions made on the system to work correctly.

CHAPTER 2. REQUIREMENTS ENGINEERING 5

System-as-is System-to-be

Problems
Opportunities What ?
i Domain knowledge

R/_/

Environment

Figure 2.1: Why, what and who dimensions [van Lamsweerde, 2009|

They will have to respect some constraints about performance, security, us-
ability, interoperability and cost.

Who-dimension

The Who-dimension establishes the responsibilities between the services and
the human, software and hardware components of the system-to-be. When
different possibilities exist for an assignment of a responsibility, the advan-
tages and disadvantages will be evaluated reminding that different possibil-
ities may lead to different more or less automated systems.

2.1.1 Problems Context

Problems generally come with a particular context larger than the problems
themselves. This context may be part of a complex organizational, technical
or physical world with its own rules. The main goal of a project will be to
construct a machine to resolve a problem and thus improve the context.

Figure 2.2 presents a general view of a machine and its environment. The
environment is part of the context on which the effects of the machine can
be seen. The machine is composed of a software and hardware part, and
interacts with the environment through shared phenomena. Those phenom-
ena are monitored or controlled by the machine in order to implement the
specifications [Lapouchnian, 2005, van Lamsweerde, 2009].

CHAPTER 2. REQUIREMENTS ENGINEERING 6

Environment Machine

Requirements

Software

Domain properties Specifications

Hardware

Assumptions

Figure 2.2: General view of a machine and its environment [van Lamsweerde,
2009

Definitions

Before going further, we give some definitions proposed by van Lamsweerde
and Lapouchnian in [van Lamsweerde, 2009, Lapouchnian, 2005| :

A System is a set of components each one interacting with another in
order to meet a global objective. What we will call the system-as-is is the
system before the construction of the machine. The system-to-be will denote
the system as it should be when the machine, also called software-to-be, will
be implemented and working.

The notion of descriptive statement is defined by van Lamsweerde in [van
Lamsweerde, 2009] as:

"Descriptive statements state properties about the system that
hold regardless of how the system behaves. It holds typically be-
cause of some natural law or physical constraint".

The notion of prescriptive statement is defined by van Lamsweerde in [van
Lamsweerde, 2009] as:

" Prescriptive statements state desirable properties about the sys-
tem that may hold or not depending on how the system behaves.
Such statement needs to be enforced by system components".

Requirements, also called system requirements, are prescriptive state-
ments formulated in terms of environment phenomena that describe desired
conditions over those phenomena. They will be enforced by the software-to-
be and other system components.

Specifications, also called software requirements, are prescriptive state-
ment formulated in terms of phenomena shared between the software and the
environment. Those statements will be enforced exclusively by the software-
to-be.

Domain properties are properties of the environment which are expected
to always hold regardless of the system’s behaviours and even regardless of
whether there will be any software-to-be or not.

CHAPTER 2. REQUIREMENTS ENGINEERING 7

Assumptions | also called expectations, are generally prescriptive state-
ments formulated in terms of environment phenomena that have to be sat-
isfied by agents in the environment.

The link between all those elements may be formulated as follow [van
Lamsweerde, 2009]:

Speci fications, Domain properties, Assumptions = Requirements
This can be read:

"If the specifications are satisfied by the software, the assumptions
are satisfied by the environment, the domain properties hold and
all those statements are consistent with each other,
then the requirements are satisfied by the system".

2.1.2 Requirements Engineering Concerns

Requirements engineering is concerned with the left set in figure[2.2] it cap-
tures and describes specifications, assumptions, domain properties and re-
quirements. Requirements engineering does not care about the how-dimension,
which states how the specifications will be implemented by the software. This
dimension is part of the software-design process.

We can now have the general definition of requirements engineering give
by van Lamsweerde in |[van Lamsweerde, 2009]:

"Requirements engineering is a coordinated set of activities for
exploring, evaluating, revising and adapting the objectives, capa-
bilities, qualities, constraints and assumptions that the system-
to-be should meet based on problems raised by the system-as-is
and opportunities provided by new technologies".

2.2 Overview of Goal Oriented Requirements En-
gineering

Goal Oriented Requirements Engineering (GORE) is a goal driven approach
to perform tasks defined in a requirement engineering process. Contrary to
requirements engineering techniques concerned with "late-phase", like use-
case modelling, where initial functional requirement statements are clarified
and analysed to detect ambiguities, incompleteness or inconsistencies, the
GORE approach mainly address the Why-dimension of the system-to-be [van
Lamsweerde, 2009}|Letier, 2001].

It is focused on system objectives as a core abstraction and captures
this abstraction through goals. The main concern will be the exploration of
the user’s goals and the analysis of the different possible systems which may
satisfy those goals [van Lamsweerde, 2009 [Letier, 2001]. Two complementary
frameworks working with goals exist:

CHAPTER 2. REQUIREMENTS ENGINEERING 8

NFR is concerned with the evaluation and selection of alternatives respecting
qualitative non-functional goals, e.g. usability, performance, accuracy,
security |[Chung et al., 2000).

KAOS is concerned with the generation of alternative systems from high level
goals expressed in linear temporal logic [Letier, 2001].

In the remainder of this work, we will rather explore the KAOS point of
view than NFR, e.g. the definition of soft-goal and non-functional goal which
are identical within NFR [Chung et al., 2000], but are two distinct concepts
in a KAOS context.

2.2.1 Goal

As said before, GORE is all about goals, but what is a goal? A goal is
expressed as a prescriptive statement about an objective the system has to
reach through the cooperation of its agents. Goals may be formulated at
different levels of abstraction, from high level strategic concerns, to low level
technical concerns.

During the elicitation process, goals will be refined into sub-goals that
contribute to the realization of the parent goal. Goals may also be abstracted
into a more general parent goal to which they contribute. The finer-grained
a goal is, the fewer agents it will need to be satisfied. It is important to
underline here that a GORE process is generally not a top-down approach,
some goals are identified and from them, sub-goals and parent goals will
appear from elicitation.

Goal Taxonomies

There exist several goal taxonomies used to facilitate elicitation, one of the
most common is the distinction between functional goals and non-functional
goals:

Functional goals express the intention hidden behind a system service.
For instance, an information goal "Notify the Accounts department that an
inwvoice can be sent to the Client” is a functional goal concerned with keeping
the Accounts department agent informed about system states.

Non functional goals express a quality or constraint on a service or the
development process. It may be about safety, security, performance, cost,
etc. For instance "Products have to be sent to the client mazimum four days
after they have been ordered” is a time performance goal.

This distinction between functional and non-functional goals, which are
goal categories, is a fuzzy classification used in the elicitation process to
check if all aspects of the system-to-be have been considered. It must not be
confused with the distinction between behavioural and soft-goals, which are
goal types:

CHAPTER 2. REQUIREMENTS ENGINEERING 9

A Soft-goal prescribes preferences among alternative system behaviours.
Its satisfaction cannot be established in a clear-cut sense, but a well-defined
satisfaction measure criterion has to be given. Sub-types have been defined.
Among the most frequently used ones: improve, increase, reduce, maximize
and minimize. They correspond to different types of measure criteria.

A behavioural goal prescribes the desired behaviour in a declarative way.
It implicitly defines the maximal set of admissible states. Sub-types cor-
responding to particular behaviours have been defined. Among the most
frequently used: achieve, cease, maintain and avoid. Figure [2.3| shows this
classification in a synthetic way.

The goal type classification is a semantic classification, in the sense that
a goal can be satisfied by the system behaviour in a clear-cut sense or not.

Behavioral goal

Improve
Increase

Reduce I

Maximize

Figure 2.3: Goal type taxonomy [van Lamsweerde, 2009|

Soft-goal

The most commonly used behavioural goal type is the Achieve one, which
states that sooner-or-later a certain condition will be reached. The Cease
goal type states that sooner-or-later the negation of a certain condition will
be true. Maintain and Avoid types state that a certain condition will always
or never be true.

Improve soft-goal types states that a certain condition should be en-
hanced. Increase and Reduce types are used with a quantity criterion while
Maximize and Minimize are used with the most general notion of objective
function. More details about soft-goal types can be found in [van Lam-
sweerde, 2009].

2.2.2 Agent

Agents are active components of the system playing a role to satisfy some
goals. They are able to make choices and are characterized by behaviour.
They will have to restrict this behaviour to an adequate control (reading

CHAPTER 2. REQUIREMENTS ENGINEERING 10

and/or writing) of system items in accordance with a behaviour described
in the requirement document.

To be satisfied, a goal may need the cooperation of several agents; there-
fore the system’s behaviour will correspond to the parallelization of the sys-
tem’s agents’ behaviours. Agent behaviour is composed of a sequence of
state transitions for the items under the control of the agent. Those items
are state variables, corresponding to a functional pair (x,v) where z is the
variable and v its value. The system state will correspond to the aggregation
of variables’ states characterizing the system, meaning that goals will have to
be formulated in terms of shared phenomena between agents. A phenomena
will always be controlled (written) by one agent and monitored (read) by
another.

An agent may be a person, a role in an organization, a device, an existing
software or a software-to-be. A distinction is made between environment’s
agents and agents of the software-to-be. Goals under the responsibility of
the former one become expectations. They express an expected behaviour
from an agent of the environment needed to fulfill the parent goal. They
can’t be enforced by the software-to-be. Goals under the responsibility of
software-to-be agents, also called system agents, become requirements. They
express an expected behaviour of the software-to-be [van Lamsweerde, 2001|.

2.2.3 Domain Properties and Hypothesis

Multia-agent
goal
Prescriptive Requirement
Single-agent
goal
Statement Expectation
Domain

property

Descriptive

Domain
hypothesis

Figure 2.4: Statement typology with goals [van Lamsweerde, 2009|

Goals need agents to be fulfilled, they are expressed for a particular sys-
tem in its particular environment. The intrinsic nature of that environment
with its laws may naturally satisfy goals. For instance, the goal "Getting
accurate price from Supplier” may be satisfied by the environment property
"Supplier publish accurate merchandise’s prices on their website”. Therefore,
GORE also includes the notions of domain property and hypothesis.

A domain property is a descriptive statement that is true independent of
the system, e.g. the speed of light is 299 792 458 m/s.

CHAPTER 2. REQUIREMENTS ENGINEERING 11

A hypothesis is a descriptive statement satisfied by the environment of
the system, e.g. company is closed on Sunday.
Figure shows a statement typology with goals.

2.3 KAOS: a Goal-Oriented Method

KAOS is a goal-oriented method used in the software requirements engineer-
ing process. It describes requirements using four sub-models: a goal model, a
responsibility model, an object model and an operation model. KAOS stand
for Knowledge Acquisition in autOmated Specification or Keep All Objects
Satisfied and is supported by a tool called Objectiver [Respect-1T, 2009].
The KAOS language itself is described in a meta-model which also contains
meta-constraints. The most important ones that will be used afterwards are
presented in this section. For more informations, the interested reader could
refer to one of the works this section is mainly inspired from: van Lam-
sweerde’s work [van Lamsweerde, 2001, van Lamsweerde, 2009|, Letier’s the-
sis [Letier, 2001] or Objectiver manuals [CEDITI, 2003Respect-IT, [Respect-
I'T, 2009|.

2.3.1 Mine Pump Example

A Methane Sensor

Pump B Highwater Sensor
Y C C Lowwater Sensor
ontroller
Pump L
A
B
oC
Sump

Figure 2.5: Mine Pump and Pump Controller system |[Letier, 2001]

To illustrate the different points in the remainder of this work, we will
use a mine pump example presented in figure and inspired from [Letier,
2001]. In this example, we have a mine that has to be kept safe from flooding
and avoid an explosion. For this we have a mine pump that starts pumping
if the water level is too high and if there is no methane detected. Here is the
informal problem statement:

Water percolating into a mine is collected in a sump to be pumped
out of the mine. Two water level sensors detect when water is

CHAPTER 2. REQUIREMENTS ENGINEERING 12

above a high and below a low level, respectively. A pump con-
troller switches the pump on when the water reaches the high
water level and off when it goes below the low water level. The
mine has another sensor to monitor the methane level. An alarm
must be raised if any of these levels becoming critical so that the
mine can be evacuated. To avoid the risk of explosion, the pump
must be operated only when the methane level is below a critical
level.

2.3.2 Goal Model

The main concept in this model is the goal, represented by a blue parallelo-
gram in diagrams, which corresponds to an objective the considered system
should satisfy through the cooperation of its agents. It is formulated in a
prescriptive statement at a certain level of abstraction.

The goal model will serve as a basis for other models and is usually
the first one that is elaborated in a KAOS requirements elicitation process.
An initial set of goals in the model can be discovered by techniques like
analysing the current objectives and problems in the system-as-is, searching
for goal-related keywords in elicitation material, instantiate the different goal

categories (see section [2.2.1)), etc.

Achieve[TargetCondition

FROM CurrentCondition]
Achieve[MilestoneCondition Achieve[TargetCondition
FROM CurentCondition] FROM MilestoneCondition]

Figure 2.6: Abstract Milestone-driven refinement pattern

Once an initial set of goals are discovered, they will be abstracted and
refined through new requirements elicitations. To guide this process, the
analyst can use a catalogue of refinement patterns. One of the most common
ones is the milestone-driven refinement, used when a target condition can
be reached from a current condition with an intermediate condition, the
milestone. Figure [2.6]shows the abstract definition of this pattern where the
TargetCondition, CurrentCondition and MilestoneCondition will have to
be instantiated.

AND/OR Graph

Goals are arranged in a AND/OR graph where goal refinement nodes, rep-
resented by a yellow circle, will be used to connect a goal, saying why
sub-goals are needed, to a set of sub-goals saying how the parent goal

CHAPTER 2. REQUIREMENTS ENGINEERING 13

Maintain[Safe Mine]
A

Maintain[Correct Device
Maintain[People Safe] o -
Pump Damaged WHEN
Running Dry

N

Flooding Danger
A

Ac [l
Evacuated ~ WHEN
Flooded]

£\

Avoid[Flooding]

Achieve[Mine Evacuated
WHEN Gas Detected]

Achieve[Pump
Stopped WHEN
LowWater EXPT if

WaterLevel Under Achieve[Pump Achieve[Pump Achieve[Alarm Miner)
Control WHEN Pump Started WHEN Stopped WHEN Triggered Evacuating
Gas Detected]

ON HighWater EXPT if Gas Detected] WHEN Gas] Mine WHEN
Gas Detected] Alarm On

Figure 2.7: Mine pump example’s goal refinement

will be fulfilled. Figure shows an example of refinement where a goal
Maintain[SafeMine] corresponding to a general requirement "keeping a
mine safe", will be achieved by "keeping people in the mine safe" and "keep-
ing the devices in the mine correct and operational".

In a goal diagram, non-leaf goal nodes correspond to OR-nodes whereas
refinement nodes, represented by yellow circles, correspond to AND-nodes.
In the case of a OR-node, it is said satisfied if one of its descendants is
satisfied. In the case of a AND-node, it is said as satisfied if all its descen-
dants are satisfied. For instance in figure the parent goal Achieve [Keep
people informed] is satisfied if "an e-mail address is registered when the
user subscribed to the service" and "an e-mail is send when a new event is
organised", or if "a cellphone number is registered when the user subscribed
to the service" and "an sms is sent when a new event is organised".

AND-Refinement

To check the goal model, three criteria are defined for the AND-refinement:
completeness, consistency and minimality. They can be used as a tool for
further elicitation and should be verified for mission critical goals by using
formal techniques such as theorem proving, the use of catalogue of formal
refinement patterns or SAT solver technologies.

Criterion (Completeness). The satisfaction of all sub-goals G1, ..., G, should
be sufficient for the satisfaction of the parent goal G in view of all known do-

CHAPTER 2. REQUIREMENTS ENGINEERING 14

Achieve[Keep people
informed)]

OR

AND AND
Achieve[Register e-mail Achieve[Send e-mail Achieve[Register cellphone Achieve[Send sms
adress WHEN subscribing] WHEN new event] number WHEN subscribing] WHEN new event]

Figure 2.8: A KAOS AND/OR graph example

main properties and hypothesis. The lattes will be represented by the set
Dom.

{G1,...,Gp,Dom} E G

Where A = B means that B is satisfied in any circumstance where all
expressions in A are satisfied.

Criterion (Consistency). The sub-goals G1, ..., Gy, domain properties and
hypothesis in Dom may not contradict each other.

{G1,...,Gpn, Dom} B~ false

Criterion (Minimality). If one of the sub-goals G; in the refinement Gy, ..., Gy,
is missing, the satisfaction of the parent goals G is no longer always guaran-
teed .

Vil < 7 < n,{Gl, --~7Gi—17Gi+17 ...,Gn,Dom} b’é G

OR-Refinement

OR-refinement is used to represent alternative options in a goal model. In
this case, a parent goal can be satisfied by satisfying all sub-goals from any
of the alternative refinements. Those alternatives will usually lead up to
different versions of the modelled system.

The goal model with its OR-refinements will serve as a basis to evaluate
the different possibilities. By discussing with the stakeholders the advantages
and disadvantages, evaluating the different softgoals and their satisfaction
rate if one alternative or another is taken. After negotiation with the decision
takers, one alternative will be selected for the specification of the system.

Conflicts

When elaborating the goal model, there may be divergences between the
different goals. Those divergences capture potential conflicts, represented by

CHAPTER 2. REQUIREMENTS ENGINEERING 15

a red flash in KAOS, where some statement becomes logically inconsistent, if
a boundary condition becomes true. Roughly, goals {G1,...,G,} are diver-
gent, given a set of domain properties and hypothesis Dom, if there exists a
boundary condition B such as:

{Gy,...,Gpn, B,Dom} = false
whereas {G1, ..., G, Dom} |= true

A more complete definition of divergence can be found in |[van Lamsweerde,
2009).

Those conflicts must be resolved, but not necessary in a early phase of
requirements elaboration. Indeed, they may be a source of useful information
for further elicitations.

Agents

KAOS makes the distinction between software-to-be agents and environment
agents. Both are represented as flat hexagons, with a little picture of a man
into it to denote environment agents. Leaf-goals under the responsibility
of those agents become expectations represented by a yellow parallelogram
with a bold border. Goals under the responsibility of software-to-be agents,
also called system agents, become requirements represented by a blue paral-
lelogram with a bold border too. See subsection to have more details
about agents and their respousibilities.

The visual separation of environment agents and software-to-be agents,
and between expectations and requirements allows to visually distinguish
parts that will be implemented in the software-to-be and parts that will
have to be ensured by the environment.

Other Concepts

The other main concepts that can be found in a KAOS goal diagram are
the soft goal represented by a blue parallelogram with dotted borders, the
domain property represented by a purple pentagon, the obstacles represented
by a red parallelogram, the obstruction link between an obstacle and a goal
and the resolution link between a goal and an obstacle. Figure|2.9|shows the
graphical representation of KAOS main concepts, with the relations between
elements of the goal model and elements coming from other models that will
be described in the following sub-sections. More information about all those
elements can be found in [Letier, 2001,jvan Lamsweerde, 2009).

2.3.3 Object Model

The object model is constructed in parallel with the goal model as soon as
the latter becomes precise enough. The idea here is to identify and give a

CHAPTER 2. REQUIREMENTS ENGINEERING 16

- KAOS

Responsibility modeling

Refinement

DOMAIN
PROPERTY

Concerns

Binar: .
Assnciat:{)n Aggregation

Isa
ENTITY 2N ENTITY
Attr: Type

in

AR What to do?
z When ?
- ASSOCIATIO e
n what?
Operation modeling

Object modeling

Figure 2.9: KAOS main concepts [Respect-IT, 2009]

precise definition for every object, relationship or attribute coming from the
goal elicitation.

Formally speaking, an object in KAOS may be an entity that is a passive
object, an association that is a subordinate object, an agent that is an active
and autonomous object capable to execute operations or an event that is an
instantaneous object that exists in one state only of the system. The IsA
relation may be used to express inheritance between objects. The object
modelling rectangle of figure 2.9 shows the graphical representation of those
different elements.

Every object has a name and a definition. A set containing all the object’s
instances is implicitly declared for each object. If the object is an association,
it defines a mathematical relationship between n objects, each one will have
a role that defines its function in the relation and a cardinality that defines
the minimum and maximum number of instances of the association in which
a given object instance can be involved simultaneously. As in UML, an
association may be a simple association, an aggregation or a composition,
and may be directed or not. It is important to note that the cardinalities
of an association may only describe domain properties and not objectives of
the system, e.g. "not more than hundred books per category" is an objective
the system should meet, it will not be represented as a maximal cardinality
in the object model.

The remaining entities represented in the object model are the attributes.
They have a name, a definition and a range of values. An attribute is defined
for an object and can be seen as a function, total or not, from the set of object
instances to the set of possible values defined for the attribute.

In KAOS, a meta-constraint between the goal model and the object

CHAPTER 2. REQUIREMENTS ENGINEERING 17

model states that [Letier, 2001]:

Meta-constraint 2.3.1 (Consistency rule between object and goal model).
Every vocabulary element used in the definition of goals must be declared in
the object model.

2.3.4 Formal Layer Using Linear Temporal Logic

KAOS uses linear temporal logic to express formal definitions and annota-
tions in the different models. In those formal definitions, variables corre-
spond to arbitrary object instances, e.g. in Vir; : Train variable tr; rep-
resents arbitrary instances of the Train entity, and functions are used to
represent attributes and binary associations, e.g. Viry : Train, speed(try) <
MAX SPEFED means that for all instances of Train, the actual speed must
be lower than a M AX SPEFED constant. As recall, objects are described
in the object model which regroups all the notions manipulated in the goal
model.

Each variable x has a value v which corresponds to a tuple of values for its
attributes and the relations in which the corresponding object participates.
The state of a variable is defined as a functional pair (x,v). In the same way,
the system state is defined as a tuple (X, V'), where X is a tuple of variables
x and V is the tuple of corresponding values v for the variables in X.

Linear temporal logic allows to refer to future and past states of the
system by introducing the notion of history. A history H is a function
H : N — State(X) assigning to every time point 7 in N the system state at
that point. State(X) is the set of all possible values for the variables in X.

Definition 2.3.1 (Temporal assertion satisfaction). If a temporal assertion
P is satisfied by a history H at time position i, we say that :

(H,i) = P

If i 1s the initial position 0, then the assertion P is said to be satisfied by the
entire history H :

(H.0) |- P

Correctness of the definitions and annotations will have to be satisfied by
the history H of the system at a certain time position 7. Those definitions
and annotations may be expressed as state assertions, that is a predicate
which is true in the current state, but will more probably be a temporal
assertion, recursively build from state assertions, temporal operators, logical
connectives and quantifiers.

CHAPTER 2. REQUIREMENTS ENGINEERING 18

State Assertions

State assertions are build from atomic predicates connected through classical
logic connectors (and A, or V, not —, implies —, and equivalent to <») and
quantifiers (for all V and there exists 3). The atomic predicates are composed
of terms connected by relational operators, e.g. greater than or equal >, or
associations defined in the object model, e.g. Borrows(bl,cl) where bl is
an instance of Book and ¢l an instance of Client. Terms are built from
constants, variables and function symbols applied to terms. Those functions
can be mathematical functions, like the arithmetic operators, or attributes
declared in the object model.

For instance, a security requirements stating that the water level in a
mine must always be lower than a mazimal level could be translated in :

Vmi : Mine
water Level(m1) < MAX WATER LEVEL

Assuming that water Level is an attribute of the entity Mine and
MAX WATER LEVELis a constant value.

Temporal Assertions

Temporal assertions are build recursively from state assertions, temporal
operators, logical connectives and quantifiers. Contrary to state assertions,
they do not only refer to the current state but also to previous and future
states. The tables[2.1]and 2.2]summarize the time operators used with KAOS
and they associated semantics.

Table 2.1: Future time operators
Notation | Informal Explanation | Semantic

OP Sooner or later P (H,i) = OP iff 35,5 > i
(H.) F P
opP Always P (H,i) = 0OP iff Vj,j > i
(H,j) =P
P U @ | Always P until Q (Hyi) E P U Qiff (35,5 >
(H,j) = Q) A (Vkyi < k < j:
(H,k) = P)
P W @ | Always P unless @ (H,i) =P W Qiff (H,i) =P

U Q) VI((H,i) =0OP)

oP | Next P (H,i)FoP iff (H,i +1) = P
P=(Q | P entails Q Equivalent to O(P — Q)
PsqQ P is congruent to @ Equivalent to O(P «< Q)

CHAPTER 2. REQUIREMENTS ENGINEERING 19

Table 2.2: Past time operators
Notation | Informal Explanation | Semantic

Once P (H,i) = &P iff 35,5 < i
(H,j) =P
mp P has always been (H,i) = WP iff V5,5 < i
(H,j) P
PSQ | Always P in the past | (H,i) E P S Q iff (35,5 < i:
since @ (H,j) E Q) AN (Vk,j <k <i:
(H,}) = P)
P B Q@ | Always P in the past | (H,i)) =P B Qiff (H,i) = P
back to @ S$Q)V((H,i)=N1P)
oP Previously P (H,i) = oP iff (H,i—1) P
with ¢ > 0
Qp To P Equivalent to (e—P) A P

For example, a requirement saying that "for a mine, an alarm has to be
triggered as soon as methane is detected in the mine" could be translated in:

Vm1 : Mine
methane(my) = true = o bell(m;) = ON

Assuming that methane and bell are attributes of the Mine entity and ON
is a constant value.

Bounded Time Operators

Requirements like the one in the example here are rare, a more realistic
version of it may be: "for a mine, an alarm has to be triggered in the
three seconds following methane detection". Although such bounded time
operators are not present in classical temporal assertions. To express such
requirements, KAOS uses three kinds of bounded time operators.

Relative time bound refers to a time distance from the current state.
The requirement given above is an example of such time bound. To define
such relative time bounds, a temporal distance function between states must
be introduced:

dist : N x N — D where D = {d|3n:d=n x u}
dist(i,j) = |j — 1| xu

Where u corresponds to the chosen time unit, e.g. second, microsecond, days,
week, etc. Note here that if multiple time unit are used, they are implicitly
converted into the smallest one. Time operator Q4P will correspond to
Sooner or later within deadline d, P. The semantics becomes:

CHAPTER 2. REQUIREMENTS ENGINEERING 20

(H,i) | O<aP iff 35,5 > i Ndist(i,j) < d: (H,j) E P
where d € D. Our requirement " for a mine, an alarm has to be triggered in
the three seconds following methane detection " will be translated into:
VYmy : Mine
methane(mi) = true = Q<3 sec. bell(my) = ON

With a unit time u corresponding to one second.

Absolute time bound is used for requirements that refer to an absolute
time system, e.g. "Book copies shall be returned by the end of the year for
inventory". To do this, every time point of the system has to be associated
to the actual time in Time. It is done by a clock function:

clock : N — Time
clock(i) = clock(0) + dist(0, 1)

Time operator Q< P will correspond to Sooner or later before clock time ct,
P. The semantics becomes:

(H,i) | O<aP iff 3,5 > i Aclock(j) < ct : (H, j) = P
Where ct € Time.

Variable dependant time bound allows to refer to state variables of
the object model, attributes or associations, whose values may change over
time. Those kinds of variable time bounds are generally the most used
in requirements, e.g. "For every cinema, reservations are closed three hours
before the beginning of the projection" refers to projections p in a cinema and
to the beginning of the projection p.Time. Variables may express relative
time bounds, like a delay, or absolute time bounds, like a fixed date. The two
functions dist(i, j) and clock(i) will be used to define such time bounds. For
a state variable sv expressing a delay the semantics of the operator O«g(sv) P
is:

And Vk,i < k < j: clock(k) — clock(i) < VAL i (d(sv))

Where VAL ;(d(sv)) corresponds to the value of the variable
dependent deadline d(sv) at time position k along history H

For a state variable sv expressing a fixed real time point the semantics of
the operator O« (s P is:

(Ha 7’)): <><ct(sv)-P iff 35,5 > (H’]) ‘: P
And VE,i < k < j:clock(k) < VAL k(ct(sv))

Where VALp 1 (ct(sv)) corresponds to the value of the variable
dependent clock time ct(sv) at time position k along history H

CHAPTER 2. REQUIREMENTS ENGINEERING 21

2.3.5 Responsibility Model

The responsibility model presents the different agents of the system and
their responsibility in terms of desired behaviours. Declaring a responsibility
assignment of a goal to an agent intuitively means that the agent is the only
one required to restrict its behaviour so as to ensure the goal. Responsibility
assignments are graphically represented by a link with a red circle. They
provide a criterion for stopping the goal refinement process. As stated before,
a goal assigned to a software agent becomes a requirement, while a goal
assigned to an environment agent becomes an expectation, also sometimes
called assumption.

Criterion (Stopping goal refinement process). A goal assigned as the re-
sponsibility of a single agent must not be refined further.

Control and Monitor Links

The intuitive meaning of a responsibility assignment says that the agent
behaviour is able to fulfil the assigned goal. It means that the agent is able
to read and modify elements of the object model according to the definition
of the goal. On the other side an agent may be responsible for a goal if and
only if it has the capabilities to read and write elements used in the goal’s
definition. Those capabilities are captured in the model through Monitor
and Control links. The former links an agent to an element of the object
model if the agent can read this element. The second links an agent to an
element of the object model if the agent can modify this element. To avoid
interference problems between concurrent executions of agents, the following
meta-constraint is defined.

Meta-constraint 2.3.2 (Single control). An element of the object model
may be controlled by at most one agent.

Agent behaviours are made more explicit in the operation model where
the operations needed to fulfil a goal are declared and linked to the goal
through operationalization links. A meta-constraint states that the agent
responsible for the goal will be the one performing those operations that
operationalize that goal.

Agent Diagram

Agent’s capabilities and responsibilities are presented in an agent diagram.
For instance, figure [2.10| presents the agent diagram of a pump controller,
used in a mine to avoid flooding. The PumpController is monitoring the
Mine.water Level and Mine.methane attributes and controlling the Mine.pump
attribute. According to the water level and the presence or not of methane,
the PumpController will launch or stop the pump. The pump controller

CHAPTER 2. REQUIREMENTS ENGINEERING 22

Achieve[Pump Started WHEN
HighWater EXPT if Gas
Detected]

Achieve[Pump Stopped WHEN
Gas Detected]

Achieve[Pump Stopped WHEN
LowWater EXPT if Gas Detected]

Figure 2.10: Agent diagram: pump controller

Control __ o

Mine

pump : OnOff
Monitoring jp{bell : Boolean
methane : Boolean

PumpController

waterLevel : Level

»
Monitoring

example will be more systematically introduced in the beginning of chapter

4l

Context Diagram

Another kind of diagram can be used to present both agent capabilities and
how information will low in the system. The context diagram is sometimes
used in an early phase of the elicitation process, e.g. a management system
where information flows from one agent to another. It also usually facilitates
the responsibility assignment. Figure 2.11] presents the context diagram for
the mine pump example where according to some sensor’s data a pump is
switched on or off and an alarm may be triggered to notify miners of the
presence of methane in the mine.

AlarmController Mine. bell

Mine.methane

/
Methane Sensor

Mine.methane

PumpController Mine.pump
Mine.waterLevel

Figure 2.11: Context diagram: mine pump

2.3.6 Operation Model

As explained in the previous sections, an agent will have a declared behavior
corresponding to a sequence of state transitions for the object attributes
and associations that the agent controls. Those transitions correspond to
executions of operations performed by the agent.

CHAPTER 2. REQUIREMENTS ENGINEERING 23

Achieve[Pump Started WHEN
HighWater EXPT if Gas

Detected]

A
PumpController
Performance
Input
Mine
<Output
pump : OnOff

bell : Boolean
methane : Boolean
waterLevel : Level

Figure 2.12: Starting the pump operation model

The operation model presents the operations which have a name, a defini-
tion, a domain pre-condition and a domain post-condition with their inputs
and outputs and the agent that performs it. The domain pre-condition of
an operation characterizes the input states when the operation is applied
and the domain-post-condition of an operation characterizes the class of
output states when the operation has been applied. Both pre-conditions
and post-conditions do not care about required conditions for goal satis-
faction, e.g. for an operation StartPump, the domain pre-condition will be
m : Mine,m.pump = off and the domain post-condition will be m :
Mine, m.pump = on, the condition here does not care if methane is de-
tected before starting the pump or not.

An operation is linked to a leaf goal by an operationalization link and to
an agent by a performance link with the meta-constraint:

Meta-constraint 2.3.3 (Responsibility). The agent performing the opera-
tion must be responsible of the operationalized goal.

On a diagram, as in figure 2.12] it will correspond to the two links, on
operationalization link with a blue circle and a responsibility link with a red
circle, linked to the same leaf-goal. Note here that an agent performing an
operation has to have the ability to monitor the inputs of the operation and
control its outputs.

Meta-constraint 2.3.4 (Input/Output). The agent performing the opera-
tion must have capability to monitor the inputs and control the output of the
operation.

CHAPTER 2. REQUIREMENTS ENGINEERING 24

For convenience reasons, those links are not always explicitly represented
in the model but become implicit when an agent is linked to an operation
through a performance link.

Required Conditions for Operationalization Link

To ensure goal satisfaction by executing the operations, an operationalization
link, linking an operation to a leaf goal, has three associated conditions:

o Required pre-condition which is a necessary condition expressed over
the input states for the application of the operation to satisfy the linked
goal. If this condition and the domain pre-condition are true, the
operation may be executed. For example the pre-condition associated
to the StartPump operationalization link in figure will be m :
Mine, m.methane = false.

o Required trigger-condition which is a sufficient condition expressed over
the input states for the application of the operation to satisfy the
linked goal. If this condition and the domain pre-condition are true,
the operation has to be executed. For example the trigger-condition
associated to the StartPump operationalization link in figure will
be m : Mine, m.water Level = high A m.methane = false.

e Required post-conditions which are an additional effect of the operation
must have to fulfil the operationalized goal.

A meta-constraint says that:

Meta-constraint 2.3.5 (Required conditions). For an operationalization
link, required trigger-condition implies required pre-condition.

If this constraint was not fulfilled, it could lead to required trigger-
condition and domain pre-conditions being both true while the required
pre-condition is false. The meta-constraint can be respected by simply re-
placing the required trigger-condition by the conjunction of required trigger-
condition and required pre-condition.

An operation can also operationalize more than one leaf goal. In this case,
if the domain pre-condition holds, the operation may be executed if all of its
required pre-conditions are true and as-soon-as one of its trigger-conditions
is true. The global required trigger-condition becomes the disjunction of all
the required trigger-conditions and the global required pre-condition becomes
the conjunction of all required pre-conditions. According to the required con-
ditions meta-constraint, the global required trigger-condition has to imply
the global required pre-condition.

The interpretation of the operation model is as follows:

For a goal G under the responsibility of an agent A,

CHAPTER 2. REQUIREMENTS ENGINEERING 25

for every operation O operationalizing G, agent A must
guarantee that operation O is applied when O’s domain pre-
condition holds

— as soon as one of O’s required trigger-condition holds
and only if all O’s required pre-conditions hold,

— so0 as to establish O’s domain post-condition together
with all O’s required post-conditions.

Formal Interpretation

Operations, like other elements of the KAOS language, may be formally
defined using linear temporal logic. This may be interesting to do model
checking, particularly for critical components.

An Operation op corresponds to relations between input and output vari-
ables according to the domain pre-condition and the domain post-condition:

[|op|] =def DomPre(op) A oDomPost(op)

Where [|c|] is a notation corresponding to the linear temporal formula giving
the semantics of ¢, and DomPre(op) and DomPost(op) are op’s domain
pre-condition and post-condition.

In the same way, the definition of op’s required pre-conditions ReqPre,
required trigger-conditions ReqTrig and required post-conditions ReqPost
are:

R € ReqPre(op) : [|R|] =def (V¥)[|op|]] = R
R € ReqTrig(op) : [|R|] =aef (V¥)DomPre(op) N R = [|op|]
R € ReqPost(op) : [|R|] =aef (V¥)[|op|] = oR
Where (V) means that all free variables in its scope are universally quan-

tified. Remember here that in the context of linear temporal logic formula,
P = @ is equivalent to O(P — Q).

For example, for the StartPump operation:

e m : Mine, DomPre(StartPump) = m.pump = of f

o m : Mine, DomPost(StartPump) = m.pump = on

e m : Mine, ReqPre(StartPump) = m.methane = false
e m : Mine, ReqTrig(StartPump) = m.waterLevel =

high AN m.methane = false
The semantics of the operation is then:

o m : Mine, [|StartPump|] =gey m.pump = of f Nom.pump =
on

CHAPTER 2. REQUIREMENTS ENGINEERING 26

For the required condition, we have that:

o m : Mine, [|[ReqPre|] =gey (m.pump = of f A om.pump =
on) = m.methane = false

o m : Mine, [|[ReqTrig|] =gey (m.pump = of f Am.water Level =
highAm.methane = false) = (m.pump = of f Nom.pump =
on)

As for goal refinement, completeness, consistency and minimality criteria
are defined to check whether a set of operations correctly operationalize a
requirement or an expectation.

Criterion (Correct goal operationalization). Let Ry, ..., Ry be the required
conditions defined on the operations operationalizing a goal G. This opera-
tionalization is correct if and only if:

[|R1l], - [|Rnl] E G (Completeness)
[|R1l], .- [|Rnl|] & false (Consistency)
G E [|R1]], - [|Rnl] (Minimality)

This criterion may be used to verify the operationalization, e.g. with a
SAT solver to find counterexample for formula [|R1|]A... A[|Rp|]ADom A=G.

Difference Between Goals and Operations in KAOS

In KAOS, there is a difference between goals and operations. Both express
constraints over system state transitions, but a goal expresses constraints on
sequences of transitions while an operation expresses constraints on a single
transition.

It is important to understand that an operation is not "something" that
leads the system from one state A to another state B, but a restriction on
all the possible system state transitions from A to B to those permitted by
the operation.

2.3.7 KAOS’s Supporting Tool

Objectiver |Respect-IT, 2009] is a tool that supports the KAOS method.
The four sub-models are present in it with other tools like a query editor to
interrogate a model with a SQL-like syntax, a use-case model generator to
generate UML use case diagrams [OMG, 2009a,/OMG, 2009b| from operation
models and an EMF connector to permit external applications to connect to
Objectiver and get the currently edited KAOS model in a XMI formatF_-].

!This last feature has been used in our prototype presented in section where EMF
and XMI are also explained

CHAPTER 2. REQUIREMENTS ENGINEERING 27

File Edit View Tools Document Windows Help
BB B OENED B2 SNgBEFE S M NS O zomn %
[Pactag View | HadelView | | BEOCORIE o oD o o o @ ool § Boe 3|0 @
Soolb J l |
N [EL Goaltodel AR-F1

Concept Index

@ 5 WineSump Z
e — ;;

(Agent) ContextDiagram i
(Agent) PumpCantroller (Agent diagram)
(Goal) PumpControlier (Responsibilty)
(Object) Objectliote!
Goallfodel
PumpControlier (Operation)

£ Achievelalarm Triggered WHEN Gas]

© @ Achievejalarm Triggered WHEN Gas] "Res;
7 Achievelline Evacuated WHEN Flooded]

& Acnieve[iine Evacuated WHEN Fiooed] "R ||
: =7

Maintain[Corniect Device
Waintain[P eople Safe] Operation]
S -

Pump Damaged WHEN
Running Dry

S

7 Achieve[Mine Evacuated WHEN Gas Detect
@ & Achieve[Mine Evacuated WHEN Gas Detec

& Achieve[Mine Evacuated WHEN Gas Detectl

T
7 Achieve[Pump Started WHEN HighWater £X] o

§ A s s s o Foy e e

© @ Achieve[Pump Started WHEN HighWater EX| Flooded]

7 Achieve[Pump Stopped WHEN Gas Detectef
Achieve[Pump Stopped WHEN Gas Detecte{
©- @ Achieve[Pump Stopped WHEN Gas Detecte{w|

L)

Achisve[Mine Ewacuated

& MineSump [Package] [BL (Agent) PumpControlier (Agent diagram) AR-F2 :

[Proportes | eighborhood | ecumeis |
Achieve[Pump Started WHEN

== ineSump [HighWater EXPT if Gas
MW waterevel Under Detected]
‘| control WHEN Pump
N on]
: pump : OnOf|
: Achieve[Pump Stopped WHEN bell : Boaleal
5

[y 24, 2010 4:38:19 PN INFO: Vour 05 is: Windows Vista 6.0 x86
ifiuay 24, 2010 4:38:19 PM INFO: Search local OpenOffice instaliation
fiuay 24, 2010 4:38:13 PN INFO: You seem to run OpenOiffice 3.1
Afivay 24, 2010 4:38:33 PN INFO: Running on: Java(TW) SE Runtime Environment 1.6.0_20-b02

fuay 24, 2010 4:38:33 PN INFO: LOCALE IS en_US: IGNORING THE COMPILED METHOD FILE /methods/kaos.omt

[| Concnangea |

Figure 2.13: Objectiver print screen of the mine pump example [Respect-1T,
2009

Figure shows a print screen of the mine pump example encoded with
Objectiver. The concept index tree one the top left shows all the elements
present in the KAOS model. The diagram editor on the right part shows
the currently edited Goal model and PumpController agent diagrams. The
property editor on the bottom left part of the print screen is used to edit
properties of the concept currently selected in the concept index tree.

Chapter 3

Formal Modelling for
Specifications

This chapter introduces the notion of formal modelling with, in the first
section, a general overview of formal methods. The second section focus
on a particular formal method, Event-B, used to model systems as discrete
transition systems.

3.1 Overview of Formal Methods

Formalization has been steadily growing in computer sciences for years, first
used for program specifications, it is now used for specifications in the large
as in Event-B which can, as we will see, be used to specify a complete system
and its context. Before going into details, we give a short overview of the
current formal method scene inspired from [Abrial, 2010} Ball, 2008 /Clarke
and Wing, 1996|van Lamsweerde, 2000,[Monin and Hinchey, 2003].

Formal methods aim at producing formal specifications which are defined
as "the expression, in some formal language and at some level of abstraction,
of a collection of properties some system should satisfy" |[van Lamsweerde,
2000]. The properties that should be satisfied will classically be discovered
during the requirements phase. The specifications are expressed in a formal
language composed of syntax with a semantics relying on a mathematical
substratum and a proof theory defining rules for inferring useful information
from the specification. For example, in the elaboration of a compiler, the
used language for describing a grammar may be BNF, relying on the theory
of formal languages and automata. The benefit of a rigorous semantics is
the absence of ambiguities and thus a better communication between the
stakeholders implied in a system and its development. Note that it may be
useful to use multilingual specifications, with good consistency management,
to address the different classes of consumers and their backgrounds.

Formal specifications are precise and may be formally verified to ensure

28

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 29

consistency and correctness. Pay attention here that precise does not mean
formal. A specification can be precise and yet not formally verifiable [van
Lamsweerde, 2000]. In the classical development process, if a mistake is
discovered in a "late-phase", e.g. bugs in the final product are typically
such mistakes; this mistake will generally be more difficult to repair. This
is why reliable specifications are so important [Monin and Hinchey, 2003|.
Especially if a failure in the system may have important consequences, go-
ing from recovery issues to money or even human lives loss. By having
consistency and correctness being proved for a given specification, a lot of
mistakes may be avoided; for instance mistakes due to inattention, mistakes
coming from bad reasoning, etc. Moreover, being precise, the specification
is non-ambiguous and mistakes due to bad communication between differ-
ent stakeholders can be avoided, assuming that the different stakeholders
understand the semantics of the formal language used to write down the
specification of the system.

Verifications in formal methods can be classified into two general families
|Clarke and Wing, 1996]. The first one, called model checking, will verify
that a desired property holds in a finite model. This verification in made
by an exhaustive state space search that is guaranteed to finish since the
model is finite. The second one, called theorem proving, will find a proof
for a property from the description of the system. This may be done using
axioms and inference rules of the mathematical logic in which the system
and desired properties are expressed. FEach step in the proof appeals to
those axioms and rules, and possibly derives definitions and intermediate
lemmas.

The choice of a formal method will depend on several factors, like the
system scope, the kinds of property, the level of abstraction, etc. A classi-
fication of formal specifications, according to the paradigm they rely on, is
proposed by van Lamsweerde in [van Lamsweerde, 2000] :

o A history-based specification presents the maximal set of admissible
histories of a system, its behavior, over time. It uses time operators to
express temporal logic assertions about system objects. For example
the formal layer used in KAOS.

e State-based specifications describe the admissible states for a system at
some arbitrary snapshot. The properties are expressed in invariants,
constraining the system objects at any snapshot, and pre- and post-
assertions constraining the application of system operations at any
snapshot. Pre-assertions capture weakest necessary conditions on input
states for an operation to be applied, while post-assertions capture
strongest effect conditions on output states if an operation is applied.
This category contains languages such as Z [ISO/IEC, 2002|, VDM
[Jones, 1990 or B [Abrial, 1996lSchneider, 2001], the ancestor of Event-
B.

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 30

o Transition-based specifications describe required transitions from state
to state. The properties are specified by a set of transition functions
in a state machine. A transition function for a system object gives,
for each input state, triggering event and eventually pre-condition, the
corresponding output state. Statecharts [OMG, 2009b, p. 525] are
included in this category of formal specifications.

o Algebraic specifications specify a system as a structured collection of
mathematical functions. This collection usually contains constructor
functions, used to create simple elements, and additional functions
having a definition based on the constructor functions. For example,
an algebraic specification of the Booleans will have true and false as
constructor functions and all other classical operators like A, V, etc.
as additional functions. Languages based on the Common Algebraic
Specification Language |Bidoit and Mosses, 2004], a specification lan-
guage constructed with the aim to subsume many existing specification
languages and based on first-order logic with induction, enter in this
category.

e Operational specifications characterize a system as a structured collec-
tion of processes that can be executed by some more or less abstract
machine. Petri net and process algebras [Hoare, 1985| belong to this
category.

The number of developments using formal methods, and success sto-
ries going with them, is growing each year, and contrary to the commonly
accepted idea, the cost spend to obtain such higher quality products de-
creased [van Lamsweerde, 2000|. Despite that fact, the main lack in formal
methods is the absence of constructive methods for building correct spec-
ifications for complex systems in a safe, systematic and incremental way.
Actual techniques generally pay no attention to the upstream of the soft-
ware lifecycle and the products, like the requirements document, from which
the formal specification is coming.

3.2 Event-B: a Formal Specification Language for
System Design

The goal of formal modelling techniques is to specify an unambiguous system
in such a way that it could be formally verified to guarantee consistency and
correctness. Such a specification will, in case of Event-B, lead to a coded
system correct by construction, where the final code will be the result of a
process starting from a very general model that will be refined into more
detailed model, refined in its turn, etc.

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 31

Event-B is one of those techniques used to model discrete transition sys-
tems. This section is largely inspired by Abrial’s and Baal’s works [Abrial,
2010,Ball, 2008, the RODIN deliverable 3.2 [Métayer et al., 2005] and Robin-
son’s concise Event-B summary [Robinson, 2009].

3.2.1 General Overview

Event-B is issued from a simplification and an extension of the B-Method,
also called Classical-B |Abrial, 1996, Schneider, 2001|. Both of them are
mathematical approaches for developing formal models of systems.

Event-B models are discrete models made of states, represented by state
variables, constants and invariants over these variables, and transitions ac-
tivated under certain conditions. Transitions, also called events, are condi-
tioned by a guard constructed over the variables and constants, representing
the necessary condition for the occurrence of the event and defined by ac-
tions that describe how the variables will be modified after the occurrence
of the event. The variables and constants definitions and manipulations rely
on set theory, while conditions are expressed using propositional and predi-
cate calculus. A model will describe the active part in a machine, with the
variables, invariants and events, but it will also describe the environment
or context of this active part, with the static properties of the system. The
model is thus a closed model able to exhibit actions and reactions between
a machine and its context.

An event, which is defined as an observable transition of state variables
takes no time. As a direct consequence, two events can’t occur at the same
time. An informal execution interpretation of an Event-B model can be the
next:

e If no guards are true, the model execution stops and the system is said
deadlocked.

e If one or more guards are simultaneously true, one corresponding event
may occur and the state is modified accordingly to the actions defined
for the event.

This introduces some kind of non-determinism and in Event-B, no assump-
tions are made concerning the chosen event when more than one guard is
simultaneously true. If the model has at most one guard true at all time, it
is said to be deterministic. An Event-B model execution does not have to
finish and may run forever.

To manage the complexity, models will be constructed incrementally
thanks to abstraction and refinement, starting from an abstract model grad-
ually refined into a more precise and concrete model. This refinement process
will introduce more and more variables in the model. To handle this, the
abstract model may be decomposed into independent parts. The refinement

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 32

process will guaranty that the concrete model is coherent with the abstract
model.

The Event-B method uses proof obligations to check consistency and
correctness of the model, e.g. proving the coherence between an abstract
model and its refinement. Those prove obligations may be generated and
partially or completely proved by an automated tool [RODIN, 2010|. To do
this, the properties of the specification will be used and failures will give
indications about what may be wrong in the model. There are two large
families of proof obligations:

e The invariants preservation property which states that under those
invariants and the event guards, the invariants still hold after execution
of the events actions, or in other words conditions over state variables
have to be always true.

e The second family is the reachability property which states that events
where the guard is not necessary true will be executed in a certain finite
period.

More informations about proof obligations will be given in subsection [3.2.3]

3.2.2 Machines and Contexts

MACHINE
CONTEXT
variables .
. . carrier sets
mvaraints
constants
theorems .
. axioms
vanant
theorems
events

Figure 3.1: Machine and context structures

Event-B models are constructed using two kinds modelling elements, ma-
chines and contexts. Machines are used to represent the active part of the
system, while context can be used to parametrize the model, e.g. attribute’s
domains or entity instances in the real world. A model containing only con-
texts will represent a pure mathematical structure. If the model only con-
tains machines it means that it is un-parametrized. Classic Event-B models
mix both machines and contexts, linked together like in figure [3.2

The link between two machines is a refinement link, describing the fact
that the refining machine is more concrete that the refined one. A machine
can only refine at most one other machine and putting such a link will add
proof obligations to the model.

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 33

CONTEXT 0
extends
MACHINE 0 CONTEXT 1 CONTEXT 3
refines sees wlds /e]xtencls
MACHINE 1 sees CONTEXT 2
refines
MACHINE 2

efines

MACHINE 3

Figure 3.2: Machines and contexts links

Contexts can be linked to zero, one or more contexts through extension
links, meaning that all the sets and constants of the extended contexts can
be used in the extending context e.g. in figure the context CONTEXT_2
can use sets and constants defined in contexts CONTEXT_1 and CONTEXT_3.
This notion is transitive, e.g. CONTEXT_2 can also use sets and constants from
CONTEXT_O.

A Machine may see zero, one or more contexts, meaning that the con-
stants and sets defined in those contexts can be used in the machine. Like
the transitivity of context extension links, a machine can implicitly see all
the contexts extended by an explicitly seen context, e.g. in figure ma-
chine MACHINE_3 can use sets and constants from CONTEXT_1, CONTEXT_2
and CONTEXT_3. If the machine refines another machine, the number of its
explicitly or implicitly seen contexts must be as large as the one of the re-
fined machine, e.g. the link between MACHINE_2 and CONTEXT_1 is necessary
because of the link between MACHINE_1 and CONTEXT_1. Put together, the
"extends" and "refines" relationships must not contain any cycle.

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 34

Context

Figure[3.3|shows the general structure for contexts in Event-B models. Every
context has a name which is unique in a model and a list of extended contexts
with zero, one or more identifiers corresponding to the extended contexts
names.

CONTEXT <name>
EXTENDS <context identifier list>

SETS

< set identifier list >
CONSTANTS

< constant identifier 1list >
AXIOMS

< label >: < predicate >
THEOREMS

< label >: < predicate >
END

Figure 3.3: Context structure

The SETS clause introduce the names list of carrier sets which defines
pairwise disjoint types. Those carrier sets are not empty and can be de-
ferred or enumerated by constants. If the carrier set is an enumerated set,
the enumeration will be declared by an axiom over the set and constants ac-
cessible in the machine, e.g. the BOOL set provided by default contains TRUE
and FALSE and represents the Boolean domain. The constant identifiers in-
troduced by the CONSTANTS clause are unique in the context and all extended
contexts, e.g. TRUE and FALSE are constants provided by default.

The axioms have a label and a predicate formulated over constants and
sets e.g. the expression partition(BOOL,{TRUE},{FALSE}) means that the
BOOL set is partitioned into two subsets: {TRUE} and {FALSE}. In other
words, BOOL = {TRUE,FALSE} N\TRUE # FALSE. Those predicate
will serve as hypotheses in all proof obligations.

Contrary to axioms, theorems are propositions that have to be proved,
using the local axioms, axioms and theorems from extended contexts and
theorem that have been proved before the theorem to be proved. The labels
of axioms and theorems have to be unique.

Here is an example of context for the mine pump briefly presented in the
previous chapter. A more complete version of this context will be described
in chapter

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 35

Listing 3.1: Mine pump context

CONTEXT MineContext
SETS
ONOFF, LEVEL

CONSTANTS
ON, OFF, LOW, MEDIUM, HIGH

AXTOMS

axml : partition(ONOFF,{ON},{OFF})

axm2 : partition(LEVEL,{LOW },{ MEDIUM },{HIGH })
END

Machine

Figure shows the general structure for machines in Event-B models. Ev-
ery machine has a name which is unique in a model and may refine another
machine, identified by its name. A machine can see zero, one or more con-
texts and use the constants and sets explicitly or implicitly defined in those
contexts.

MACHINE <name>
REFINES <abstract machine identifier>
SEES <context identifier list>
VARIABLES

< variable identifier list >
INVARIANTS

< label >: < predicate >
THEOREMS

< label >: < predicate >

EVENTS
<event_ list>

END

Figure 3.4: Machine structure

The clause VARIABLES introduces the list of variables of the machine.
Their names are all distinct, but unlike contexts, some variables may be
the same as some variables in the abstract machine if they have the same
name. Variables may appear in invariants predicates. When a variable of
the abstract machine appears in an invariant of the concrete machine, this
invariant is said to be a glueing invariant, glueing the state space of concrete
machine to the one of the abstract machine. As for the context, theorems of
the machine will have to be proved, using the axioms and theorems of seen

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 36

contexts, invariants and theorems of the abstract machine, and invariants
and theorems that have been proved before the theorem to be proved in
the machine. As for context, labels of theorems and invariants have to be
unique.

In Event-B machines, one can also use the notion of VARIANTS, but this
will not be explored in the remainder of this work. We refer the interested
reader to [Abrial, 2010).

Here is an example of machine for the mine pump briefly presented in the
previous chapter. A more complete version of this machine will be described
in chapter [4

Listing 3.2: Mine pump machine

MACHINE PumpControllerMachine

SEES MineContext
VARIABLES
pump
bell
methane
waterLevel

INVARIANTS
invl: pump € ONOFF
inv2 : bell € BOOL
inv3 : methane € BOOL
inv4d : waterLevel € LEVEL
EVENTS
END

Event

Events are introduced in a machine by the EVENTS keyword. Figure gives
the general form of an event. An event has a name, a status and may refine
one or more events of the abstract machine if there is one. Generally, status
is omitted for ordinary events.

The any clause introduces zero, one or more parameters for the event. It
corresponds to a universally quantified new variable. Guards, which are the
necessary conditions for the event to occur, follow the where clause. Note
that this clause is sometimes replaced by when if there is no parameter for
the event.

When an event refines another one, parameters of the abstract event
introduced by the clause any may disappear in the concrete event. In this
case, a witness has to be provided for each parameter which is initialized with
a non-deterministically chosen value in the abstract event, e.g. a parameter
taking a non-deterministic value in a set that has disappeared in the concrete
event to set the value of this parameter in the concrete event. A witness must
also be provided if a variable of the abstract machine that has disappeared
in the concrete machine, is used in the abstract event, i.e. if the variable is

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 37

Event <event_identifier> =
Status { ordinary , convergent , anticipated }
extends <event identifier list>
any
< parameter identifier list >
where
< label >: < predicate >
with
< label >: < witness >
then
< label >: < action >
end

Figure 3.5: Event structure

present after the VARIABLES clause in the abstract machine and is used in
the event of the abstract machine and is absent after the VARIABLES clause in
the concrete machine. This witness is indicated after the with clause and is
constituted of a label and a predicate involving the concerned parameter or
variable. This predicate can be deterministic, if for a parameter or variable
a it has the form a = FE with F free of a, or non-deterministic.

Finally, the then keyword introduces the list of actions of the event. As
all actions are performed simultaneously, a single variable can be modified
in at most one action to avoid inconsistencies. There are three kinds of
actions, the first one is deterministic and the second and third ones are
non-deterministic.

e The simple assignment action x := FE replace the occurrences of x
by the expression E. A special form of this substitution exists for
functions: f(x) := E means that the expression f at point x, takes
the value E. This is a shorthand for f := f <+ {z — E}, where < is
the overriding operator.

e The choice by predicate action x :| P arbitrarily chooses a value for
the variable x, such that the predicate P is satisfied. In P, often
called before-after predicate, the value of the variable before the action
is represented by x and the value of the variable after the action is
represented by z’.

e The choice from set x :€ S arbitrary chooses a value from the set S.
This is the same as the choice predicate = :| 2’ € S.

Sometimes, when the set of actions is empty for an event, this set is
represented by the skip keyword. For notational convenience, multiple single

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 38

actions x := F, x := F may be grouped into an equivalent multiple action
notation z,y := E, F.

Every machine has at least one event called Initialisation. This event
is called once and is used to set the initial values of the variables. It may
have only actions and it is the first event called in a machine.

Below is an example of events for the mine pump briefly presented in the
previous chapter. A more complete version of this machine will be described
in chapter [4

Listing 3.3: Mine pump machine

EVENTS
Initialisation
begin
a4 actl: pump, bell, methane, waterLevel := OFF, FALSE, FALSE, LOW
en
Event high water detected =
h
v e%rdl : waterLevel = HIGH
grd2 : methane = FALSE

hen
the actl: pump := ON
end
Event low water detected =
when
grdl : waterLevel = LOW
then
actl: pump := OFF
en
Event updateMethane =
any
hersetatus
w
grd2 : status € BOOL
then
actl: methane := status
end
Event wupdate WaterLevel =
any
ol
w
grd2 : level € LEVEL
then
actl : waterLevel := level
end
Event methane detected =
when
grdl : methane = TRUE
then
actl: pump := OFF
end

A summary of Event-B expressions notations can be found in [Robinson,
2009).

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 39

3.2.3 Proof Obligation Rules

Proof obligations define what has to be proved in an Event-B model. There
are eleven kinds of proof obligation rules that can be generated from a model,
and partially or totally proved by automatic tools like RODIN |RODIN,
2010].

A complete description of the proof obligations can be found in |Abrial,
2010|, the most interesting ones are presented hereafter. Since all actions can
be represented as a choice by predicate action with a before-after predicate,
for what follows, all actions are normalized under this form. To explain the
proof obligations, we will consider a machine M (s, ¢, v) where s denotes the
seen sets, ¢ the seen constants and v the variables of the machine. Ax(s,c)
represents the seen axioms and theorems and Inv(s, ¢, v) represents the local
invariants and theorems.

Invariant Preservation The invariant preservation proof obligation rule
ensures that each invariant of a machine is preserved by each event.

For each invariant inv and event evt with a guard Guard(s,c,v,z),
where = represents the parameters of the event, and a before-after predi-
cate BAP(s,c,v,z,v") where v’ is the values of the variables after the event,
and invariant inv(s, c,v), we will have to prove that:

Axioms and theorems Azx(s,c)
Invariants and theorems Inv(s,c,v)
Guards of the event Guard(s,c,v,x)
Before-after predicate of the event | BAP(s,c,v,z,v)
- -

Modified Specific Invariant inv(s,c,v")

Modified Specific Invariant represents the considered invariant inv with up-
dated variables v’.

Feasibility This proof obligation rule ensures that for variables v of a ma-
chine, non-deterministic actions are feasible, i.e. the before-after predicates
of those actions are declared in such a way that a value can effectively be
found for the variables v. For each event evt and each before-after predicate
BAP(s,c,v,x,v") of a non-deterministic action act, we will have to prove
that:

Axioms and theorems Azx(s,c)

Invariants and theorems Inv(s,c,v)

Guards of the event Guard(s,c,v,x)

- -

v’ Before-after predicate | 3v'- BAP(s,c,v,z,v")

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 40

Guard Strengthening To be sure that when a concrete event is enabled,
then so is the corresponding abstract one, this proof obligation guarantees
that the concrete guard of the concrete event is stronger than the abstract
one in the abstract event.

Witnesses are used in refining events to assign a value to parameters and
variables that have disappeared during the refinement. The concrete event is
thus made more precise than the abstract one since if parameters and vari-
ables has disappear, it means that their values has been fixed to a constant.
For each concrete event evt with a witness predicate Wit(x, y, s, ¢, w), where
y represents the parameters of the abstract event and w the variables of the
abstract machine, refining an abstract event evt,,s with an abstract guard
Guardgs(s,c,w,y), we will have to prove that:

Axioms and theorems Az(s,c)
Abstract invariants and theorems | Invgs(s, ¢, w)
Concrete invariants and theorems | Inv(s,c,v,w)

Concrete event guards Guard(s,c,v,x)
Witness predicates for parameters | Wit(z,y, s, ¢, w)

- -

Abstract event specific guard Guardgps(s, c,w,y)

The abstract invariants and theorems are represented by Inuvgps(s, ¢, w)
and the concrete invariants and theorems are represented by Inv(s,c,v,w),
with variables v declared in the concrete machine and seeing the abstract
variables w, coming from the abstract machine, in case of a glueing invariant
for instance.

Guard Merging In the same way, when a concrete event is merging two
abstract events, this proof obligation ensure that the guard of the con-
crete event is stronger than the disjunction of the guards of the abstract
events. For each event evt refining two abstract events evtlyps with a guard
Guardlgps(s, c,w,y) and evt2,ps with a guard Guard2q4s(s, ¢, w,y), we will
have to prove that:

Axioms and theorems Az (s, c)

Abstract invariants and theorems | Invgps(s, ¢, w)

Concrete event guards Guard(s,c,v,x)

- -

Disjunction of abstract guards Guardl gps(s, ¢, w,y)
VGuard2.ps(s, c,w,y)

Simulation Proof The guard strengthening proof obligations ensure that
when a concrete event is enabled, so is the abstract one. It does not care
about the actions of the events. The simulation proof obligation is con-
cerned with this point, by verifying that in a concrete event, the actions are

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 41

correct simulations of the actions of the abstract event. Correct simulation
meaning that what the concrete event does is not contradictory with what
the abstract event does. For each concrete event evt refining an abstract
event evty,,s and each abstract action actys with a before-after predicate
BAP (s, c,w,y,w"), we will have to prove that:

Axioms and theorems Az(s,c)
Abstract invariants and theorems | Invgps(s, ¢, w)
Concrete invariants and theorems | Inv(s,c,v,w)

Concrete event guards Guard(s,c,v,x)
Witness predicate for parameters | Wit(y, s, ¢, v, z,v")
Witness predicate for variables Wit(w', s, c,v, x,v")
Concrete before-after predicate BAP(s,c,v,x,v)

+ +

Abstract before-after predicate BAP (s, c,w,y,w')

Non-deterministic Witness Witnesses are used in refining events to as-
sign a value to parameters and variables that have disappeared during the
refinement. This proof obligation rule ensures, for a parameter or variable
x, that this value really exists regarding the witness predicate. For each
concrete event evt and each abstract parameter y, we will have to prove
that:

Axioms and theorems Azx(s,c)
Abstract Invariants and theorems | Invgps(s, ¢, w)
Concrete Invariants and theorems | Inv(s,c,v, w)

Concrete event, guards Guard(s,c,v,x)
- -
dy- Witness Jy-Wit(y, s,c,v,)

Theorem Proof Theorems are usually used to simplify proofs and make
automatic proof obligations resolutions easier. This last proof obligation rule
is concerned with the proof of those theorems in the different machines and
contexts of the model.

3.2.4 Event-B Model Decomposition Techniques

The traditional Event-B approach is for now quite linear and not very modu-
lar. Works are currently ongoing to solve those problems [Abrial, 2009,/ But-
ler, 2009 [Pascal and Silva, 2009| by decomposing an Event-B model. Decom-
position makes it possible to manage the complexity of models that increases
through the refinement process.

Pascal and Silva present in |Pascal and Silva, 2009| a description of the
two techniques used to split a machine into smaller pieces. The first one,

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 42

called Fvent-Based decomposition or B-style decomposition encapsulates the
variables in different machines together with the events or parts of events
that concern those variables. A variable will thus not appear in more than
one machine. The events that have been split will need to be synchronized
in order to ensure the functionalities of the original machine. The synchro-
nization will take place by an exchange of inputs and outputs between the
synchronized machine’s events. Figure shows how a machine M is split
into two machines M; and Ms with a shared event e;. The Event-Based
decomposition will not be explored further here and more details about this
decomposition can be found in [Butler, 2009).

Machine M
.
el eﬂl el ed4
i+
’ L
vl w2 v3
'
1
s e
r’/ a‘"‘*\
Machine M1 4 A Machine M2
el e2_1 e2_2 el ed
v vz (w3

Figure 3.6: Event-Based decomposition [Pascal and Silva, 2009|

The second technique, called State-Based decomposition or A-style de-
composition [Pascal and Silva, 2009] splits the variables in different machines.
A variable may thus be present in more than one machine. Such a variable
is called shared variables. One of the machines will be the one which effec-
tively updates a shared variable. To keep the other machines synchronised,
a special event, called external event, will be added to those other machines.

Shared variables must be kept synchronized between the different ma-
chines if they are refined. A simple way to overcome this is to forbid data
refinement. Data refinement takes place when a variable is refined in a sub-
machine using a glueing invariant. As proved by Abrial in [Abrial, 2009|,
the system can be rebuilt into a single machine at the end of the process.
In practice this will rarely be done since the different machines will lead to
different software components.

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 43

State-Based Decomposition

GeneralMachine

Variables
vl, v2, v3, sharedV

Invariant

Events
el, e2, e3, evtA, eviB

7 R

Decomposing Decomposing

MachineA MachineB
Internal variables Internal variables
vl, v2 v3

n External variables
External variables
sharedV sharedV
. Invariant
Invariant
Internal events
Internal events e3, evtB
el, e?, evtA External event
) extEvtA
L e e e —m — |

<- Abstraction of
Figure 3.7: Decomposition of a general machine into two sub-machines

In the State-Based decomposition, for a general machine, variables and
events will be distributed to several machines with some of those variables
present in more than one machine decomposing the general machine. It is
important to notice here that the machines are not refining the general ma-
chine, but are decomposing it. When a machine B refines another machine
A, it means that B is more concrete than A and that the proof obligations
are fulfilled. In the case of decomposition, the variables, events and invari-
ants coming from the decomposed machine, are simply copy-pasted in the
decompositions, i.e. the decomposing machines. In the machines, a distinc-
tion is made between the internal variables used only in a particular machine
and the shared variables used in more than one machine.

Figure shows an example of decomposition, a machine A has an event
evtA called internal event that will modify the value of a shared variable
and another machine B has an internal event evtB using the variable’s value
in its guard. To express the fact that the variable is not a constant in B, an
external event evtExtA will be added to B corresponding to an abstraction
of the internal event evtA in A. The added event evtExtA is present in B to
synchronize the update of the shared variable in the general machine between
machine A and machine B. As when an abstract event is refined by a concrete
event, triggering the concrete event evtA implies that its abstraction extEvtA
is also triggered.

It is clear that shared variables coming from the general machine may be

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 44

replicated in more than one machine decomposing it. The problem is that
each machine could normally refine its variables and the same replicated
variable could be refined in one way in one refinement and in another way
in another refinement. If this happens, the two sub-machines can’t commu-
nicate any longer as they are not using the same convention on the shared
variable. Such a variable has a special status in the sub-machines where
they reside saying that this variable has always to be present in the state
space of any refinement of the machine. A shared variable can thus not be
data-refined or if it is, the variable has to be refined in the same way in each
sub-model using the variable, which can be heavy.

The same argument is used with external events. Those events are
present to notify that a shared variable has not a constant value. This
external event will have a concrete implementation in one machine, where
this event is an internal event, and will stay abstract in all other machines.
As for shared variables, an external event may not be refined.

3.2.5 Event-B’s Supporting Tool

Event-B - MINE_PUMP_CLEAR ET_NET/Pump(

File Edit Mavigate Search Project Run ProB Refactor Event-B Window Help
. Q- A~ - B R R = £ @ Proving [Event8 |
E; Event-B Explorer &% = B[@ PumpController @ PumpCentroller_refinement 5% = B[8= outline 52 =g
<> < ~
= | ¢ E dh > INVARIANTS © PumpController
o @ MineContext
% methane
K eh2_cer > VARIANT > waterLevel
1= MaisQueMettentlisDedans > pump
= MINE_PUMP_CLEAR_ET_NET
@ MineContext = EVENTS > MINE
INITIALISATION
gi:a.mgun?u::av,mfmamem ® 7 4 % high water detected
armController
© AlamControllerold P % @ |INITIALISATION|: |edtended ~+| [ordinay ~ # updatePump
£ o m
gm::::i::z::m D&% @ |high water detected : |notedended -| |ordinay - 4 o grd2
X o grdl
gME‘“”ESE”S”'-’E“”E’"E"‘ b % & [low water detected|: |notedtended <| [ordinary ~| /[T 5 grda
MinePump
- o grda
@ MinePumpReunification P 5 @ |methane_detected| : |notexended « ordinary ~| /|Int| & actl
@, PumpController
- % low water_detected
@ PumpController_old D% @ |updateMethane|: |edended - ordinary ~| // Externa % methane detected
@ PumpController_refinement F % dateMeth
@, WaterLevelSensor D% @ |updateWaterLevel|: |etended ~ ordinary ~| 4/ [Exte o “F’datswst E’L‘e)
updatewaterLeve
@ WaterLevelSensor_old z d
: D% @ [addMine|: [edended | [odinay <| //[External even % addMine
@ WaterlevelSensor_refinement
= minipilot0.4.2 P
= ModuleDecompe END
12> Test_decomposition -
7 test_module_decomposition < i v
[testevents Pretty Print | Edit | Synthesis | Dependencies
Train_Mode_Eample — = ==
g T’EII’_MDdE; Exel:p\(e [Z1 Rodin Problems | ! Properties &3 = Tasks RODIN Keybeard | (") Project Explorer = a
Basic Label high_water_detected b
Extended: not extended =
Conv: ordinary -
Internal Event ~

Figure 3.8: RODIN editor: print screen of the mine pump example [RODIN,
2010]

RODIN |[RODIN, 2010| is a tool that supports the Event-B method. It
is based on the Eclipse platform and includes an Event-B machine/context
editor and a proof obligation tool. The proof obligation tool generates the

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 45

Proving - MINE_PUMP _CLEAR ET _NET/PumpController.bps - Rodin Platformy

File Edit Mavigate Search Project Run ProB EditorMenu Window Help

[Q- v B S L I R,
It Proof Tree &3 = O |[@ PumpController_refin @ *PumpControlier 52 2
=
= updatePumpiact! WD

rites in hyp (partition(ONOFF,{ON},{0FF})
rewrites in hyp (partition(LEVEL,{LOwW},{H B

on rewrites in hyp (partition(MINE_SET,{N & meMINE
.ification rewrites
‘pe rewrites

@ MethaneSensor -
@ MethaneSensor_old
@ MethaneSensor_refinement
@ @ MinePump
eh (ONOFF={ON,0FF}) & ~ LOW=MEDIUM @ MinePumpReunification

m]

LEVEL={LOW, MEDIUM,HIGH}

7 eh (MINE_SET={M})
4 (7~ goal Statel © Variables
@ hyp <y Invariants
4 2 v hyp (pump(m)=0Nvpump(m)=0FF) |[[% Goal 52 =0 ., Events
a4 (70 he (pump(m)=0N) © Proof Obligations
@ pumps{M} -+ {pump(m),0FF} @ @ MinePump_inv6/THIV, _

. @, PumpController
— i Aw—uTen

pumpe{M} —+ {pump(m),0FF}

4 (7) he (pump(m)=0FF) @" MinePump_invg/THIV ~
© pumpe{M} - {ON,pump(m)} @ MinePump_invd/ THIV|
7 ¥ goal (frees pumpo') G INITIALISATION/Mine,

G INITIALISATION/Mine|
@ INITIALISATION/Mine
@ updatePump/grd2/Wi
@" updatePump/grd2/TH
@" updatePump/MinePu
@" updatePump/actl /WL
B Proof Control &2 [Statistics| [Z Rodin Problems ®~ =0 @" updatePumpyactl /FIS

W@ oo - By & o 9 3 @ updateMethane/Mine

@" updateWaterLevel/gre

@ updateWaterLevel/gre
@" updateWaterL evel/Mi
@" updateWsterLevel/act

@' updatewsterLevel/act

@* addMine/MinePump_

@" addMine/MinePump_

@" addMine/MinePump_

@ PumpContraller_old -
D

. ; ||

@ > It Select a new proof node

Figure 3.9: RODIN proof obligations tool: print screen of the mine pump
example [RODIN, 2010|

proof obligations for the different elements of the Event-B model and helps
to automate the proofs as much as possible.

Figure|3.8|shows a print screen of the mine pump example encoded with
RODIN. One the left side, the project explorer shows the different Event-B
projects with the machines and contexts into each one. On the right side,
an explorer shows the different elements of the currently selected machine or
context. On the center of the screen, the machine/context editor allows to
edit the currently opened machine/context. On the bottom of the screen, the
property editor allows to edit the properties of the opened machine/context.

Figure [3.9| shows a print screen of RODIN’s proof obligations tool. On
the right side, the Event-B explorer shows the different proof obligations
that has been proved in green or that has to be proved in brown. On the
left side, the proof obligation tree shows the different steps of the currently
opened proof. On the center of the figure, the goal frame shows what has
to be actually proved at the currently selected node of the proof obligation
tree. The frame on the top shows the different hypothesis taken to reach
the selected node of the proof obligation tree. At the bottom of the frame,
the proof control view contains the buttons which can be used to perform
an interactive proof, e.g. adding a hypothesis or using an auto-prover.

CHAPTER 3. FORMAL MODELLING FOR SPECIFICATIONS 46

3.2.6 Requirements Engineering and Event-B

Event-B is used to model complete systems. A general development process
could be the creation of an Event-B model from requirement documents.
This model will be refined until this specification is fine-grained enough to
generate B, using the RODIN2B tool for instance. The generated B specifica-
tion will then be refined in turn to make automatic code generation possible,
providing programs formally derived from an Event-B model. The problem
here is the gap between the requirements and the initial Event-B model.
Requirements will be translated into Event-B. This translation is usually
non-systematic and non-repeatable and relies principally on the skills of the
analyst. If we don’t deny that the talent of the person in charge of the initial
Event-B specification is important, it is perhaps possible to facilitate his job
by bringing some methodological perspective in the process. Such attempts
actually exist and we will briefly present here some of them.

Abrial describes in [Abrial, 2010] a parallel between requirements ex-
pressed in a requirements document and definitions and theorems as they
can be found in mathematical books. According to him, requirements doc-
uments should, as in those books, separate explanatory text from reference
text, which will constitute the requirements as they will be used latter in
the development lifecycle. The reference text is constituted by a set of short
statements written using natural language. Each one of them has an asso-
ciate number, for traceability purposes, and a label qualifying the nature of
the requirement, e.g. FUN for functional requirement, ENV for environment
requirement, SAF for safety requirement, etc.

Siemens uses a similar method, described in [Falampin et al., 2009|. Sys-
tem requirement specifications correspond to documents written in natural
language. An Event-B model is manually derived from those documents,
using a refinement plan. This plan’s purpose is to help modelling and proof
by describing the modelling choices and an abstraction ordering of the re-
quirements. As underlined by [Falampin et al., 2009|, the main properties,
e.g. avoiding collisions in a train transportation system, are usually not ex-
plicitly explained, but all the functionalities of the system will be means to
reach those properties. This implies that an additional abstraction work is
needed when the refinement plan is written.

Other approaches, like the one proposed by Bosch |[Lecomte, 2009| that
uses Michael Jackson’s problem frames, exists. Chapter [5| will present three
of those approaches. They use KAOS and its linear temporal logic formal
layer to express requirements and then translate them to Event-B models.

Chapter 4

KAOS to Event B: Proposed
Approach

This chapter presents our approach to construct an Event-B model starting
from requirements expressed in a KAOS model. A number of techniques
to translate a goal requirement model into an Event-B model already exist.
Those will be exposed and compared to our approach in chapter

4.1 Presentation of the Approach

We propose in our work a semi-formal method to build a bridge between a
KAOS model and an Event-B model. To build this method, we start with
the following general objectives:

e Method will work from KAOS to Event-B

e A fine grained traceability should be provided

Method should be automated when possible

Iterative/incremental development should be possible

Method should respect KAOS and Event-B semantics

e Method should be at least semi-formal

With those points in mind, we define our method, where starting from
the requirements expressed in a KAOS model, we will build step by step
an Event-B model where each element will be justified by a requirement.
This justification will be implemented through traceability links between the
two models. A set of rules will be defined to keep the links between the
models consistent. By working so, the KAOS model may be incomplete and
enriched later, even if the elaboration of the Event-B model has started. The
construction process may thus be iterative and incremental. The analyst can

47

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 48

switch between the two models and modify them, as long as the traceability
rules are respected.

4.1.1 Overview

KAQS Object Step 1: Derivation of Event-B
Model Context and Machine from
KADS Object model

— L

Initial Event-B Initial Event-B Traceahility
Machine Context links

KAOS Model

h

KAOS
Responsibility
Model

Step 2: Decompaosition
— of the initial model
according to Agents

—

Enriched
traceability
links

Event-B Agent Machines
decomposing Initial
Machine

[B "l
Kaos ASET'S Step 3: Deriving Events from
Responsibility > Agent's assigned
___T—-"_ Requirements/Expectations
Enriched
Event-B traceability
model

links

Figure 4.1: Proposed method overview

Figure .| presents an overview of our method. The KAOS model is
constructed using different views, leading to different kinds of models linked
together:

e In the first step, starting from the KAOS object model, an initial
FEvent-B machine and an initial Fvent-B context are created to repre-
sent the data and very general update events are declared in the initial
machine to represent the fact that those data evolve in time.

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 49

e In the second step, the initial machine is decomposed using a special
mechanism called state base decomposition explained in subsection
[4.3.1] so that for each agent in the KAOS model, exists a machine in
the Event-B model associated to this agent. Let us call such a machine
an agent machine.

This agent machine will get, during the decomposition process, some
variables and events coming from the initial machine representing el-
ements of the KAOS object model. Those variables and events will
correspond to the elements of the KAOS object model that the KAOS
agent monitors or controls.

e The third step is, for each agent machine, to derive in a sub-machine
refining the agent machine, the events from the requirements/expecta-
tions assigned to the KAOS agent associated to the agent machine. The
requirements/expectations are coming from the KAOS agent’s respon-
sibility model. As explained in section 2.2.2] a KAOS agent will exert
an adequate control on the system items to reach its assigned goals.
The system items correspond to the different elements of the KAOS
object model, and the adequate control on those items, described on
the requirements/expectations, is made explicit through the control
and monitor links declared in the KAOS agent’s responsibility model.

This last step is not automatic in our method and will need the skills of
the analyst. The goal here was not to automatically derive a complete
Event-B model from the KAOS model but rather giving a frame and
directions to derive Event-B from requirements, with traceability links
to justify and explain the elements of the Event-B model by elements
coming from the requirements.

4.1.2 Final Result

Figure @.2] presents how the Event-B model created by the process will be
structured. To make the model more readable, the sees links between each
agent machine and their sub-machines and the initial context are not repre-
sented.

Applying the process to a KAOS model with an object model O and
{ai,...,a,} agents will result in an Event-B model with: an initial machine
representing the data manipulated by the system coming from O with gen-
eral update events to represent the fact that those data evolve; an initial
context describing the data types used in O; a set of agent machines {AM;
..., AM, } where each agent machine corresponds to a KAOS agent.

Those agent machines will decompose the initial machine. An update
event coming from he initial machine will be an internal event, that may
be refined in sub-machines, in an agent machine if the agent controls the
KAOS element from which the update event comes from. An update event

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 50

Initial Machine

VARIABLES
a, b, c

INVARIANTS
mvA, mvE, mvC

UPDATE EVENTS updateA, updateB, updateC

ﬁecmlqmsed\ecmlmose(l

Agent Machine A Agent Machine B
SHARED VARIABLES SHARED VARIABLES
a, b b, c
INVARIANTS INVARIANTS
mvA, invB mvB, nvC
INTERNAL EVENTS INTERNAL EVENTS
updateA updateB. updateC
EXTERNAL EVENTS EXTERNAL EVENTS
updateB f
refines refines
A Refinement 1 B Refinement 1
SHARED VARIABLES SHARED VARIABLES
a,b b, c
INVARIANTS INVARIANTS
invA, invB mvB, invC
INTERNAL EVENTS INTERNAL EVENTS
requirement] refines ndpateA requirement2 refines udpateB updateC
updateB /

Figure 4.2: Final result of the proposed method

will be an external event, that may not be refined in sub-machines, in an
agent machine if the KAOS agent monitors the KAOS element from which
the update event comes from.

For each agent machine AM corresponding to a KAOS agent a, a refine-
ment AMRef is created. The requirements/expectations under the respon-
sibility of a will be implemented in AMRef by variables, invariants and/or
events. If a requirement/expectation updates an element of the KAOS ob-
ject model, all the events implementing this requirement/expectation will
refine the update event corresponding to that KAOS element. This update
event must be external in the agent machine and thus correspond to a KAOS
element controlled by a.

Each time an element of the Event-B model is derived from an element of
the KAOS model, a traceability link is recorded to glue the two models. To

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 51

preserve consistency between the two models, those links will have to follow
some rules described hereafter.

The derivation of the initial machine and context is presented in section
4.2 The decomposition into agent machines is described in section [4.3]
Section presents the traceability links between the KAOS model and
the Event-B model with a list of criteria to keep the links between the two
models consistent. In section 4.7, some examples describe what will happen
if one model is modified.

4.1.3 Example

Maintain[Safe Mine]
A
Maintain[Correct Device
Maintain[People Safe] Operation]
7 R

R

Pump Damaged WHEN
Flooding Danger Running Dry

v A X

A

Achieve[Mine
pvoitFioodngl /' | macuatea wHeN
A £\ AN

Flooded]

Achieve[Mine Evacuated
WHEN Gas Detected]

A

Achieve[Pump Achieve[Alarm giner q Achieve[Pump
Stopped WHEN Triggered M"aCUaV'\’I‘SEN Stopped WHEN
Gas Detected] WHEN Gas] i3 LowWater EXPT if

Alarm On

AlarmController

Achieve[Pump
Started WHEN
HighWater EXPT if
Gas Detected]

WaterLevel Under
Control WHEN Pump
ON

Gas Detected]

Figure 4.3: Mine pump goal model

In the remainder of this chapter, we will use the mine pump example in-
troduced in chapter 2] to illustrate the different steps of the proposed method.
Figure|d.3|presents the goal model and the different agents responsible for
the requirements and expectations. Figure shows a view of the respon-
sibility model with controlled and monitored objects: the PumpController
controls the pump attribute and monitors the methane and waterLevel at-

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 52
< /
Monitorini M°“J|t°”n9

Mine Control

pump : OnOff /
NaterLevelSensor Control —» bell : Boolean
8 l@———Control

methane : Boolean

waterLevel : Level

Monitoring f T Monitoring

Control ~ Monitoring “AlarmControll
armController

PumpController

Figure 4.4: Mine pump responsibility model

tributes, the AlarmController controls the bell attribute and monitors the
methane attribute, the WaterLevelSensor controls the waterLevel Attribute,
the MethaneSensor controls the methane attribute and the Miner monitors
the bell attribute.

4.2 Step 1: Derivation of Event-B Context and Ma-
chine from KAOS Object Model

In KAOS, every concept used in a definition in the goal model has to be
defined in the object model. This means that when the goal model is com-
plete, all predicates used in the formal definition of goals and in particular
requirements and expectations have been defined in the object model [van
Lamsweerde, 2009} Landtsheer, 2007b]. It seems thus interesting to translate
in a way or another the object model to Event-B, so concepts manipulated
in formulas have an equivalent in the Event-B model.

As Event-B uses set theory to define and manipulate data, the KAOS
object model could be quite easily transformed into an Entity-Relationship-
Attribute model (ERA). Tools like DB-Main [REVER, 901| can automati-
cally transform such a model into a relational model compliant with rela-
tional databases. The relational nature of the diagram allows getting an
Event-B model from it with a simple syntactic transformation. Moreover,
as relational databases are the most used database management systems,
the relational diagram could be used to generate SQL data definition code.
But, this method implies more than one transformation and the generated
data definition in the Event-B context and machine may be more difficult to
manipulate.

Snook et al. define in [Snook and Butler, 2006,yah Said et al., 2009]

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 53

a method to transform a UML Class diagram into a classical B machine.
This method may be adapted, in fact it can almost be applied as-is, to
transform the KAOS Object model which corresponds to a simplified UML
Class diagram to an Event-B machine and its associated context.

From now on we will take the following conventions: the name of the
KAOS model elements will be those defined in the KAOS meta-model [van
Lamsweerde, 2009] which corresponds to the concepts presented in section

[2.3] on page 1]

4.2.1 Object Types and Attributes

A set OBJECT_SET of all possible objects belonging to a certain object type is
defined in the initial context for each object type. The set 0BJECT of all the
existing instances known by the system of a certain object type is defined
in the initial machine, that will see the initial context, and belongs to the
powerset denoted P of O0BJECT_SET:

OBJECT € P(OBJECT _SET)

The domains of the atiributes are defined in the initial context. In par-
ticular, non standard types or enumerated domains are specified in com-
prehension or in extension. Attributes are represented in the Machine by a
partial or total function according to the multiplicity of the attribute, from
an element of the OBJECT set to an element of the domain of the attribute.
The table gives the transformation rules for the different multiplicities
of an attribute of object type 0. In this table, P1(TY PE) represents the
non-empty subsets of TY PE), it is equivalent to P(TY PE) \ {@}.

Table 4.1: Transformation rules for KAOS Attributes

KAOS at- | Corresponding function Event-B Invariant

tribute

a: TYPE [1..1] | Total function to TYPE acO—=TYPE

a: TYPE |0..1] | Partial function to TYPE acO+TYPE

a: TYPE [1..n] | Total function to non-empty sub- | a € O — P1(TY PE)
set of TYPE

a: TYPE [0..n] | Total function to subsets of TYPE | a € O — P(TY PE)

4.2.2 Associations and Specializations

Association They may be directed or not and will be represented in the
initial machine by functions. Table on page [67] gives the transformation
rules for the different kinds of directed associations. An undirected associa-
tion corresponds to two opposite directed associations and can be managed

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 54

as two directed associations with an additional invariant saying that if on
exists, then the other exists too. For an association linking A to B with
multiplicities [al..a2] and [bl..b2]

A —al..a2 bl..b2—B
The result in Event-B will be :

A set AtoB according to the rules in table
A set BtoA according to the rules in table
An additional invariant:
Va,y-(x € ANy € B) & (AtoB(z) = y < BtoA(y) = z)

j _Entitys_|
Ceminy | T] o] [s |

al.b1 a3..b3 al.bl a3.b3
a2..b2

a2..b2

[_entiy2_] Entity2

Figure 4.5: N-Ary Association are seen as an Entity with N directed Asso-
ciations

As shown in figure[4.5] an n-ary association will be seen as an entity with
N directed associations to the different objects of the n-ary association.

Specialization In case of specialization, instances usually belong to one
and only one sub-object type and sub-objects instances are disjoint. As
stated by Snook and Butler [Snook and Butler, 2006|, when translating from
KAOS to Event-B, the instances of the sub-objects will be declared as a sub-
set of super-object’s current instances. For instance, three object types, one
Parent and two sons Sonl and Son2 specializing Parent will be translated
in Event-B as three variables PARENT, SON1 and SON2 in the machine and one
set PARENT_SET in the context. The three fallowing invariants will be added
to the machine:

PARENT € P(PARENT _SET)
SON1 € P(PARENT)
SON2 € P(PARENT)
SON1N SON2 =g

The Specialization may be more precise, e.g. in case of a total special-
ization where all the instances must be one of a sub-object type then the
sub-objects instances sets cover the set of super-object instances and the
following invariant is added:

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 55

SON1USON2=PARENT

4.2.3 General Update Event

In addition to the variables and invariants created to represent the differ-
ent elements coming from the KAOS object model, the initial machine will
also contain general update events to represent the fact that those elements
may evolve in time. Each element of the KAOS object model will thus be
translated by a set of variables, a set of invariants and one update event.

An update event will have actions that update the variables correspond-
ing to the associated KAOS element. In an automated generation, those
actions will preserve the invariants generated in this step, but it may be
more precise (for now this precision has to be added manually to the Event-
B model).

For example, as shown in listing 4.2} the attribute switch with a domain
State = {ON,OFF'} will be translated in the initial machine by a variable
switch with an invariant switch € STATFE, where STATE is a set defined in
the initial context containing the constants ON and OFF. In place of having an
update event updateSwitch with an action defined as a before-after predicate
saying that switch’ € STATE, we may have a more precise action defined
as a before-after predicate saying that if switch = ON then switch’ = OFF
or if switch = OFF then switch’ = ON. So, not only values at a given
state are constrained, but also state transitions.

4.2.4 Example: Initial Machine and Context for the Mine
Pump

By applying the procedure described in this section to the mine pump ex-
ample, we get the initial context from listing and an initial machine from
listing [4.2) describing the objects of the KAOS object model. The initial ma-
chine includes the attributes and the update events for all those attributes,
note here that in the listing only the update method for the pump at-
tribute has been shown. The update method of others attributes follows the
same pattern. The complete machines of this example can be found in annex

(Al

Listing 4.1: Mine pump example: Initial context

CONTEXT MineContext
SETS

ONOFF, LEVEL, MINE_SET
CONSTANTS

ON, OFF, LOW, MEDIUM, HIGH, M
AXIOMS

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH

axml : partition(ONOFF,{ON},{OFF})
axn2 : partition(LEVEL, {LOW}, {MEDIUMY}, { HIGHY)
axm3 : partition(MINE _SET,{M})

END

56

Listing 4.2: Mine pump example: Initial machine

MACHINE MinePump
SEES MineContext
VARIABLES
MINE, pump, bell, methane, waterLevel
INVARIANTS
invl: MINE € P(MINE SET)
inv2: pump € MINE — ONOFF
inv3: bell € MINE — BOOL
inv4 : methane € MINE — BOOL
inv5 : waterLevel € MINE — LEVEL
EVENTS
Initialisation
begin

actl: MINFE, pump, bell, methane, waterLevel := &, 3,3, D, D

end
Event wupdatePump =

General update event for the pump attribute defined in the KAOS

object model

any
h
WIS A1 - m e MINE
grd2 : pump(m) = ON V pump(m) = OFF
then
actl: pump : |(pump(m) = OFF A pump’ = (pump < {m —
ON}))
V (pump(m) = ON A pump’ = (pump <+ {m
OFF}))
end

END

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 57

Table 4.2: Transformation rules for KAOS directed Associations [Snook and

Butler, 2006|

The two object types are A and B and al..a2 — b1..62 in the table
represents the multiplicities for an association :

A —al..a2

——bl..b2—> B

According to our convention, the objects sets in Event-B will be called A

and B.

The disjoint macro in the table is defined as:
(Val,a2-(al € dom(AtoB) A a2 € dom(AtoB) N al #

a2 = AtoB(al) N AtoB(a2) =

2))

KAOS as- | Corresponding function Event-B Invariant

sociation

multiplic-

ity

0. — 0..1 | Partial function to B AtoBe A+ B

0.+ — 1..1 | Total function to B AtoBe A— B

0..x — 0..x | Total function to subset of B AtoB € A— P(B)

0..x — 1..x | Total function to non-empty sub- | AtoB € A — P;(B)
set of B

0..1 — 0..1 | Partial injection to B AtoB € A~ B

0..1 — 1..1 | Total injection to B AtoBe€ A— B

0.1 = 0.+ | Total function to subsets of B | AtoB € A — P(B) A
which don’t intersect disjoint

0..1 — 1..x | Total function to non-empty sub- | AtoB € A — P1(B) A
sets of B which don’t intersect disjoint

1.+ — 0..1 | Partial surjection to B AtoB € A+ B

l.x — 1..1 | Total surjection to B AtoBe A—- B

l.x = 0.+ | Total function to subsets of B | AtoB € A — P(B) A
which cover B union(ran(AtoB)) =

B

l.x = 1..x | Total function to non-empty sub- | AtoB € A — P1(B) A

sets of B which cover B union(ran(AtoB)) =
B

1.1 — 0..1 | Partial bijection to B (partial in- | AtoB € A - B A
jection defined for all the ele- | Vb-(b € B = (Ja-(a €
ments of B) AN (a—b) € AtoB)))

1.1 - 1..1 | Total bijection to B AtoB € A— B

1.1 —» 0..x | Total function to subsets of B | AtoB € A — P(B) A
which cover B without intersect- | union(ran(AtoB)) =
ing B N disjoint

1..1 = 0..x | Total function to non-empty sub- | AtoB € A — P1(B) A

sets of B which cover B without
intersecting

union(ran(AtoB)) =
B Adisjoint

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 58

4.3 Step 2: Decomposition of the Initial Model Ac-
cording to Agents

At the end of the first step of our process, we get an initial context and an
initial machine representing the KAOS object model. All elements (Object,
Attributes and Associations) of a given KAOS object model will be trans-
lated in the initial machine in one ore more variables, one or more invariants
and one event representing the update of the element.

Decomposition makes it possible to manage the complexity of models
increasing through the refinement process. It may be interesting to have an
early decomposition to break an initial machine into smaller pieces pertinent
with the KAOS agents. This idea has been inspired by Ball’s thesis [Ball,
2008|, where the behaviour of TROPOSTI agents modelling concurrent sys-
tems in a distributed environment is transposed into Event-B machines. In
our case, this choice is made because the KAOS meta-model says that an
association or an attribute can be controlled by one and only one agent [van
Lamsweerde, 2009, Landtsheer, 2007b, Letier, 2001]. The idea is thus to
have separate machines with the attributes monitored and controlled by the
agent. Remind that an attribute or association is controlled by an agent
if the agent performs one or more operations that modify the attribute or
association value. An attribute or association is monitored by an agent if
the attribute or association is an input of one or more operation performed
by the agent.

However, the Event-Based decomposition (see sub-section on page
used by Ball in its approach may not be used in our case, because a
variable coming from the initial machine will be present in more than one
machine decomposing the initial machine since the attribute or association
associated to this variable may be monitored by more than one agent. The
State-Based Decomposition seems to suit our problem better.

The agent machines will get, during the decomposition process, some
variables and events coming from the initial machine representing elements
of the KAOS object model. Those variables and events will correspond to
the elements of the KAOS object model that the KAOS agent monitors or
controls. Let us call "an event in an agent machine updating an element of
the object model, that the KAOS agent associated to the machine controls"
a control event. An event in an agent machine updating an element of the
object model, that the KAOS agent associated to the machine monitors will
be called a monitor event. The monitor events are put in an agent machine to
represent the fact that a certain element of the object model, monitored by
the KAOS agent, may be modified in time. Control events will be the events
effectively triggered by the KAOS agent associated to the machine. Control
events will be the only events effectively refined in sub-machines refining the

' A goal oriented modelisation language [Bresciani et al., 2004]

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 59

agent machine. Both monitor and control events are coming from the initial
machine through the decomposition process.

4.3.1 State-Based Decomposition Applied to the Initial Ma-
chine

We propose to use the State-Based decomposition after the creation of the
initial machine and context from the KAOS object model, as presented in sec-
tion [£.2] with one agent machine per KAOS agent. The reason of this choice
is simple, the KAOS meta-model states that an attribute or association can-
not be controlled by more than one agent [van Lamsweerde, 2009, Letier,
2001, Landtsheer, 2007b|. So it means that in Event-B, a shared variable
will be updated in at most one agent machine, while an external event may
be placed with each variable coming from the KAOS object model in zero,
one or more other agent machines.

The following algorithm gives the different agents machines decomposing
an initial machine InitM with an initial context InitC according to a given
KAOS responsibility model:

e For each KAOS agent ag:

— Create an agent machine AgM
— Declare the InitC context as seen by the AgM machine

— For each element elem of the KAOS object model monitored but
not controlled by ag:

x Copy the variables of InitM corresponding to this elem in
AgM and mark those variables as shared
x Copy the update event of InitM corresponding to this elem
in AgM and mark this event as external
— For each element elem of the KAOS object model controlled by
ag:
x Copy the variables of InitM corresponding to this elem in
AgM and mark those variables as shared
x Copy the update event of InitM corresponding to this elem
in AgM and mark this event as internal
— For each invariant Inv of InitM:

x If Inv uses only variables present in AgM, i.e. variables corre-
sponding to an element of the KAOS object model controlled
or monitored by the agent ag, then copy Inv in AgM

Note here that an update event will be replicated as an internal event
in one agent machine and to external events in zero, one or more agent
machines. At this step, all those events have the same definition. Agent

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 60

machines will be refined to make the different internal events more concrete.
It means that the update events, and thus the external events defined in
other agent machines are indeed abstractions of the concrete internal events
defined in one agent machine’s refinements.

4.3.2 Example: Decomposing the Initial Machine for the

Mine Pump
: MineContext
MinePump
sees__ o SETS
LS ONOFF, LEVEL, MINE_SET
decomposed decomposed
e MINE,pump,bell, CONSTANTS
methane, waterLevel ON,OFF, LOW,MEDIUM,HIGH|
EVENTS
updatePump,updateMethane,
updateWaterLevel .updateBell
decomposed decomposed
WaterLevelSensor AlarmController
SHARED VARIABLES SHARED VARIABLES
MINE, water_evel MINE,bell, methane
INTERNAL EVENTS INTERNAL EVENTS
updateWaterLevel updateBell
EXTERNAL EVENTS EXTERNAL EVENTS
/ updateMethane
PumpController MethaneSensor
SHAE.IFI\?EVARIABLES SHARED VARIABLES
-pump. MINE, methane
methane,waterLevel !
INTERNAL EVENTS INTERNAL EVENTS
updatePump updateMethane
EXTERNAL EVENTS
updateMethane, EXTERNAL EVENTS
updateWaterLevel /

Figure 4.6: Decomposition of the initial machine

The initial machine created for the mine pump will be decomposed into
four agent machines. Figure presents this decomposition with the agent

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 61

machines and their shared variables, external and internal events. For no-
tational convenience, the sees link between each agent machine and the
MineContext has been omitted.

4.4 Step 3: Implementing Requirements and Ex-
pectations Assigned to an Agent

Each agent machine has now a list of shared variables with invariants re-
lated to those variables and a list of events representing the evolution in
time of those variables. Those events may be partitioned in internal events
for the variables linked to KAOS elements controlled by the KAOS agent
and ezternal events for the KAOS elements monitored by the KAOS agent.
Only internal events will be made more concrete by refinement in the agent’s
sub-machine according to the KAOS agent’s behaviour declared in the KAOS
requirements/expectations, while external events will be refined in other ma-
chines.

One requirement/expectation of the KAOS model will be translated in
one or more events, with maybe additional variables and invariants, in the
sub-machine refining the agent machine associated to the KAOS agent re-
sponsible for the requirement/expectation. If the requirement/expectation
needs to update some element of the KAOS object model to be satisfied, as-
suming that the KAOS agent effectively controls this element in the KAOS
model, then the update events associated to that element are refined by the
events translating the requirement/expectation, making the update more
concrete. This translation is repeated for each requirements or expectations
placed under the responsibility of the agent.

To introduce KAOS requirements/expectations for one agent machine,
we will proceed as follow: First create a refinement of the agent machine.
Every requirement and expectation under the responsibility of the KAOS
agent may be translated by zero one or more variable, zero one or more
invariants and/or zero one or more events evts in this sub-machine. For
instance, a requirement/expectation saying that the agent has to keep an
error rate value under a certain level may be translated as an invariant in
Event-B. Another requirement /expectation saying that the agent has to up-
date a value of the system according to a value coming from the environment
may be translated as an event in Event-B.

If the requirement /expectation modifies the value of an element elem of
the KAOS object model, then the events evts implementing the require-
ment/expectation will refine the update event declared in the agent machine
and associated to elem. So, every event in the sub-machine updating a vari-
able declared in the parent agent machine will refine the update event that
modifies the value of this variable in the parent agent machine. We assume
here that the KAOS model is consistent and that the refined events are all

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 62

internal events, meaning that the KAOS element they are coming from is
effectively controlled by the KAOS agent linked to the refined agent machine.

Listing [£.3| presents the implementation of the requirements under the re-
sponsibility of the PumpController agent. In this refinement, the updatePump
internal event is refined in three more concrete events: the high_water
_detected event implements the requirement Achieve/Pump Started WHEN
HighWater EXPT if Gas Detected], the low_water_detected event imple-
ments the requirement Achieve/[Pump Stopped WHEN LowWater EXPT if
Gas Detected] and the methane_detected event implements the requirement
Achieve[Pump Stopped WHEN LowWater Gas Detected]. This machine and
all the other machines of this example can be found in Appendix

Listing 4.3: Mine pump example: PumpController refinement machine

MACHINE PumpController refinement
REFINES PumpController

SEES MineContext
VARIABLES

methane, waterLevel, pump, MINE
EVENTS

Initialisati
extend%g

begin
q actl : MINE, pump,methane, waterLevel := &, J, &, &
en
Event high_water detected =
Internal Event derived from requirement Achieve|[Pump Started WHEN
HighWater EXPT if Gas Detected|
refines updatePump
any
here
WIS 42 : m € MINE
grdl : waterLevel(m) = HIGH
grd3 : methane(m) = FALSE
grd4 : pump(m) = OFF
then
actl: pump(m) := ON
end
Event low water detected =
Internal Event derived from requirement Achieve|[Pump Stopped WHEN
LowWater EXPT if Gas Detected|
refines updatePump
any
where
grdl: m € MINE
grd2 : waterLevel(m) = LOW
grd3: pump(m) = ON

actl: pump(m) := OFF
end
Event methane_ detected =
Internal Event derived from requirement Achieve|Pump Stopped WHEN
Gas Detected|

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 63

refines updatePump
any
where
grdl : m € MINE
grd3: pump(m) = ON
grd4 : methane(m) = TRUE
then
actl: pump(m):= OFF
end
Event updateMethane =
External event .
Event wupdate WaterLevel =
External event .
Even¥E addMine =
xt

ernal event ...
END

4.4.1 Environment Agents and Internal Variables

In our approach, shared variables and external events may not be refined in
sub-machines due to the State-Based decomposition. This is not a limitation,
because when the KAOS object model evolves, the Event-B model will evolve
too, thanks to the traceability links and rules that will be described in section
4.6l Shared variables and external events are the communication convention
between the different agents. But it is not forbidden for a particular machine
to have internal variables that may be refined and that will not be known by
the other machines. This machine may be an agent machine and variables
will then represent internal variables of the agent.

As KAOS software agents will be part of the system-to-be, they cannot
have internal variables because those variables will be part of the system-to-
be too and will thus correspond to an element of the KAOS object model. On
the other hand, KAOS environment agents, pre-exist to the system. They
have an internal behaviour that is not described in the KAOS model. Only
interactions with the system-to-be are described in terms of expectations
and controlled or monitored variables. However, it may be interesting to
describe some parts of the internal behaviour of KAOS environment agents.
To see how the system will react in case of failure of the environment agent
for instance. The environment agent machines may have internal variables
representing error values, error rates, etc.

In our example, the waterLevel KAOS attribute is updated by the
Water Level Sensor KAOS agent. This agent updates a value of the system-
to-be according to a value coming from the environment and not represented
in the KAOS model. To test the limits of the model and see how it will react
in case of error coming from this sensor, the WaterLevelSensor machine
may have an internal variable representing the effective water level, corre-
sponding to the real water level according to which the waterLevel shared
variable is updated. It may also have a variable representing the error rate
when the effective water level is measured, etc.

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 64

4.5 Different Kinds of Re-compositions

Titial Machine

decomposed decompogzed \decomposed

Agent Machine 1 Agent Machine 3
refines | Agent Machine 2 refines
Agent 1 Refinement 1 efines Agent 3 Refinement 1 refines
refines | Agent 2 Refinement 1 refines
Agent 1 Refinement 2 recomposed | Agent 3 Refinement 2

recomposed Aﬂumsed

Eecomposition Machine

Figure 4.7: Re-composition of the initial machine

After the implementation of the requirements and expectations, we will
have different kinds of machines: an initial machine, agent machines de-
composing the initial machine, sub-machines refining the agent machines,
sub-sub-machines refining those sub-machines, etc.

As proved by Abrial in [Abrial, 2009|, the system can be rebuilt into
a single machine. As shown in figure [1.7] this re-composition will take all
the most concrete machines and will rebuild a machine, refining the initial
machine where all external events will be replaced by their concrete imple-
mentation. This re-composition is done by putting all the variables, invari-
ants and events of the different machines in the re-composed machine and
by removing the external events and duplicate shared variables. Note that
in case of a refinement chain, like for Agent 1 in figure[d.7] this chain will be
bypassed and the events will directly refine the events of the initial machine.
This may be done, thanks to the guard strengthening proof obligations (see
section on page , saying that when a concrete event is enabled so is
the abstract event.

The re-composition of the different sub-machines can be done for several
reasons. The main one is probably the need to observe, via an Event-B

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 65

model animator for instance, the behaviour of the whole system. It may act
as a kind of checkpoint, used with the client for instance, to see if what he
expects to have with the KAOS requirement is actually what he really get
from the system, so errors coming from misinterpretations may be detected.
Another possibility is to make a partial re-composition, by re-composing all
the concrete sub-machines refining a particular set of agent machines. In
this case, the external events that are not implemented in one sub-machine
will not be removed from the re-composed machine.

MinePump
MineContext
VARIABLES
MINE.pump.bell, | SEES = SIEE
methane, waterlevel OMNOFF, LEVEL, MINE_SET
CONSTANTS
EVENTS ON,OFF, LOW,MEDIUM,HIGH,
updatePump,updateBell, 7
updateWater_evel,updateMethane
/
REFINES seel
/
. /
MinePumpRecomposed
VARIABLES
MINE,pump.bell,

methane, waterLevel

EVENTS

high_water_detected,
low_water detected,
methane_detected,

high_to_medium.medium_to_low,
low_to_medium,medium_to_high,

trigger_alarm,

methane_leak

Figure 4.8: Mine pump example: re-composition of the initial machine

For instance, rather than having the behaviour of the all system, we may
have the behaviour of the environment by re-composing the sub-machines
refining the agent machines associated to a KAOS environment agent. In the
same order of idea, we may have the behaviour of the system-to-be by taking
the sub-machines refining the agent machines associated to a KAOS software-
to-be agent. It may also be useful if we want to observe the interactions of

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 66

two particular agents, etc.

In our example, the re-composition of the sub-machines refining the agent
machines will give a re-composed machine MinePumpRecomposed, refining
the initial machine MinePump with the internal events of the different sub-
machines. Figure shows a graphical view of this re-composed machine.
The complete description of this machine can be found in listing on

page in annex [A]

4.6 Traceability Between KAOS and Event-B

The idea here is to have rules to justify elements of the Event-B model by ele-
ments coming from requirements. The goal is to avoid over-specification and
to guaranty that if requirements are discovered or corrected during the elab-
oration of the Event-B model, the requirements documents will be adapted
too to maintain consistency between the specifications and the requirements.

4.6.1 Definitions

Before going further, let us recall some definitions coming from chapter [2]
used in this section to express rules hereafter :

e An abstract object in KAOS is an entity, an agent or an event. Both
agent and event may, like in UML, have a "data part" with attributes.

o An attribute’s domain in KAOS is a domain of values defining the type
of an attribute. This domain may be built-in or user defined.

e An N-Ary association in KAOS is an association with a multiplicity
strictly greater than two.

e An undirected association is a bidirectional association.

e An IsA link in KAOS is a specialization link taking place between two
abstract objects.

e A domain property in KAOS is a property guaranteed by the environ-
ment. This property is assumed to be always true.

We also clearly define here what are the initial context and machine :

Definition 4.6.1. The initial context is the context derived from the KAOS
object model.

Definition 4.6.2. The initial machine is the machine derived from the
KAOS object model with all its variables, invariants and events justified by
elements of the KAOS object model.

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 67

During the derivation, traceability links are created between the elements
of the KAOS model and the elements of the Event-B model. Those links
are derivation links as defined by van Lamsweerde in his hierarchy [van
Lamsweerde, 2009|. A derivation link between two models A and B expresses
the fact that B is build from A under the constraint that A must be satisfied.
In our case, it means that the specification of the system-to-be expressed in
Event-B (B) has to meet the requirements expressed in KAOS (A). This
kind of link is vertical in the sense that they take place for a single version
of the system, opposed to horizontal links, such as a variant or revision link
that take place between different versions.

Definition 4.6.3 (Traceability Link). There is a traceability link between
one element of the KAOS model and one or more elements of the Event-B
model if the Event-B elements are derived from the KAOS element. Trace-
ability links may be defined as a surjective function: traceability : B — K
where B is the set of Event-B elements belonging to an Event-B model de-
rived from a KAOS model containing the elements in K. K contains all the
KAOS elements of the object model, all the agents with the requirements/ez-
pectations they are responsible for and all the monitor and control links.

4.6.2 Initial Machine and Context

Now that we are done with the vocabulary, let us define rules for the Event-B
model derived from the KAOS model. First, we will define rules for the initial
machine and context. Those two elements are build by the transformations
described in section The following rules must be respected to keep the
Event-B model consistent with the KAOS model.

Initial Context

Here are the rules for the sets, axioms and constants that can be found in
the initial context.

Rule 4.6.1. FEach carrier set in the initial context must be linked to one
abstract object, or one attribute domain or one N-Ary association.

Rule 4.6.2. Each constant in the initial context must be linked to one at-
tribute’s domain.

Rule 4.6.3. Fach azxiom in the initial context must be hinked to one at-
tribute’s domain.
Initial Machine

Here are the rules defined for the invariants, variables and events defined for
the update of those variables.

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 68

Rule 4.6.4. FEach variable in the initial machine must be linked to one ab-
stract object or one attribute or one directed association or one undirected
association or one N-Ary association.

Rule 4.6.5. Each invariant in the initial machine must be linked to one
abstract object or one directed association or one undirected association or
an IsA link or an N-Ary association or a domain property.

We will call an update event an event corresponding to the update of
one KAOS element which can be an abstract object, an attribute, an N-Ary
association, a directed association or an undirected association.

Rule 4.6.6. Fach event in the initial machine must be an update event and is
thus linked to one abstract object or one attribute or one directed association
or one undirected association or one N-Ary association.

Note that one element in IKAOS may be translated in more than one
variable in Event-B, e.g. the undirected association that is transformed into
two sets and an additional invariant.

Rule 4.6.7. Each wvariable in the initial machine must appear in one and
only one update event.

Rule 4.6.8. Fach KAOS element which can be an abstract object, an al-
tribute, an N-Ary association, a directed association or an undirected asso-
ciation must appear in the initeal machine.

4.6.3 Agent Machines and their Refinements in the Event-B
Model

According to our approach, the initial machine will be decomposed in a set
of agent machines. Those agent machines will then be refined independently
to describe the behaviour of each KAOS agent of the system under study.
Here are rules for those agent machines.

Machines

An agent machine is a machine decomposing the initial machine. An agent
machine is linked to one KAOS agent. A machine is said as indirectly linked
to an agent if it is refining an agent machine or a machine indirectly linked
to an agent. A machine will be said to be linked to an agent if it is an agent
machine or it is indirectly linked to an agent.

Rule 4.6.9. Each machine in the Fvent-B model that is not the initial ma-
chine must be linked to one agent or must be a re-composition, as defined in
section of several machines.

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 69

Events

An event is said as linked to a requirement or an expectation if it is directly
linked to a requirement or an expectation or if it is refining an event linked
to a requirement or an expectation. Such an event will be part of the imple-
mentation of the requirement or the expectation.

Rule 4.6.10 (Requirements Traceability). Fach internal event in the ma-
chines that are not the initial machine or an agent machine must be linked
to a requirement or expectation under the responsibility of the agent linked
to the machine.

Note that a recomposed machine is implicitly linked to all the agents
corresponding to the machines that are part of the re-composition. We will
say that an event c refines another event a (c refines a) if it refines it directly
or if it refines a third event b that refines the other event a (c refines b refines
a).

The three following rules are not directly related to traceability links,
but are important to keep the Event-B model consistent with respect to the
KAOS model. It enforces what has been explained in section using the
more precise vocabulary introduced at the beginning of this section.

Rule 4.6.11. If an internal event in a machine that is not the initial ma-
chine or an agent machine updates the value of variables corresponding to a
KAOS element, which can be an abstract object, an attribute, an N-Ary as-
sociation, a directed association or an undirected association then the event
must refine directly or indirectly the update event defined in the agent ma-
chine corresponding to this KAOS element.

Rule 4.6.12. If an internal event in a machine that is not the initial machine
or an agent machine refines an update event, the agent linked to the machine
must control the KAQOS element linked to this update event, which can be an
abstract object, an atiribute, an N-Ary association, a directed association or
an undirected association in the KAOS model.

To ensure the KAOS meta-constraint saying that a KAOS element may
be controlled by at most one agent (see subsection on page [21), the
following rule is defined:

Rule 4.6.13. Each update event in the initial machine may be defined as an
internal event in only one agent machine.
4.6.4 General Rule

The last rule to add is the one that links all the others. We said in the
beginning of this section that our goal is to keep the KAOS model consistent

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 70

with the Event-B model, so each element of the Event-B model may be ex-
plained by element(s) of the KAOS model. Note that we haven’t considered
the semantic of the generated Event-B model with regard to the semantic
of the KAOS model. However, the idea of decomposing the Event-B initial
machine into several agent machines, where each agent will give a software
component running in parallel with the other components does not seem to
contradict the KAOS semantic of a system, defined as the parallelization of
the agent’s behaviours. This discussion is left as a future work that has to
be done.

Rule 4.6.14 (Models Consistency). If the rules to are respected,
then the FEvent-B model is consistent with the KAOS model it comes from.

Elements of the Event-B model are effectively derived from elements of the
KAOS model and may be explained by them.

4.7 What happens if ...

One of the advantage of the method we have proposed in this chapter is its
non-monolithic characteristic. The KAOS model may be modified and the
Event-B model will be adapted without re-generating the complete Event-B
model. But going on the other way is also possible, e.g. if omissions are
detected by the specification, an adaptation of the Event-B model may be
transmitted to the KAOS model to keep the requirements consistent with
the specifications of the system. This second approach is however less generic
than the first one since rules to go from KAOS to Event-B are clearly de-
fined. This section will be limited to repercussions, in the Event-B model,
of modifications in the KAOS model by presenting some cases where the
Event-B model is update following a modification of the KAOS model.

4.7.1 ...an element is added in the KAOS object model?

Adding an element to the KAOS object model will result in a modification of
the initial machine and context. This element is added according to the rules
described in section on page p2] to the initial machine and context and
will be propagated to the agent machines and to the sub-machines refining
them.

We assume here that this element is not controlled or monitored by a
KAOS agent, no external event is thus added to an agent machine or its
refinements. Description of what happens when a control link is added is
described in section What happens when a monitor link is added is
described in section [L77.7]

For instance, if we add an mandatory integer attribute depth to the
Mine KAOS object described in subsection [£.1.3] we will update the initial
machine, so it has a new variable depth. With a new invariant depth €

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 71

MINFE — N and a new update event updateDepth with two parameter m
and [, two guards m € MINE and | € N and an action depth(m) := [. Since
the depth KAOS attribute is not controlled or monitored by any KAOS agent,
the depth variable and the updateDepth event will not be transmitted to any
agent machine.

4.7.2 ...an element is removed from the KAOS object model?

When an element is removed from the KAOS object model, the invariants,
variables, update event, sets and axioms issued from its translation, accord-
ing to the rules described in section f.2] on page [62] in Event-B are removed
from the initial machine and context, from the agent machines and from their
refinements. Note that before deleting an element, all the control and mon-
itor links will be removed too. We assume that the KAOS meta-constraint,
imposing that all the elements used to define goals, requirements and expec-
tations must be defined in the object model, is respected. An element will
thus not be removed while at least one requirement or expectation is using
it and thus events linked to requirements and expectations will stay correct
in the Event-B model.

4.7.3 ...an agent is added in the KAOS model?

Adding an agent to the KAOS model means that a new active entity has
been identified. The Event-B model will thus be enriched by a new agent
machine, decomposing the initial machine. When the agent is added, we
assume that it does not monitor or control anything. Those links are added
later in the KAOS model.

4.7.4 ...an agent is removed from the KAOS model?

Removing an agent from the KAOS model means that an active part of the
system is removed. We assume that all the responsibility links between the
agent and the requirements/expectations will be removed or moved to other
agents before removing it. As an agent may be responsible for a requiremen-
t/expectation if and only if he can control all the data that are modified by
the requirement/expectation and monitor all the data read by the require-
ment/expectation, all the monitor and control links will also probably be
moved before the deletion of an agent.

If an agent is removed from the KAOS model, the corresponding agent
machine and all its sub-machines will be removed from the Event-B model.
If one of those machines has been used in a re-composition, all the events
coming from the machine will be removed from the decomposition. Pay
attention that if the agent was still controlling a piece of data when it is
removed and that one of the deleted event in the re-composition was refining

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 72

the update event of this piece of data, the general update event coming from
the initial machine has to be added in the re-composed machine.

4.7.5 ...a control link is added in the KAOS model?

If a control link is added to the KAOS model, the update event linked to
the controlled KAOS element will become an internal event in the agent
machine corresponding to the KAOS agent. We assume that the KAOS
meta-constraint saying that a piece of data can be controlled by one and

only one agent (see section on page is respected.

4.7.6 ...a control link is removed from the KAOS model?

In the Event-B model, when a KAOS agent is controlling a KAOS element,
it means that the update event of this KAOS element is an internal event
in the agent machine linked to the KAOS agent. Removing a control link
means that the KAOS agent can no longer modify a certain KAOS element.
Deleting a control link may only occur in KAOS when the agent is no longer
responsible for requirements/expectations that update the previously con-
trolled element. A more frequent situation will be to move requirements/-
expectations responsibilities to another agent and in the same time, move
control and monitor links needed to be responsible for those requirements/-
expectations to this other agent too.

We assume in what follows that the KAOS agent is no longer responsible
for a requirement/expectations that needs the removed control link to be
fulfilled. It means that in the sub-machine refining the agent machine, the
internal update event had the same definition as in the agent machine before
deletion of the control link. If the KAOS agent still monitor the previously
controlled KAOS element, then the update event is marked as external in the
agent machine and its refinements. If there there is no monitor link between
the KAOS agent and the KAOS element, the update event, variables and
invariants linked to this element are deleted from the agent machine and its
refinements.

4.7.7 ...a monitor link is added in the KAOS model?

When a monitor link is added to the KAOS model, it means that a KAOS
agent will be notified when a certain KAOS element is updated. In Event-B,
it means that the update event linked to this KAOS element is added as an
external event in the agent machine linked to the KAOS agent and all its
refinements.

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 73

4.7.8 ...a monitor link is removed from the KAOS model?

If the KAOS element previously monitored by the KAOS agent is not con-
trolled by this KAOS agent, the external update event, variables and invari-
ants linked to the previously monitored KAOS element will be removed from
the agent machine and all its refinements.

4.7.9 ...anewly created requirement/expectation is assigned
to an agent?

If a new requirement /expectation is added to the KAOS model and assigned
to an agent, it means that the agent’s behaviour is modified. We assume
here that the agent has effectively the ability to control and monitor the
KAOS elements needed to fulfil the requirement/expectation. The internal
and external update events are then already present in the agent machine.
If the agent machine has not been refined yet, then the new requirement /ex-
pectation will be implemented during the agent machine refinement process
with all the other requirement/expectation as described in section .

If the agent machine has already been refined, it means that all the
other requirements/expectations have already been implemented. The new
requirement /expectation will be implemented in the first refinement of the
agent machine as described in section and this implementation will be
propagated to all the sub-machines of the agent machine’s first refinement.

4.7.10 ...a requirement/expectation assigned to an agent is
modified?

If a requirement /expectation assigned to an agent is modified in the KAOS
model, it means that the agent’s behaviour is modified. We assume here
that the agent has effectively the ability to control and monitor the KAOS
elements needed to fulfil the modified requirement /expectation. The internal
and external update events are then already present in the agent machine.
The first refinement of the agent machine, where the requirement/expecta-
tion is implemented, will be modified according to the new definition of the
requirement /expectation. This part is not automatic and will rely on the
analyst’s skills.

Once the requirement /expectation implementation has been modified in
the first refinement of the agent machine, the proof obligations of the sub-
machines will be regenerated and will have to be proved correct. Those
sub-machines will, in most cases, have to be modified too to fit the new
behaviour of the agent.

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 74

Initial Machine Initial Machine
decomposed \decomposed Aompos%com}mse{l
Agent Machine A Agent Machine B Agent Machine A Agent Machine B
T‘eﬁneﬂ T‘eﬁnes refines ﬁ('emles‘
A Refi 1 B Refinement 1 B Refinement 1
EVENTS EVENTS
EVENTS Req 2 A Refinement 1 Req 1
Req 1 =
Req 3 Req 2
Feq 3
efines
refines efines
A Refinement 2
EVENTS B Refinement 2
Peq 1 _part_1 refines Req 1 EVENTS
Req 1_part_2 refines Req 1 SHBA T Req 1_part_1 refines Req 1
FVENTS Req 1 part 2 refines Req 1
Req 2
Req 3

Figure 4.9: Moving responsibility link in Event-B

4.7.11 ...a responsibility links is moved from an agent to
another?

A responsibility link in KAQOS is translated into an event or an invariant in
the machines refining directly or not the agent machine. If it is an event,
it refines all the update events corresponding to the data that are modified
by the requirement/expectation. The agent has thus the ability to control
those data in the KAOS model. Moving a responsibility from an agent to
another will thus mean that the implied control links will be moved at the
same time.

The events linked to the requirement/expectation are moved from one
machine to another. If the event linked to the requirement/expectation has
already been refined in sub-machines, the refinements may be moved from
the previous agent’s "refinement chain" to the new one by completing the
actual machines and creating new ones if the new chain is shorter than the
previous one. Figure shows an example of a refined requirement Regqq
moved from the agent A to the agent B, where the agent B’s machine has
not yet been refined. A refinement B Refinement 2 is created to have the
same refinement level as agent A’s machine.

4.8 A First Implementation

A first implementation of the proposed approach has been elaborated using
model to model transformation technologies. This implementation takes on

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 75

input a KAOS model and outputs an Event-B model containing the initial
machine, the initial context and the agent machines decomposing the ini-
tial machine. The implementation of requirements and expectations is not
automated here.

This prototype act as some kind of proof of concept to show that the
proposed approach may be implemented using actual technologies. We will
first present those technologies and then discuss the limitations and future
works that have to be done.

4.8.1 The ATLAS Transformation Language

N
{
— - — » Conformsto Z
Ecore
G A
e - - I - —. —
Meta-model A ATL Meta-model B

* * *
| | |

Model A A2B.atl Model B

I
\ Executed

Input Output

ATL Virtual Machine

Figure 4.10: ATL transformation structure |[Jouault et al., 2008|

The transformation has been implemented in the ATLAS Transformation
Language (ATL)lﬂ It is a model to model transformation language based on
the OMG’s QVT specification [OMG, 2007]. It uses both declarative and
imperative constructs. Declarative constructs are preferred but imperative
ones are left to perform complex transformations easier. An ATL transfor-
mation program will correspond to as set of rules defining how source ele-
ments are matched to target elements with the initialization of these target

2ATL is now part of the Model to Model project (http://www.eclipse.org/m2m/)
supported by the Eclipse foundation

http://www.eclipse.org/m2m/

=W N =

O O 00 ~J O Ut

11
12
13

14
15
16

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 76

elements [Jouault et al., 2008].

Figure [£.10] shows how an ATL transformation takes place in a synthetic
view. A transformation is an instance of the ATL meta-model and is executed
on a specific virtual machine. It is defined to take a A meta-model instance
as input, a KAOS model conform to the KAOS meta-model in our case, and
produce a B meta-model instance, an Event-B model conform to the Event-B
meta-model in our case. The A and B meta-models have to be themselves
expressed in a formalism conform to meta-model, Fcore in this case, which is
sometime called meta-meta-model. The KAOS meta-model and the Event-B
meta-model are expressed here in .ecore files. Fcore is briefly presented in
the next section.

Listing 4.4: Part of the KAOS to Event-B ATL transformation

rule EntityRule {
from entity : KAOS!Entity
to set : SIMPLEEVENTB! CarrierSet (
id <— "ObjModel ’+entity .name+’

_SET’,
name <— entity .namet’ SET’,
<...>),

variable : SIMPLEEVENTB! Variable(<...>),

invariant : SIMPLEEVENTB!Invariant(<...>),

evt : SIMPLEEVENTB!MachineEvent(<...>),

link : SIMPLEEVENTB! EntityObjectDerivation (

<...>)
do{ < ... >

for (attribute in entity.attributes){

thisModule.createAttribute (attribute ,
entity) ;

For instance, in listing [£.4] the rule EntityRule describes how a KAOS
Entity will be translated in Event-B. As defined in section[4.2] for each KAOS
Entity encounter in the source model, the output Event-B model will contain
a set in the initial context for al the possible entity instances, a variable
in the machine for the instances recorded in the machine, an invariant to
type the variable, a general update event evt updating the variable and
a traceability 1ink. The do part is an imperative construct that will create
the Event-B elements derived from the attributes of the KAOS Entity.

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 77

4.8.2 FEcore Meta-Model

Both input and output models of the ATL transformation are expressed in
.ecore files. Ecore is a meta-model defined in the Eclipse EMF frameworkf|
used to describe models [Budinsky et al., 2003|. The EMF framework offers,
among other things, tools and support to generate everything needed to build
a complete editor for an Ecore model, including generation of Java classes
to manipulate a model instance, default XMI serizﬂization[%-]7 a user interface
generator, etc.

. - .
Q.. > EAttribute eAttributeType 1..1> EDataType
attribute [02Me: String +name: String
EClass (a»—
+name: String fege———w—or
N -1 leReferences
9..*
= EReference
+name: String NG"]
Ref T +containment: boolean
crelererre ioe +lowerBound: 1int

+upperBound: 1int

elpposite

Figure 4.11: Main concepts of the Ecore model [Budinsky et al., 2003|

Figure shows the most important part of the Ecore model. The main
concepts are the EClass that may have one or more super-type, EAttributes
typed as FDataType and may be involved in one or more Ereferences. The
KAOS and Event-B meta-models used in the prototype are thus expressed
in terms of EClass, EAttributes, EDataType and Ereferences.

4.8.3 Actual State, Limits and Future Implementations

In its actual state, the prototype is limited to the first and second steps of
our approach. The initial context, the initial machine and its decomposition
in agent machines are automatically derived from a KAOS model. Step
three, where agent machines are refined and requirements/expectations are
implemented has to be done manually.

Both the prototype and the method have been applied to the mine pump
example described in chapter [2] and another example which is actually an
exercise, based on the pilot of the Deploy project |Falampin et al., 2009],
that has the same proportions than the mine pump example. In this ex-
ercise, a device has to managed the different driving mode switching (from
fully automated to fully manual) of a train. This other example is not

3http://www.eclipse.org/modeling/emf/
4XML Metadate Interchange defines a way to specify model objects in XML documents

http://www.eclipse.org/modeling/emf/

CHAPTER 4. KAOS TO EVENT B: PROPOSED APPROACH 78

completely described here, but as an indicator, the KAOS model contained
height requirements/expectations assigned to three agents and in the gen-
erated Event-B model the main agent machine’s refinement has six internal
events used to manage the modes switchings.

The used meta-model for KAOS is the one defined for Objectiver [Respect:
I'T, 2009] that may be found in the kaos-emf package on the FAUST project’s
Sourceforge page{ﬂ. This package contains both, the KAOS Ecore meta-model
and Java classes to connect a Java application to Objectiver and get the cur-
rently edited KAOS model.

RODIN |[RODIN, 2010] has actually an EMF plugin with an Ecore meta-
model, but since there were compatibility problems between this meta-model
and the Eclipse EMF framework, a new meta-model has been defined for
Event-B. This new meta-model, called simpleEventB, defines basically all
the notions that may be found in Event-B, plus the different traceability
links between KAOS and Event-B elements. The generated model can not
be directly imported in the RODIN tool, and the link between the generated
model and the tool has to be implemented.

To illustrate the prototype let us give some numbers: the defined sim-
pleEventB meta-model contains 50 EClasses, 27 are used to re-define the
Event-B meta-model and 23 are used to define the traceability links; the
KAOS meta-model defined in the kaos-emf package contains 38 EClasses;
the ATL transformation contains 8 rules and is 542 lines long; the execution
in Eclipse of the ATL transformation for the mine pump example takes 0,007
seconds; the execution in Eclipse of the ATL transformation for the pilot of
the Deploy project example takes 0,009 seconds.

The two main future works for this prototype will be: first the imple-
mentation of the traceability checks via the rules described in section [4.6]
This can be achieve using the Eclipse Object Constraint Language pluginﬁ
for instance, which permit to write OCL rules and to evaluate those rules
with an EMF model. Secondly, the formal definitions of requirements and
expectations will have to be translated automatically into Event-B. This
could already partially be done, using De Landtsheer’s method described in
section for formula that use exclusively past time operators.

Shttp://sourceforge.net/projects/faust/
S0OCL - http://www.eclipse.org/modeling/mdt/?project=ocl

http://sourceforge.net/projects/faust/
http://www.eclipse.org/modeling/mdt/?project=ocl

Chapter 5

KAOS to Event B: existing
approaches

This chapter presents three existing methods, currently under research for
some of them, to derive an Event-B model from a KAOS model. The first
one, proposed by Matoussi, works on a KAOS goal diagram, containing "Im-
mediate Achieve" goals and built with milestone-driven and or-refinement
patterns. The second approach, proposed by Aziz et al. introduces the no-
tion of trigger conditions for events to derive an Event-B model from a KAOS
model. The last approach, proposed by De Landtsheer takes linear temporal
logic formula expressed exclusively with past operators on input and pro-
duces an event-based security policy expressed in Polpa. A syntactic change
can translate this Polpa policy to an Event-B model.

The last section of this chapter will present the problems encounter with
those approaches in deriving an Event-B model from a KAOS goal model.
A comparison between the different approaches of this chapter and our pro-
posed approach presented in chapter [d] will be made at the end of this section.

5.1 Expressing KAOS Goal Models with Event-B:
A. Matoussi

Matoussi describes in [Matoussi et al., 2008, Matoussi et al., 2009, Matoussi,
2009, Gervais et al., 2009] a process to transform a KAOS goal model into an
Event-B specification. This process takes as input a KAOS goal model that
is not operationalized and produces an Event-B model corresponding to a
specification that satisfies the requirements described in the input model.
This process is based on refinement patterns. The idea is that each re-
finement pattern used in the KAOS model will correspond to a refinement
step in the Event-B model. Actually the process works with functional "Im-
mediate Achieve" goals which are the most commonly used goal type. Those
goals have to be formally defined with an assertion of the form A = 0B,

79

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 80

/Achieve[so me conditiony

Achieve] AB from A] Achieve[B from AB] Achiwz[condition Achive[condition
A=< AB AB == <= B in one way] in another way]

Figure 5.1: Milestone-driven refinement and Or-refinement

which says that from a state where A is true, another state where B is true
can be reached someday. The supported patterns, presented in figure[s.1] are
the milestone-driven refinement pattern, used when a target condition B can
be reached from a current condition A with an intermediate condition AB
and the or-refinement pattern, used when a goal can be satisfied in different
ways.

The process in figure has two phases: the first one creates an Event-
B representation of the goal model. The initial Event-B model includes the
definition of a context with all the types used for data and the definition of
an initial machine. This initial machine represents the root goal G of the
KAOS model and each refinement in this model has to follow one of the two
patterns described in figure 5.1} Each refinement step in the goal model will
correspond to a refinement step of the Event-B machine, so it produces a
chain of refined machines where each machine will correspond to a "stage"
in the goal model.

The second phase formally derives an Event-B specification that satisfies
the requirements expressed in the goal model. To do this, it takes as input
the goal model and the Event-B representation of this model created in the
first phase. This second phase correspond to the operationalization process
that can be performed in KAOS and guaranties that operations preserve all
the properties of the goal model. As in the first phase, the initial Event-B
model will be defined for the root goal G of the model and each refinement
in the goal model following one of the two patterns will correspond to a
refinement in the Event-B model.

5.1.1 First Phase

Formally speaking, a KAOS goal is seen as a property that the system has
to establish:

Achieve|G]
A= OB

This property will be represented as an event in the Event-B model where
the premise of the implication is transcribed in the initialization event of the

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 81

M Abstract Event-B Model

. l
Step 1
/Sub—goal Gl/ /5“‘3’9“' ‘32/ Refinement 1

A !

KAOS goal diagram Event-B representation of
the KAOS goal diagram

—

X‘StepZ

Abstract Event-B Model

\ 4

Refinement 1

v

Event-B system specification

Figure 5.2: Expressing KAOS with Event-B: overview |Gervais et al., 2009|

machine and the consequence of the implication is transcribed in the then
part of the event EvtG associated to the goal G. An execution of this event
means that the goal G has been satisfied. The guard of EvtG is set to true
to express the fact that at this level the goal can always be achieved.

Listing 5.1: KAOS expressed in Event-B: initial machine

MACHINE EventBGoalModel level 0
SEES ModelContext
VARIABLES

Manipulated data
INVARIANTS

inv: Data types definitions
EVENTS
Initialisation

begin

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES

act: A
end
Event hEUtG =
v ergerd: TRUE
then
act: B
end
END

82

Milestone-Driven Refinement

In general, when we have a milestone-driven refinement like the left refine-
ment in figure [5.1] it means that the parent goal G is satisfied when all the

sub-goals {G1, ..., Gy} have been satisfied. In figure and in the rest of

this example, n is limited to 2 to avoid complicate and useless explanations.
The EvtG event of the parent machine is refined into a new event EvtG tak-
ing as pre-condition the conjunction of the functional post-conditions of the
children, G1 and G2 in this case. The refinement of goal G following the
pattern described in figure 5.1 will give the machine represented in listing

5.2

Listing 5.2: KAOS expressed in Event-B: milestone refinement machine

MACHINE EventBGoalModel level 1
REFINES EventBGoalModel level 0

SEES ModelContext

VARIABLES
Manipulated data
INVARIANTS
inv: Data types definitions
EVENTS
Initialisation
begin
act: ANAB
end
Event hEth] =
“;1 “5rd . TRUE
¢ enact: AB
end
Event hEth,? =
Ve d . TRUE
then t. B
act :
end

Event FEvtG =
refines EviG

where . uBAB
then t. B
end acTtT :

END

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 83

Or-Refinement

When we have an or-refinement, it means that the parent goal is satisfied
when one or more of the sub-goals have been satisfied. The EvtG event of the
parent machine is refined into a new event EvtG’ taking as pre-condition a
formula expressing that one or more of the two sub-goals have been satisfied.
It does not seem to be a generic approach here and the knowledge and
competence of the analyst will play an important role. For instance in the
example case described by Matoussi et al. in |Gervais et al., 2009], the guard
of a refined EvtG’ event, corresponding to a goal G saying that some elements
have to be localised in one way or another, uses the union of two sets, one
for each of the sub-goals, saying that an element may be localised via GPS
or via WIFI, and compare it to the set of all the elements:

...ANLocalisedElements =
(Localised ByGPSElements U LocalisedByW I F I Elements)A . ..

5.1.2 Second Phase

In the second phase, functional and non-functional goals are treated the same
way. The main idea here is to say that an operation can be executed while
the associated goal has not been satisfied (considering the non-functional
properties too), which is the same as while it’s post-condition has not been
verified. However, this is not sufficient to ensure that an "Achieve" goal has
been reached. A new event called "closing" is added with a guard equal
to the post-condition (without the non-functional properties) of the goal to
reach. So for the initial machine corresponding to the root goal G we will
have an event EvtOpG that can be executed while G has not been reached and
an event Closing that can be executed when G is satisfied. This Closing
event will finalize the system. As in the first phase, the machine will be
refined following the refinement pattern used in the goal model and each
level in the goal model will correspond to a machine in the Event-B model.

Note that in their example, Matoussi et al. in |Gervais et al., 2009| are
working with sets and express the negation of the initial goal post-condition
with universal quantifiers. The initial machine for an "Achieve" goal G with
a formal definition A = OB will be:

Listing 5.3: Operationalization Event-B: initial machine

MACHINE EventBOperationalSpecification level 0

SEES ModelContext
VARIABLES

Manipulated data
INVARIANTS

inv: Data types definitions
EVENTS

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 84

Initialisation
begin A
t:
end ac
Event FEvtOpG =
Whergerd: -B
then . . .
4 act : Do something that makes things going further
en
Event Closing =
where .))
grd : B without non-functional properties
then)
act : Frit := OK
end
END

As in the first phase, the initial model will be refined according to the
refinement patterns used in the goal model. The Closing event is refined as
it without modification, and the sub-goals will be translated into events.

Milestone-Driven Refinement

When a parent goal G is refined into sub-goals Gj, ..., Gy, according to the
milestone-driven refinement pattern, it means that the goal G can be de-
composed into n steps and that G is satisfied if the final step G, is reached.
The sub-machine refining the initial machine defined for the second phase,
like the one described in listing will thus have Evt0pG1, . .. ,Evt0pGn de-
clared events where the pre-condition is the negation of the post-condition of
the corresponding EvtGi event declared in the Event-B model coming from
phase one (listing in our example). The action will be "something that
makes things going further" to the step G;11. Again, the approach does not
seem to be generic, the action that "makes things going further" will depend
of the goal G; and its definition will rely on the analyst’s skills. The realiza-
tion of the last sub-goal GG, implies the realization of the patent goal G, so
the last event EvtOpGn will refine the EvtOpG event of the parent machine.
The refinement of goal G following the pattern described in figure [5.1] will
give a machine:

Listing 5.4: Operationalization Event-B: initial machine

MACHINE EventBOperationalSpecification level 1
REFINES EventBOperationalSpecification level 0

SEES ModelContext
VARIABLES

Manipulated data
INVARIANTS

inv: Data types definitions
EVENTS
Initialisation

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 85

begin
t: A
end °°
Event EuvtOpG1 =

h
v erg(;erd . —AB
then . . .

4 act : Do something that makes things going further
en

Event EuvtOpG2 =
refines EviOpG

Whe?rd . -B
then . . .

a4 act : Do something that makes things going further
en

Event Closing =
refines Closing

where) . .
b grd : B without non-functional properties
then
act : Fxit := OK
end
END

Or-Refinement

As for phase one, when we have an or-refinement, it means that the parent
goal is satisfied when one or more of the sub-goals have been satisfied. The
Evt0pG event of the parent machine is refined into a new event Evt0OpG’ taking
as pre-condition the negation of the corresponding event in the Event-B
model of phase one, possibly simplified and where possible ambiguities have
been removed.

The two sub-goals are handled as in the general case by having a pre-
condition equals to the negation of the post condition of the corresponding
event in the model coming from phase one.

5.2 From Goal-Oriented Requirements to Event-B
Specification: B. Aziz et al.

To derive an Event-B model from a KAOS model, Aziz et al. propose to
include in Event-B the notion of triggered event. This new notion will be used
to translate the next (o) and bounded sooner-or-later (O<4) time operators
used in the formal definition of requirements and expectations in KAOS, into
Event-B events.

The first subsection introduces the notion of triggered event described
in [Bicarregui et al., 2008|. The second subsection will then describe the
operationalisation patterns that can be used to derive Event-B from KAOS
requirements and expectations explained in [Aziz et al., 2009].

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 86

5.2.1 Notion of Triggered Event

In Event-B, the guards don’t express obligations to execute the events. When
more than one guard is true at the same time, the next executed event is
chosen in a non-deterministic way. It means that scheduling of events is
non-deterministic.

A limited notion of obligation is described by triggers. They are the dual
of guards in the sense that when a guard is false, the event may not occur
while when a trigger is true, the event must occur. In other terms, a trigger
condition for an event is equivalent to a constraint on when other events
are permitted. This constraint can be expressed by adding the negation of
the trigger condition to the guards of all other events. Event-B trigger users
need to pay attention, indeed trigger permit to impose an order of execution.
But, by doing this they also add implicit constraints on the other events.

There a tree kinds of triggered-events, the next-trigger, the eventually-
trigger and the within-trigger. The next-trigger is used for an event that will
be the next performed event as soon as its trigger-condition becomes true.
A within-triggered event will have to be executed within the n next steps,
whereas a step corresponds to the execution of an event. The eventually-
trigger is modelled by within-trigger with a unbounded non-deterministic
choice of n.

NEXT-Trigger

A next-trigger event e with a trigger condition 7" and an action R is equiv-
alent to a within-trigger with a n equals to 0. It is notated :

EVENT e WHEN 7T NEXT R END

In comparison with classical Event-B events, using next-trigger events
may imposes to add restrictions on the other guards and trigger conditions
to avoid deadlocks. We explain hereafter the interpretation of two classical
events e and e2 used with two trigger-events f; and fs in classical Event-B.
The four events are defined as :

EVENT e¢; WHEN G; THEN S; END
EVENT e; WHEN G2 THEN S; END
EVENT f; WHEN 7; NEXT R; END
EVENT f, WHEN 75 NEXT Ry; END

The negation of the trigger conditions 77 and 75 will have to be added to
the guards G; and G to prevent the other events form being executed when
a trigger has to occurs. But this is not enough, the negation of each trigger
condition will also be added to the other trigger conditions to prevent the
other trigger-events from being executed when one trigger condition is true.
The equivalent of the four events here above in classical Event-B is :

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 87

EVENT ¢y WHEN G; A =T7 A=Tp, THEN S; END
EVENT e; WHEN Gy A =17 A =15 THEN S; END
EVENT f; WHEN T; A =T, THEN R; END
EVENT f, WHEN 15 A =17 THEN Ry, END

A Event-B model composed only with trigger-events and classical-events
will be said deadlock-free if and only if for every next-event e; with trigger
condition Tj, the proposition —(T; A T}) is true for every j # i. For the
example here above, the system is deadlock free if —(77 A T3) is true. As
next-trigger can be seen as a within-trigger with n equals to 0, a more general
definition of deadlock-free model is given for within-triggers in |Bicarregui
et al., 2008].

EVENTUALLY-Trigger

As said before, an eventually-trigger event is equivalent to an within-trigger
event with a unbounded non-deterministic choice of n. In practise, the choice
of n is made when the trigger-condition becomes true and so the deadline
will be set at that time and is only known internally. The notation for
eventually-trigger events is :

EVENT e WHEN T EVENTUALLY S END

WITHIN-Trigger

Within-trigger are used for events that have to occur at most n steps af-
ter a certain condition becomes true, as far as this condition is still true
during the steps before the event effectively occurs. If the trigger condition
becomes false during the n steps before the event has occurs, the obligation
is cancelled. A within-trigger event is notate as :

EVENT e WHEN T WITHIN n NEXT S END

Triggered-Events with Guards

As for classical events, the triggered events may have a guard. As the trigger-
condition will express the states where the event will have to occur, the
guard-condition will express the states where the event may occur. The
most general triggered event with trigger-condition 7' and guard-condition
G can be noted:

EVENT ¢ WHEN (7.G) WITHIN n NEXT S END

To be well formed, when the triggered-event is obliged, then it must be per-
mitted, or in other words T' = G. The classical events will then correspond
to trigger-events with a false condition.

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 88

Refinement of Triggered-Events

With classical-events, refining an abstract event a in a more concrete event
b, noted a C b, means that proof obligations described in section are
respected. In particular, the guard strengthening proof obligation states that
b’s guard is stronger than a’s guard, to ensure that when b happens, so do
a.

With triggered-events, there are two things that can be refined: the
duration n and the {rigger condition T.

Refinement of duration Refining an event of a system means that the
number of the possible states of the system will decrease, making the be-
haviour of the system more precise. In the case of triggered-events, it means
that the maximal number of steps between the moment when the trigger con-
dition becomes true and the moment when the event is effectively executed
will decrease during the refinement process. Formally, if we have T a trigger
condition, S a substitution and m and n two integers such as 0 < n < m,
then:

EVENT e WHEN T EVENTUALLY S END
C EVENT el WHEN 7 WITHIN m NEXT S END
C EVENT e2 WHEN 7 WITHIN n NEXT S END
C EVENT e3 WHEN 7T NEXT S END

Refinement of the trigger predicate If guard-conditions are strength-
ened during a refinement process, trigger-conditions, which are dual, will be
weakened. This can be explained by the fact that adding a triggered-event
to a model has as effect to add the negation of the trigger-condition to all
other events of the model. Weakening a trigger-condition means then that
all other guards will be enforced.

For an abstract trigger-event e, with a trigger-condition 7}, and a concrete
event e, with a trigger-condition Tj in a deadlock-free model, if T, = Ty,
than we have that:

EVENT e, WHEN 7, WITHIN n NEXT S END
C EVENT ¢, WHEN T7;, WITHIN n NEXT S END

Deadlock Freeness

In classical Event-B, a model is said deadlocked if it reaches a certain state
where no guard is true, meaning that no event can be executed. With
triggered-events, another kind of deadlock is possible if two events must
occur at the same time. To avoid this, Bicarregui et al. |[Bicarregui et al.,
2008]| introduce the notion of scheduling, which is briefly explained here.

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 89

Every event can be expressed as a WITHIN-trigger with a certain n.
The idea is to associate an active counter, equals to n, to an event when its
trigger-condition becomes true. This active counter is decreased each time
an event occurs in the model. An event will be schedulable if, when a trigger-
condition become true, there is enough space in the "execution queue" so
that the event may occur, in other words, if there are at most n other active
counters with a value less than or equal to n. In the same way, a model will
be schedulable if all its events are schedulable at all time.

5.2.2 Operationalisation Patterns

Aziz et al. |[Aziz et al., 2009| reuse the notion of trigger-events to translate
the next (o) and bounded sooner-or-later (O<4) time operators used in the
formal definition of requirements and expectations in KAOS, into Event-B
events.

Table presents the operationalisation patterns for the three most used
goals types. A and B in the KAOS requirement’s formal definition repre-
sents first-order logical formula defined over objects of the KAOS model.
Those objects are translated into variables in the Event-B model and thus
A’ represent the formula equivalent to A defined over those variables and B’
represent the generalised substitution derived from predicate B, which will
be seen as the post-condition of the substitution.

Table 5.1: Patterns for Operationalising Requirements into Event-B [Aziz
et al., 2009

Requirements | Formal Event-B Operationalisation
Definition

Immediate A= oB EVENT ¢ WHEN A’ NEXT B’ END

Achieve

Bounded A= OB EVENT ¢ WHEN A’ WITHIN d NEXT B’

Achieve END

Unbounded A= OB EVENT ¢ WHEN A’ EVENTUALLY B’

Achieve END

5.3 Deriving Event-based Security Policy from Declar-
ative Security Requirements: R. De Landtsheer

De Landtsheer proposes in [Landtsheer, 2007a,|Landtsheer and Ponsard,
2010] to translate linear temporal logic formula expressed exclusively with
past operators into an event-based security policy expressed in Polpa. A
syntax change can translate this Polpa policy to an Event-B model.

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 90

First we will present the linear temporal logic formulas admitted by this
method. The second subsection briefly presents the Polpa element used by
the method, more details about Polpa can be found in [Aziz et al., 2008].
The third describes the derivation procedure itself and the last subsection
describes the syntactic changes to switch from Polpa to Event-B.

5.3.1 Linear Temporal Logic Formula

Temporal logic has already been explained in section [2.3.4 Due to the
difficulty to manage the future (foreseen actions, schedule appropriate re-
action, non-computability of infinite size models, etc.), the formulas here
are restricted to the past (see subsection 5.2 in |[Landtsheer, 2007a| for more
details). They may contain:

e Events represented as a predicated over typed variables.
e Logical connectors and A, or V, not — and implies —.
e Quantifiers V and J used to specify the type of used variables.

e Temporal operators of the past since S, has always been B and some-
time in the past ¢.

For instance, a requirement for a file access control system could be
expressed as follows:

(Vu : Users)(Vf : File)
open(u, f) = = forbidden(u, f) S authorized(u, f)

Saying that a file can be opened by a user if he has received an authorisation
for that file and if that authorisation has not been revoqued. As explained
in section [2.3.4] P = @ is used as a shorthand for O(P — Q).

5.3.2 Polpa

Polpa does with a given policy and a queue of events what regular expressions
do with a characters pattern and a given string of characters. It will read a
sequence of events and will accept or reject the events according to a given
policy. We will present here the most important notions used in the rest of
this section. More details about Polpa can be found in [Aziz et al., 2008].
To describe policies, Polpa uses three atomic constructions separated by the
sequencing operator (-):

e Events are noted as in temporal logic, e.g. open(ug, fo) represents an
event in Polpa.

CHAPTER 5. KAOS TO EVENT B: EXISTING APPROACHES 91

e Conditions which are non temporal assertions are placed between brack-
ets and checked at runtime. If a condition is false, the events placed af-
terwards won’t happen. For instance [NOT _FORB_SINCE AUT
H (ug, fo)] - open(uo, fo) means that to open a file, some condition rep-
resented by NOT FORB_SINCE _AUTH (ug, fo) has to hold.

e Actions are executable instructions used to update the internal state of

the policy. They are represented betw