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Distributed system transfer functions of exponential order

F. M. CALLIERY and J. WINKIN?

0, is a real number. We construct a transfer function algebra of fractions, viz. F(a,),
for modelling possibly unstable distributed systems such that (i) f in F{a,) is
holomorphic in Re s 2 6y, (i.e. is o4-stable), iff fis a4-exponentially stable, and (ii) we
allow delay in the direct input-output transmission of the system. This algebra is
(a) a restriction of the algebra B(s,) developed by Callier and Desoer (1978, 1980 a),
(b) an extension of the algebra of proper rational functions such that the exponential
order properties of the latter transfer functions of lumped systems are maintained.
The algebra F(o,) can be used for modelling and feedback system design. It is shown
that standard semigroup systems are better modelled by a transfer function in F(a,)
rather than B(a,).

1. Introduction

In this paper we shall be involved with transfer functions of distributed systems, i.c.
these with an infinite-dimensional state space. Our objective is to construct an algebra
of transfer functions which fits well semigroup systems where (1) we allow delay in the
direct transmission between input and output, and (ii) stability is exponential stability.

For the study of distributed systems essentially two approaches have been
developed for studying open-loop systems, poles and zeros and problems of feedback
system stability and design.

(a) Semigroup state-space systems (time-domain approach)

See for example Curtain and Pritchard (1978), Hille and Phillips (1957), Kato
(1980), Pazy (1983), for the basic theory: Pandolfi (1984), Przyluski (1979), for poles
and zeros, and Triggiani (1975), Pritchard and Zabczyk (1981), Curtain and Pritchard
(1978), Balas (1978, 1982), Schumacher (1983), Curtain (1984), Pohjolainen (1982), for
feedback.

(b) Transfer function theory {frequency-domain approach)

See for example Callier and Desoer (1978, 1980 a, b), Desoer et al. (1980), Nett et al.
(1983), for the basic theory; Callier et al. (1981}, for poles and zeros, and Callier and
Desoer (1980 b), Desoer et al. (1980), Desoer and Vidyasagar (1975), Francis {1977),
Francis and Vidyasagar (1983), Vidyasagar et al. (1982), Vidyasagar (1984), Ferreira
and Callier (1982), Nett et al. (1983), Zames (1981), Saeks and Murray (1981), for
feedback.

In this paper we shall be involved with subalgebras of the transfer function algebras
A _(s,) and B(o,): we proceed now to define the latter.

Received 2 July 1985. :
t Department of Mathematics, Facultés Universitaires N.-D. de la Paix, B-5000 Namur,
Belgium.
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Preliminaries (Callicr and Desoer 1978, 1980 a)

In this paper RHS, LHS, SISO, MIMO, TF, 1/O, a.e., are standard abbreviations
meaning respectively right-hand side, left-hand side, single-input—single-output,
multi-input-multi-out put, transfer function, input-output, almost everywhere.

R, (C) denotes the field of real (or respectively complex), numbers. R, := [0, c0),
C,+:= {s:5€C such that Re s} and €,-:= {s:seC such that Res <s)}. For
7o € R, R(g,) denotes the algebra of o4-exponentially stable rational TF’s (i.e. proper
and holomorphic in C, ) while R®(a,) denotes its multiplicative subset of elements
that are non-zero at mﬁmty C,(s) is the algebra of proper rational functions in s with
cocflicientst in C. It is well known that, e.g. in Callier and Desoer (1980 a), C,(s) is an
algebra of fractions of R(a,) with respect to R™(q,), ie. fe C,ls ) iff f=nd =" for some
n € R{a,) and d € R®(o,) or equivalently C(s) = [R(s,)] [R‘”(UO)] L L{R,), or for
short L, denotes for p € [1, o), (for p = o), the Banach space ofpth-power absolutely
integrable, {or essentially bounded, respectively), functions with suppert on R,. For
ceRand pe[l,w], L, ,:= {f.):exp (=) f(.) e L,}. LTD, denotes the class of C-
valued Laplace transformable distributions with support on R,. The Laplace
transform as well as corresponding sets of Laplace transforms will be denoted by a
circumflex: e.g. fe LTD, iff fe LTD, (sometimes we also use Z(f}=/).

For o € R, a distribution fe LTD, is said to belong to the convolution Banach
algebra A(o) iff, for t <0, f(1) =0, and, for ¢ = 0, f(t) = f,(¢6) + £.(t), where the regular

functional part f(.) e L, , and the singular atomic part £,(.)= Y fd(.—t;) such that
i=0
8(.) denotes the Dirac delta distribution, t5=0, t;>0fori=1,2, ..., and f e C for
i=0,1,... with ¥ |fi] exp(—ot1;) < o0; (in Callier and Desoer (1978, 1980 a, b), the
i=0

singular atomic p;rt is denoted f,, because £, is almost periodic in any vertical strip in
C,+, (Callier and Desoer (1978), p. 652)); the A(g)-norm of f is given by || flae =

J7 exp (= ol 401di+ 3 exp (o)l .

For gy e R, the TF algebra B(o,) is constructed as follows (Callier and Desoer
1978, 1980 a).

A distribution fe LTD, is said to belong to the convolution algebra A _(gy) iff
fe A(e) for some ¢ < 6,; A_(6,) can be considered as a ‘good class’ of a,-stable TF’s,
(i.e. holomorphic in C,;), see e.g. Corollary 2.1. A®(s,) is the multiplicative subset of
A _(o,) of clements thal are bounded away from zero at infinity in C, :; see Callier and
Desoer (1978), p. 652, and § 4. B(o,) is the TF algebra of fractions of A_{c,) with
respect to A®(a,), i.e. B(ao) = [A_(ao)][A%(a,)]7". It is known (Callier and Desoer
1978, 1980 a), that B(o,) = [A_(ag)][R*(6,)]”" (the denominators may be chosen
rational), and B(a,) 1s an extension of C(s) for describing possibly unstable
distributed systems. For further properties of A_{(¢,) and B(s,), see Callier and
Desoer (1978, 1980 a) and Callier and Desoer (1980 b), § 1.

Recently, Jacobson (1984 a, 1984 b), Nett et al. (1983) have clarified the relation
between the semigroup system approach and the TF approach for distributed
systems. There results the fact that, under conditions of exponential stabilizability and

+ Almost all rational TF’s have real coefficients. However, after partial fraction expansion
complex coeflicients may creep in and hence we consider C(s) rather than R(s}).
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detectability, any standard SISO semigroup system has a TF in B(s,), (Jacobson
1984 b, Theorem 1). As is usual for semigroup systems, they used the notion of
exponential stability, whence the TF of an exponentially stable semigroup system
corresponds to an impulse response in A_(0) with functional part bounded by a
decreasing exponential. However, if /= f, + f,, is in A_(0) then f is not always
exponentially stable.

Counterexample 1.1

Let "R — R,, with support on R, be such that forn=1,2, ..., f(z) =1 exp (3n)
+ (exp (n) —nexp (3n))for t € [n —exp (—2n), n], f(t) = —t exp (3n) + (exp (n) + n exp
(3n)) for t € [n, n + exp (—2n)], and f (#) = O elsewhere. Note that fhas a graph (z, f(1))
that is a succession of triangles with vertices (n —exp (—2n), 0), (n, exp (n)) and
{n+exp(—2n),0)forn=1, 2, .... Each triangle has a surface exp (—n), whence fe L,.
Furthermore, for ¢ <0 each transformed triangle of exp (—at)f(t) has a surface
bounded by K exp (—(o + 1)n) for n sufficiently large. Hence fe L, ,forall o> —1
and f'e A_(0). However, f is not exponentially stable because for t = oo f(t) does not
tend to O, (f(n) =exp (n)).

On the other hand, the singular atomic part f(t}= Y fé(t—1) of f=f,
i=0

+ fa€ A_(0) is appropriate for allowing delay in the direct 1/O transmission of a
system; in general it is not possible to restrict ourselves to a finite number of delays

under feedback: e.g. with f(s)=1—exp (—s), (1 +f(s)) ' =271} 27" exp (—is).
i=0

Therefore from our observations above it follows that for exponential stability a
suitable restriction of A_(0) is its subclass having exponentially stable functional
parts: see L(0) (function subclass), E(0) (with singular part) and their gencralizations
Lyog), E{og) in § § 2 and 3 respectively. Their study in this paper leads, along the lines
of Callier and Desoer (1978, 1980 a), to a TF algebra of fractions F(a,) § B(a,). Foo)
is of exponential order, suitable for feedback and, in §6, it matches unstable
semigroup systems better than B(a,).

The rest of this paper is organized as follows. § 2: the ideal of oy-exponentially
stable functions, [L,(c,) i1s a proper ideal of A_(g,), nice interaction of L,(cy) with
A _(04)]. § 3: the algebra of g4-exponentially stable transfer functions, [E(a,) is a rich
subalgebra of A_(s,) closed under inversion]. § 4: boundedness from zero at infinity
(the multiplicative subset €(a,), product decomposition of fe E(s,) and fe E“(ay)),
coprimeness (condition for satisfying the Bezout condition). § 5: fractions of ¢g-
exponentially stable transfer functions, [F{oo)=[E(so)][E>(c0)] !, C,(s) = F(oy)
< 8(o,), sum decomposition, exponential order]. § 6: Link with semigroup systems
(TF in F(a,), exponential stabilizability and detectability). § 7: conclusion.

2. The ideal of o,-exponentially stable functions
The following function subclass of A _(g,) interacts well with that convolution
algebra.

Definition 2.1

For 64 € R the function f:R — C with support on R, is said to be g4-exponentially
stable iff there exists a ¢ < 64 such that fe L, ,, or equivalently there exist ¢ < 64 and
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M >0 such that
|f(t)| £ M exp (ot) ae.on R, (2.1)

L,(o,) denotes the set of ay-exponentially stable functions.

Fact 2.1
L,a,) has the following properties:

(a) If fe L{og), then

there exists g, < o, such that fe L, ,, for all pe[1, oo] (2.2)
(b) Loo) = A_(00) (2.3)
Proof

(@) By (2.1), for any o, (0, ap), | f(t)| exp (—o,t) £ M exp ((6 — o,)t) where 0 — a,
<0.
(b) From (2.2), L{oo) c U{L, ,,:0, < 0o} = A_(0,) O

Comment 2.1
For o, € R a function fe Lo,) = A_(o,) il exp (—o,t) f(t) is boundedt and tends
to zero exponentially fast as t — o0.

Moreover, with * denoting convolution, we have the following result.

Lemma 2.1 (regularization)
Ifue Lfoy) and fe L, , for some ¢ < g, then y:= fxue L{o,).

Proof

By {2.2) without loss of generality u e L, , with |u(t)| £ M exp (ot) for some M > 0.
Hence |(f*u)(2)] £ K exp(styon R, with0 < K:= M| f.exp (—o0)|,, < co. Hence, by
Definition 2.1, feu & L,(0,). 0

Theorem 2.1 (ideal property)
For any g, € R, L{a,) is a proper ideal of the convolution algebra A _{a,), i.e.

(a) Loo) T A_(00), (2.4)
(b) Lfoy) is a lincar subspace of A _(g,), (2.5)
(c) For all ue L(s,) and fe A _(0y), y =f*u € L (a,). (2.6)

Comments 2.2

(&) The ideal property {2.6) generalizes Lemma 2.1: for any convolution system
ur y with TF in A _(o,), if exp (— a,).u(.) is bounded and tends to zero exponentially
fast as t — o0, then so does exp (—ay).){.) (see Comment 2.1).

(B) L{ay,) is also a subalgebra of A_(a,) (having no multiplicative identity).

t We write ‘bounded’ instead of ‘essentially bounded’.
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Proof of Theorem 2.1
(a) and (b) are obvious from (2.3}, Counterexample 1.1, and Definition 2.1.
(¢) By assumption, |u(t)] < Mexp(st) for some oc<o, and M >0, and

f=f+Y f6(.—1t) is in A_(s,) where without loss of generality ,eL,, and
i=0

Y | £l exp (—oat) < co {by adapting ¢ eventually). Now,
i<o

(P = Ui + 3, fue 1) on R, )

where u(t):= 0 for t <0. Hence, since f,e L, , for some o6 <g, and ue L,(0,),

firueL(o,) by Lemma 21. Moreover since Y. |filexp(—ot;) =K <,
i=0

$ fudt —t;)| < MKexp (o1). Thus 3 fiu( —t) € L,(,) and both terms on the
i=o i=o

right-hand side of (2.7) belong to L{o,). Hence (2.6) follows. (]
The following result is a dynamic interpretation of Callier and Desoer (1978),

Theorem 2.2 (see also the correction of that paper). We denote by 1(z) the unit step
function.

Fact 2.2 (transmission of a ¢y-unstable exponential)

Let
goeR and feA_(oy) (2.8 a)
Let
u(t) = exp (zt).1(z) (2.8 b)
where
zeC,y (2.8 ¢)
Let
y=fou (28 d)
Under these conditions
q(t):= y(t) = f(2).exp {z0).1(t) is in L,(6o) (2.9)
or equivalently, using the Laplace transform,
f©.65-27" =f(2).6—2)" " + d(s) (2.10 a)
where
ge L(g,) (2.10 b)

Comments 2.3

(o) By Callier and Desoer (1978), Theorem 2.2, g is in L, ,nL_, , for o < a,.
Hence g€ L, , = L{a,).
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(f) A short proof is as follows: with (2.8), where especially f=f, + Y £d(. —t), and
i=0
¢.g. Desoer and Vidyasagar (1975), p. 247, there exists a ¢ < g, such that

~exp (—o)q(t) = J‘mﬁ.(f) exp (—az).exp ((z — 0)(t — 7)) dr

+ Y fiexp(—at).exp ((z - o)(t — t;))

>t
Hence, since Re z > g, exp (—ot)|g(r)| £ || f.exp (— 0 .)||a0) < 0.
(y) By (2.9) and (2.1) we have

exp (~ oot} Y1) —f(2).exp (20). 1()| £ M exp (o — o))

for some o <o, and M >0. Hence, as 1 — o0, exp (—oy1).¥(t) will be attracted
cxponentially fast, (6 —o0y<0), to the weighted stationary waveform exp
(—aot).f(z).cxp (zt). 1(t). Moreover, as t — o0, for g, =0 and f(z) = 0, the output will
be attracted to zero exponentially fast; the blocking property (Kailath (1980), p. 449),
of an unstable transmission zero of fe A _(0) is displayed in the same manner as for an
exponentially stable rational TF in R(0). Nice consequences of this are visible in
Callier er al. (1981).

The combination of Theorem 2.1, Fact 2.2 and (Desoer and Vidyasagar (1975),
Exercise 2, p. 247) leads to the following transmission result; its proof is left as an
exercise.

Corollary 2.1 (1/O properties of a transfer functiont in A_(sy))

Let g4 € R, f€ A_(0p), u be a C-valued function with support on R, and y = f*u.
Under these conditions

(a) If exp (—ayt).u is bounded on R, then so is exp (—ayt). ).

(b) For all pe[1, co], if exp (—ayt).u is in L, then so is exp (—opt). y.

(¢) If exp (—opt).u is bounded on R, and tends to zero exponentially fast as
t = o0, then so does exp (—ayt). y.

(d) Forze C,+, if exp (—a,t).u is bounded on [0, T] for all T > 0 and tends to exp
(—0gt). u,.exp (zt). 1(t) exponentially fast as t — oo, then exp (—a4t).y is bounded on
[0, T] for all T> 0 and tends to exp (—a,t). f(2).u,,.exp (zt). 1(t) exponentially fast as
t— o0.

Comment 2.4

For 4 = 0, the properties of L,(0) arec important to show that a TF in A _(0) has the
I/O properties of an exponentially stable rational TF in R(0). The essential ideal
property of L(o,) is also used below.

3. The algebra of g,-exponentially stable transfer functions
Definition 3.1
Let goeR and let f be a distribution in A_(oy), whence f=f+ L, =/

t As is usual, we identify functions or distributions with their Laplace transforms.
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+ Y fi(.— ). fis said to be oo-exponentially stable ifl f, € L{a,), i.e. the functional
i=0

part [, is og-exponentially stable. We denote by E(oy) the subset of g4-exponen-
tially stable distributions of A _(a,), and we call E(g,) the subset of o,-exponentially
stable TF’s of A_(g,).

Fact 3.1
For o, € R the following hold:
(a) E(oo) = A _(d0) (3.1)
(b) With f=f+fa=/+ X fd(— 12,
feEay) (3.2)
iff there exist ¢ < g, and M > 0 such that
| (D] £ Mexp(61) ae.on R, 33 a)
and
Y Iflexp{—ot;) < c0. (3.3 b)
i=0
Proof

Obvious from Definitions 3.1 and 2.1, where ¢ has been eventually adapted. OO

Comments 3.1

(@)
R(g0) = E(go) N Cyls) = A _(a0) N C,fs) (3.4)

(B) By (3.3 a) without loss of generalityt £, € L, ,; hence by the Riemann—Lebesgue
lemma (Desoer and Vidyasagar (1975), Theorem B.1.1.), f(s) » O as |s| =+ c0 in C,.. By
(3.3 b) and (Callier and Desoer (1978), p. 652), a non-zero £, is analytic almost periodic
in any vertical strip of C,+, and so is not zero at infinity.

(v) In view of Comment (f), with ¢ < g4, a TF fe E(a,) has a strictly proper part f,
such that exp (—a,t).£(t) is bounded by a decreasing exponential (see (3.3)); this
property is characteristic for rational o4-exponentially stable TF’s in R(gy), (e.g. in
Callier and Desoer (1982), p. 127). Hence the decision to call elements of E(g,) also 6,-
exponentially stable.

(8) Counterexample 1.1 shows that E(s,) is a proper subset of A_(a,). However,
E(o,) is a rich subset of A_(a,) as seen below.

Fact 3.2 (regular derivatives)
Let 0, € R and let fe B(ay), or equivalently:

S=L+f15in A_(gg) (35a)
such that, in the sense of distributions,
fi=g.+ ‘Zo g;6(.— 1)) is in A_(dy) (3.5 b)
i=

t By increasing ¢ slightly to o, (g, o), if necessary.
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where on R,
[ = J‘l f@) do:= J.'ga(r) di+ Y, g-1t—r1; (3.5 ¢
o~ 0 ST

i.c. f; is the primitive of f, € A _(,) in the sense of distributions. Under these conditions

(o) = E(ap). (3:6)

Comments 3.2

(o) Fact 3.2 is suggested by (Callier and Desoer (1980 b), Lemma 5.1., p. 36) and
(Ferreira and Callier (1982), Theorem 2, p. 481).

(B) Conditions (3.5) guarantee that both £ and £, have a Laplace transform: a
condition often encountered in dynamical systems.

() In the proof below f € E(a,) because for some ¢ < 04, exp(—o.).f;isin L, and ‘of
bounded variation on R,’, (see (3.7) below).

Proof of Fact 3.2

Denote by D(.) the derivative in the sense of distributions. Conditions (3.5) imply
that, for some ¢ < oy,

exp{—o.)feL,
and
Diexp(—a)f)=exp{(—a.)f —o exp(—0.)f, € A() (3.7)
such that on R,

exp (—ot) fo(t) = J

0

[

_exp (—on)f(r)d1—0 J exp (—a7) fi(r) dt

0

Hence on R,

exp (—o) | (1) S llexp (— o). fill agy + 1ol llexp (=), =:M < o0
Therefore fe A _{(a,) with £, € L,(g,). O

We now investigate the algebraic properties of E(ay).

Theorem 3.1 (subalgebra)
For any g, € R, E(0,) is a (commutative) subalgebra of A_(c,), ic.

(a) E(ay) is a linear subspace of A_(ay), 3.8)
{b) For all f, g in E(o,), [.¢ € E(5,). (3.9

Comment 3.3
B(o,) is not an ideal of A_{ao):if g=1, then for any feA_(o,)\E(sy),
f.8 € A_(a0)\E(oo).

Proof of Theorem 3.1
(a) follows by Definition 3.1 and (2.5).
{b) Withf=jx; +f and g =g, + 8o (f#8)s = /a8 +fi%8n +.’;a*ga with each term
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on the RHS in L,{0;) because of the ideal property (2.6): note that such term has a
factor in L,(o) and A _(o,) respectively. Hence fxg € A _(0,) with (frg), € L(o,). O

We now study inversion.

Lemma 3.1 (unity feedback)
Let o,eR. If felfoo) and (1+f) is invertible in A_(g,), then
h=(1+f)"" e E(o,).

Proof
h =6 —(f+h), where fe L{o,) and he A_(o,). Hence h is in E(g,) because h, =
—(f*h) is in LJ{o,) by the ideal property (2.6). O

Theorem 3.2 (Inversion)
Ley g € R and fe E(o,) = A _(0,). Under these conditions

fis invertible in E(a,) (3.10)

inf {|/(s)|:s € C,a} > 0. (3.11)

Comments 3.4

() Invertibility condition (3.11) is also necessary and sufficient for f to be invertible
in A _(o,) (Callier and Desoer (1980 a). Fact 2.3 (iii)). Hence E(c,) as a subalgebra of
A _(6,) is closed under inversion.

(#) The proof below shows that under (3.11) £, is invertible, whence Lemma 3.1 can
be applied.

Proof of Theorem 3.2

Only if:(3.11) is necessary by (Callier and Desoer (1980 a), Fact 2.3 (iii}), because
E(o,) = A_(ay).

If: By assumption f=f, +f,€E(6,) = A_(6,), whence the conclusions of
Comment 3.1 (f) apply for some ¢ < g,. Hence condition (3.11) implies

inf {| fa(s):s € C,z} >0 (3.12)
and
inl {| fi(s). fa () + 1]:5€ C3} > 0. (3.13)

Condition (3.12) implies by Callier and Desoer (1980 a), Fact. 2.3 (iii)) that the singular
atomic part f,, is invertible in A _(o,) with a singular atomic inverse (Hille and Phillips
(1957), proof of Th. 4.18.6, p. 150). Therefore f,' € E(s,) = A_(s,) (if g denotes the
inverse, then g, =0).

Now, by the ideal property (2.6), f,.f 2" is in L(c,). Moreover by (3.13) (1 +£,f2")
is by (Callier and Desoer (1980 a), Fact. 2.3 (iii)) invertible in A _(a,). Hence by Lemma
3., (1 +£ 20" Visin E(o,). Finally, since /"1 =f2'(1 + £ f=)"%, f s in E(o,) by
Theorem 3.1 as a product of two factors in E(gy). O
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4. Boundeduness from zero at infinity and coprimeness
Definition 4.1 (Callier and Desoer (1978), p. 652}

Letase R, p >0, D(og, p):= {s€C, :|s—ay| 2 p} and g € LTD, : g is said to be
bounded away from zero at infinity in C, il there exist n >0 and p >0 such that
|g(s}| = # for all s € D{oy, p).

Definition 4.2 (Zariski and Samuel (1958), p. 46)

Let M be a non-empty subset of a commutative ring R: M is a multiplicative system
of R iff (i} M does not contain either the zero nor divisors of zero of R, and (i) M is
closed under multiplication.

Notation 4.1,

For o, € R, we shall denote by E®(a,) the subset of elements of E(c,) that are
bounded away from zero at infinity in C,;.

Recall now that the elements of R®(s,) and A®(,) are bounded away from zero at
infinity in C,: and form a multiplicative system of R(o,) or A _(0,) respectively.
Morcover the latter has no divisors of zero (Callier and Desoer 1980 a, p. 321), and is
by (3.1) a superset of E(s,). Hence we have the following.

Fact 4.1
{a) E=(5,) = A®(a) 4.1)
(b) E=(g,) is a multiplicative system of the commutative ring €(s,). 4.2)

Comments 4.1

(@) R*(00) = E*(ao) N C,ls) = AZ(g0) N C,(s) (4.3)

(#) Recall (Callier and Desoer (1978); (1980 a), Fact 2.3): if /e A_(5,) then [ is
holomorphic in an open right half-plane strictly containing C,:, hence, counting
multiplicities, (i) f has a finite number of zeros in any compact set of C,+, and (i) if
fe A®(g,) then f has a finite number of zeros in C, + These properties apply also to
E(g,) and E™(a,) as subsets of A_{a,) or A“’(oo) Tespectively. This observation is
paramount for the results below inspired by Callier and Desoer (1978, Corollaries
2.2A, 2.2B, 2.2C; 1980 a, Corollary 2.2C).

Lemma 4.1 (division)
Let 05 € R and f'e E(g,). Let ze C,y and pe €, .
Under these conditions

(s—2)(s —p) ™! € R™(go) = E=(ay) (4.4)
and
f).(s=p)s— 2" =](2).(z — p)s — 27" +§(5) (4.5 a)
where

g  B(ay). 4.5 b)
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Comments 4.2

Lemma 4.1 states that ‘quotient’ g of the division of f'e E(a,) by an elementary
factor (s — z)(s — p)~ ' of R®(a,) is in E(a,), i.e. 6,-exponentially stable, Iff(z) =0 and
fe E«(a,), then f can be factored as f(s) =((s —z)(s— p)~ ) q4(s) with two factors in
E=(s,) and the first in R™(g,). If, in addition, p is a pole of f, then a pole-zero pair of f
has been extracted.

Proof of Lemma 4.1

(4.4) is obvious. Concerning (4.5), note first that f(s).(s — p)(s ~z)7! -f(s)
(1 +(z—p)s—2)7"). Then by Fact 2.2, especially (2.10), fS)s—2)"'= j(z)( z)~ !
+ 4,(s), where 4, € L (o) = E(o,). Hence (4.5 a) follows where §(s) = f(s) + (z — p)g,(s).
Hence G € E{o,) because E(g,) is a linear space by (3.8). 0

Repeated applications of Lemma 4.1 and Comment 4.1 (f) give the following result.

Theorem 4.1 (product decomposition)
Let oo € Rand f € E(o,). Forj=1,2, ..., I, let f have zeros z;€ C,+ of order m; such
i

that 3 my=n Fori=1,...n,let pe €,

lj:éer these conditions
(a) f(5) = B(s)d(s) (4.6 a)
where
pe R®(ay) and 4 € E(g,) (4.6 b)
! n
#9)= [ =2y [T s =p)~" (46 c)
gzp#0forj=1,..,1 (4.6 d)

(b} 1f, in addition, fe E*(,) and f has no other zeros in C,; than the z’s of order
m;, then (4.6) holds and

g is invertible in E(ay). 4.7

Comments 4.3

(2) In Theorem 4.1(a) we remove from f the zeros z;€ C,; and stay in E(o,).

(B) if fe E™(0,) then so does § in (4.6).

(y) Tn Theorem 4.1 (b) we have removed all the zeros of fin C, +- Hence, since
§ € E®(ay), inf {|4(s):s € C, +1>0, and (4.7) follows by Theorem 3.2.

() By Theorem 4.1 {b) E“’(ao) and R®(g,) are essentially identical in that their
elements are the same modulo a factor invertible in E(gy).

(8) If in Theorem 4.1 (a) we remove from f only partially the zeros z;in Gz, then
(4.6 a)-(4.6 c) still hold with m; the number of extracted zeros at z;.

We now study coprimeness.

Definition 4.3
Letgse R andfand g be in B(a,). The pair (£, g) is said to be €ay-coprime, (or fand
g are said to be go-coprime), ifl
there exist ¢ and § in E(o,) such that if + 8¢ = 1. 4.8)
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Comment 4.4.

Condition (4.8) is known as the Bezout condition. It is crucial for studying for
instance algebras of fractions and feedback compensator design problems, e.g. in
Callier and Desoer (1978, 1980 a) and Desoer et al. (1980).

A more operational characterization of coprimeness is the following.

Theorem 4.2 (eg,-coprimeness)
Let 0, R and fand g be in E(a,), then the pair (f, §) is e6,-coprime iff

inf {|(As), &s))|:s€C,2} >0 4.9)

where |.| is any C%-norm.

Comments 4.5

() Since E(s,) = A_(g,) it follows by (Callier and Desoer (1980 a), Facts 1 and 2)
and (Callier and Desoer (1978), Theorem 2.1) that condition (4.9) is equivalent to (f, )
is ay-coprime or equivalently:

there cxist 4, and 4, in A_(o,) such that i, f+ 6, =1 (4.10)

i.e. the Bezout condition is satisfied with respect to A_(a,). The proof below shows
that this condition also holds with respect to E(g,) by a regularization procedure.
(B) Condition (4.9) is equivalent to (i) (f(s), £(s)) # (0, 0) for all s € C,.+ and (ii) (/{s),
£(s)) does not tend to (0, 0) along any sequence in C,: tending to infinity.
(v) If, in addition, g € E®(c,), then condition (4.9) is equivalent to

(f(s), 8(s) # (0, 0) for all s C,s (4.11)

Moreover, in that case, if (4.11) is not satisfied, then, by applying Theorem 4.1 (a)
under the conditions of Comment 4.3 (g), (f, §) can be made to satisfy (4.11), (i.e. to be
£a4-coprime), by removing from f and § common factors (s — z)(s — p) " ! in R®(g,)
associated with the commen zeros z of fand g in G,

Proof of Theorem 4.2

Only if: if (f, §) is eay-coprime, then, by (4.8) with E(o,) = A_{ay), (f; £) is a-
coprime and (4.9) follows by Comment 4.5 («).

Ift By the equivalence of Comment 4.5(a), (4.10) holds with i, =4, + 4., and
B, =, + b,, both in A_(g,). Hence (4.10) can be rewritten as

lgof + 6 = 1 = (S + 6,8) (4.12)
Since they are singular atomic
i, and i, € E(a,) (4.13)

and so do fand g (by assumption). Hence, by Theorem 3.1, the LHS of (4.12) is in E(c,)
and so does the RHS having the singular atomic part 8, {(ii, f + 6,8)(s) ~ 0 as |s| = o0
in C,+). Therefore

1~ (i, f + 5,8) € E=(0y) (4.14)
with 4,/ + 6,8 in L,(0,). Hence, by Theorem 4.1 (b) and (4.14)
L— (G /+ 0,8) =4 (4.15)
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where
peR®(gy), ploc)=1, and | — p e L(oy) (4.16)
and
g is invertible in E(o,) 4.17)
Consequently (4.12) is equivalent to
§ Y f+ 47 0= P (4.18)
On the other hand, (4.10) implies
(1 =Pt f+(L— P g=1-p (4.19)

Now by (4.13), (4.17) and Theorem 3.1, cjﬂ"ﬁs,, € E(s,); moreover, since i, € A_(o,),
and by (4.16) and Theorem 2.1, (1 — p)ii, € L(o,) = E(a,). Hence, again by Theorem 3.1,

fi:= 4 Yy, + (1 — p)i, is in E{ay) 4.20)
and for similar reasons

6= § ', + (1 — P, is in E(oy) (4.21)
Thus, by (4.18H4.21), there exist # and ¢ in E(o,) such that if+dg=1, ie, by
Definition 4.3, (f, £) is e6,-coprime. |

5. Fractions of o,-exponentially stable transfer functions

We follow the methods of Callier and Desoer (1980a, §II) for modelling
distributed systems.

Recall (Zariski and Samuel {1958), pp. 46-49) that if R is a commutative ring and
M is a multiplicative system of R, then F:= RM ~! is a commutative ring of fractions
of R with respect to M, ie. fe Fiff f=nd ™! for some ne R and d e M.

Now, (i) if, in addition, R is a commutative algebra, then F=RM ™! is a
commutative algebra of fractions, (i) by Theorem 3.1 E(a,) is a commutative algebra,
and (iii) by Fact 4.1 E®(c,) is a multiplicative system of E(s,). Hence the following
definitions make sense.

Definitions 5.1
For o, € R we define F(c,) as the commutative algebra of fractions of €(a,) with
respect to E®(o,), ie.

Floo):= [E(oo)][E~(60)] " (5.1)
or equivalently fe F(ay) iff
f=#d ! for some ii in E(oy) and d in E®(c,) (5.2)

Any pair (A, d) such that (5.2) holds is called an eo-fractiont of f; if, in addition, (4, d) is
an go,-coprime pair, then (4, d) is called an go4,-coprime fraction] of f

1 In Desoer et al. (1980, p. 401), the term ‘fractional representation’ was used.
1 In Callier and Desoer (1978, 1980 a, p. 321), a 6,-coprime fraction of /'e B(o) is called ‘o4-
admissible representation’.
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Comments 5.1

(@) gog-coprime fractions exist by Comment 4.5 (y) and Theorem 4.2. They are
unique modulo a common factor invertible in E(o,) (Desoer et al. 1980, p. 401). Hence,
by Comment 4.1 (f), fe F(g,) is meromorphic in an open right half-plane strictly
containing C,: and has a finite number of poles in C,;: see Theorem 5.1 below.

Fact 5.1
With C,(s), R*(a,) and B(ao) given in the introduction, one has
(@) F(ao) = [E(0,)I[R™(00)] (5.3)
{b) C,(s) = F(oo) = B(ay) (5.4)

where < stands for ‘subalgebra of”.

Proof

{(0) follows from (5.1) and Comment 4.3(5).

(b) follows because C,(s)=[R(co)][R™(50)]7", Blog)=[A_(0g)][AZ(go)] " =
[A _(o,)][R*®(c,)] "', (Callier and Desoer 1980 a), and R{o,) < E(g,) = A _(o,) where
inclusion stands for ‘subalgebra of”. Hence, using (5.3), (5.4) follows. |

The statements of Theorems 5.1 and 5.2 below are those of Callier and Desoer
(1978, Theorem 3.3), or (1978, Theorem 3.7; 1980 a, Theorem 3.7) modulo inter-
changing E(c,), F(o,) for A _(s,), B(o,) respectively. Their proofs are similar, and are
omitted here. For Theorem 5.1 use Lemma 4.1 instead of Callier and Desoer (1978),
Cor. 2.2A. Comments stress these results important for modelling and feedback.

Theorem 5.1 (sum decomposition)
Let fe LTD,. Then

feF(ay,) (5.5)
if and only if
f=F+g (5.6)
where
{a) § e E(g,) (5.7}
(b) F is a strictly proper rational function which is zero iff fe E(o,) (5.8)
(c) if f ¢ E(gy), then
F=palpa (59 a)

is the sum of the principal parts of the Laurent expansions of f at its poles in C,piin
particular,

p. and p, are coprime polynomials (59h)
p4 is monic (590
deg (p,) S deg (p) — 1 (594)

f has an mth-order pole at pe C,y il pg has an mth-order zero at pe C,: (5.9 ¢)
pi(s)#£0forall se tao-. 5.91)
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Comments 5.2
(o) The analogue (Callier and Desoer (1978), Theorem 3.3) is crucial for showing
that the class of infinite-dimensional semigroup systems considered in Nett et al.
(1983, (3.1), (3.2)) have a transfer matrix with elements in B(0): see the proof of Nett et
al. (1983, Theorem 3.2). Our sharper Theorem 5.1 shows that the elements are in F(0).
{B) Here, (5.9), 8 € E(o,) § A _(o,): any TF in F(g,) is the sum of two TF’s, the first
is strictly proper rational with poles in C,+, the second is g,-exponentially stable.

Corollary 5.1

The (transfer function) algebras L (o,), E(s,) and F(o,) given in Definitions 2.1, 3.1
and 5.1 respectively are of exponential order in the sense that they are subalgebras of
U{E(01)301 2 0o}

Proof
Obvious from the definitions, Theorem 5.1 and previous theory. O

Theorem 5.2 (invertibility)
Let f'e F(o,). Then fis invertible in F(g,) iff fis bounded away from zero at infinity
in Cau*.

Comments 5.3.

(@) By Theorem 5.2, since E®(oy) = E(oy) = F(ay), I:= {f € E(ao):f ! € F(ay)}
=E®(g,). Hence, with G = F(a,), H=E(a,), I=E(6,) and J={feE(o,):f is
invertible in E(a,)}, every ea,-fraction Ad ™! € F(o,) is a fractional representation in
{G, H, 1, J}, (Desoer et al. (1980), p. 401). Therefore the feedback system design
techniques of Desoer et al. (1980) apply over E(s,).

(B) MIMO systems with transfer matrices having elements in F(g,) can be handled
according to the methods of Nett et al. (1983), Callier and Desoer (1980 b) and Desoer
et al. (1980) for example.

6. Link with semigroup systems

We study recent feedback stabilizability results by Jacobson (1984 a, 1984 b), to which
our algebras L,{o,), E(g,) and F(o,) add precision. The main results of semigroup
theory are available in for example Curtain and Pritchard (1978), Hille and Phillips
(1957), Pazy (1983), Pritchard and Zabczyk (1981) and Triggiani (1975). Inspired by
Jacobson (1984 a, 1984 b), we consider the following class of SISO semigroup state-space
systems SGB with bounded sensing and control (generalization to the MIMO case is
straightforward; for unbounded sensing and control see for example Curtain and
Pritchard (1978), Ch. 8).

Definition 6.1
A dynamical system SGB is described by the equations

1) = Ax(t) + Bu(t) teR,, x(0) = x, e D(A) (6.1)

W) =Cx()+ Y, dult—1) LR, (62)
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where
(@) x(¢) e X, a Hilbert space; u(t), y(t) e R, (6.3)
(b) A:D(A) = X — X is the infinitesimal generator of a Cy-semigroup (7)), of
bounded linear operators in X; ie. T, e L(X, X) (6.4)

{c) B and C are bounded linear operators, i.e. Be L(R, X) and C e L(X, R), (6.5)
d)ty=0,,>0foralli=1,2,...,and for all i=0, 1, ..., d; € R such that

_ZO |d;| exp (—at;) < oo for some ¢ < oy, (6.6)

Comments 6.1

(=) In (Jacobson 1984 a, b) X is a reflexive Banach space: generically X is a Hilbert
space.

() The direct 1/O transmission Y du(t —¢) is absent in Jacobson (1984 a, 1984 b)
i=0

and most applications: it is added for obtaining a singular atomic part in the TF.
(y) In (6.5) C is a bounded linear functional: hence by the Riesz representation
theorem (Rudin (1974), p. 139) :

Cx={c,x)forallxeX (6.7)
where ce X and (., .) is the inner product of X. Moreover, by (6.5)
Bu=bu forallueR {6.8)

for some be X.
(6) By standard analysis (Curtain and Pritchard 1978, Kato 1980, Pazy 1983), the
(mild) solution x{.) on R, reads

t

x(1) = Tyxo + L T,_Bu(tydt x,eX (6.9)
and the impulse response of system SGB is given by
f()=CT,B + _):) 4.5t —1,) (6.10)
Hence by the Laplace transform SGB has a TF
f(s)=C(sl—A)‘1B+§0 d; exp (—sty) 6.11)
where (s/ — A)~! is the resolvent of A (usually denoted by R(s, A), ie. the Laplace
transform of ¢t — T): it is a bounded linear operator in X for all s in an open right half-
plane; as a function of s it is there a holomorphic operator-valued function.
Now, using (6.7) and (6.8), the TF reads more classically
Fs) = <c, (sT — A)~ 1B + io d; exp (—st) 6.12)
where f is holomorphic in an open right half-plane. Hence, modulo b and

cin X and (z;, d)? asin (6.6),f will be specified by defining the state space (X, ¢.,.>) and
the generator A with its domain D(A): e.g. (i) if X is separable and A is self-adjoint with
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compact resolvent: see e.g. Curtain and Pritchard (1978), Example 2.40, and (ii) for
differential delay equations on X = M?: see e.g. Vinter (1978). Therefore we have a
systematic way of writing TF’s of systems SGB.

Similarly to Jacobson (1984 a, 1984 b) we show here that, modulo g4-exponential
stabilizability and detectability, (i) f, given by (6.11)~(6.12), is in F(c,) rather than B(s,),
and (ii) internal o,-exponential stability is equivalent to external exponential stability
in (o), (rather than external stability in A_(g,)). With ||.|| denoting the uniform
operator norm we need the following,

Definitions 6.2

Consider any system SGB.

(«) SGB is said to be internally oy-exponentiaily stable iff the semigroup (T),,, is
go-exponentially stable, i.e. there exist ¢ < gy and M > 0 such that || T, || £ M exp (o1)
on R,.

(B) SGB is said to be externally ao-exponentially stable iff its TF fis in E(c,).

(y) The operator pair (A, B) is said to be a4-exponentially stabilizable iff there exists
K e L(X, R) such that the semigroup (T7), ;o generated by 4 — BK is o,-exponentially
stable. '

(&) The operator pair (C, A) is said to be o4-exponentially detectable iff there exists
F e L(R, X) such that the semigroup (T7), », generated by A — FC, is o,-exponentially
stable.

The following assumption is standard in semigroup theory (Curtain and Pritchard
1978, Pritchard and Zabczyk 1981, Triggiani 1975).

Definition 6.3

Consider any system SGB and let A: D(4) = X — X be the infinitesimal generator
of the Cy-semigroup (7)o with spectrum o(A4) = C. A 1s said to satisfy the spectrum
decomposition assumption (SDA) at ce R iff o0,(4):= 6{4)~C,. is bounded and
separated from o(A4):= a(4)n€,- in such a way that a simply closed rectifiable
oriented curve I' can be drawn so as to enclose an open set containing a,(4) in its
interior and a(A) in its exterior.

Comment 6.2 (Curtain 1984, Curtain and Pritchard 1978, Triggiani 1975)

The SDA at ¢ induces a natural state-space decomposition X = X* 4 X%, where
X*:=TI(X) and X*:=(I-II)(X), with TI:= (2nj)"j}(sl —A) " 'ds a bounded
projection in X. A”:= A| X" is bounded, A°:= A| X" is a generator; corresponding
spectra are o(A") = 0,(A), ¢(4%) = o (A). Furthermore IT reduces T,, i.e. IT and (I — IT)
commute with 4 and T,; T¢ =TT, is the semigroup generated by A", (T} = exp (4%t)),
and T5 = (1 — )T, is the semigroup generated by A°. Finally, the operators B and C
are decomposed according to B*=TIB, B°=(/ —II)B and C*=CII1, C*=C{I — ).

Hence, after decomposition, the impulse response, (6.10), and the transfer function,
(6.11), read now

J(t)=C"exp (A"t)B* + C°T;B* + i d;o(t —t;) (6.13)
i=0
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or
f(s)=Csl —~ A" 'B* + C(sI — A" 'B*+ Y d, exp (—st) 6.14)
i=0

respectively.
We then have the following.

Fact 6.1 (Jacobson 1984 b, Theorem 1) (Exponential stabilizability and detectability)
Consider a system SGB of Definition 6.1. Then

(4, B) is g,-exponentially stabilizable and (C, A) is g,-exponentially detectable

(6.15)

if and only if
(@) the generator A satisfies the SDA at some ¢ < g, (6.16)
(b) A® generates a g,-exponentially stable semigroup (T7),50 6.17)
() X" is finite-dimensional (6.18)
(d) (A%, B} is controllable and (C", A") is observable. (6.19)

Comments 6.3
(@) In (6.19) A" is a matrix and BY, C" are vectors.
(/) In (Jacobson 1984 b, Theorem 1), SGB does not contain a direct /O

transmission Y d;u(t —t;); however, this term is irrelevant in the proof whose
it=0

sufficiency part is well known (Curtain and Pritchard (1978), Triggiani (1975)): the
point is necessity: Jacobson (1984 a, Theorem 3.1.2, Theorem 3.2.1; 1984 b, Theorem 1).

Theorem 6.1

Consider a system SGB with transfer function f given by (6.11). Under these
conditions, if

(A, B) is o,-exponentially stabilizable and (C, A) is oy-exponentially detectable
6.15)

then
feBloo) F Blao) (6.20)

Comment 6.4

An analog is the reasoning of Jacobson (1984 a, Theorem 3.1.1) whence
C(sl — A)~'B e B(ay).

Short proof
By fact 6.1 and {6.14)

(6.21)

Sy
Il
e Y
+

o
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where
(1) 8(s):= Cs1 — A 'B* + id[ exp{—st) is In E(ao). Indeed g{ty=C'T3B°
i=o

+ Y d;é(t —1;), where the last term is in E(o) by (6.6} and 1 — C°T;B’ is in L,(0,)
i=0

because |C*T;B*| < || C*| M || B*|| exp (at) for some ¢ < oy and M > 0, (6.17).

(i) A(s): = C%sl — A“)"*B" = p,(s)/p,(s) is a rational function by Comment 6.3 (c)
with p.(s):= C*Adj (sl — A)B* and pys):= det (s — A") coprime polynomials
satisfying the properties (3.9).

Hence f'e F(o,) by Theorem 5.1 and (6.21) with its properties. O

By Fact 6.1 and the reasoning of Jacobson (1984 b, Theorem A.1.1), we also have the
following result.

Theorem 6.2
Consider a system SGB. SGB is internally o,-exponentially stable if and only if

(@) (A, B) is g4-exponentially stabilizable and (C, A) is o,-exponentially
detectable (6.15)

(b) SGB is externally og-exponentially stable. (6.22)

Comments 6.5

(«) In Jacobson (1984 b), Theorem A.1.1, (6.22) reads f € A _(a,); here [ € E{o,)
G A_(o0).

() Fact 6.1 and Theorem 6.2 are the key results for output feedback stabilizability
of a system SGB without a direct I/O transmission: see Jacobson (1984 b), Theorem 3).
By Theorem 6.1 any such system necessarily has a TF in F(a,) & B(c,). If fhas a direct
I/O transmission term, then the same conclusion can be obtained from transfer
function theory: see Nett (1984), Theorem 6.1 and its proof.

7. Conclusion
Four classes of distributed system transfer functions of exponential order have
been defined:

(i) Lfo,), (so-exponentially stable functions; Definition 2.1)

(ii) E(oy), (co-exponentially stable transfer functions; Definition 3.1)

(iii) E=(a,), (‘biproper’ elements of E(s,); Notation 4.1)

(iv) Floo) = [E(ao)][E®(6,)} " (fractions; Definition 5.1).

They are (a) restrictions of (i) U{L,,:0<a,}, (ii) A_(a), (iii) A®(g,), and
(iv) Bloo) = [A _(ao)J[A=(6o)1™" respectively, and (b) extensions of (i) the class of
gg-cxponentially stable ‘exponential polynomials’, (ii) R{o,), (iii) R%(g,), and
(iv) C,(s) = [R(ao)J[R™(0o)]1™" respectively such that they maintain the exponential
order properties of the latter classes associated with lumped systems; moreover, corre-
sponding classes A — B < C have the same algebraic properties (e.g. algebra or multi-
plicative system ...): see the results of §§2-5 of which two are fundamental, viz.
(2) Lfoo) is a proper ideal of A_(c,) (Theorem 2.1), and (B) the transmission of
a o,-unstable exponential by a system with transfer function in A _(o,) with an ‘error’
in L(o,) (Fact 2.2).
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For the transfer function algebra of fractions F(o,) of § 5, we obtained that
(i) f € B(o,) is holomorphic in C,;(ie. ag-stable) iff 1 € B(oo), (i.e. o -exponentially
stable), (i) f € F(a,)iff f = # + g (the sum decomposition of Theorem 5.1), and (iii) F(a,)
allows delay in the direct I/O transmission of the system. This resulted in § 6 in a nearly
perfect fit for any standard semigroup system SGB: if (4, B) is 64-exponentially
stabilizable and (C, 4) is g4-exponentially detectable then (i) the transfer function fisin
F{o,), (rather than B(s,)), and (ii) internal ¢,-exponential stability is equivalent to
external a,-exponential stability (f is in E(,) rather than A_(c,)).

To conclude, we make three remarks.

(o) Numerically the sum decomposition of Theorem 5.1 involves computing poles
and partial fractions of f in F(s,): sec e.g. Henrici (1974). In particular for
semigroup systems SGB we must calculate eigenvalues and (generalized)
eigenspaces of the generator A: see ¢.g. Chatelin (1983).

(B) A fractional representation of fin F(s,) can be obtained by the methods of Nett
et al. (1984, especially Remark 6) and Jacobson (1984 a, Theorem 3.1.5).

(y) E(o,) together with the A(sg)-norm is a normed algebra in which the small gain
property holds, viz. if fis in E(so) and || f|la,,, < 1 then (1 +/) " Visin E(ay) (use
Nett et al. (1983, Proof of Theorem 3.1) and Theorem 3.2). This property is
paramount for robust feedback stability, e.p. Vidyasagar (1984), and sensitivity
reduction, e.g. Zames (1981, p. 304).
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