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Abstract. In this paper, we show that the dynamics of homogeneous and isotropic Friedmann-

Lematre universes can be studied with population dynamics, in particular with the generalized

Lotka-Volterra equation where the competitive species are the barotropic fluids filling the

Universe. Without coupling between those fluids, Lotka-Volterra formulation offers a pedagogical

way to interpret usual Friedmann-Lematre cosmological dynamics. When the cosmological fluids

are coupled however, we establish new dynamical properties of Friedmann-Lematre universes

consisting of cycles between its interacting components. This provides a new asymptotic behavior

for cosmic expansion in presence of coupled species, beyond the standard de Sitter, Einstein-de

Sitter and Milne cosmologies. Finally, we conjecture that chaos can appear for at least four

interacting fluids.



1. Introduction

According to the cosmological principle, the geometry of the Universe is supposed to be

homogeneous and isotropic at any given time, giving rise to the famous Friedmann-Lematre

(FL) cosmology. In this picture, cosmological properties are subject to evolution and the whole

cosmos is therefore the biggest dynamical system one can study. In particular, one of the

questions that can be handled is the one of the fate of the Universe. The various scenari for

the fate of the Universe in FL cosmologies have been popularized as Big Chill - when cosmic

expansion is endless, Big Crunch - a final singularity of same nature than the Big Bang for

spatially closed cosmologies with vanishing or small cosmological constant, or more recently Big

Rip [1], when Universe’s scale factor become infinite at a finite time in the future. Dynamical

systems tools have allowed some important results in the question of future asymptotic behavior

of cosmic expansion, for instance by demonstrating the existence of attracting regimes and

scaling solutions in quintessence models [2, 3]. Solutions to cosmological dynamics consists of

time evolution of density parameters associated to the barotropic fluids usually invoked to model

matter contents of the universe. The fate of the Universe is completely related to its matter

content. For example, Big-Rip singularity occurs when Universe contains the so-called ”Phantom

dark energy” associated to a barotropic fluid with equation of state p = ωρ where the barotropic

index ω < −1.

In this paper, we present for the first time FL cosmological dynamics in the terms of

interacting population dynamics and Lotka-Volterra system. When there are no interactions

between constitutive fluids, this formulation allows to interpret those dynamics in a pedagogical

way through one intuitive and simple formulation. The cosmological dynamics can then be seen

as a competition between several species, each associated to one of the fluids filling the universe.

Those species all compete for feeding upon the same resource which is spatial curvature. The

usual asymptotic states of FL dynamics, de Sitter, Einstein-de Sitter and Milne universes, can

all be seen as a particular equilibrium between cosmic species. This is the picture of the Jungle

Universe. In addition this analogy with population dynamics allowed us to complete the set of

possibilities for the fate of the Universe. This is achieved when we apply the general techniques

of Lotka-Volterra systems to the case of directly coupled fluids. It appears a new asymptotic

state for cosmological dynamics in which the coupled species endlessly alternate to dominate the

energy content, leading for instance to transient acceleration phases. Those cycles explain the

name of twisting species, as they take the cosmic expansion into an eternal dance.

The paper is structured as follow : in section 2 we show how to present FL cosmological

dynamics as population dynamics; in section 3 we obtain the general formulation of the Jungle

Universe dynamics; in section 4, we introduce direct interaction between two fluids and show

under which conditions they can behave as twisting species; in section 5, we generalize the

formulation to N directly coupled species and focus in particular to triads (N = 3) and quartets

(N = 4); finally, we draw some conclusions in section 6.

Notation

In what follows, vectors are written bold faced (e.g. r ∈ R
n) and the associated coordinates

in the canonical basis are denoted by the italic corresponding letters with an index (e.g.



r = (r1, · · · , rn)⊤).

2. Friedmann-Lemâıtre cosmology as generalized Lotka-Volterra dynamical

systems

Taking into account a cosmological constant Λ, Einstein’s equations of general relativity write

Rµν −
1

2
gµνR + Λgµν = χTµν

where gµν and Rµν are respectively the metric and the Ricci tensors, R is the scalar curvature

(contraction of the Ricci), Tµν is the stress-energy tensor and χ = 8πGc−4. The general paradigm

of standard cosmology consists of imposing Friedmann-Lemâıtre-Robertson-Walker metric as an

isotropic and homogeneous description of the universe i.e.

ds2 = c2dt2 − a2 (t)

[

dr2

1− kr2
+ r2

(

dθ2 + sin2 θdφ2
)

]

where a (t) and k are respectively the scale factor and the curvature parameter, t and (r, θ, φ)

being the synchronous time and usual spherical coordinates, respectively . If one assumes that

this universe is filled by a perfect fluid of density ρ, pressure p and quadri-velocity field uµ for

which Tµν = (ρ+ c−2p) uµuν − pgµν , it is well known that the dynamics of the universe are

governed by Friedmann-Lemâıtre and conservation equations :

H2 =
8πG

3
ρ+

Λc2

3
− kc2

3
(1)

ä

a
= − 4πG

3

(

ρ+ 3
p

c2

)

+
Λc2

3
(2)

ρ̇ = − 3H
(

ρ+
p

c2

)

(3)

where H(t) =
ȧ

a
is the Hubble parameter and a dot over a quantity indicates a derivation with

respect to the synchronous time t, the independent variable of the cosmological differential sys-

tem. Both parameters k and Λ might be seen as fixing the spatial and intrinsic curvature of the

geometry‡. Among the three above equations, only two are independent since all are related

through the second Bianchi identities. The remaining two equations still include three unknown

functions: ρ (t), p (t) and a (t). This under-determination can be raised by introducing an equa-

tion of state for the matter fluids. For example, barotropic fluids are such that p = ωρ where

the constant ω is called the barotropic index. In a general physical way, this index ranges from

ωmin = −1 for scalar field frozen in unstable vacuum to ωmax = +1 for stiff matter (e.g. free

scalar field) where sound velocity equals to speed of light. In this paper we restrict our analysis

to such barotropic physical fluids.

Following standard procedure, we rewrite the above equations in terms of density parameters for

matter Ωm = 8πGρ
3H2 , cosmological constant ΩΛ = Λ

3H2 , curvature Ωk = − k
3a2H2 and deceleration

parameter q = − äa
ȧ2
. Friedmann-Lemâıtre equations and energy conservation write for barotropic

‡ If one interprets the cosmological constant as the curvature associated to vacuum.



fluids therefore become










1 = Ωm + ΩΛ + Ωk

q = 1
2
Ωm (1 + 3ω)− ΩΛ

ρ̇ = −3Hρ (1 + ω)

Please note that the latter equation can be directly integrated for constant equation of state to

give ρ ∼ a−3(1+ω).

Finally, we rewrite the above equations by changing the independent variable to the number

of efoldinds λ = log(a) and noting ′ for λ−derivatives, one gets










1 = Ωm + ΩΛ + Ωk

Ω′

m = Ωm [− (1 + 3ω) + (1 + 3ω) Ωm − 2ΩΛ]

Ω′

Λ = ΩΛ [2 + (1 + 3ω) Ωm − 2ΩΛ]

The dynamics of the Friedmann-Lemâıtre universe is contained in the two last equations which

form a differential system of generalized Lotka-Volterra [12, 13, 14] equations well known in

population dynamics. As a matter or fact, introducing the dynamical vector x = (Ωm,ΩΛ)
⊤and

the capacity vector r = (− (1 + 3ω) , 2)⊤, for i = 1, 2 we have x′

i = xi f (xi) where the vector

function f(x) = r+Ax is linear in the variables xi, the community matrix A being defined by

A =

[

(1 + 3ω) −2

(1 + 3ω) −2

]

This formulation allows us to assimilate the dynamics of Friedmann-Lemâıtre universes to those

of a competition between species, represented by Ωm and ΩΛ, for the resources in Ωk. This

point of view is not anecdotal and will reveal a lot of benefit : such equations are very well

known to the dynamical system specialist, it allows a lot of intuitive non trivial results, establish

an analogy that will help us deriving new cosmological behavior for coupled models besides of

providing a pedagogic and interesting insight on cosmic expansion.

First of all, it is easy to see that orbits cannot cross the Ωm = 0 or ΩΛ = 0 axes which are

orbits themselves. As the matrix A is clearly not invertible, equilibrium points must lie on axis.

In particular as denoted by [4] or [5] using a slightly different dynamical system, there exists 3

equilibria which are Milne universe x0 = (0, 0), Einstein-de Sitter universe x1 = (1, 0) and de

Sitter universe x2 = (0, 1). Using the large knowledge of such systems from bio-mathematics

(e.g. [6],[7]) the r vector contains the intrinsic birth or death rates of the species. The dynamics

of competitive Lotka-Volterra systems with such a degenerate matrix is well known:

• If the initial condition is located in the positive quadrant Q+ = {Ωm > 0} × {ΩΛ > 0}
then x → x2 when t or λ goes to infinity, the reason of this attractive character of the de

Sitter universe is uniquely contained in the fact that r2 ≥ r1 for all physical values of the

barotropic index ω. If we extend values of ω considering phantom dark energy instead of

pressureless matter by letting ω < −1 the attractor become the (phantom DE-dominated)

Einstein-de Sitter universe (x1) simply because in this case r1 ≥ r2. This is obvious since

in this case the energy density of the phantom DE grows like a power-law with the scale

factor (ρDE ∼ a−3(1+ω) where ω < −1), therefore asymptotically dominating the constant

density associated to the cosmological term.



• If the initial condition lies on the Ωm axis the attractor is the Einstein-de Sitter universe

if ω < −1
3
and Milne universe (x0) if ω ≥ −1

3
. This is obvious since, in the absence of

a cosmological constant (ΩΛ = 0), the competition is left between matter and curvature

energy densities, the latter decreasing as a−2. Therefore, asymptotic dominance of matter

is only possible when ω < −1/3, so that the related density can eventually dominate (since

it scales as ρm ∼ a−3(1+ω)).

• If the initial condition lies on the ΩΛ axis the attractor is the de Sitter universe for any

values of ω. Once again, this is obvious since asymptotically the constant energy density of

the cosmological term will dominate the decreasing energy density related to the curvature.

These results are well known and presented in a slightly different manner in [4] or [5]. The

new point here is the dynamical population formulation of the problem and interesting results

will be derived through usual techniques in dynamical system theory. We will also present

new cosmological consequences on coupled models which are directly inspired by the analogy

with evolution of populations in competition. One possibility consists of investigating how far

the natural cyclic orbits appearing usually in population dynamics could appear in standard

cosmology. This is the object of the next section.

3. Multi-components Friedman-Lemâıtre universes : jungle universes.

In the latter section we have presented the generalized Lokta-Volterra formulation for the

dynamics of usual Friedmann-Lemâıtre universe with non-vanishing cosmological constant. In

particular we have only considered one simple barotropic fluid characterized by a given value of

ω. We can generalize this situation to the more complicated yet realistic case where the universe

is filled by several kinds of barotropic fluids without any direct interactions. In this section,

we consider for example baryonic matter (b−indiced and for which ωb = 0) and radiation

(r−indiced and for which ωr =
1
3
). It is well known that the repulsive feature obtained with a

positive cosmological constant can also advantageously be obtained through some dark energy

fluid component (e−indiced) associated to a barotropic index ωe ∈ [−1,−1/3] ; the cosmological

constant term could then be obtained taking ωe = −1. In the following, roman indexes refer to

the fluid component considered.

The cosmological term in Friedmann-Lemâıtre equations can therefore be removed,

introducing the densities Ωx = 8πGρx
3H2 for x = b, r and e including the conservation of each

kind of fluids they write

1 = Ωb + Ωr + Ωe + Ωk

2q = Ωb + 2Ωr + (1 + 3ωe) Ωe

(ln ρx)
′ = −3(1 + ωx) for x = b, r and e;

A basic calculus shows that (lnH)′ = −q − 1 hence Friedmann-Lemâıtre equations write

Ω′

x

Ωx

= (lnΩx)
′ = Ωb + 2Ωr + (1 + 3ωe) Ωe − 3ωx − 1 for x = b, r and e

This three dimensional differential system is again of Lotka-Volterra form with, this time

however, a fully degenerate community matrix. The dynamics is then always governed by the

capacity vector r = [−1,−2,−3ωe − 1] which actually rules the asymptotic behavior. Besides of



the origin, there is now one additional equilibrium on each axis and if r possesses a component

which is greater than all others, the corresponding equilibrium with this component maximal is

globally stable over the positive orthant. This smart result is sufficient to claim that dark energy

(for which ωe ∈ [−1,−1/3]) correspond to this r maximal components and then the universe

such that Ωb = Ωr = 0 and Ωe = 1 is globally stable out from axis Ωb = 0 and Ωr = 0.

This three dimensional situation is readily generalizable to any number of non interacting

fluids each governed by a separated conservation equation. The dynamical behavior is

asymptotically always the same : the system evolves like a competitive one in which all species

(predators) are fed by the same prey (which is curvature...). Asymptotically and out of axis,

only one species survives, the one which possesses the greater value of −3ωx − 1. This species is

always the dark energy fluid in our physical hypotheses ω ∈ [−1, 1]. Once the Universe is filled

with even a small amount of dark energy, there is no way it cannot dominate forever the fate

of the cosmos. This is Jungle Law for a jungle universe. Fortunately, this will cease to be true,

as we shall see in the next section, if dark energy is not so dark, but exchanges energy with the

matter component.

4. Cooperative Universes

4.1. General dynamics with coupling

In the last sections we have presented a new way to express the dynamics of Friedmann-Lemâıtre

universes using generalized Lotka-Volterra differential system theory. This also offers new

perspectives in determining cosmological analogues of specific cases in competitive dynamics.

It is well known that the generic dynamics of such systems contains limit cycles or periodic

orbits. We will describe in this section how direct coupling can be used to bring such a behavior

in the context of cosmology.

When the fluids filling the universe are not interacting with each other, the community

matrix of the generalized Lotka-Volterra system must have the same rows and then must be

fully degenerated. In order to make its rank greater than one, we must introduce coupling

between species, i.e. interactions between cosmological fluids. On the other hand, this kind

of interactions is broadly used in cosmology, with the coupling between inflaton and radiation

during reheating (e.g., [8]) or the one between dark matter and dark energy (e.g., [2, 9, 10]), or

even the decay of heavy matter particles like WIMPS into light relativistic particles (e.g., [11]).

Modern cosmology make strong use of coupled fluids for a variety of purposes, therefore making

this study of coupled models in terms of Lotka-Volterra systems of first heuristic interest.

In order to show the phenomenon we will present in this section the situation where the

universe contains radiation, baryonic matter, dark matter (d−indiced)§, dark energy and we

suppose a coupling between the two dark components. This constitutes a coupled quintessence

scenario [10]. On one hand, it is necessary to preserve the global energy conservation as imposed

by Noether theorem and Poincare invariance, energy transfer must compensate in the global

energy balance. Hence, at each time, the part of the energy taken by the first component must

be given to the other to which it couples. To achieve this, conservation equations for two coupled

§ Although both are pressureless with ω = 0, we split both to allow for different couplings.



dark fluids must be of the following form:
{

ρ̇d = −3Hρd (1 + ωd) +Q
ρ̇e = −3Hρe (1 + ωe)−Q

where Q represents the energy transfer. This coupling leaves unchanged the global energy-

momentum conservation, it is then invisible in standard general relativity and it glimpses at

(micro-)physics describing dark components of the universe. In literature, one usually finds that

this energy transfer is arbitrarily expressed as a linear combination of the dark sector densities:

Q = Adρd + Aeρe

where the coefficients are either proportional to Hubble parameter H either constant (see

[2, 9, 10]). In this paper, we introduce a new non-linear parametrization of the energy transfer

that allows us matching the coupled model to a general Lotka-Volterra system. This ansatz is

given by

Q =
8πG

3H
ερeρd (4)

where the coupling parameter ε is a positive constant.

Since the Raychaudhuri equation (2) and consequently (lnH)′ are left unchanged by the

introduction of such couplings‖, but we have now

(lnΩd)
′ = (ln ρd)

′ + 2q + 2

= Ωb + (1 + 3ωd) Ωd + 2Ωr + (ε+ 1 + 3ωe) Ωe − (3ωd+1)

and

(lnΩe)
′ = (ln ρe)

′ + 2q + 2

= Ωb + (1 + 3ωd − ε) Ωd + 2Ωr + (1 + 3Ωd) Ωd − (3ωe+1) .

The other two remaining equations for Ωb and Ωd are not affected by the dark coupling. In

order to reduce the number of parameters we will place in the case where the non baryonic dark

matter is non-relativistic and pressureless, i.e. ωd = 0, and the dark energy is a cosmological

constant, i.e. ωe = −1. We therefore focus on late periods of cosmological history, and not

on radiation-dominated era. It is important to notice that all the dynamical properties of the

solution that we are going to exhibit will be independent of these hypotheses provided that

ωe stay lesser than −1/3 and ωd greater than −1/3. With this coupling and under these last

hypotheses the generalized Lotka-Volterra equations associated to isotropic, homogeneous and

barotropic fluid filled universe for the dynamical variable x = (Ωb,Ωd,Ωr,Ωe)
⊤ are defined by

a capacity vector r and a community matrix A such that

A =











1 1 2 −2

1 1 2 ε− 2

1 1 2 −2

1 1− ε 2 −2











and r =











−1

−1

−2

2











(5)

‖ This is so since gravity is still minimally coupled to matter fluids.



As desired this matrix is not fully degenerate but has a rank 2. This dynamic is characterized

by five equilibria x̃0 = (0, 0, 0, 0)⊤, x̃1 = (0, 0, 1, 0)⊤, x̃2 = (0, 0, 0, 1)⊤, x̃3 = (1− α, α, 0, 0)⊤

with α ∈ ]0, 1] and x̃4 = (0, ε−1, 0, 2ε−1)
⊤
the first four being globally unstable while the last

is by far the most interesting. When the coupling is low (precisely ε ∈ ]0, 3] ), x̃4 is generally

unstable¶, nevertheless when the coupling become stronger (ε > 3), the equilibrium point x̃4

is no more hyperbolic and two complex eigenvalues with no real part occur in the spectrum of

the linearized dynamics around x̃4: a precise analysis of the dynamical behavior of the system

is then required. In order to do this we have decomposed the job into two parts : in a first

step we have restricted the analysis to the dark plane (Ωd,Ωe) where we have found cycles, and,

in a second step we have shown that this dark plane is attractive for all orbits whose initial

conditions belong to the hyper-tetrahedron

T4 = {Ωb > 0} ∪ {Ωd > 0} ∪ {Ωr > 0} ∪ {Ωe > 0} ∪ {Ωb +Ωd +Ωr +Ωe < 1} .(6)
Finally, we will propose some numerical analysis of the whole dynamics in order to test these

general properties.

4.2. Cyclicity of orbits in the dark plane

In an pedagogical objective and as we deal with a generalizable example in which ωd = 0 and

ωe = −1, we will present the details of the construction of the orbits properties. In the so-called

dark plane (Ωb = Ωr = 0) let us define shorter notations x = Ωd and y = Ωe. The dynamics is

then governed by the system
{

x′ = x [−1 + x+ (ε− 2) y]

y′ = y [2 + (1− ε)x− 2y]

hence

r =

[

−1

2

]

and A =

[

1 ε− 2

1− ε −2

]

As mentioned below there is a unique equilibrium in the positive quadrant, namely (x̃, ỹ) =

(ε−1, 2ε−1). Using a bit of intuition and inspired by dynamical population analysis (e.g. [6]) one

can use the function Vε (x, y) = xαyβ (a+ bx+ cy) + V0 where α and β are functions of ε; a, b, c

and V0 are four constants, all being determined in order that Vε becomes a Lyapunov function.

As A is now invertible choosing (α, β)⊤ = A−1r i.e. α = 2 (ε− 3)−1 and β = (ε− 3)−1, it is easy

to check that

V ′

ε = xαyβ [xyε (b− c)− (a+ b) x+ 2 (a+ c) y]

Hence, choosing finally a = −c, b = c and V0 = −x̃αỹβ (a+ bx̃+ cỹ) one can verify that

• The function Vε vanishes when x = x̃ and y = ỹ ;

• If x 6= x̃ and y 6= ỹ then Vε (x, y) > 0;

• The derivative V ′

ε is vanishing for any value of x and y.

¶ For the particular case we have chosen this instability develops thanks to the radiative components of the fluid.

But it is clearly a particular case of a general behavior.



Hence the function

Vε (x, y) = x
2

ε−3y
1

ε−3 (x+ y − 1) +

(

22/3

ε

)

3

ε−3
(

1− 3

ε

)

is a Lyapunov function for this dynamics and orbits are confined on curves Vε (x, y) = µ where

µ is any positive constant, that is Vε is a first integral of the system. Such curves are plotted on

figure 1 for the generic values+ ε = 4.

1.510.50

0.5

1

1.5

0

Figure 1. Contour levels of V4 (x, y)

It must be noted that when Ωd + Ωe < 1, the dynamics in the dark plane is periodic as all

the contour levels of Vε are closed and all solutions are maximal. The corresponding cosmolog-

ical solution correspond to endless oscillations of the density parameters (Ωd,Ωe) who forever

compete with each other for ruling the curvature parameter. Cosmic expansion is in this case

an eternal sequence of transient acceleration (when DE dominates) and deceleration (when DM

dominates) phases.

Solutions such that Ωd + Ωe > 1 are unbounded. They correspond to spatially closed uni-

verses, since Ωk < 0, in which cosmic expansion can reverse into contraction at some stage,

leading to H = 0 and consequent singularities in all density parameters. The present formalism

with monotonically growing λ = ln(a) cannot extrapolate beyond in vanishing H toward cosmic

contraction H < 0, since this would imply decreasing λ.

4.3. Attractiveness of the dark plane

We now turn our attention to the behavior of orbits whose initial conditions are not in the dark

plane but have non vanishing components in Ωb and/or Ωr. Intuitively one could claim that

these components are going to vanish because the eigenvalues associated to them are negative,

but as the two others, associated to the dark components, are purely imaginary, the equilibrium

+ Let us observe that for ε > 3 each ε-family of contour levels of Vε are topologically equivalent.



is no longer a hyperbolic one hence Hartmann-Groβman theorem says that the linear analysis

is not sufficient to have a complete description of the system behavior. However, even if the

invariant manifold methods cannot be straightforwardly used, because the centre manifold is

infinitely flat at x̃4, we are able, using dynamical systems tools, to prove the attractiveness of

the dark plane, for all orbits whose initial conditions belong to the hyper-tetrahedron (6). A

detailed proof of the latter statement will be provided in the appendix A.

4.4. Numerical illustration

As we have obtained a general proof of the attractiveness of the dark plane, we give only a simple

numerical illustration of this fact. We have numerically solved the dynamical system (ln(x))′ =

r + Ax with x = (Ωb,Ωd,Ωr,Ωe)
⊤, the community matrix and the capacity vector defined

in (5) with ε = 4. Considering various initial conditions x0 we always recover an exponential

convergence to the dark plane when x0 has non vanishing first and third components. The figure

2 illustrate such a behavior: from the initial condition x0 = (0.3008, 0.2683, 0.0418, 0.2983)⊤,

which belongs to the stable hyper-tetrahedron, we have 3D-plotted the dynamical evolution of

the vector (Ωd,Ωe,Ωb + Ωr)
⊤. As expected the third component vanishes and the two others

are catched by a contour level of V4. View from the top in the right part of the figure 2 is

particularly explicit about this last fact.

+r b

t=0

e

e

Figure 2. Time evolution of the orbit inside T4. Left panel: 3D plot of the orbit (the vertical

axis is Ωr(t) + Ωb(t)). Right panel: 2D projection on the (Ωd,Ωe) plane. Parameter and initial

conditions: ε = 4, Ωd(0) = 0.2683, Ωe(0) = 0.2983, Ωr(0) = 0.0418 and Ωb(0) = 0.3008.

5. General correspondence between coupled models and Lotka-Volterra

competitive dynamics

In the previous section, we have shown that the coupling between two components of the universe

can make appear a new kind of dynamics of FL universes. We propose to call such cosmological

components twisting species since the special example proposed in the last section represent an

eternal dance between dark energy and dark matter. We will shown now that such a behavior

can be generalized introducing more couplings.



In this section, we extend the previous discussion to a set of N inter-coupled cosmological

species and establish the correspondence with general formulation of competitive Lotka-Volterra

models. The goal here is therefore to rewrite the evolution, with the variable λ = ln(a), of

cosmological density parameters of interacting fluids under the following Lotka-Volterra form :

x′ = diag(x)f(x) withx ∈ R
n (7)

where diag(x) is the diagonal matrix with x on its diagonal, the ith component of the vector

x denotes the population of the ith species, f(x) = r + Ax is the previously defined linear

function which combines the capacity vector r and the community matrix A. Each coupled

fluid characterized by energy density ρi, equation of state parameter ωi and obey the following

modified conservation equation:

ρ̇i + 3Hρi(1 + ωi) = Qi ; i = 1, · · · , N (8)

with the energy balance condition imposing that

N
∑

i=1

Qi = 0 (9)

where the interaction terms Qi take the form of a combination of the involved energy densities:

Qi =
N
∑

j=1

βijρj· (10)

Defining the density parameters Ωi =
8πGρi
3H2 , and recalling that the deceleration parameter can

be written as

q = − äa

ȧ2
=

1

2

N
∑

i=1

Ωi(1 + 3ωi)

then Eq. (8) becomes

Ω̇i =
8πGQi

3H2
+HΩi

(

2− 3(1 + ωi) +
N
∑

j=1

Ωj(1 + 3ωj)

)

· (11)

To rewrite the above equation under Lotka-Volterra form, it is then mandatory to set

Qi =
N
∑

j=1

βijρj ≡ HΩi

N
∑

j=1

εijρj (12)

or, equivalently that the coefficients βij are no longer constant but are given by

βij = HΩiεij

with εij arbitrary parameters to be specified further. Lotka-Volterra dynamics therefore requires

non-linear interaction terms. Given Eq. (12), one can directly rewrite Eq.(11) under Lotka-

Volterra form (7) with the following glossary:

xi = Ωi

(·)′ = d(·)
d ln(a)

ri = − (1 + 3ωi) (13)

Aij = 1 + 3ωj + εij



The energy balance constraint Eq.(9) with the hypothesis (12) now reduces to

N
∑

i=1

Ωi

(

N
∑

j=1

εijΩj

)

= 0 (14)

which imposes that the interaction parameters εij are antisymmetric:

εij = −εji ; εii = 0·

In the context of cosmology we find solution of this ODE system in the hyper-tetraedron

T =

{

1 >
N
∑

i=1

x1

}

N
⋂

i=1

{xi > 0}

The generalization of the results obtained in the previous section show that ODE system (7)

has generically a lot of equilibria but we are interested only by the ones who haven’t vanishing

component (i.e. the ones not lying on an axis). These ”interesting” equilibria are x̃ such that

Ax̃+r = 0. We can now apply this general formulation to the case of several interacting species.

5.1. Two species in interaction

This case N = 2 has been treated in details in section 3 for specific values of the equation of

state parameters (ω1, ω2) = (0,−1) and serves here as a validation of the glossary (13). Setting

ε12 = −ε21 ≡ ε the unique non-vanishing component of the interaction tensor εij, we obtain

after some computation the following equilibria of the cosmological Lotka-Volterra system

Ωeq
1 = − 3ω2 + 1

ε
(15)

Ωeq
2 = +

3ω1 + 1

ε
(16)

which reduces to the equilibria (2/ε, 1/ε) of section 3 when ω1 = 0 and ω2 = −1. These equilibria

are density parameters in open universes (Ωk < 1) and then must satisfy 0 < Ωeq
i < 1. This

condition constrains the choice of ε once the choice of the nature of the interacting fluids has

been chosen by fixing ω2 and ω1.

5.2. The interplay between three coupled species : Jungle triads

Let us set ε12 = e1, ε13 = e2 and ε23 = e3 and compute the corresponding equilibria to find

Ωeq
1 = +

e3 − 3ω2 + 3ω3

e1 − e2 + e3

Ωeq
2 = − e2 − 3ω1 + 3ω3

e1 − e2 + e3
(17)

Ωeq
3 = +

e1 − 3ω1 + 3ω2

e1 − e2 + e3

Let us remark that in all cases of fluids and coupling we have
∑3

i=1 Ω
eq
i = 1. This fact seems

generic for odd values of the number of interacting fluids. If we now impose the fact that the

density parameters are comprised between 0 and 1 (0 < Ωeq
i < 1) the constraint on interaction

parameters e1, e2, e3 is very complicated, but allows a lot of possibilities. Let us illustrate this



case with an example. We consider that the three fluids are made of (1) non-relativistic matter

ω1 = 0, (x1 = Ωd); (2) dark energy ω2 = −1, (x2 = Ωe) and (3) some relativistic particles

ω3 = 1/3, (x3 = Ωr) all coupled with interaction parameters e1 = e2 = e and e3 = ε. The

corresponding equilibria are

Ωeq
d =

4 + ε

ε
, Ωeq

e = −1 + e

ε
and Ωeq

r =
e− 3

ε

Providing ε < −4 and e ∈ [−1, 3] equilibria are cosmologically acceptable. Choosing for

example ε = −8, the spectrum of the jacobian matrix near the equilibrium is composed

by a real number λ = 1 − e
2
and two purely imaginary and complex conjugated numbers

λ± = ± i
2

√

2 |(e+ 1)(e− 3)|. When e ∈ [−1, 2], as λ > 0 the system twists outward (0,Ωeq
e ,Ωeq

r )

staying in the corresponding 3-tetraedron, collapsing on the Ωd = 0 plane. When e ∈ [2, 3], as

λ < 0 the system twists toward a limit cycle contained in a plane of non vanishing density and

including the equilibrium. These results are illustrated on the figure 3.
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Figure 3. Evolution of the three coupled density parameters, in the 3D phase space. The

beginning of the orbit is overlined. Initial condition is indicated by a black dot. Relevant

equilibria are indicated by a star.

5.3. Jungle quartets

With N = 4, the number of free parameters in the scheme (10 in total with 6 for interactions and

4 for equations of state) is too high to be fully constrained by requirements of positiveness and

boundedness of density parameters for instance. As for N = 2, the positions of the equilibria

once again depend on all parameters. If we set ε12 = e1, ε13 = e2, ε14 = e3, ε23 = e4, ε24 = e5
and ε34 = e6, we find that the positions of the equilibria are given by

Ωeq
1 = − e4 − e5 + e6 + 3(e4ω4 − e5ω3 + e6ω2)

e1e6 − e2e5 + e4e3

Ωeq
2 = +

e2 − e3 + e6 + 3(e2ω4 − ω3e3 + e6ω1)

e1e6 − e2e5 + e4e3

Ωeq
3 = − e1 − e3 + e5 + 3(e1ω4 + ω1e5 − ω2e3)

e1e6 − e2e5 + e4e3
(18)

Ωeq
4 = +

e1 − e2 + e4 + 3(e1ω3 − e2ω2 + e4ω1)

e1e6 − e2e5 + e4e3



Since this system of 4 cosmological coupled species is equivalent to 4D Lotka-Volterra system,

chaos can emerge [15] for specific choices of parameters in a so-called normal system where all

ri are positive, which means among cosmological fluids with ωi < −1/3. As an illustration we

propose a double twist in a universe filled by two kinds of dark energy and two kinds of dark

matter all interacting. We choose ω1 = −1, (x1 = Ωe,1); ω2 = 0, (x2 = Ωd,1); ω3 = 0, (x3 = Ωd,2)

and ω4 = −1, (x4 = Ωe,2) for the fluid components, and e1 = −4, e2 = 1, e3 = −2, e4 = −1/2,

e5 = 1 and e6 = ε, we get the following equilibria

Ωeq
e,1 =

1

4
, Ωeq

d,1 =
1

2
, Ωeq

d,2 =
2

ε
, Ωeq

e,2 =
1

ε

The condition on the density parameters then gives ε > 12. Taking ε = 16 we get four

complicated but, purely imaginary and conjugated eigenvalues for the Jacobian matrix around

the equilibrium:

λ±

1 = ±i

√

51134 + 6
√
69956601

262
and λ±

2 = ±i

√

51134− 6
√
69956601

262

The corresponding dynamics is the double twist plotted on figure 4.

6. Conclusion

Let us summarize the main points obtained in this paper :

• We have formulated the classical dynamics of Friedmann Universes in the context of

population dynamics. Without coupling, this formulation allows a very simple and

pedagogic interpretation of the evolution of the universe. Varying parameters describing the

nature of the fluids one can easily understand the corresponding behavior of the so-called

Jungle universes.

• Introducing a coupling between two fluids components namely dark matter and dark energy,

we have obtained a Lyapunov function of the dynamics. We have also proven that such a

dark fluid coupled universe has a dynamics which possess a limit cycle. This is the simplest

way to obtain a so-called twisting species.

• Introducing a coupling between the N barotropic fluids filling the Universe we have obtained

the general formulation of the Friedmann dynamics in the context of the generalized Lotka-

Volterra equation. This offers the amusing possibility to translate in cosmological terms

biological systems.

• In the case of 3 or 4 interacting batrotropic fluids, we have found particular solutions which

illustrate the general properties of twisting species : an expanding twist for N = 3 and a

double twist for N = 4.

• Following the results of the population dynamics, we conjecture that chaos occurs as a rule

for the dynamics of universes filled by more than 3 interacting fluids.

We conclude by claiming that the presented analogy with Lotka-Volterra dynamical systems

has offered new unexpected and interesting applications to coupled models in cosmology.

Twisting species naturally produce transient phenomena in cosmic expansion, an original feature

that could make cosmic coincidence a non unique and therefore less problematic feature.
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other panels are 2D sections on the 4D phase space. The beginning of the orbit is overlined, the

relevant equilibrium is indicated by a star. Initial conditions for the numerical integration are

x1(0) = 0.11, x2(0) = 0.12, x3(0) = 0.13 and x4(0) = 0.14
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Appendix A. Proof of the stability Ωd − Ωe plane

The aim of this section is to provide a simple proof of the attractiveness of the Ωd − Ωe plane

for all orbits whose initial conditions belong to the hyper-tetrahedron:

T4 = {Ωd > 0} ∪ {Ωe > 0} ∪ {Ωr > 0} ∪ {Ωb > 0} ∪ {Ωd + Ωe + Ωr + Ωb < 1} .
Let us recall the ODE system describing the equations of motion:



















Ω̇d = Ωd(Ωd + (ε− 2)Ωe + 2Ωr + Ωb − 1)

Ω̇e = Ωe((1− ε)Ωd − 2Ωe + 2Ωr + Ωb + 2)

Ω̇r = Ωr(Ωd − 2Ωe + 2Ωr + Ωb − 2)

Ω̇b = Ωb(Ωd − 2Ωe + 2Ωr + Ωb − 1) .

(A.1)



To prove our claim we need to prove first the invariance with respect to the flow of (A.1) of

the hyper-tetrahedron T4. The invariance of each coordinates hyperplanes is trivial and follows

straightforwardly from (A.1). For instance any solution such that Ωd(0) = 0 will have Ωd(t) = 0

for all t, then using the uniqueness of the Cauchy problem we can ensure that any solution with

Ωd(0) > 0 will never cross the hyperplane Ωd = 0. A very similar analysis can be performed for

the remaining cases.

Let us now consider the remaining piece of the boundary of T4, that is the hyperplane{Ωd+

Ωe + Ωr + Ωb = 1}. A straightforward computation gives:

d

dt
(Ωd + Ωe + Ωr + Ωb) = (Ωd − 2Ωe + 2Ωr + Ωb)(Ωd + Ωe + Ωr + Ωb − 1) ,

thus any solution with initial conditions

Ωd(0) + Ωe(0) + Ωr(0) + Ωb(0) = 1 ,

will always satisfies the constraint

Ωd(t) + Ωe(t) + Ωr(t) + Ωb(t) = 1 ∀t .
Thus once again the uniqueness result of the Cauchy problem implies that any solution such

that Ωd(0) +Ωe(0) +Ωr(0) +Ωb(0) < 1, will never reach the hyperplane Ωd +Ωe +Ωr +Ωb = 1.

Finally putting together the above partial results, we can conclude that any orbit with

initial condition inside T4 will never leave it.

A byproduct of the invariance of the tetrahedron is that orbits inside T4 will always have

positive projections on the axes. This allows us to compute the distance from the plane Ωd-Ωe

using the linear function F (Ωr,Ωb) = Ωr + Ωb, which is zero if and only if Ωr = Ωb = 0, that is

the point belongs to the plane Ωd-Ωe.

We can then compute the Lie derivative of F and prove that its restriction to T4 is strictly

negative, hence F (Ωr(t),Ωb(t)) → 0 for t → +∞ and because of the positiveness of Ωr(t) and

Ωb(t) we can conclude that both Ωr(t) and Ωb(t) goes asymptotically to zero.

To prove the latter claim let us compute the derivative of F along the flow of (A.1):

d

dt
F |flow = (Ωd − 2Ωe + 2Ωr + Ωb − 1)(Ωr + Ωb)− Ωr ,

because of our previous result Ωd(t) + Ωb(t)− 1 < −Ωe(t)− Ωr(t) for all t, we get

d
dt
F = (Ωd − 2Ωe + 2Ωr + Ωb − 1)(Ωr + Ωb)− Ωr < (−3Ωe + Ωr)(Ωr + Ωb)− Ωr

= −3Ωe(Ωr + Ωb) + Ωr(Ωr + Ωb − 1) ,

let us observe that the right hand side is strictly negative, in fact

−3Ωe(Ωr + Ωb) < 0

and

Ωr + Ωb − 1 < Ωd + Ωe + Ωr + Ωb − 1 < 0.

This concludes our proof of the attractiveness of the dark plane for all orbits whose initial

conditions belong to T4.
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