
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Efficient Consistency Checking of Scenario-Based Product Line Specifications [Best
paper award]
Greenyer, Joel; Molzam Sharifloo, Amir; Cordy, Maxime; Heymans, Patrick

Publication date:
2012

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Greenyer, J, Molzam Sharifloo, A, Cordy, M & Heymans, P 2012, 'Efficient Consistency Checking of Scenario-
Based Product Line Specifications [Best paper award]'.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/326265364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/efficient-consistency-checking-of-scenariobased-product-line-specifications-best-paper-award(a6db1b9a-6c18-441f-9bf8-bafd97821537).html

Efficient Consistency Checking of Scenario-Based Product-Line Specifications

Joel Greenyer and Amir Molzam Sharifloo
Dependable Evolvable Pervasive Software Engineering,

Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Italy

{greenyer|molzam}@elet.polimi.it

Maxime Cordy∗ and Patrick Heymans
PReCISE Research Center,

Faculty of Computer Science,
University of Namur, Belgium
{mcr|phe}@info.fundp.ac.be

Abstract—Modern technical systems typically consist of
multiple components and must provide many functions that
are realized by the complex interaction of these components.
Moreover, very often not only a single product, but a whole
product line with different compositions of components and
functions must be developed. To cope with this complexity,
it is important that engineers have intuitive, but precise
means for specifying the requirements for these systems and
have tools for automatically finding inconsistencies within the
requirements, because these could lead to costly iterations
in the later development. We propose a technique for the
scenario-based specification of component interactions based
on Modal Sequence Diagrams. Moreover, we developed an
efficient technique for automatically finding inconsistencies in
the scenario-based specification of many variants at once by
exploiting recent advances in the model-checking of product
lines. Our evaluation shows benefits of this technique over
performing individual consistency checking of each variant
specification.

Keywords-scenario-based specification; product lines; feature
compositions; consistency

I. INTRODUCTION

Modern technical systems in areas like transportation or
production, but also information systems, typically consist
of many components that provide many functions by their
interaction. These interactions are sometimes safety-critical
and must satisfy complex protocol specifications.

Moreover, often today not only a single product, but a
whole product line, i.e., many variants of a product, must
be developed. Doing this individually is often impractical,
so the goal of product line engineering [1] is to consider
all the variants together throughout the whole development
process. One widespread approach to organize a product line
is to structure the sets of components and functions that may
or may not be present in different variants into features.

Capturing a precise specification of a product line, how-
ever, is a major requirements engineering challenge. Not
only complex interactions and many product variants must
be specified, but the behavioral requirements may also imply
dependencies and conflicts among features. The require-
ments have to be carefully revised to ensure that the features
can be consistently combined. If inconsistencies remain

* FNRS Research Fellow

undetected, desired product variants may not be realizable
without costly iterations.

As an example we consider a simplified specification of
an autonomous rail vehicle, inspired by the RailCab project
at the University of Paderborn1. The RailCab track system is
divided in sections. For every variant of the system we spec-
ify that the vehicles, called RailCabs, must request a switch
controller the permission to enter a switch. The switch
controller must then acknowledge or deny such a request.
Now there shall be different variants. In one, the switch
controller lets only one RailCab pass at a time. In another
variant, two RailCabs shall be able to coordinate for a joint
entry. There shall be also a third variant where both functions
are present. However, suppose that the requirements for the
joint entry strictly require the switch control to grant two
RailCabs the permission to enter, but the blocking feature
allows this under no circumstances—In this case, the product
line specification is inconsistent.

The contribution of this paper is twofold. First, we
propose a scenario-based approach for the intuitive, but
precise specification of product lines. Second, we present
a novel technique for efficiently consistency checking the
specification of all the variants in a product. We provide
an implementation and evaluate the applicability of our
approach. Also, we present experiment results that evaluate
the performance of implementation alternatives.

We propose to specify product lines using a combination
of Modal Sequence Diagrams (MSDs) and feature diagrams
[2], [3]. MSDs are a flexible variant of Live Sequence Charts
(LSCs) [4], proposed by Harel and Maoz [5]. They are
an intuitive, visual language for specifying sequences of
message that may, must, or must not occur in a system.

The advantage of this approach is that it allows the
requirements engineers to focus on the requirements during
one particular scenario in the system at a time. This is
a natural way to conceive and communicate requirements.
Moreover, the behavioral aspects for each feature can be
specified separately. For a particular product, the overall
specification can then be composed by simply forming the
union of the MSDs corresponding to the selected features.

1Neue Bahntechnik Paderborn/RailCab, http://www-nbp.upb.de

http://www-nbp.upb.de

Thus, no elaborate feature composition mechanisms are
required.

In a scenario-based approach, however, contradictions
among the different scenarios may be easily introduced. To
address this problem, we present a technique for the efficient
consistency checking of the specifications for all the variants
in a product line. Inspired by an earlier approach by Harel
et al. [6], we formulate the consistency checking problem as
a model-checking problem. The novelties that we introduce
are that we consider (1) which feature an MSD belongs to,
and (2) which valid feature combinations are implied by
the feature diagram. Then, we employ a recently developed
model-checking technique for product lines [7], [8]. If the
specification is inconsistent, a counter-example is generated
that helps the engineer understand the inconsistency among
the features and MSDs.

If the MSD specification is consistent, our technique
can even help the requirements engineer in refining the
specification so that a state-based implementation for the
components can be derived for every product. This, however,
remains an outlook of this paper.

Our approach only supports specifications of static sys-
tems, which consist of a fixed set of components. However,
it can also be of use when developing dynamic systems,
like the RailCab system, where objects may be added or
removed, or change their communication relationships. Then
our approach can be used to analyze static situations that can
occur, for example two RailCabs that approach a switch.

This paper is structured as follows. We introduce the foun-
dations in Sect. II and present our scenario-based product
line specification approach in Sect. III. We then explain the
consistency checking technique in Sect. IV. In Sect. V, we
present an evaluation of our approach and discuss related
work in Sect. VI. Last, we conclude and present an outlook
in Sect. VII.

II. FOUNDATIONS

Our approach relies on feature diagrams and MSDs as
well as a behavioral modeling and model-checking technique
for product lines. This section briefly recalls these concepts.

A. Representing Variability with Feature Diagrams

A popular approach to describe commonality and vari-
ability in product lines is to use feature diagrams. A feature
diagram is essentially a hierarchical decomposition of fea-
tures. Nodes in the diagram are features and edges specify
how features decompose into child features. A parent-child
relationship can have different types, which constrain the
valid combinations of features that can make up a product.
The usual decomposition types are AND, OR, and XOR. An
AND decomposition means that when the parent feature is
present in the product, so must be all the children, except
those explicitly labelled as optional2. An OR (resp. XOR)

2Optional features are not used in the example appearing in this paper

�����������

	��
��

������

��
���������

�����������

	��
��

������

������

�����������

�������

������

�������

�����������

�����������

������
�����

���������������

�������

Legend:
a a= And = Or = Optional

Figure 1. The feature diagram for the RailCab example

relationship implies that at least (resp. exactly) one child
feature must be present when the parent feature is. There
also exist cross-tree relationships among the features: the
presence of one feature may require or exclude the presence
of another feature. Additionally, we can define arbitrary
Boolean constraints over the set of features. We stick to
the formal semantics extensively defined in [3].

Figure 1 shows the feature diagram of our RailCab
example. The root feature RailCab is always mandatory. It
has two compulsory child features, namely Merging switch
policy and Merging switch registration. The former has two
additional child features with an OR relationship. Altogether,
the diagram thus defines three product variants.

B. Scenario-Based Modeling with MSDs

MSDs were proposed by Harel and Maoz as a formal
interpretation of UML sequence diagrams, based on the
concepts of LSCs [5]. In the following, we explain the
basics of MSDs using our running example, and detail the
interpretation of MSDs that we consider in our approach.

An MSD specification consists of a set of MSDs. An MSD
can be existential or universal. Existential diagrams specify
sequences of events that must be possible to occur in the
system. Universal diagrams specify requirements that must
be satisfied by all sequences of events that occur. We focus
on universal MSDs, but we explain in the outlook how our
approach can also be extended to support existential MSDs.

Each lifeline in an MSD represents an object in an
object system that consists of environment objects and system
objects. The set of system objects is called the system; the
set of environment objects is called the environment.

The objects can interchange messages. In this paper, we
consider only synchronous messages where the sending and
receiving of the message is a single event. Our approach
can, however, be easily extended to support asynchronous
communication. We call the sending and receiving of a
message a message event or simply event.

The messages in a universal MSD can have a temperature
and an execution kind. The temperature can be either hot or
cold; the execution kind can be either monitored or executed.
These attributes encode safety and liveness requirements

for events at some point during a scenario. Intuitively, a
monitored message says that something may be observed
whereas an executed message says that something must
eventually happen (liveness). A cold message says that also
something else may happen whereas a hot message says
that only this event and no event that we expect at another
point in the scenario must occur (safety). This interpretation
is more versatile than the original definition [5] where
the temperature alone reflects both the safety and liveness
aspect.

More precisely, the semantics of these messages is as
follows: An event can be unified with a message in an MSD
iff the event name equals the message name and the sending
and the receiving objects are represented by the sending resp.
receiving lifelines of the message. When an event occurs in
the system that can be unified with the first message in an
MSD, an active copy of the MSD or active MSD is created.
(We consider that an MSD has only one first message.) As
further events occur that can be unified with the subsequent
messages in the diagram, the active MSD progresses. This
progress is captured by the cut, which marks for every
lifeline the locations where the messages are attached that
were unified with the message events. If the cut reaches the
end of an active MSD, the active copy is terminated.

If the cut is in front of a message on its sending and
receiving lifeline, the message is enabled. If a hot message
is enabled, the cut is also hot. Otherwise the cut is cold.
Similarly, if an executed message is enabled, the cut is also
executed. Otherwise the cut is monitored. We also call an
enabled executed message an active message.

A safety violation occurs iff in a hot cut a message event
occurs that can be unified with a message in the MSD that
is not currently enabled. If this happens in a cold cut, it is
called a cold violation. Safety violations must never happen,
while cold violations may occur and result in terminating
the active copy of the MSD. If the cut is executed, this
means that the active MSD must progress and it is a liveness
violation if an active MSD never terminates or progresses
to a monitored cut.

Figure 2 shows an MSD. Cold messages are blue, hot
messages are red; Monitored messages have a dashed ar-
row, executed messages have a solid arrow. For clarity,
the temperature and execution kind are shown by labels
(h/c,m/e). The dashed horizontal lines in the MSD RC1-
RequestEnterAtEndOfTrackSection also show the reachable
cuts and their temperature and execution kind. Intuitively,
this MSD expresses the following requirements. We consider
a scenario where two RailCabs move along their current
track sections and approach a merging switch (see the
sketch in Fig. 2. At some point the RailCab rc1 is notified
that it reaches the end of the current track section. This
is modeled as the message endOfTS sent between the
environment and the RailCab rc1. Now the RailCab rc1 must
send requestEnter to the switch control sc, which must

reply with enterAllowed. These two messages must be
sent before the RailCab reaches a point where it is possible
for the last time to safely break before entering the switch
(modeled by the message lastBrake).

rc1

rc2 sc

illustrationendOfTS
lastBreak

endOfTS
lastBreak

enterNext

enterNext

enterNext

endOfTS

env:Environment rc1:RailCab sc:MergingSwitchControl

requestEnter

enterAllowed(true/talse)

MSD RC1RequestEnterAtEndOfTrackSection

lastBrake

1. (h,e)

2. (h,e)

3. (c,m)

inactive

h,e

h,e
c/m

c/m

Figure 2. The MSD RC1RequestEnterAtEndOfTrackSection from the
RailCab example

We assume that the system is always fast enough to send
any finite number of messages before the next environment
event occurs. An infinite sequence of message events is
called a run of the system and its environment. A run
satisfies an MSD specification consisting of a set of universal
MSDs if it does not lead to a safety or liveness violation
in any MSD. (Multiple MSDs may be active at the same
time.) We say that an MSD specification is consistent or
realizable iff it is possible for the system objects to react to
every possible sequence of environment events so that the
resulting run satisfies the MSD specification.

There are two interpretations for MSDs. The invariant
interpretation allows for multiple active copies of the same
MSD. This may happen if the initial sequence of messages
occurs again later in the MSD. In our approach, however,
we only support the iterative interpretation, where no second
active copy is allowed, which makes a formal analysis easier.

Messages can also have parameters of certain types.
A message event then carries according values for each
parameter. Here we only consider messages that can have
a Boolean parameter. A message in an MSD can specify
either a literal value for the message, i.e., true or false, or
it can specify no particular value. Then we write true/false.
In the parametrized case, an event can be unified with a
message in the MSD if the message in the MSD specifies
no value or a value that equals the value carried by the event.

An MSD can also contain forbidden messages in a desig-
nated fragment labeled forbidden, appended after the actual
end of the MSD. Forbidden messages have a temperature,
i.e., they can be hot or cold. While there exists an active
copy of an MSD, no events that can be unified with a hot
forbidden message specified in this MSD are allowed to
occur, otherwise this is also a safety violation. A message

event that can be unified with a cold forbidden message is
allowed, but leads to a cold violation.

Harel and Marelly defined an executable semantics for
the LSCs, called the play-out algorithm [9], that was later
also defined for MSDs [10]. The basic principle is that
if an environment event occurs and this results in one or
more active MSDs with active (enabled executed) system
messages, then the algorithm non-deterministically chooses
to send a corresponding message if that will not lead to a
safety violation in another active MSD. The algorithm will
repeat sending active system messages until no active MSDs
or only active MSDs with monitored cuts remain. Then the
algorithm will wait for the next environment event, etc.

If the MSD specification is inconsistent, this implies that
there exists a sequence of environment events that will lead
the play-out algorithm to a situation where it is “stuck”,
i.e., there are active messages, but they would all lead to
safety violations. Such a situation can, however, also occur
if the specification is consistent. That is because the play-out
algorithm will often make non-deterministic choices without
“looking ahead” if they guarantee it not to get stuck later.

We call the possible executions of the play-out algorithm
also the play-out semantics of an MSD specification. The
valid executions of the play-out algorithm are usually only
a subset of all the runs that satisfy an MSD specification,
which we also call its general semantics.

C. Efficient Model-Checking of Product Lines

Our checking procedure is founded on Featured Transition
System (FTS), a formalism recently introduced by Classen
et al. for modeling the behavior of product lines [7], [8].
In a nutshell, an FTS is a usual transition system where
transitions are annotated with constraints over a set of fea-
tures from an attached feature model. A product can execute
a transition iff its set of features satisfies the associated
constraints. Supported by efficient algorithms [7], [8], [11],
FTS is a promising approach for verifying product lines.

A key advantage of FTS is to include an explicit notion of
feature. FTS model-checking thus allows us to identify all
the product variants that do not satisfy an intended property.
In our context, we can pinpoint exactly the combinations of
features for which the combination of MSDs is inconsistent.

As a fundamental formalism, FTS can be hardly used by
engineers. It is often preferable to use a high-level language
on top of it. Classen et al. [8] recently extended NUSMV, an
industry-strength model-checker, with efficient FTS-based
algorithms. In SMV, NUSMV’s input language, one declares
variables over finite domains, and describes how the value
of each individual variable evolves. Thereby, a transition
relation is defined according to the synchronous evolution of
all the variables. SMV also provides a construct to restrict
the set of authorized transitions. In the rest of this paper, we
use SMV as extended in [8].

III. SCENARIO-BASED SPECIFICATION OF PRODUCT
LINES

In the following, we describe our approach for the
scenario-based specification of product lines by a combi-
nation of feature diagrams and MSDs. The advantage of
our approach is that it allows the requirements engineer
to precisely specify the feature-specific behavioral aspects
of the system separately for each feature. We call the
specifications created for each feature feature specifications.
Moreover, the MSDs allow for a seamless composition of
a complete specification for a particular product variant,
without requiring an additional composition or “weaving”
mechanism. Also (as explained in Sect. V in more detail), the
presented modeling concepts can be entirely realized based
on UML and lightweight extensions, so existing modeling
tools can be reused for our specification approach.

First, we propose that the features and their valid combi-
nations are modeled as feature diagrams. See Fig. 1, which
showed the feature diagram of our RailCab example.

A feature can be associated with a feature specification,
which consists of an optional informal description of the
requirements and a package that contains the formal speci-
fication. The structure of such a package is shown in Fig. 3.
The package contains classes and a collaboration. The nodes
in the collaboration diagram, called roles, describe the ob-
jects that are considered in the specification of the particular
feature. Here, the roles that represent system objects have
a rectangular shape; a role that represents an environment
object has a cloud-like shape. Connectors between the roles
show which objects interchange messages with each other.
The roles are typed over the classes in the package and
operations of these classes describe which messages with
which parameters an instance can receive.

Each collaboration can contain one or multiple MSDs.
Here, the collaboration contains four MSDs that thus make
up the behavioral specification of the feature Merging
switch registration. The MSD RC1RequestEnterAtEndOf-
TrackSection was already introduced in Sect.II-B. In this
feature, due to the symmetry in the example, the same
behavior is again also specified for the second RailCab in the
MSD RC2RequestEnterAtEndOfTrackSection. We hide this
diagram behind the first here, because it only differs in the
lifeline that refers to the RailCab rc2 instead of rc1. In the
future, we could also imagine richer constructs that allow
us to avoid drawing such redundant diagrams, but this shall
not be the focus of this paper.

The two MSDs at the bottom of Fig. 3 say that the RailCab
rc1 resp. rc2 must register at the switch control after it is
granted the permission to enter the switch and before it
effectively enters the switch. Then it must unregister from
the switch control after entering the next, subsequent track
section. Here again, only the MSD for the first RailCab is
shown in the foreground.

MSD RC2RegisterAndUnregister

MSD RC2RequestEnterAtEndOfTrackSection

Feature Merging switch registration:
If a RailCab (rc1 or rc2) approaches the end of the track section and approaches a merging swtich, it must
request the switch control for the permission to enter. The switch control must reply, either allowing or disallowing
the RailCab to enter. The reply must be sent before the RailCab reaches the point where for the last time by
applying the brakes it can be guranteed to halt before entering the switch.
If entering the switch is allowed, the RailCab must register at the switch control before it enters the swtich. When
entering the subsequent track section, the RailCab must unregister from the switch control.

endOfTS

env:Environment rc1:RailCab sc:MergingSwitchControl

requestEnter

enterAllowed(true/talse)

MSD RC1RequestEnterAtEndOfTrackSection

lastBrake

package Merging switch registration

Environment

Merging
SwitchControl

requestEnter()

RailCab

endOfTS()
enterAllowed(
 isAllowed:Boolean)
lastBrake()

Switch
System

Collaboration
Switch System

rc2:RailCab

sc:Merging
SwitchControl

env:Environment

rc1:RailCab

enterNext

env:Environment rc1:RailCab sc:MergingSwitchControl

MSD RC1RegisterAndUnregister

enterAllowed(true)

register

enterNext
unregister

c,m

c,m

c,m

c,m

h,e

h,e

c,m

h,e

h,e

Figure 3. The specification of the feature Merging switch registration

The specifications associated with the features Blocking
switch control and Coordinated switch entry follow the same
structure, so, for brevity, Fig. 4 only shows the MSDs asso-
ciated with the features. The behavior of the feature Blocking
switch control is specified by the MSDs RC1EnterDisallowed-
WhenSwitchBlocked and RC2EnterDisallowedWhenSwitch-
Blocked. They specify that RailCab rc1 resp. rc2 must not be
allowed to enter after rc2 resp. rc1 was give the permission
to enter the track section and before rc2 resp. rc1 has again
unregistered from the switch, i.e., has left the switch.

Finally, the MSDs RC1CoordinateSwitchEntry and RC2-
CoordinateSwitchEntry specify that if the RailCab rc1 resp.
rc2 requests the permission to enter the track section after
the opposite RailCab (rc2 resp. rc1) was already given
the permission to enter, the switch control can order the
RailCabs to coordinate for a joint entry on the switch. To
do that, the RailCab requesting the permission to enter must
ask the other RailCab for a coordination strategy, in which it
prescribes the time and speed at which they can safely pass
the switch together. We abstract from the details of such a
strategy and, for simplicity, we also do not consider that in a
RailCab may also deny a proposed strategy. We assume that
they must both acknowledge to the switch control to perform
a coordinated entry, and that the switch control must then
allow the requesting RailCab to enter.

In this example, there is the following inconsistency.
Suppose that the RailCab rc2 was given the permission to

MSD RC2CoordinateSwitchEntry

MSD RC2EnterDisallowedWhenSwitchBlocked

enterAllowed(true)

rc1:RailCab rc2:RailCab sc:MergingSwitchControl

unregister

enterAllowed(true)

MSD RC1EnterDisallowedWhenSwitchBlocked

forbidden

<<Feature>>

Blocking switch
control

rc1:RailCab rc2:RailCab sc:MergingSwitchControl

requestEnter

enterAllowed(true)

MSD RC1CoordinateSwitchEntry

coordinateEntry

requestStrategy()

coordinationStrategy()

ackCoordinatedEntry

unregister
forbidden

enterAllowed(true)

<<Feature>>

Coordinated
switch entry

ackCoordinatedEntry

MSD RC1EnterDisallowedWhenSwitchBlocked

(c,m)

(h,e)

h,e

h,e

h,e

h,e

h,e

h,e

c

c,m

c,m

c,m

c,m

h

Figure 4. The MSDs for the features Blocking switch control and
Coordinated switch entry and the cuts where a safety violation is inevitable

enter the track section and has not yet left the track section
and unregistered from it. This means that there is an active
copy of the MSD RC1EnterDisallowedWhenSwitchBlocked
with the cut as illustrated in Fig. 4. At the same time, if
the RailCab rc1 requests the permission to enter the switch,
this will eventually lead to a situation where in an active
copy of RC1CoordinateSwitchEntry the hot and executed
message enterAllowed(true) is enabled, as also show
in Fig. 4. Because the message enterAllowed(true)
is forbidden in the first MSD, it would be a safety violation
to send this message. But not sending this message at all
would constitute a liveness violation, because the message
is executed in the second MSD. The system could also
try to delay sending this message until the second RailCab
unregisters from the switch control. Then, however, the envi-
ronment could meanwhile send lastBreak, which would
violate the MSD RC1RequestEnterAtEndOfTrackSection, be-
cause it would also not have progressed beyond the hot
enterAllowed message.

The inconsistency could be resolved for example by
changing the feature diagram and turning the OR relation-
ship between the child features of Merging switch policy
into an XOR relationship. This would then exclude the
contradicting combination of features. Also the MSDs could
be changed. Changing the hot message enterAllowed
in RC1CoordinateSwitchEntry to a cold message would for
example resolve the problem, but then a coordinated entry
would never be allowed. Alternatively, we could add a
cold forbidden message to the MSD RC1EnterDisallowed-

WhenSwitchBlocked so that a cold violation terminates the
diagram if the switch control asks for a coordinated entry
of a RailCab.

The modeling technique presented here allows us to
employ a simple mechanism for composing the specification
of a product from its single feature specifications. Since
every feature specification is a package, we can simply
employ the package merge mechanism defined in UML2 [12,
Sect. 7.3.41] to merge the packages and their contents into
a consolidated product specification package. Essentially,
package merge merges the contents of one or multiple
packages into another package. In this process, elements
with the same name in the merged packages are mapped
to one element with that name in the merging package.
This applies to classifiers, such as classes and collaborations,
but also operations. The MSDs can simply be composed by
forming the union of all feature’s MSDs in the consolidated
product specification package.

IV. CONSISTENCY CHECKING SCENARIO-BASED
PRODUCT LINE SPECIFICATIONS

We propose an automated method for discovering incon-
sistencies in MSD product line specifications as described
above. For this purpose, we map the specification to an
SMV model that encodes the play-out behavior of every
product. I.e., for each product, the model describes all
the possible reactions of the play-out algorithm to every
possible sequence of environment events. We then verify
that, in every product variant, the system can always find an
admissible sequence of reactions to an environment event.

A. From MSDs to SMV

Our transformation from MSD product line specifications
to an SMV models is inspired by Harel et al., who propose
a similar translation for LSCs [13]. SMV provides very
flexible means for encoding transition relations, which we
exploit in our mapping to encode the simultaneous progress
of cuts and the activation and termination of MSDs. In the
following, we describe the principles of this mapping.

For each lifeline in each MSD, we define a variable
to represent all the reachable cuts of the MSDs. Also we
define a variable event, which records which message has
been sent at each particular step. We restrict the next value
of the event variable with respect to the current cut: If
the system is inactive, then the environment sends a non-
deterministically chosen message. While the system is ac-
tive, i.e., an executed message is enabled, an active message
is sent non-deterministically as long as this would not lead
to a safety violation in another active MSD. Depending on
the message that is sent in a particular step, we progress the
lifeline variables. The lifeline variables are also reset when
an active MSD terminates or a cold violation occurs. In the
special case that the cold violation occurs due to an event

unifiable with the first message of an MSD, we accordingly
progress the cut beyond the first message.

If a state is reached where there are enabled executed
messages, but all corresponding events would lead to a safety
violation, the system will not progress. On the contrary, an
environment event that leads to a safety violation may occur.
Then we set the variable safetyV iolation to true.

B. Relating Scenarios with Features

In order to relate a given MSD with the feature that defines
it, we also include the notion of feature into the SMV model.
As explained by Classen et al. [8], the NuSMV extension
allows to model features as normal Boolean variables. A
product is then modelled by a valuation of these variables.
Intuitively, we want to express that the scenario of a given
MSD is considered iff the value of its associated feature is
true. To do so, we forbid the lifeline variables of an MSD
to increase if the corresponding feature value is false.

In the work of Classen et al. [8], it was actually not
considered that based on a feature diagram only certain com-
binations of features are valid. Here we only consider such
valid combinations and achieve this by deriving Boolean
formulae from the feature diagram, which we then include
in the SMV model. The translation of these constraints is
actually trivial and omitted here.

C. Verification of Consistency

Once all the MSDs have been translated into SMV code
and related with their feature, we obtain a formal model
describing the play-out behaviour of every product. Still,
we have to prove that the specification of each product
is consistent. For this purpose, we check the SMV model
with the NUSMV extension [8]. This extension allows us
to determine the exact set of products (as opposed to only
one) that does not satisfy a certain property, expressed Com-
putation Tree Logic (CTL) [14]. Intuitively, this logic allows
to reason about execution paths and provides ways to specify
existential and universal requirements over these paths. For
example, the formula ∀�¬safetyV iolation means “For all
paths, the Boolean proposition safetyV iolation is always
false.” and the formula ∃♦¬system is active expresses
that “There exists a path where the Boolean proposition
system is active is eventually false.”

In order to specify that the system is able to react properly
each time an environment event occurs, we consider the CTL
formula P1 defined as

∀�(envMessage→ ∃�
(¬safetyV iolation ∧ ∃♦(¬system is active))).

Intuitively, this formula says that it must always be the case
that if an environment message occurs, the system can find a
sequence of system messages that it can send so it eventually
reaches a state where there is no active message event and no
safety violation occurs (caused by a subsequent environment

event). If the specification of all products satisfy the formula,
the model-checker returns True. However, if there is at least
one combination of features that does not satisfy the formula,
the tool returns a Boolean expression defining the set of
inconsistent products. In the case of our example, the model-
checker returns the formula ¬(BlockingSwitchControl ∧
CoordinatedSwitchEntry), which means that the prod-
ucts with both the features BlockingSwitchControl and
CoordinatedSwitchEntry are inconsistent. Together with
the formula, the model-checker returns one or several exe-
cution traces from which we can understand which sequence
of messages leads to a state where a safety violation occurs
or the system cannot progress.

D. Discussion

Our approach has a number restrictions. First of all,
the SMV model encodes the play-out semantics of the
MSD specification. This means that we consider that a
system can only send messages that correspond to exe-
cuted message currently enabled in an active MSD—the
system cannot decide to send other messages or not to
execute an enabled executed message. This restriction is
necessary for our approach to remain feasible. Furthermore,
it is a meaningful restriction, because we only consider
the execution of messages that are explicitly marked to
be executed. Anything else may even be regarded as an
unintended behavior by the requirements engineer. However,
it makes the approach incomplete, i.e., there may be a system
that behaves differently than the play-out algorithm, but
implements the specification.

Furthermore, the property P1 checks that from a state
where an environment message occurred, the system can
find a valid sequence of system messages in reaction to
that event. But if there does not exists such a reaction,
it will not consider if it could have avoided that state by
choosing another order among steps in a previous sequence
of system messages that it sent in reaction to some earlier
environment event. This requirement cannot be expressed in
CTL, and motivates the need for extending our approach to
parity games [15], [16].

Harel et al. show that, if it can be ensured that every
execution of play-out avoids safety violation or getting stuck,
then statecharts can be transformed from the scenarios for
every object in the system [6]. With our approach, we can
also prove an according property P2:

∀�(¬safetyV iolation ∧ ∀♦(¬system is active)).

Note that the previous formula is weaker than this one. When
it is satisfied, it means that we can refine the specification
so that the other formula is satisfied as well. Inspired by
the synthesis method of Harel et al., we can thus provide
RE engineers with automated techniques for deriving imple-
mentations for product lines. The derivation of state-charts
is, however, out of the scope of the current paper.

V. REALIZATION AND EVALUATION

In this section, we present a tool suite that realizes the
presented methodology. We evaluate the applicability of the
tool through the RailCab case study. Also, we assess the
efficiency of the verification algorithm against the successive
verification of the individual products.

A. Implementation

We have implemented our approach through a number of
extensions to the ECLIPSE workbench. MSDs are modeled
via a lightweight extension, i.e., profile, of UML. They
can be edited via a graphical editor that was implemented
as an extension to the TOPCASED UML editor within
the SCENARIOTOOLS project3. We similarly model feature
diagrams as a lightweight extension of UML, inspired by
[17]. Features are represented by components. A feature
component can have a port from where it can reference
child feature components by dependencies. The port acts as
a group for the child feature dependencies and a particular
stereotype allows us to specify whether the child features
are in an AND, OR, or XOR relationship.

The input language for NuSMV is a textual language
for which we slightly modified an existing XText editor4.
We could then implement the mapping from the MSDs +
feature diagram UML model to SMV via a model-to-model
transformation. We specified the mapping by a Triple Graph
Grammar, a declarative, rule-based formalism for specifying
relations between models. This TGG can be executed by the
TGG INTERPRETER5.

The transformation result is then fed to NuSMV. The
result of model-checking for all valid products is reported as
the output. In case there is an inconsistency in any product,
a counterexample is generated.

Instructions to download and install our implementation
can be found on our website 6.

B. Applicability Evaluation

As a first evaluation, we applied our methodol-
ogy to model and verify the consistency of the Rail-
Cab example. As presented in Section III, the prod-
uct having all the features is inconsistent, because the
MSDs RC1EnterDisallowedWhenSwitchBlocked
and RC1CoordinateEntrySwitch are incompatible.

We modeled this example in our tool, produced the
corresponding SMV model, and subsequently fed the model
into the NUSMV extension. When we verified the model
against the formula P1, NUSMV identified the inconsistent
product and the execution trace illustrating the violation.

3http://www.cs.upb.de/index.php?id=scenariotools
4http://code.google.com/a/eclipselabs.org/p/nusmv-tools/
5http://www.cs.uni-paderborn.de/fachgebiete/

fachgebiet-softwaretechnik/forschung/projekte/tgg-interpreter.html
6info.fundp.ac.be/fts/implementations/msd2smv

http://www.cs.upb.de/index.php?id=scenariotools
http://code.google.com/a/eclipselabs.org/p/nusmv-tools/
http://www.cs.uni-paderborn.de/fachgebiete/fachgebiet-softwaretechnik/forschung/projekte/tgg-interpreter.html
http://www.cs.uni-paderborn.de/fachgebiete/fachgebiet-softwaretechnik/forschung/projekte/tgg-interpreter.html
 info.fundp.ac.be/fts/implementations/msd2smv

According to this trace, we must avoid the following se-
quence of events : env

endOfTS−−−−−−→ rc2, rc2
requestEnter−−−−−−−−−→ sc,

sc
enterAllowed−−−−−−−−−→ rc2, rc2

register−−−−−→ sc, env
endOfTS−−−−−−→ rc1. It

means that if rc1 reaches the track section while rc2 is
between it and the switch, it is impossible for the system to
ensure the satisfaction of all the specifications regardless of
the (uncontrolled) environment events.

We decided to change the feature model in order to forbid
this combination of features. Once done, NUSMV does not
notice a violation of formula P1 anymore, neither of the
formula P2. Hence, the play-out of the MSD specification
for any remaining product will never run into any violation.

C. Performance Evaluation

Although consistency checking our running example takes
less than a second, the consistency checking can be very
time-consuming. The selection of a specific algorithm and
its optimization is thus of utmost importance. As stated by
Classen et al. [7], [8], there are two methods for model
checking an FTS. The first one consists in deriving, from
the FTS, the models corresponding to all the valid products
and then verifying them individually. The second method
relies on the dedicated algorithms proposed by Classen et
al. [7], [8].

In this evaluation, we compare the performance of both
methods through several experiments. More precisely, we
compare the time needed by both algorithms to verify the
SMV models against formulae P1 and P2. To obtain the
SMV model related to a particular product, we first remove
the declaration of the feature variables in the original model.
Then, we replace every feature variable by true if the feature
belongs to the considered product, and by false otherwise.
In the subsequent evaluations, we do not count the time
needed for computing these individual models.

To carry out our experiments, we employ a set of system-
atically extended example specifications. Each specification
in this set has a feature diagram where each feature has at
most two child features, connected with an OR-relationship,
and there exists only features with distance i from the
root if all features with distance i − 2 already have two
child features. Each feature is connected with exactly one
MSD. An illustration of the example specification with three
features and three MSDs is given in Figure 5. According to
the feature diagram, three different products can be derived:
{F, F-1}, {F, F-2}, and {F, -1, F-2}. The first message of an
MSD is a cold message and is followed by two hot messages.
Only the first message in the MSD of the root feature is
an environment message. The first message of an MSD of
a child feature is named like the two hot messages of its
parent’s MSD. This way, one activation of an MSD triggers
two activations of an MSD for each child feature.

We extend such a specification by adding two child
features and two MSDs. The name of the first and second
child feature is formed by appending “-1” resp. “-2” to the

do

env:Environment a:A b:B

DoMRoot

m

m

m

a:A b:B

DoM1-1

m-1

m-1

m

a:A b:B

DoM1-2

m-2

m-2

<<Feature>>

F-2
<<Feature>>

F-1

<<BaseFeature>>

F

<<BaseFeature>>

F

<<Feature>>

F-1
<<Feature>>

F-2

h,e

h,e

c,m

h,e

h,e

c,m

c,m
h,e

h,e

Figure 5. Technical evaluation example with three features

name of its parent. The names of the two hot message of
the child feature’s MSD are extended likewise.

Following this scheme, we created product line specifica-
tions for 3, 5, 7, 9, 11, 13, and 15 features. They specify
3, 7, 15, 31, 63, 127, and 255 products. Note that for each
additional feature, there is an exponential increase in the
number of products and the number of different reachable
combinations of cuts.

Since NUSMV is a fully symbolic model-checker, the
ordering of the variables is an important factor for the per-
formance of the algorithms. NUSMV proposes two modes
to control variables ordering. The first method allows one
to specify which ordering NUSMV must use throughout
the verification. In the second mode, called dynamic, the
model checker automatically reorders the variables during
the execution. While this is usually more efficient than
random orderings, it creates a significant overhead that
consequently increases the verification time with respect
to optimal orderings. During the experiments we carried
out, we managed to find out orderings that systematically
perform better than the dynamic mode, and to figure out a
pattern that, in our examples, ensures an improvement of the
efficiency. According to this pattern, a good ordering must
satisfy the following two rules. First, the lifeline variables
of a given MSDs must be grouped together, and preceded
by the feature variables they are associated with. Second, if
an MSD activates another then the lifeline variables of the
former must be placed after the lifeline variables of the latter.
Note that this pattern is also efficient in the SMV model
of a particular product. In this case, the feature variables
are ignored, since they do not occur in a single-product
model. Of course, we could evaluate the efficiency of these
orderings through only two examples, and are aware that
this is far from sufficient to prove that they are optimal.

All benchmarks were run on a MacBook Pro with a 2.4
GHz Core 2 Duo processor and 4 Gb of RAM. During
the experiments, no other application was running so that
processor sharing could not influence the verification time.
The results are shown in Table I. It provides the verification
time for each property, algorithm, and ordering method. First

Table I
VERIFICATION TIMES FOR THE CASCADING EXAMPLE.

P1 P2

Ded. Enu. Ded. Enu.
Feat. dyn. our. dyn. our. dyn. our. dyn. our.

3 0.05 0.01 0.08 0.03 0.05 0.01 0.08 0.03
5 0.21 0.04 0.62 0.11 0.21 0.04 0.64 0.13
7 0.93 0.22 2.64 0.54 1.65 0.32 3.01 0.64
9 6.52 1.75 10.47 3.64 7.16 2.19 11.88 5.06

11 53.88 24.16 131.48 32.53 56.77 45.46 175.12 54.12
13 1631.57 192.68 989.14 216.24 2622.94 330.94 1263.56 431.00
15 7798.22 1510.21 2314.10 1041.50 5364.32 2430.15 2903.26 2700.90

of all, let us note that the ordering pattern we have identified
(our.) achieves order-of-magnitude improvements over the
dynamic ordering. Moreover, this latter ordering becomes
particularly inefficient when the number of features reaches
13, especially when it is combined with the dedicated
algorithm (Ded.). When using our ordering pattern, it turns
out that the dedicated algorithm outperforms the enumerative
method (Enum.) except when P1 and the 15-feature case are
considered. Our theory is that the enumerative approach is
more efficient for bigger specifications with a high feature-
to-MSD ratio. In practice, however, it is more likely to have
several MSDs per feature as in this technical example. Thus
we expect our approach to be more efficient in most practical
cases, but further evaluations are required.

Finally, note that the enumerative algorithm does not
return a concise formula that identifies the bad products, so
the dedicated method also yields improvement in usability.

VI. RELATED WORK

There are many approaches for synthesizing and con-
sistency checking formal scenario specification [6], [15],
[16], [18], [19]. Also the relationship between scenarios
and goals was studied in the past [20]. However, there
are few approaches that consider the formal scenario-based
specification of product lines.

Ziadi et al. consider the synthesis from statecharts from
sequence diagrams where interaction fragments can be anno-
tated to be active only in certain variants [21]. However, their
approach does not support safety and liveness properties
as flexibly as ours. They require a high-level diagram that
defines a control structure among basic sequence diagrams,
and so also contradictions cannot occur in basic scenarios.

Ghezzi and Molzam propose an approach to verify non-
functional requirements of software product-lines [22]. They
model the system’s behavior with sequence diagrams where
fragments can be annotated to be active only in certain
products. They, however, do not consider that multiple
scenarios can be active concurrently.

The relationship between feature models and structural as
well as behavioral UML models was studied for example
in [23]–[25]. However, here only syntactical consistency re-
lationships among different modeling views are considered.

Harhurin and Hartman propose and approach for model-
ing and consistency checking families of service-orinented
systems [26]. They model possible service compositions
and formally specify constraints on the input and output
sequences of the ports of a service. Then combinations of
input/output ports that are incompatible in a certain product
can be detected by using a theorem prover. In comparison,
our approach allows the requirements engineer not only to
consider the input/output behavior of a single service, but the
interactions between components can be specified, which is
crucial for complex interaction protocols, especially if they
involve more than two participants.

Lauenroth et al. propose an approach where the behavior
of features in a product lines is modeled with automata in
a FTS-like fashion, i.e. transitions are only enabled when
certain features are selected [27]. Furthermore, invariants
can be formulated and a SAT-solver is employed to find
inconsistent states that do not satisfy the invariants. However,
like our FTS, this formalism is not intuitive and suited to be
used by engineers during the early design.

VII. CONCLUSION AND OUTLOOK

In this paper, we provide a methodology for the scenario-
based specification of product lines, using MSD for the
specification of the individual feature behaviors. To verify
the consistency of such specifications, we employ recent
advances in product lines verification, namely an exten-
sion of the industry-strength model-checker NUSMV [8].
We implemented a tool that automatically transforms an
MSD product line specification into an SMV model where
NUSMV can then pinpoint all the inconsistent combinations
of features. We evaluated the applicability of our approach
and the performance of different algorithmic options. In
particular, we showed that variable ordering is of utmost
importance and identified a pattern that, in our experiments,
always yielded good results.

In future work, we plan to also support richer MSD
language features and to elaborate the automated derivation
of statecharts from the specifications. These statecharts could
also be checked in combination with existential MSDs
to ensure that particular scenarios are possible to occur.
Moreover, we plan to investigate how the principles of FTS

model-checking could be applied to synthesis (i.e., parity
games), so that we can overcome the current limitations of
our model-checking approach. Especially interesting would
then be to investigate how to synthesize an implementation
for a particular product variant incrementally, assuming an
implementation for some other (base) variant already exists.
Another challenge is to analyze the consistency of product
line specifications for dynamic systems, which could be sup-
ported by a combination of synthesis and simulation [28].

ACKNOWLEDGMENT

This research is funded by the European Commission,
Programme IDEAS-ERC, Project 227977 SMScom, and by
the Fund for Scientific Research – FNRS in Belgium, Project
FC 91490.

REFERENCES

[1] K. Pohl, G. Böckle, and F. J. van der Linden, Software
Product Line Engineering: Foundations, Principles and Tech-
niques. Springer, 2005.

[2] K. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson, “Feature-oriented domain analysis (FODA)
feasibility study,” Software Engineering Institute, Carnegie
Mellon University, Tech. Rep., 1990.

[3] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux, “Feature
diagrams: A survey and a formal semantics,” in Requirements
Engineering, 14th Int. Conf., sept. 2006, pp. 139 –148.

[4] W. Damm and D. Harel, “LSCs: Breathing life into message
sequence charts,” in Formal Methods in System Design,
vol. 19. Kluwer Academic Publishers, 2001, pp. 45–80.

[5] D. Harel and S. Maoz, “Assert and negate revisited: Modal se-
mantics for UML sequence diagrams,” Software and Systems
Modeling (SoSyM), vol. 7, no. 2, pp. 237–252, May 2008.

[6] D. Harel, H. Kugler, and A. Pnueli, “Synthesis revisited: Gen-
erating statechart models from scenario-based requirements,”
in Formal Methods in Software and Systems Modeling, H.-
J. Kreowski, U. Montanari, F. Orejas, G. Rozenberg, and
G. Taentzer, Eds., vol. 3393. Springer, 2005, pp. 309–324.

[7] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F.
Raskin, “Model checking lots of systems: efficient verification
of temporal properties in software product lines,” in Proc.
32nd Int. Conf. on Software Engineering (ICSE’10), ser.
ICSE’10. ACM, 2010, pp. 335–344.

[8] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay,
“Symbolic model checking of software product lines,” in
Proc. 33rd Int. Conf. on Software Engineering (ICSE’11).
ACM, 2011, pp. 321–330.

[9] D. Harel and R. Marelly, “Specifying and Executing Behav-
ioral Requirements: The Play-In/Play-Out Approach,” Soft-
ware and System Modeling (SoSyM), vol. 2, p. 2003, 2002.

[10] S. Maoz and D. Harel, “From multi-modal scenarios to
code: Compiling lscs into aspectj,” in Proc. Int. Symp. on
Foundations of Software Engineering (FSE’05), 2006, pp.
219–230.

[11] M. Cordy, A. Classen, G. Perrouin, P. Heymans, P.-Y.
Schobbens, and A. Legay, “Simulation relation for software
product lines,” in Proc. 34th Int. Conf. on Software Engineer-
ing (ICSE’12) (to appear). IEEE, 2012.

[12] “UML 2.4.1 Superstructure Specification,” August 2011,
OMG document formal/2011-08-06.

[13] D. Harel, H. Kugler, R. Marelly, and A. Pnueli, “Smart play-
out of behavioral requirements,” in Proc. 4th Int. Conf. on
Formal Methods in Computer-Aided Design, ser. FMCAD
’02. London, UK: Springer, 2002, pp. 378–398.

[14] E. M. Clarke and E. A. Emerson, “Design and synthesis
of synchronization skeletons using branching-time temporal
logic,” in Logic of Programs, ser. LNCS, vol. 131. Springer,
1981, pp. 52–71.

[15] Y. Bontemps and P. Heymans, “From live sequence charts
to state machines and back: A guided tour,” Transactions on
Software Engineering, vol. 31, no. 12, pp. 999–1014, 2005.

[16] J. Greenyer, “Scenario-based design of mechatronic systems,”
Ph.D. dissertation, University of Paderborn, Oct. 2011.

[17] T. Possomps, C. Dony, M. Huchard, and C. Tibermacine,
“Design of a UML profile for feature diagrams and its tooling
implementation,” in Proc. 23th Int. Conf. on Software Engi-
neering and Knowledge Engineering (SEKE’11). Knowledge
Systems Institute Graduate School, July 2011, pp. 693–698.

[18] J. Whittle and J. Schumann, “Generating statechart designs
from scenarios,” in Proc. 22nd Int. Conf. on Software Engi-
neering (ICSE’00), 2000, pp. 314–323.

[19] D. Harel and H. Kugler, “Synthesizing state-based object sys-
tems from LSC specifications,” in Foundations of Computer
Science, vol. 13:1, 2002, pp. 5–51.

[20] C. Damas, B. Lambeau, and A. van Lamsweerde, “Scenarios,
goals, and state machines: a win-win partnership for model
synthesis,” in Proc 14th Int. Symp. on Foundations of software
engineering, ser. SIGSOFT ’06/FSE-14. New York, NY,
USA: ACM, 2006, pp. 197–207.

[21] T. Ziadi, L. Hlout, and J.-M. Jzquel, “Behaviors generation
from product lines requirements,” in Proc. UML2004 work-
shop on Software Architecture Description, Sep. 2004.

[22] C. Ghezzi and A. Sharifloo, “Verifying non-functional proper-
ties of software product lines: Towards an efficient approach
using parametric model checking,” in Proc. 15th Int. Software
Product Line Conference (SPLC), August 2011, pp. 170 –174.

[23] P. Jayaraman, J. Whittle, A. Elkhodary, and H. Gomaa,
“Model composition in product lines and feature interaction
detection using critical pair analysis,” in Model Driven En-
gineering Languages and Systems, ser. LNCS, G. Engels,
B. Opdyke, D. Schmidt, and F. Weil, Eds. Springer, 2007,
vol. 4735, pp. 151–165.

[24] M. Vierhauser, P. Grünbacher, A. Egyed, R. Rabiser, and
W. Heider, “Flexible and scalable consistency checking on
product line variability models,” in Proc. Int. Conf. on Auto-
mated Software Engineering (ASE’10). ACM, pp. 63–72.

[25] M. Alférez, R. E. Lopez-Herrejon, A. Moreira, V. Amaral,
and A. Egyed, “Supporting consistency checking between
features and software product line use scenarios,” in Proc.
12th Int. Conf. on Top productivity through software reuse,
ser. ICSR’11. Berlin, Heidelberg: Springer, 2011, pp. 20–35.

[26] A. Harhurin and J. Hartmann, “Towards consistent specifica-
tions of product families,” in Proc. 15th Int. Symp. on Formal
Methods, ser. FM ’08. Berlin, Heidelberg: Springer, 2008,
pp. 390–405.

[27] K. Lauenroth and K. Pohl, “Dynamic consistency checking
of domain requirements in product line engineering,” in
International Requirements Engineering, 2008. RE ’08. 16th
IEEE, sept. 2008, pp. 193 –202.

[28] J. Frieben and J. Greenyer, “Consistency checking scenario-
based specifications of dynamic systems,” in Proc 4th Work-
shop on Behavioural Modelling – Foundations and Applica-
tion (BM-FA 2012) (to appear). ACM, 2012.

	Introduction
	Foundations
	Representing Variability with Feature Diagrams
	Scenario-Based Modeling with MSDs
	Efficient Model-Checking of Product Lines

	Scenario-Based Specification of Product Lines
	Consistency Checking Scenario-Based Product Line Specifications
	From MSDs to SMV
	Relating Scenarios with Features
	Verification of Consistency
	Discussion

	Realization and Evaluation
	Implementation
	Applicability Evaluation
	Performance Evaluation

	Related Work
	Conclusion and Outlook
	References

