
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

SNIP: An Efficient Model Checker for Software Product Lines

Classen, Andreas; Cordy, Maxime; Heymans, Patrick; Schobbens, Pierre-Yves; Legay, Axel

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Classen, A, Cordy, M, Heymans, P, Schobbens, P-Y & Legay, A 2011, SNIP: An Efficient Model Checker for
Software Product Lines..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/publications/snip-an-efficient-model-checker-for-software-product-lines(5e499c3b-72a4-44bf-980f-19000a63fa60).html

PReCISE – FUNDP
University of Namur
Rue Grandgagnage, 21
B-5000 Namur
Belgium

TECHNICAL REPORT July 28, 2011

AUTHORS A. Classen, P. Heymans, M. Cordy, P.-Y.
Schobbens, A. Legay

APPROVED BY P. Heymans
EMAILS {acs}@info.fundp.ac.be
STATUS Draft.

REFERENCE P-CS-TR SPLMC-00000003
PROJECT MoVES
FUNDING FNRS, the Walloon Region, Interuniversity

Attraction Poles Programme of the Belgian
State of Belgian Science Policy

SNIP: An Efficient Model Checker for Software Product Lines

Copyright c� University of Namur. All rights reserved.

SNIP: An Efficient Model Checker
for Software Product Lines

Andreas Classen,∗ Patrick Heymans,

Maxime Cordy, Pierre-Yves Schobbens

University of Namur, Belgium

{acs,mcordy,phe,pys}@info.fundp.ac.be

Axel Legay

IRISA/INRIA Rennes, France and

University of Liège, Belgium

axel.legay@irisa.fr

ABSTRACT
In software product lines, systems are developed in families
and differences between systems of a product line are ex-
pressed in terms of features. The model checking problem
for product lines is more difficult than for single systems
because a product line with n features yields up to 2n indi-
vidual systems to verify. This paper introduces SNIP, a tool
for model checking product lines against temporal proper-
ties. SNIP is the first model checker for software product
lines. It relies on an efficient mathematical structure for
product line behaviour, that exploits similarities and rep-
resents the behaviour of all systems in a compact manner.
This structure is used to model check all systems of the
product line in a single step. The tool comes together with
an intuitive specification language based on Promela. We
compare SNIP to classical model checkers.

1. INTRODUCTION
Software Product Lines (SPLs) are a popular software en-

gineering paradigm that seeks to maximise reuse by planning
upfront which features should be common, resp. variable, for
several similar software systems [7] (called products).

SPLs are used for the development of embedded and criti-
cal systems [9]. Approaches for formal modelling and model
checking of SPL behaviour are thus vital for quality assur-
ance and are actively studied. The model checking problem
consists in checking whether a system model satisfies a given
temporal logic property [1]. The model checking problem in
SPLs is different from the one in single systems engineering.
To conduct analysis on the level of the SPL (as opposed to
analysing individual products), the model and the algorithm
have to take variability into account. The algorithm has to
consider all products as part of the check, and pinpoint those
that violate it [6]. This means that the modelling language
has to offer a way to specify the behaviour of all products
concisely, while still retaining traceability from behaviours
to products. The model checking problem is also harder, as
∗FNRS Research Fellow

.

it has to deal with the fact that there can be exponentially
many, O(2#features), products to verify.

In [5, 4], we addressed the model checking problem for
SPLs and Linear Temporal Logic (LTL) by introducing Fea-
tured Transition Systems (FTS), a mathematical formalism
to express the behaviour of all products of the SPL in one
model. FTS are transition systems in which transitions are
labelled with feature expressions (in addition to being la-
belled with actions). This allows one to keep track of the
different products. We also proposed a semi-symbolic model
checking algorithm [5] that exploits the structure of the FTS
and tries to avoid an exponential number of verifications.

Here we introduce SNIP, a model checker for SPLs that
implements the algorithms of [5]. To the best of our knowl-
edge, SNIP is the first model checker specifically dedicated to
SPLs. We also propose a specification language, fPromela
(based on Promela [11]), that allows to specify SPLs con-
cisely and intuitively. Our experiments show that SNIP
performs faster than model checking of individual products.

SNIP is available at www.info.fundp.ac.be/̃ acs/snip. It
is distributed in source code form and comes with documen-
tation and case studies.

2. SNIP: AN OVERVIEW
The principal difference between SPL model checking and

single systems model checking is the presence of variability.
Variability in SPLs is typically expressed in terms of fea-
tures, that is, a product of the SPL is specified as a set of
features. Since features serve as the central unit of difference
in SPLs, it is imperative that model checking approaches
recognise them as a first-class concept, that is, inputs and
results should be expressed in terms of features. There are,
however, currently no model checkers that do this, except for
SNIP and one of our earlier model checkers [4]. Furthermore,
feature diagrams are commonly used to capture known de-
pendency or exclusiveness relations of features (they specify
the set of legal products [12, 18]). They should also be part
of a model checking approach. Otherwise, the model checker
might identify problems in products that are not legal in the
first place. Currently only SNIP has this capability.

Let us describe how SNIP addresses these requirements
with its modelling language and user interface.

2.1 The fPromela modelling language
In SNIP, SPLs are specified with fPromela, that is, an ex-

tension of the well-known Promela language of SPIN [11].
fPromela extends Promela with a new type, feature vari-
ables. These can be used to guard statements with feature

http://www.info.fundp.ac.be/~acs/snip/

active proctype toto() {
 ...
 int i = 0;

 gd :: f.A || f.B -> i++;
 :: else -> skip;
 dg;

 assert(i == 1);
 ...
}

(a) An fPromela fragment.

inc. / A ⋁ B
assert

skip / ¬ (A ⋁ B)

init

assert

{i=1}

{i=0}

{i=0}

(b) The corresponding FTS.

Figure 1: Example of fPromela and its semantics.

expressions. A guarded statement is part of the model of a
product if its guard evaluates to true in the product. An
example of code written in fPromela is given in Figure 1(a),
where the increment statement is guarded by the feature ex-
pression f.A ∨ f.B. This means that i is only incremented
in products containing features f.A or f.B. In fPromela,
any statement can be guarded and guards can be nested.
fPromela includes almost all constructs of Promela.

Given an fPromela model, the behaviour of a product is
obtained by fixing the values of all feature variables.

Theorem 1. Each fPromela model is semantically equiv-
alent to the non-deterministic choice between 2n Promela
models (where n is the number of features) that are obtained
by varying the initial values of the feature variables.

In addition to fPromela, the TVL feature modelling lan-
guage [3] is used to declare features and constraints between
them. Our model checking algorithm exploits this informa-
tion in order to speed up computation and avoid exploring
states that do not belong to any legal product.

Our choice of Promela as the basis of SNIP’s input lan-
guage is motivated by its widespread use and relative ease of
specification. Furthermore, our choice to model variability
with guards is motivated by the widespread use of similar
techniques in practice (e.g., ifdefs [13, 17], code tags [2] or
coloured annotations [13]). In this regard, it differs from our
earlier language [4], where features are specified as modules
and weaved into a base system. The use of guards is more in-
tuitive, especially due to its straightforward semantics. This
makes sure that fPromela’s learning curve is rather gentle.

2.2 User interaction
Having features as a first-class concept means that results

of a model checker have to be provided in terms of features.
This is not the case if just a single product is verified, or a
list of products one by one. Either case yields information
about specific products, which is limiting as problematic fea-
tures cannot be inferred from violating products. This is
not only limited as a verification result, but also inappropri-
ate for the engineer who thinks in terms of features when
specifying the model. Without knowing which features are
responsible, it is much more difficult to locate an error, es-
pecially if it involves several interacting features. Extending
classical model checkers to SPLs almost inevitably leads to
this situation. SNIP and our earlier model checker [4] are
the only tools that present their results in terms of features.

In SPL model checking, one distinguishes two model check-
ing problems [5]. Assume that a property φ is violated by
one or more products: Mc(φ) returns false and identifies at
least one product while ExtMc(φ) returns false and identi-
fies all violating products. This already yields two use cases
for a model checker. Furthermore, it is sometimes neces-

sary to verify properties that are only relevant for products
containing certain features (e.g., if they correspond to a re-
quirement implemented by a feature). This combined with
the above problems leads to four use cases. SNIP is currently
the only model checker supporting all of them.

The user interface of SNIP was designed to take these use
cases into account. It also addresses a variety of practical
concerns that the user might have, like simulation, bounded
checking, layout of stack traces, and so on. As typical for
model checkers, the user interface is command-line based.
To cover the four use cases explained above, SNIP has two
parameters. Normally, SNIP halts its execution once a vio-
lation is found. This corresponds to Mc(φ), as the full set
of products that violate the property may not have been
computed yet. To force SNIP to compute the full set, i.e.,
ExtMc(φ), one can use the parameter -exhaustive. SNIP
will then continue the search until either all products are
found to violate the property or until the full state space
is explored. The user can also restrict the verification to a
subset of products using the -filter parameter. The subset
is specified as a feature expression in TVL syntax.

Properties for SNIP can be specified in LTL or as asser-
tions (SNIP also detects deadlocks). In Figure 1(a), the
property that i equals 1 is specified with an assertion. For
the above example, a call to SNIP would look as follows:1

$./snip -check -fm features.tvl model.pml
No never claim, checking only asserts and deadlocks..
Assertion at line 17 violated [explored 5 states, re-explored 0].
- Products by which it is violated (as feature expression):

(!A & !B)
- Stack trace:

...

As expected, SNIP reports that the assertion is violated by
all products in [[¬f.A∧¬f.B]]. If the feature model is changed
in order to impose the presence f.A or f.B, SNIP will report
that the property is satisfied.

To be able to correct an error, the model checker usu-
ally provides a counterexample. In the case of SPL model
checking, the counterexample has to correspond to the vio-
lating products that were returned. Especially in the case of
ExtMc, that might mean that the model checker has to re-
turn several counterexamples, each corresponding to a sub-
set of the violating products. Here also, SNIP is currently
the only model checker that does this.

What we just described are four decision problems and a
high-level language for FTS, the underlying formalism [5].
We now discuss how SNIP solves these problems.

3. UNDER THE HOOD
Now that we have given a functional overview of SNIP, we

dive into more technical aspects.

3.1 Theoretical foundations
As in most model checking approaches, the behaviour of

an individual product is specified by a transition system.
In [5], we proposed FTS, a compact model for representing
the behaviours of all the products of an SPL. FTSs are tran-
sition systems in which individual transitions are labelled
with Boolean functions over the features, called feature ex-
pressions. The differences between all the transition sys-
tems in the SPL are either addition or removal of states to
1The -fm parameter specifies the feature model (can be omit-
ted if the TVL file has the same name as the fPromela file).

fPromela model TVL model LTL property, asserts..

SNIP

products satis!ed: ..
products violated: ..

FTS, ltl2ba, cudd,
minisat, TVLLibrary

active proctype toto() {
 int i = 0;
 ...

 gd :: f.A || f.B -> i++;
 :: else -> skip;
 dg;

 ...
 assert(i == 1);
}

root Website group [0..2] {
 A,
 B
}

A B

Website

[0..2]

Figure 2: Inputs and outputs of SNIP.

a common structure shared by all the products. Labelling
by feature expressions allows to capture such modifications.

Definition 2. An FTS is a tuple fts = (S, Act, trans,
I, AP, L, d, γ), where S is a set of states, Act a set of
actions, trans ⊆ S × Act × S a transition relation, I ⊆ S
the set of initial states, AP a set of atomic propositions and
L : S → 2AP a labelling function, d is a feature model,
and γ : trans →

`
{0, 1}|N| → {0, 1}

´
is a total function,

labelling each transition with a feature expression, i.e., a
Boolean function over the set of features.

FTS provide the semantic foundation for fPromela. Ba-
sically, an fPromela model is a high-level description of an
FTS. This is illustrated in Figure 1(b): after an initial tran-
sition, the variable i is incremented in the products with
features A or B (green) and otherwise left untouched (red).

Verification of an FTS should produce the list of products
that satisfy a property. To this end, one can easily use an
enumerative approach, by verifying each product individu-
ally. In [5], we proposed a more efficient algorithm, which
exploits similarities between products in order to reduce the
state space. The theoretical complexity of this algorithm is
the same as for the enumerative approach. However, pre-
liminary benchmarks showed our algorithm to be faster [5].

3.2 Implementation
SNIP performs verification by on-the-fly-generation of the

FTS that corresponds to the fPromela model given as input.
Compared to the enumerative approach, SNIP does not gen-
erate the 2n transition systems that can be derived from the
FTS. In the enumerative approach, the feature variables are
considered to be part of the system state. SNIP, in contrast,
treats them symbolically: each state has a Boolean function
that represents the products for which the state is reachable.

Let us illustrate this with Figure 1(b). The initial state of
the FTS is reachable in all products. SNIP thus internally
attaches the feature expression true to the state. When
SNIP executes the first transition, it knows that the second
state is also reachable in all products. While SNIP executes
this transition once, the enumerative algorithm would have
to execute it for each product. Our algorithm can thus dras-
tically reduce the number of states that have to be visited.
When SNIP fires the red transition, it learns that the tar-
get state is reachable in products [[¬(A ∨ B)]]. It then tests
the assertion, which fails, and so SNIP reports an error for
products [[¬(A ∨ B)]]. All operations involving feature ex-
pressions are computed over symbolic sets. For instance, in
order to check whether a state with feature expression f is
reachable in products [[p]], we test [[p]] ⊆ [[f]].

A schematic summary of the inputs and outputs of SNIP
is presented in Figure 2. Internally, SNIP uses LTL2BA2 to
2www.lsv.ens-cachan.fr/̃ gastin/ltl2ba

generate never claims from LTL formulas, CUDD3 to store
Boolean functions as BDDs, MiniSat4 as an alternative to
CUDD, and the TVL library5 to transform a TVL model
into a Boolean function. SNIP is written in C. It was imple-
mented from scratch and only shares the parser with SPIN.
This was necessary as our algorithm would require drastic
changes to the one in SPIN.

4. EXPERIMENTS
Our experiments evaluate the impact of the FTS algo-

rithm on the runtime and the size of the state space. As
SPL model checking is a novel problem, fPromela and SNIP
cannot be compared directly to any existing tool. To con-
duct experiments, we implemented the enumerative algo-
rithm with a script that transforms fPromela to Promela and
calls SPIN and SNIP without the FTS algorithm (dubbed
‘enum (snip)’ in the statistics). A meaningful evaluation of
the runtime cannot be done by comparison to tools such as
SPIN, as it would require us to remove the bias introduced
by optimisations for single systems. The relevant compari-
son is thus between SNIP with and without the FTS algo-
rithm. The results here are a representative subset of the
collected data (available online6).

We considered a mine pump system [14] with a controller,
a pump and a methane sensor. The system should prevent
flooding of the mine; also the pump should not be switched
on in case there is methane in the mine. The features cover
the available components of the system. There are 11 fea-
tures and 128 products; its FTS has 21,177 states, all prod-
ucts combined have 889,252. Another example is a subset
of the CCSDS file delivery protocol (CFDP) [8], with 10
features and 30 products; its FTS has 3,809,320 states, all
products combined have 4,460,038. The CFDP is a file de-
livery protocol for use in space missions. It is vast, and a
mission usually only needs a subset of its functionality. The
features correspond to the variations in the send and receive
parts of the protocol: whether or not an entity operates
in acknowledged mode, and in which type of acknowledged
mode. These features were identified by Spacebel, an indus-
trial parter with whom we collaborated on the development
of a CFDP library SPL [2]. We also considered an elevator
system [4], with two persons and four floors. The features
cover variations in the behaviour of the elevator movement,
its doors and buttons. There are 9 features and 256 prod-
ucts. The FTS of the elevator has 572,815 states, all prod-
ucts combined have 63,051,024.

For each case, we measured the time and number of states
required for an exploration of the state space (assert and
deadlock checking), and for checking four LTL properties
(satisfiable and unsatisfiable). The results for the runtime
are shown in the left column of Figure 3. The x-axis shows
the property IDs in the supporting material. As can be seen,
SNIP almost always beats the enumerative SNIP; in the case
of the mine pump by a factor of at least three. Comparing
the runtime to SPIN does not allow for any general conclu-
sion as to the impact of the FTS algorithm. Still note that
SNIP generally outperforms the enumerative algorithm with
SPIN. SPIN spends most of the time compiling process anal-

3vlsi.colorado.edu/̃ fabio/CUDD
4www.minisat.se
5www.info.fundp.ac.be/̃ acs/tvl
6www.info.fundp.ac.be/̃ acs/snip/benchmarks

http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/
http://vlsi.colorado.edu/~fabio/CUDD/
http://minisat.se/
http://www.info.fundp.ac.be/~acs/tvl/
http://www.info.fundp.ac.be/~acs/snip/benchmarks/

!"!#

!"$#

$"!#

$!"!#

$!!"!#

$# $!# $%# %&# %'#

()*+# ,)-.#/()*+0# ,)-.#/(+*)0#

!"!#

!"$#

$"!#

$!"!#

$!!"!#

%$# %$!# %$&# %&'# %&(#

(a) Mine pump runtime

!"

!#"

!##"

!$###"

!#$###"

%!" %!#" %!&" %&'" %&("

(b) Mine pump states

!"!#

!"$#

$"!#

$!"!#

$!!"!#

%$# %&# %'# %(# %)#

(c) CFDP runtime

!"

!#"

!##"

!$###"

!#$###"

%!" %&" %'" %(" %)"

(d) CFDP states

!"!#

!"$#

$"!#

$!"!#

$!!"!#

$!!!"!#

%$# %&# %'# %$$# %$(#

(e) Elevator runtime

!"#

!""#

!$"""#

!"$"""#

!""$"""#

%!# %&# %''# %!!# %!(#

(f) Elevator states

Figure 3: Benchmark results. Runtime is in seconds,
logarithmic scale. State space size is in thousands of
states, logarithmic scale.

ysers. If this time is not counted, SPIN is generally more
efficient. This is most likely due to its highly efficient code
and optimisations developed for transition systems of single
systems.

The results for the size of the state space are shown in the
right column of Figure 3. An interesting observation is that
the FTS algorithm, the only optimisation currently imple-
mented in SNIP, often achieves a greater reduction of the
state space than SPIN. The CFDP and the elevator system
are both highly parallel. Partial order reductions of SPIN
thus allow for greater reductions for some of their proper-
ties. These results show that the FTS algorithm is a viable
approach for state space reduction, although there is room
for improvement of the implementation. Furthermore, we
believe that the state space reductions of SNIP and SPIN
can be additive. Our ultimate goal is therefore to adapt
existing optimisations for transition systems to the case of
FTS. These experiments confirm that this is a promising
and exciting area of future work.

5. CONCLUSION
We presented SNIP, the first complete toolset for SPL

model checking. SNIP puts the theoretical results of [5] into
practice and makes them available to engineers through an
intuitive specification language for behaviour (viz. fPromela)
and for feature models (viz. TVL). Most existing work on
SPL verification [15, 16, 10] either lacks the specification
language, the feature modelling language or has not been
implemented at all (see comprehensive survey in [5, 4]).

6. REFERENCES
[1] C. Baier and J.-P. Katoen. Principles of Model

Checking. MIT Press, 2007.
[2] Q. Boucher, A. Classen, P. Heymans, A. Bourdoux,

and L. Demonceau. Tag and prune: A pragmatic
approach to software product line implementation. In
ASE 2010, pages 333–336. ACM, 2010.

[3] A. Classen, Q. Boucher, and P. Heymans. A text-based
approach to feature modelling: Syntax and semantics
of TVL. Sci. Comput. Program., 76:1130–1143, 2011.

[4] A. Classen, P. Heymans, P.-Y. Schobbens, and
A. Legay. Symbolic model checking of software
product lines. In ICSE 33, pages 321–330. ACM, 2011.

[5] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay,
and J.-F. Raskin. Model checking lots of systems:
Efficient verification of temporal properties in software
product lines. In ICSE 32, pages 335–344. ACM, 2010.

[6] A. Classen, P. Heymans, T. T. Tun, and B. Nuseibeh.
Towards safer composition. In ICSE 31, Companion
Volume, pages 227–230. IEEE, 2009.

[7] P. C. Clements and L. Northrop. Software Product
Lines: Practices and Patterns. Addison-Wesley, 2001.

[8] Consultative Committee for Space Data Systems
(CCSDS). CCSDS File Delivery Protocol (CFDP):
Blue Book, Issue 4. Number CCSDS 727.0-B-4.
NASA, 2007.

[9] C. Ebert and C. Jones. Embedded software: Facts,
figures, and future. Computer, 42(4):42–52, 2009.

[10] A. Gruler, M. Leucker, and K. Scheidemann. Modeling
and model checking software product lines. In IFIP
WG 6.1 FMOODS ’08, pages 113–131. Springer, 2008.

[11] G. J. Holzmann. The SPIN Model Checker: Primer
and Reference Manual. Addison-Wesley, 2004.

[12] K. Kang, S. Cohen, J. Hess, W. Novak, and
S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report
CMU/SEI-90-TR-21, SEI, 1990.

[13] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in software product lines. In ICSE 30, pages 311–320.
ACM, 2008.

[14] J. Kramer, J. Magee, M. Sloman, and A. Lister.
Conic: an integrated approach to distributed
computer control systems. Computers and Digital
Techniques, IEE Proceedings E, 130(1):1–10, 1983.

[15] K. G. Larsen, U. Nyman, and A. Wasowski. Modal
I/O automata for interface and product line theories.
In ESOP, pages 64–79, 2007.

[16] K. Lauenroth, S. Töhning, and K. Pohl. Model
checking of domain artifacts in product line
engineering. In IEEE/ACM ASE, pages 269–280, 2009.

[17] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and
M. Schulze. An analysis of the variability in forty
preprocessor-based software product lines. In ICSE
32, Proceedings, pages 105–114, 2010.

[18] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and
Y. Bontemps. Feature Diagrams: A Survey and A
Formal Semantics. In RE’06, pages 139–148, 2006.

APPENDIX (Demo)
The demo will revolve around two examples. First, a small
introductory example (the one from Figure 1(a)) will be used
to illustrate the main concepts of fPromela and TVL. This
gentle introduction ensures that the listener will be able to
follow the second example, which is the mine pump system
(one of the examples used in the experiments in Section 4).
The mine pump example was chosen because it is rather
intuitive, has lots of interesting properties and offers a good
trade-off between model size and response time.

Introductory example
The starting point of the demo is a brief introduction into
software product lines (SPLs). A central concept in SPLs are
features, and thus the introduction will focus on features and
feature models, and how they affect modelling and develop-
ment. In SNIP, feature models are specified with TVL [3], a
textual modelling language. An example of a TVL feature
model is the following.

1 root Example group [0 . . 2] {
2 Foo ,
3 Bar
4 }

This model specifies an SPL with three features: Example,
Foo, and Bar and four valid products: “Example”,“Example,
Foo”, “Example, Bar” and “Example, Foo, Bar”.

fPromela can be used to specify the behaviour of those
products. An example of an fPromela model is the following.

1 // Declare used f e a t u r e s
2 typedef features {
3 bool Foo ;
4 bool Bar
5 } ;
6 features f ;
7
8 active proctype toto () {
9 int i = 0 ;

10 // Increment in products with Foo or Bar
11 gd : : f . Foo | | f . Bar
12 −> i++;
13 : : e l s e
14 −> sk ip ;
15 dg ;
16 // Test a s s e r t i o n
17 assert (i == 1) ;
18 }

The syntax of fPromela is the same as for Promela [11].
Except for conditional statements, most constructs are sim-
ilar to C. This should make it easy to follow even for those
who are not familiar with Promela. For those who are, we
would like to point out that almost all constructs that exist
in Promela are available in fPromela and SNIP, too. A full
list of unsupported constructs is distributed with SNIP.

Let us first examine lines 1-6. The features used in a file
have to be declared as fields of the special type features.
The reason for this is twofold: it serves as an interface that
identifies the features used in the fPromela model and it en-
sures compatibility with Promela (a syntactically valid and
well-typed fPromela file is also a syntactically valid and well-
typed Promela file). The features can then be referenced by
declaring any variable with this type (f in the example).
Feature variables can only be read inside conditional state-
ments; not written or printed.

The behaviour of the example system is specified at lines 8-
18. A proctype denotes a process, and active means that it
is started when the system starts. Several processes can

be defined, and run concurrently. Processes can commu-
nicate through shared variables or channels. Variability in
fPromela is specified by guarding statements. This choice
of syntax is motivated by the pervasive use of #ifdefs when
implementing variability in practice. The i++ statement at
line 2, for instance, is guarded with the expression f.Foo ||

f.Bar (line 11). This means that the i++ statement is only
part of products containing Foo or Bar. The other products
(line 13) do nothing (line 14).

At line 15, the property that i equals one is specified us-
ing an assertion. Assertions are a very intuitive way to spec-
ify reachability properties. Alternatively, properties can be
specified using LTL or directly as never claims.

Let us now illustrate SNIP and its user interface. As for
most model checkers, SNIP’s use consists in launching checks
with certain parameters (property, execution bound, and so
on). A very efficient interface for this is the command line; it
remembers past commands and keeps a trace of inputs and
outputs. SNIP is thus a command-line application. The list
of its parameters is shown when launching SNIP.

To check the example given above, SNIP would be exe-
cuted as follows.

$./snip -check -fm features.tvl model.pml

No never claim, checking only asserts and deadlocks..
Assertion at line 17 violated [explored 5 states, re-explored 0].
- Products by which it is violated (as feature expression):

(!Foo & !Bar)

- Stack trace:
features = /
pid 00, toto @ NL11
toto.i = 0
--
features = (!Foo & !Bar)
pid 00, toto @ NL14
--
features = (!Foo & !Bar)
pid 00, toto @ NL17
--
-- Final state repeated in full:
features = (!Foo & !Bar)
pid 00, toto @ NL17
toto.i = 0
--

The output consists of two parts. First, SNIP reports the
products for which the property is violated in the form of an
expression over the feature variables (rather than a list of
products, which could be huge). The advantage of returning
such a feature expression is that it immediately identifies the
features that are involved in that particular violation. Other
model checkers would just return false. Second, SNIP gives
a stack trace, that is, an execution of the fPromela model
which proves the property violation. It is presented as a
sequence of states separated by double dashes. For each
state, SNIP prints the products that can reach the state as
a feature expression (‘/’ means all products), the position
inside each process (pid 00, toto @ NL11 means the process
with id 0, of type toto is at line 11), and the values of the
variables. To make traces shorter and easier to understand,
variables are only printed if their value changed. Further-
more, the last state is repeated in full so that the user can
work backwards. There are two options to control the out-
put of traces: -nt disables them (very useful if the user is
only interested in the satisfying products), and -st prints
only states in which variable values changed (i.e., states in
which processes do nothing are not shown.). Since SNIP’s
output is text and can be interpreted immediately (no need
for an additional tool), it can be piped to other command-

line tools such as cat or grep. This is very useful to filter the
relevant variables out of long traces.

For the example, SNIP reports that the assertion is vio-
lated by products that satisfy !Foo & !Bar. This is as ex-
pected, since only those products lack the i++ statement at
line 12. With the parameters used above, SNIP stops as soon
as it finds a violation. At this point it is unclear whether
the other products also satisfy or violate the property. The
parameter -exhaustive causes SNIP to compute this as well.

$./snip -nt -check -exhaustive -fm features.tvl model.pml

No never claim, checking only asserts and deadlocks..
Assertion at line 17 violated [explored 5 states, re-explored 0].
- Products by which it is violated (as feature expression):

(!Foo & !Bar)

Exhaustive search finished [explored 5 states, re-explored 0].
- One problem found covering the following products (others

are ok):
(!Foo & !Bar)

In this mode, SNIP will print a violation upon finding it,
and continues searching for violations in the other products.
In the example, we disabled printing of traces using -nt,
otherwise, SNIP will print a stack trace for each violation.
When SNIP terminates, it will print a summary with all
the products found to violate. In this case, those are the
same as before. However, we now have the certitude that all
products satisfying Foo | Bar are free from violations.

Note the difference to using a classical model checker. In
fact, SPIN could be used to check the model, but it would
only check a single product (the one with no feature). SNIP,
in contrast, checks all feature combinations (efficiently) and
identifies those that contain a violation.

Mine pump example
The mine pump example is also distributed with SNIP. It
consists of a controller, a pump, a water sensor, a methane
sensor and a user. When activated, the controller should
switch on the pump when the water level is high, but only
if there is no methane in the mine. The model consists of
a number of processes communicating over channels. The
controller process is modelled after the CONIC code in [14].
It contains a large number of properties (42), including an
explanation and satisfying products of each property. The
demo will focus on one such property: “There is never a
situation in which the pump runs indefinitely even though
there is methane.”; in LTL: !<>[] (pumpOn && methane).

Checking this property with SNIP yields the following.

$./snip -check -exhaustive -nt
-ltl ’!<>[] (pumpOn && methane)’ minepump.pml

Checking LTL property !<>[] (pumpOn && methane)..
Property violated [explored 481 states, re-explored 0].
- Products by which it is violated (as feature expression):

(Start & Stop & MethaneQuery & MethaneAlarm & Low & High)

[...]

Property violated [explored 12806 states, re-explored 65409].
- Products by which it is violated (as feature expression):

(Start & !Stop & !MethaneQuery & !MethaneAlarm & !Low & High)

Exhaustive search finished [explored 17325 states,
re-explored 179937].
- 16 problems were found covering the following products (others

are ok):
(Start & High)

Note that we did not specify the feature model explicitly.
SNIP automatically looks for a file named minepump.tvl.
SNIP finds 16 violations and concludes that all products

with Start & High violate the property. This is not what
we expected, as the property is supposed to be satisfied by
the system. Products without Start or High will never even
start the pump, which is why they satisfy the property.

A look at the stack traces reveals a problem with the prop-
erty. Basically, the controller has a central loop, in which it
can receive three types of messages: user commands (start
and stop), methane alarm messages, and water level read-
ings. The stack traces show in every case that the methane
sensor sends an alarm message to the controller. However,
as the choice of receiving one of the three messages is non-
deterministic, the controller might ignore the alarm message
indefinitely. In practice, such a behaviour is highly unlikely.
It is thus reasonable to assume that the controller will in-
finitely often accept a message of each type. This assump-
tion can be specified in LTL as follows: (([]<> readCommand)

&& ([]<> readAlarm) && ([]<> readLevel)).

$./snip -check -exhaustive -nt
-ltl ’([]<> read..) -> (!<>[] pump..)’ minepump.pml

Checking LTL property ([]<> read..) -> (!<>[] pump..)..
Property violated [explored 27428 states, re-explored 125153].
- Products by which it is violated (as feature expression):

(Start & Stop & MethaneQuery & !MethaneAlarm & Low & High)

[...]

Property violated [explored 30157 states, re-explored 162316].
- Products by which it is violated (as feature expression):

(Start & !Stop & !MethaneQuery & !MethaneAlarm & !Low & High)

Exhaustive search finished [explored 34356 states,
re-explored 274456].
- 8 problems were found covering the following products (others

are ok):
(Start & !MethaneAlarm & High)

This result can be interpreted as saying that the Methane-
Alarm feature is responsible for making the property true.
This corresponds to what we expected, as the MethaneAlarm
feature alerts the controller of methane, leading it to shut off
the pump. A step which we did not show here is to discharge
the assumption. This is done by checking its negation. In
this case, the assumption is discharged by all products.

Normally, the example property is not expected to hold
for products that do not have the MethaneAlarm feature. It
corresponds to a requirement implemented by the feature.
It is therefore sensible to check it only against products that
have the feature. This can be accomplished in SNIP using
the -filter parameter. It can be used to restrict the ver-
ification to a subset of all products specified as a feature
expression (in TVL syntax). Limiting the previous check to
products with MethaneAlarm yields the following.

$./snip -check -exhaustive -nt
-filter ’MethaneAlarm’
-ltl ’([]<> read..) -> (!<>[] pump..)’ minepump.pml

Checking LTL property ([]<> read..) -> (!<>[] pump..)..
Attention! Checks are only done for products satisfying:
MethaneAlarm!

Property satisfied [explored 27893 states, re-explored 248254].

The property is thus indeed satisfied by all relevant prod-
ucts. This concludes the demo.

Availability and maturity
SNIP is available at www.info.fundp.ac.be/̃ acs/snip. It has
been tested under Mac OS X and Ubuntu. SNIP requires
a UNIX-like environment, the gcc compiler, the cpp prepro-
cessor and Java (for the TVL library). The tool is mature
and well-documented. SNIP’s development continues and
new versions are posted with a changelog on the website.

http://www.info.fundp.ac.be/~acs/snip/
http://www.info.fundp.ac.be/~acs/fts/category/snip/

	Introduction
	SNIP: an Overview
	The fPromela modelling language
	User interaction

	Under the Hood
	Theoretical foundations
	Implementation

	Experiments
	Conclusion
	References

