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Introduction
Metastasis is the final stage of cancer and is characterized by the 

migration of primary tumor cells to distant organs [1]. These cells set 
up various mechanisms in a sequential fashion [2]. First, they lose 
their adherence to the other tumor cells and gain adherence to the 
extracellular matrix. Then, they degrade the extracellular matrix to 
invade the tissue. Next, they enter blood or lymph vessels and circulate 
in the body until they leave the bloodstream or lymphatic circulation 
to divide in the organ where they stop. These mechanisms involve 
changes in expression profiles of genes such as integrins, matrix 
metalloproteinases and growth factors.

Hypoxia within the primary tumor further enhances the metastatic 
phenotype. Hypoxia occurs at the center of the tumor because the 
distance between the cells and blood vessels increases as a result 
of tumor growth and because the new vasculature is abnormal [3]. 
Hypoxia selects cancer cells with a high metastatic potential [4] and 
triggers survival mechanisms, leading to increased radiotherapy and 
chemotherapy resistance [5].

Developed during the 1990s, DNA microarrays are used in an 
increasing number of applications in molecular biology research. 
Despite the technique’s ability to assess the entire transcriptome of 
an organism at once [6], it is associated with many difficulties in the 
analysis of results. Several issues can be pointed out. First, to produce 
statistical results, several replicates are needed. However, since several 
thousands of tests are performed at once, the number of false positives 
and false negatives rapidly becomes unmanageable [7,8]. Therefore, 
the only solution is to increase the number of replicates, but the cost 
of the analyses prevents this. Second, the chip probes do not always 
correspond to the genes they are expected to find, which requires 
regular updating of the files linking probes and genes [9,10]. Finally, 
the number of possible combinations of analysis methods frequently 
leads to inappropriate choices.

These problems and the growing number of publicly-available 
datasets have led the research community to try new ways to analyze 
DNA microarrays. Meta-analysis is one of these solutions. It consists of 
analyzing several related datasets at once [11-13]. This work proposes 
a new approach to set a statistically-significant threshold to achieve a 
more relevant meta-analysis. This new methodology was applied to 
metastasis and hypoxia datasets and the results were validated in an 
independent experiment in which another dataset assessing MDA-
MB-231 and MCF-7 cells was used to generate expression profiles for 
each gene selected by the methodology. Since MDA-MB-231 cells are 
breast cancer cells with high metastatic potential and MCF-7 cells are 
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years. Hypoxia at the center of the primary tumor is a major cause of metastasis. Here, we present a new meta-
analysis-based methodology to pick out genes involved in one or two biological processes from several microarray 
datasets using a statistic that avoids the definition of an arbitrary threshold, providing statistically-significant results. 
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or hypoxia. Moreover, some could be classified into 42 pathways, including 12 cancer pathways and 5 proliferation 
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breast cancer cells with poor metastatic potential, these expression 
profiles validate the involvement of the genes of interest in the cell 
motility process. As metastasis mechanisms are the same in every type 
of cancer [14], this meta-analysis was run independently of the type 
of cancer. Certain genes involved in hypoxia were also validated by 
expression profiles in another independent experiment in which highly 
metastatic pancreatic cancer cells (L3.6pl) were exposed to normoxia 
or hypoxia. These results may help us to discover new targets to fight 
metastasis, and particularly in its upregulation by hypoxia.

Materials and Methods
Datasets, individual analyses, union intersections and meta-
analyses

All the datasets and procedures used to run the individual analyses, 
union intersections and meta-analyses were described in Pierre et al. 
[15]. The data was pre-processed with GCRMA (GeneChip Robust 
Multi-array Analysis) [16] and the Window Welch t test [17] was used 
for the processing, according to the benchmark performed by De 
Hertogh et al. [18]. The additional datasets, GSE (GEO series) 5823 and 
GSE9350, used for determining expression profiles were downloaded 
from GEO (Gene Expression Omnibus) (NCBI, 2000).

Intersections

33 groups of individual analyses were designed as described in 
Pierre et al. [15]. A threshold rank was calculated in each group with 
the equation (1):

1/ 1/[1 (1 ) ]n kr P N= − − × 	                                                                    (1)

where r = the threshold rank, P = the fixed probability, n = the number 
of genes suspected to be involved in metastasis and/or in the response to 
hypoxia, k = the number of datasets in the group and N = the number of 
probe sets on the GeneChip (the largest when several GeneChip models 
are involved in the group). This equation is explained in the discussion.

The genes common to all datasets of the group and above the 
threshold were selected in each group.

Visualization

The webtool DAVID (Database for Annotation, Visualization and 
Integrated Discovery) [19,20], version 6.7, was used to visualize the 
genes of interest on KEGG (Kyoto Encyclopedia of Genes and Genomes) 
[21] and Biocarta (Biocarta) pathway maps. The largest number of maps 
was obtained by setting the stringency of the “Functional Annotation 
Clustering” to the lowest level. 

Expression profiles

The datasets GSE5823 and GSE9350 were analyzed separately with 
an AffyProbeMiner’s CDF (chip definition file) [10] and pre-processed 
with GCRMA [16] with default parameters. The expression values of 
each probe set for each gene of interest in the dataset GSE5823 were 
then plotted for GeneChips where control MCF-7 cells or control MDA-
MB-231 cells were analyzed. The expression values of genes known to 
be involved in hypoxia in the dataset GSE9350 were also plotted for 
GeneChips where L3.6pl cells were exposed to hypoxia or normoxia.

Computer and bioinformatics resources

Versions 2.4.0, 2.6.0 and 2.10.1 of the R statistical software [22] and 
the Bioconductor [23] and AffyProbeMiner [10] packages were used on 
a 64-bit computer with 4gb of DDR (biprocessor dual-core Xeon 5160 
3.0Ghz, 8 x 500gb RAID). 

Results
Intersections

An intersection is composed of a group of datasets. For each of these 
datasets, the genes are ranked in ascending order of the p values of their 
differential expression. The intersection approach involves selecting the 
genes that are common to all the top lists of these datasets. To do this, 
the top lists must be defined and a maximal rank must be considered. A 
statistic was developed in order to calculate this rank to ensure that all 
selected genes of the intersection are selected with statistical significance 
[24]. This statistic takes into account the number of probe sets of the 
GeneChip, the number of genes potentially involved in metastasis and/
or the response to hypoxia and the number of datasets involved in the 
intersection. Figure 1 presents the logarithm of the threshold ranks + 
1 (to avoid log (0)) as well as the logarithm of the number of selected 
genes + 1 (to avoid log (0)) for the 33 intersections. The 33 intersections 
selected 2,656 genes, among which 846 were non redundant. The 
number of genes selected by intersection varied between 0 and 513.

Union intersections

Since the 846 genes selected by the intersection approach are too 
many genes to further process, two other approaches were added. The 
first is the union intersection approach. Each union intersection takes 
the hypoxia datasets into account, comparing the group of hypoxia 
datasets to a group of metastasis datasets and selecting the 50 most 
significant genes common to at least one hypoxia dataset and to at least 
one metastasis dataset. Here, no statistic exists to set a threshold as in 
the intersection approach. Hence, an arbitrary threshold of 50 genes 
was set. However, unlike intersections, union intersections do not 
require a large maximal rank to select 50 genes as less is required for a 
gene to be selected. Thirty union intersections were designed and 1,500 
genes (30 x 50) were selected by this approach, among which 269 are 
unique occurrences. 

Meta-analyses

The last approach used to reduce the number of genes to be 
considered is the meta-analysis approach. This approach is not based 
on the results of individual analyses. Here, several datasets are merged 

Figure 1: Threshold ranks and number of genes selected by intersections. 
A threshold rank was calculated for each intersection with the equation 
= − − ×1/ 1/[1 (1 ) ]n kr p N where p represents the probability a gene has to be 

selected, r the maximum rank of a gene to be selected with the probability p, N 
the number of genes represented on the microarray, k the number of datasets 
taken into account in the intersection and n the number of genes likely to be 
involved in the phenomenon studied. The red bars show the logarithm of the 
threshold ranks + 1 (to avoid log (0)). The threshold ranks selected a defined 
number of genes per intersection. The blue bars show the logarithm of the 
number of selected genes + 1 (to avoid log (0)).
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into meta-datasets. Then, classical analyses are run on these meta-
datasets and the 50 most significant genes are selected. Again, no 
statistical threshold was set, first of all because the 50 selected genes 
are significant anyway and secondly because setting a threshold such 
as 0.05 would produce too many selected genes for the meta-analyses. 
Fourteen meta-datasets were designed and 700 (14 x 50) genes were 
selected by the meta-analysis approach, of which 406 were unique 
occurrences.

Combination of approaches

To select an appropriate number of genes to further validate, the 
three approaches (intersection, union intersection and meta-analysis) 
were combined. Fifteen genes were found to be common to the three 
approaches, 52 genes were only common to the intersections and union 
intersections, 71 genes were only common to the intersections and meta-
analyses and 27 genes were only common to the union intersections 
and meta-analyses. These 165 genes were considered as genes of interest 
and are highlighted in a Venn’s diagram (Figure 2). Among these 165 
genes of interest, 91 are already known in the literature to be involved 
in cancer, 41 in metastasis and 20 in the response to hypoxia (additional 
file 1). 

Visualization

The 165 genes of interest were submitted to DAVID [19,20] to 
retrieve pathway maps from KEGG [21] and Biocarta (Biocarta). Forty-
two different pathways were retrieved, among which 12 are directly 
involved in cancer and 5 are known to be involved in cell proliferation 
and cell motility (Table 1). To ensure that this result was not simply a 
chance occurrence, 1,000 groups of 165 genes selected randomly were 
submitted to DAVID [19,20]. Among these 1,000 tests, only one gave 
better results for the total number of pathways than the 165 genes of 
interest. For the pathways related to cancer, only one test gave better 
results than the 165 genes of interest. For the pathways involved in cell 
proliferation and cell motility, only four tests gave equal or better results 
than the 165 genes of interest (Figure 3). This shows that the probability 
to obtain the results with the 165 genes of interest by chance is less than 
0.5%.

Expression profiles

The expression values of the 165 genes of interest in three samples 
of non-metastatic breast cancer cells (MCF-7 cells) and two samples of 
metastatic breast cancer cells (MDA-MB-231) were used to construct 
expression profiles. Because the number of probe sets varied from 
one to six for each gene, the 165 genes generated 354 expression 
profiles (additional file 2). A large portion of them provide interesting 
information and validate certain results. Indeed, they can directly 
show up- or downregulation at the transcript level of the genes of 
interest between cancer cells with or without a metastatic phenotype. 
In addition, the expression values of four genes known to be involved 

in cell response to hypoxia in three replicates of metastatic pancreatic 
cancer cells (L3.6pl cells) incubated under hypoxia and three replicates 
of cells incubated under normoxia were used to construct expression 
profiles. They show the impact of hypoxia on the transcript level of 
these genes.

Discussion
The intersection approach is a promising method to perform 

a meta-analysis of a set of microarray datasets. It consists first of 
performing a classical analysis of all of the datasets, and then selecting 
the common genes to all the top gene lists of the datasets. This ensures 
that genes with high probability of differential expression are selected 
and that there are fewer false positives and false negatives among 
the genes selected. Moreover, this approach can be performed by re-
exploiting archived datasets without performing new experiments. 
However, as far as we know and after consulting several biostatisticians, 
there is no statistic to calculate the probability that a gene would be 
selected in an intersection. Here, we have developed such a statistic. 
To explain it, we begin with a simple analogy [24]. We have 40 balls, 
among which 20 are red and numbered from 1 to 20, and we draw 10 
balls. This situation is similar to a microarray experiment analysis since 
we select a small number of genes more or less differentially expressed 
(the red balls) from a larger number of genes, generally on the order of 
tens of thousands, that are not differentially expressed (the other balls). 
The probability to always draw a particular red ball in first position in 
the null hypothesis where a red ball has the same chance to be drawn 

as the other balls is equal to
101

40
 
 
 

. The probability to always draw a 

particular red ball in first or second position in the null hypothesis 

is equal to
102

40
 
 
 

. Hence, with N balls among which n are red, the 

probability p to always draw a particular red ball in at least r position 
(where r ≤ N) in the null hypothesis in k draws is equal to equation (2):

krp
N

 =  
 

	                                                                                       (2)
Figure 2: Venn’s diagram of the selected genes. The intersections selected 
846 genes, the union intersections selected 269 genes and the meta-analyses 
selected 406 genes. This data was used to generate a Venn’s diagram.

Figure 3: Pathways retrieved by DAVID in negative tests. 1,000 groups of 
165 randomly-selected genes were submitted to DAVID. The X axis shows the 
number of pathways retrieved by DAVID and the Y axis shows the logarithm of 
the frequency of the tests (+ 1 to avoid log (0)). The total number of retrieved 
pathways is represented by the black dots for the negative tests and by the 
black star for the 165 genes of interest. The number of retrieved cancer 
pathways is represented by the red dots for the negative tests and by the red 
star for the 165 genes of interest. The number of retrieved pathways involved in 
proliferation and cell motility is represented by the green dots for the negative 
tests and by the green star for the 165 genes of interest. Finally, the number 
of retrieved pathways involved in pathogen recognition and phagocytosis is 
represented by the blue dots for the negative tests and by the blue star for the 
165 genes of interest.
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Pathways Databases Genes

Cancer

Prostate cancer KEGG CCNE2, FGFR1, HSP90AA1, IGF1, MAPK1, MAP2K1, 
NFKBIA, PIK3CD

Pathways in cancer KEGG CTBP2, CCNE2, FGFR1, FZD1, HSP90AA1, IGF1, 
MAPK1, MAP2K1, NFKBIA, PIK3CD, STAT1, RALA

Melanoma KEGG FGFR1, IGF1, MAPK1, MAP2K1, PIK3CD
Pancreatic cancer KEGG MAPK1, MAP2K1, PIK3CD, STAT1, RALA
Chronic myeloid leukemia KEGG CTBP2, MAPK1, MAP2K1, NFKBIA, PIK3CD
Glioma KEGG IGF1, MAPK1, MAP2K1, PIK3CD
Colorectal cancer KEGG FZD1, MAPK1, MAP2K1, PIK3CD
Endometrial cancer KEGG MAPK1, MAP2K1, PIK3CD
Non-small cell lung cancer KEGG MAPK1, MAP2K1, PIK3CD
Acute myeloid leukemia KEGG MAPK1, MAP2K1, PIK3CD
Renal cell carcinoma KEGG MAPK1, MAP2K1, PIK3CD
Small cell lung cancer KEGG CCNE2,  NFKBIA, PIK3CD

Proliferation and cell motility

Focal adhesion KEGG CAV1, FLNC, IGF1, MAPK1, MAP2K1, PIK3CD, SPP1
VEGF signaling pathway KEGG HSPB1, MAPK1, MAP2K1, PIK3CD

MAPK signaling pathway KEGG, BIOCARTA DUSP4, FGFR1, FLNC, HSPB1, MAPK1, MAP2K1, 
NR4A1, NFKBIA, STAT1

ErbB signaling pathway KEGG MAPK1, MAP2K1, PIK3CD
Regulation of actin cytoskeleton KEGG FGFR1, MAPK1, MAP2K1, PIK3CD

Pathogen recognition and 
phagocytosis

Toll-like receptor signaling pathway KEGG MAPK1, MAP2K1, NFKBIA, PIK3CD, SPP1, STAT1
fMLP induced chemokine gene expression in 
HMC-1 cells BIOCARTA MAPK1, MAP2K1, NFKBIA

T Cell Receptor Signaling Pathway KEGG MAPK1, MAP2K1, NFKBIA, PIK3CD
Fc Epsilon Receptor I Signaling pathway KEGG MAPK1, MAP2K1, PIK3CD
Fc gamma R-mediated phagocytosis KEGG MAPK1, MAP2K1, PIK3CD

Other

p53 signaling pathway KEGG CCNB1, CCNE2, IGF1, RRM2, SERPINE1, SFN

Oocyte meiosis KEGG CCNB1, CCNE2, IGF1, MAPK1, MAP2K1, YWHAB, 
YWHAZ

Cell cycle KEGG CDC6, CCNB1, CCNE2, SFN, YWHAB, YWHAZ
Glutathione metabolism KEGG GGT1, GCLM, GSTM1, GSTM2, GSTM4, RRM2
Metabolism of xenobiotics by cytochrome P450 KEGG GSTM1, GSTM2, GSTM4
Drug metabolism KEGG GSTM1, GSTM2, GSTM4
Progesterone-mediated oocyte maturation KEGG CCNB1, HSP90AA1, IGF1, MAPK1, MAP2K1, PIK3CD
Aldosterone-regulated sodium reabsorption KEGG IGF1, MAPK1, PIK3CD, SFN
Neurotrophin signaling pathway KEGG MAPK1, MAP2K1, NFKBIA, PIK3CD, YWHAB, YWHAZ
Cadmium induces DNA synthesis and proliferation 
in macrophages BIOCARTA MAPK1, MAP2K1, NFKBIA

mTOR signaling pathway KEGG DDIT4, IGF1, MAPK1, PIK3CD
NOD-like receptor signaling pathway KEGG CXCL1, HSP90AA1, MAPK1, NFKBIA
B cell receptor signaling pathway KEGG MAPK1, MAP2K1, NFKBIA, PIK3CD
Chemokine signaling pathway KEGG CXCL1, MAPK1, MAP2K1, NFKBIA, PIK3CD, STAT1
NFAT and Hypertrophy of the heart (Transcription 
in the broken heart) BIOCARTA IGF1, MAPK1, MAP2K1

Keratinocyte Differentiation BIOCARTA MAPK1, MAP2K1, NFKBIA
Long-term depression KEGG IGF1, MAPK1, MAP2K1
Natural killer cell mediated cytotoxicity KEGG HLA-C, MAPK1, MAP2K1, PIK3CD
Melanogenesis KEGG FZD1, MAPK1, MAP2K1
Insulin signaling pathway KEGG MAPK1, MAP2K1, PIK3CD

The 165 genes of interest were classified by DAVID into 42 different KEGG or Biocarta pathway maps

Table 1: Pathways retrieved by DAVID.

Hence, the probability p to not draw this ball in at least r position in 
the null hypothesis is equal to equation (3):

1
krp

N
 = − 
 

	                                                                                      (3)

Hence, the probability p to not draw any red ball in at least r position 
in the null hypothesis is equal to equation (4):

1
nkrp

N

  = −  
   

	                                                                    (4)

In conclusion, the probability p to draw at least one red ball in at 
least r position in the null hypothesis is equal to equation (5):

1 1
nkrp

N

  = − −  
   

	                                                                    (5)

Applied to a meta-analysis by the intersection approach of a set 

of microarray datasets, p represents the probability that a gene will 
be selected, r the maximum rank of a gene to be selected with the 
probability p, N the number of genes represented on the microarray, 
k the number of datasets taken into account in the intersection and n 
the number of genes likely to be involved in the phenomenon studied. 
Equation (5) thus calculates a maximum rank to select genes by the 
intersection approach with a chosen probability among several datasets 
(equation 6).

1/ 1/[1 (1 ) ]n kr p N= − − × 	                                                                   (6)

In the meta-analysis presented in this paper, all the datasets were 
generated with Affymetrix platforms and, since some intersections 
included several GeneChip models, N in equation (6) was defined as the 
number of probe sets in the GeneChip model with the largest number 
of probe sets. This ensured calculation of the probability p. Indeed, if 
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N was not defined as the number of probe sets of the GeneChip model 
with the largest number of probe sets, this could lead to a rank r larger 
than the number of probe sets in some GeneChips of the intersection. 
We defined n as the number of genes likely to be involved in metastasis 
and/or in the response to hypoxia, whether or not described previously 
in the literature. Indeed, given the lack of evidence of the involvement 
of some genes in these phenomena, we were forced to estimate their 
number. For this, we consulted the Entrez Gene database (NCBI) to 
determine the number of genes already listed to be involved in metastasis 
and/or in the response to hypoxia. There are 710 genes responding to 
the keyword “metastasis”, 480 responding to the keyword “hypoxia” and 
134 responding to the keywords “metastasis AND hypoxia”. Hence, we 
considered that there are 1,056 (710 + 480 – 134) genes known in the 
literature to be involved in metastasis and/or hypoxia. To obtain n, we 
multiplied this number by two to take into account the genes involved 
in metastasis and/or hypoxia still not demonstrated as such. The choice 
of multiplier was motivated by our observation in a previous work about 
cancer using a meta-analysis methodology in which we retrieved 183 

genes of interest, among which 99 were already known to be involved 
in cancer [15]. This showed that the number of genes known to be 
involved in a cancer-related phenomenon can be multiplied by two to 
take into account those genes still not known to be involved. According 
to this reasoning, n was set to 2,112 (1,056 x 2) and p was set to 0.05.

The intersection approach retrieved 846 different genes. Since 
there are too many genes to process, we then added two supplementary 
approaches: union intersections and meta-analyses. In the end, 
165 genes of interest were selected by the combination of the three 
approaches (Figure 3). Among these 165 genes, 41 were already known 
to be involved in the metastatic phenotype and 20 in the response to 
hypoxia (additional file 1). Here, we present detailed information about 
the up- or downregulation in metastasis or hypoxia and consistent 
expression profiles for 8 of the genes known to be involved in metastasis 
and 4 of the genes known to be involved in the response to hypoxia.

These genes include NR4A1 (nuclear receptor subfamily 4, group A, 
member 1) which is a nuclear receptor involved in cell differentiation, 

Figure 4: Expression profiles of genes involved in metastasis. The X axis shows the two cell types compared: MCF-7 and MDA-MB-231. The Y axis shows the 
expression value that reflects the transcript level of the (A) NR4A1, (B) ASPM, (C) BCAT1, (D) RGS20, (E) ZFHX3, (F) CAV1, (G) GPC1 and (H) SMURF2 genes in 
the sample.
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proliferation and survival. Moreover, by migrating to mitochondria, 
NR4A1 allows BCL-2 (B-cell CLL/lymphoma 2) to trigger apoptosis. 
This is the reason why downregulation of NR4A1 leads to metastasis 
of cancer cells as they escape from apoptosis [25]. NR4A1 is clearly less 
expressed in MDA-MB-231 cells as shown in Figure 4A.

ASPM (asp (abnormal spindle) homolog, microcephaly associated 
(Drosophila)) is another gene retrieved by the methodology. Mutations 
of ASPM are responsible for microcephaly. Recent studies have 
suggested ASPM as an actor in the cell cycle and cell proliferation [26]. 
However, the diversity of its domains also suggests a large variety of 
biological functions. Overexpression of ASPM has been demonstrated 
to be a marker of metastasis as confirmed by the expression profile 
shown in Figure 4B.

BCAT1 (branched chain amino-acid transaminase 1, cytosolic) is 
also a gene of interest that shows clear upregulation in MDA-MB-231 
cells in the expression profile in Figure 4C. BCAT1 codes for an enzyme 
responsible for the transamination of branched-chain alpha-keto acids 
to branched-chain L-amino acids occurring during cell growth. The 
upregulation of BCAT1 is a predictive factor for the development of 
metastases [27].

RGS20 (regulator of G-protein signaling 20) is a GTPase-activating 
protein involved in the regulation of signal transduction. A recent study 
showed a higher level of transcripts in metastatic melanomas than in 
primary melanomas [28]. The same observation was made between 
metastatic breast cancer cells and non-metastatic breast cancer cells in 
the expression profile in Figure 4D.

ZFHX3 (zinc finger homeobox 3) is another example of a gene 
selected by the methodology and already known to be involved in 
metastasis. Indeed, the protein encoded by ZFHX3 is a transcription 
factor that mediates cell differentiation and growth. It appears that 
ZFHX3 inhibits AFP (alpha-fetoprotein), which is often over-expressed 
in extremely malignant gastric cancers [29]. Thus, it is not surprising 
that transcript levels of ZFHX3 are very low in metastatic cancer cells 
as shown in the expression profile in Figure 4E.

CAV1 (caveolin 1, caveolae protein, 22kDa) plays a role in the 
formation of caveolae that are small lipid rafts responsible for vesicle 
trafficking, cholesterol homeostasis and signal transduction. High 
CAV1 levels have been linked with the metastatic phenotype as they 
lead to the secretion of MMP3 and MMP11 (matrix metalloproteinases 
3 and 11) [30]. High CAV1 levels are also observed in MDA-MB-231 
cells compared to MCF-7 cells in the expression profile in Figure 4F.

GPC1 (glypican 1) is a HBGF (heparin-binding growth factor) 
coreceptor found by the methodology and that shows high upregulation 
in metastatic breast cancer cells in the expression profile in Figure 4G. 
Studies have demonstrated that high levels of GPC1 lead to cancer 
metastasis [31].

As a last example of a gene selected by the methodology and 
validated by an expression profile (Figure 4H) comparing metastatic 
and non metastatic cancer cells, SMURF2 (SMAD specific E3 ubiquitin 
protein ligase 2) is an E3 ligase that induces a modification of ubiquitin 
to thus modulate the TNF-β (tumor necrosis factor) signal. High 
transcript levels of SMURF2 have been shown to be associated with 
high metastatic potential [32].

ADM (adrenomedullin) is the first example of a gene known to be 
involved in the response to hypoxia that was selected by the methodology. 
Figure 5A presents the upregulation of ADM under hypoxia. The ADM 
protein has been found in many cell types in different tissues such as the 
heart, lung, kidney and pancreas. Studies have shown that this protein 
has several functions including proliferation, differentiation, migration 
and regulation of blood pressure. Observations of upregulation under 
hypoxia, anti-apoptotic effects and promotion of angiogenesis suggest 
that ADM could be a major actor in the development of cancer [33].

MAP2K1 (mitogen-activated protein kinase kinase 1) is a 
kinase of the MAPK signal transduction pathway that is involved in 
various signaling of extracellular signals inside the cell. MAP2K1 
can be activated through hypoxia to trigger cellular processes such 
as proliferation, migration and survival [34]. Figure 5B shows the 
upregulation of MAP2K1 under hypoxia.

Figure 5: Expression profiles of genes involved in hypoxia. The X axis shows the two conditions compared: hypoxia and normoxia in metastatic pancreatic cancer 
cells (L3.6pl). The Y axis shows the expression value that reflects the transcript level of the (A) ADM, (B) MAP2K1, (C) BHLHE40 and (D) SLC2A3 genes in the sample.
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The transcription repressor BHLHE40 (basic helix-loop-helix 
family, member e40), which is a member of the bHLH leucine zipper 
family, shows upregulation under hypoxic condition in the expression 
profile (Figure 5C). This is consistent with the fact that BHLHE40 is a 
target of the HIF protein family and that in a lack of oxygen, overall 
transcription is repressed to save energy. The dimer form of BHLHE40 
is involved in cell differentiation, circadian rhythms, immune regulation 
and carcinogenesis [35].

In conclusion, as a last example of a gene selected by the methodology 
and validated by an expression profile comparing hypoxia and normoxia 
in pancreatic cancer cells, we describe SLC2A3 (solute carrier family 
2, member 3), better known as GLUT3 (glucose transporter type 3), a 
glucose carrier system. Surprinsingly, unlike GLUT1, GLUT3 is specific 
to neurons, but was picked out by the methodology. Studies have shown 
that the lack of oxygen or glucose is responsible for the upregulation of 
GLUT3, as presented in Figure 5D [36]. This upregulation allows the 
cell to switch from aerobic to anaerobic metabolism. 

Many of the genes selected by the methodology are thus known 
to be involved in cancer, metastasis and/or hypoxia (additional file 1). 
These genes were classified into KEGG [21] and Biocarta (Biocarta) 
pathways by DAVID [19,20] and the same observation made at the gene 
level can also be made at the pathway level as many of these pathways 
are related to cancer or cell proliferation and motility. Indeed, DAVID 
retrieved 42 different pathways from the 165 genes of interest (Table 
1) and a negative control composed of 1,000 tests demonstrated that 
there is less than a 1‰ chance of obtaining such results by chance 
(Figure 3). Among the 42 pathways, 12 are cancer pathways (Table 1). 
These 12 cancer pathways are “prostate cancer”, “pathways in cancer”, 
“melanoma”, “pancreatic cancer”, “chronic myeloid leukemia”, “glioma”, 
“colorectal cancer”, “endometrial cancer”, “non-small cell lung cancer”, 
“acute myeloid leukemia”, “renal cell carcinoma” and “small cell lung 
cancer”. All of these pathways are directly related to cancer since they 
reflect the molecular interactions of some types of cancer. The number 
of genes selected by the methodology and involved in these pathways 
varies between 3 and 12.

Taken together, these various arguments indicate the power of the 
proposed methodology. Hence, we suggest that the 74 genes (165 – 91) 
still not described to be implicated in cancer are potential new factors 
of tumor growth and particularly of metastasis induced by hypoxia. 
Surprisingly, DAVID [19,20] retrieved five pathways from the 165 genes 
of interest which are related to pathogen recognition and phagocytosis 
(Table 1). These pathways are “toll-like receptor signaling pathway”, 
“fMLP induced chemokine gene expression in HMC-1 cells”, “T cell 
receptor signaling pathway”, “Fc epsilon RI signaling pathway” and “Fc 
gamma R-mediated phagocytosis”. The first four were already discussed 
previously in Pierre et al. [15]. However, the Fc gamma R-mediated 
phagocytosis pathway was not. Fc gamma R-mediated phagocytosis 
is a major process set up by macrophages, neutrophils and monocytes 
to eliminate a pathogen threat. Following the extracellular recognition 
of a pathogen molecule by an Fc gamma receptor, an intracellular 
signal induces the development of a phagosome that then merges with 
lysosomes. Lysosomal proteases digest the pathogen. It is interesting 
to note that development of the phagosome requires regulation of 
the actin cytoskeleton [37,38], which was a pathway also retrieved by 
DAVID from the 165 genes of interest. This involvement could be the 
link between metastasis and Fc gamma R-mediated phagocytosis. 

Though these pathways have not been previously reported to 
be involved in cancer, metastasis or hypoxia, they were selected by 
the methodology, and the 1,000 negative tests demonstrate that the 

probability to obtain five pathways related to pathogen recognition and 
phagocytosis is equal to 1‰ since only one test gave results equal to 
those with the 165 genes of interest (Figure 3).

Further steps of this work include in vitro validation of the 
expression of the genes of interest in MDA-MB-231 and MCF-7 cell 
lines and functional analyses of the proteins encoded by the genes of 
interest. These approaches should open new doors to understand the 
metastasis process under hypoxic conditions.

We propose in this paper a major advance in a meta-analysis 
methodology. Here, we report the development and application of a 
statistic that sets a statistical threshold to the proposed approach, hence 
eliminating the need to make an arbitrary choice. In addition to our 
observation of results consistent with the studied phenomenon, a large 
negative control consisting of 1,000 random tests and two independent 
validations of expression profiles of the genes of interest support the 
ability of the methodology not only to retrieve genes already known to 
be involved in the phenomenon but to identify new reliable candidate 
genes. 
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