
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

A Text-based Approach to Feature Modelling: Syntax and Semantics of TVL

Classen, Andreas; Boucher, Quentin; Heymans, Patrick

Published in:
Science of Computer Programming

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Classen, A, Boucher, Q & Heymans, P 2011, 'A Text-based Approach to Feature Modelling: Syntax and
Semantics of TVL', Science of Computer Programming, vol. 76, no. 12, pp. 1130-1143.
<http://dx.doi.org/10.1016/j.scico.2010.10.005>

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/326263476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/a-textbased-approach-to-feature-modelling-syntax-and-semantics-of-tvl(4c7a68f7-557a-4ea3-b7dd-94e2a17225d0).html
http://dx.doi.org/10.1016/j.scico.2010.10.005

Science of Computer Programming 76 (2011) 1130–1143

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

A text-based approach to feature modelling: Syntax and semantics
of TVL

Andreas Classen ∗,1, Quentin Boucher, Patrick Heymans
PReCISE Research Centre, University of Namur, Rue Grandgagnage 21, B-5000 Namur, Belgium

a r t i c l e i n f o

Article history:
Received 5 March 2010
Received in revised form 5 August 2010
Accepted 21 October 2010
Available online 18 November 2010

Keywords:
Feature models
Code
Modelling
Language
Syntax
Semantics
Software product lines

a b s t r a c t

In the scientific community, feature models are the de-facto standard for representing
variability in software product line engineering. This is different from industrial settings
where they appear to be used much less frequently. We and other authors found that in a
number of cases, they lack concision, naturalness and expressiveness. This is confirmed by
industrial experience.

When modelling variability, an efficient tool for making models intuitive and concise
are feature attributes. Yet, the semantics of feature models with attributes is not well un-
derstood andmost existing notations donot support themat all. Furthermore, the graphical
nature of feature models’ syntax also appears to be a barrier to industrial adoption, both
psychological and rational. Existing tool support for graphical feature models is lacking or
inadequate, and inferior in many regards to tool support for text-based formats.

To overcome these shortcomings, we designed TVL, a text-based feature modelling
language. In terms of expressiveness, TVL subsumes most existing dialects. The main goal
of designing TVL was to provide engineers with a human-readable language with a rich
syntax to make modelling easy and models natural, but also with a formal semantics to
avoid ambiguity and allow powerful automation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Software product line engineering (SPLE) is an increasingly popular software engineering paradigm which advocates
systematic reuse across the software lifecycle. Central to the SPLE paradigm is the modelling and management of
variability, i.e. ‘‘the commonalities and differences in the applications in terms of requirements, architecture, components, and
test artifacts’’ [1]. Variability is typically expressed in terms of features, i.e. first-class abstractions that shape the reasoning
of the engineers and other stakeholders [2]. Commercial (print on demand) printers, for instance, are developed as product
lines and come with a broad range of features, such as support for spine captions, punching, or stapling. PRISMAprepare,2 a
commercial tool to prepare jobs for such printers, will serve as the running example in this paper.

A set of features can be seen as the specification of a particular product of the product line (PL). Feature models (FMs)
[3,4] delimit the set of valid products of the PL. FMs are directed acyclic graphs, generally trees, whose nodes denote features
andwhose edges represent top-down hierarchical decomposition of features. Themeaning of a decomposition link is that, if
the parent feature is part of a product, then some of its child features have to be part of the product aswell. Exactlywhich and
howmany of the child features have to be part depends on the type of the decomposition link. An excerpt of PRISMAprepare’s
FM is shown in Fig. 1, using the traditional graphical representation. The and-decomposition of the features Document and

∗ Corresponding author.
E-mail addresses: acs@info.fundp.ac.be (A. Classen), qbo@info.fundp.ac.be (Q. Boucher), phe@info.fundp.ac.be (P. Heymans).

1 FNRS research fellow.
2 See http://global.oce.com/products/prisma-prepare.

0167-6423/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2010.10.005

A. Classen et al. / Science of Computer Programming 76 (2011) 1130–1143 1131

Fig. 1. Excerpt of PRISMAprepare’s FM.

Sheet means that all their child features have to be selected, except for those that are optional, which is indicated by a hollow
circle.

In the scientific community, FMs are the de-facto standard for representing the variability of an SPL. Several sources – our
industry partners, discussions at the 2010 variability modelling (VaMoS) workshop [5] as well as recent literature reviews
[6,7] – suggest that in the industrial world, in contrast, FMs appear to be used rarely.

One reason for this, we believe, is their lack of conciseness and naturalness when it comes to modelling realistic SPLs.
Various industrial experiences have shown us that one of the most efficient tools for making FMs intuitive and concise are
feature attributes [8], that is, typed parameters attached to features similar to attributes attached to classes in UML class
diagrams. In the case of PRISMAprepare, for instance, the use of attributes reduced the number of features from 152 to
14, in another case one from 189 to 59 [9]. In the excerpt shown in Fig. 1, the colour of a feature indicates the number
of attributes (yellow meaning one and orange meaning two) that the feature has. Discussions with engineers also showed
that the resulting diagrams are more natural and easier to understand [9]. For instance, without attributes, we are forced
to model alternative choices that are not further decomposed as a xor-decomposed feature group. A more concise solution
would be to use an enumerated attribute. The semantics is exactly the same, but the notation is muchmore concise. In spite
of all that, the semantics of FMs with attributes is not well understood andmost existing notations and tools do not support
them at all.

Another likely reason for the difficulty of using FMs in practice is the graphical nature of their syntax. Almost all existing
FM languages are based on the FODA notation [3] which uses graphs with nodes and edges in a 2D space, as shown in
Fig. 1. Feature attributes, to begin with, are intrinsically textual in nature and do not easily fit into this representation.
Furthermore, constraints on the FM are often expressed as textual annotations using Boolean operators. If they were given a
graphical syntax, attributes and constraints would only clutter a FM. When working with engineers, we also observed that
a graphical syntax is a psychological barrier (having to drawmodels is deemed tedious and cumbersome by engineers) and
poses a tooling problem. Existing tools for graphical FMs are generally research prototypes and are inferior in many regards
to tool support for text-based formats (viz. text editors, source control systems, diff tools, no opaque file formats and so on).

To overcome these shortcomings, we designed TVL (Textual Variability Language), a text-based FM language. The idea of
using text to represent variability in SPLE is not new [10,11] but seems to be recently gaining popularity [12,13]. In terms
of expressiveness, TVL subsumes most existing dialects. The main goal of designing TVL was to provide engineers with a
human-readable language with a rich syntax to make modelling easy and models natural, but also with a formal semantics
to avoid ambiguity and allow powerful automation. Further goals for TVLwere to be lightweight (in contrast to the verbosity
of XML for instance) and to be scalable by offering mechanisms for structuring the FM in various ways.

Keeping with the tradition of the authors [4,14], TVL is defined formally. Its concrete, C-like, syntax is described by an
LALR grammar, but it also has a mathematical abstract syntax and a denotational semantics. Having a well-defined tool-
independent semantics further distinguishes TVL frommost existing languages. A formal semantics is crucial for languages
that are to be widely used or to serve as a format for information exchange. Moreover, it allows anyone to implement the
language, serving as specification and reference. TVL is a pure language in the sense that all its constructs directly have a
precise interpretation in the formal semantics. A reference implementation including a parser and a reasoning library is
available online.3

The remainder of the paper is structured as follows. We survey related work in Section 2. Section 3 introduces TVLwith
code snippets from our running example. Section 4 gives well-formedness rules for TVLmodels while Section 5 specifies the
formal semantics. We evaluate TVL in Section 6, followed by a description of our implementation in Section 7 and conclude
in Section 8.

2. Related work

In the literature, graphical FM notations based on FODA [3] are by far the most widely used. Most of the subsequent
proposals such as FeatuRSEB [15], FORM [16] or Generative Programming [17] are only slightly different from the original
graphical syntax (e.g. by adding boxes around feature names).

But a number of textual FM languages were also proposed in the literature. Table 1 compares them. The criteria are
(i) human readability, i.e. whether the language is meant to be read and written by a human; (ii) support for attributes;

3 http://www.info.fundp.ac.be/∼acs/tvl.

1132 A. Classen et al. / Science of Computer Programming 76 (2011) 1130–1143

Table 1
Comparison of TVL to existing languages.

Language H
um

an
re
ad

ab
le

At
tr
ib
ut

es

Ca
rd

in
al
iti

es

Ba
si
c
Co

ns
t.

Co
m
pl
ex

Co
ns

t.

St
ru

ct
ur

in
g

Fo
rm

al
se
m
an

tic
s

To
ol

su
pp

or
t

FDL [10] X X X
FMP [18] X X X X X

GUIDSL [19] X X X
FAMA [20] X X X X X

pure::variants [21] X X X X X
SXFM [22,23] X X X

CML [13] X X X X X
VSL [24,12] X X X X X

KConfig4 X X X X X
TVL X X X X X X X X

(iii) decomposition (group) cardinalities; (iv) basic constraints, i.e. requires, excludes and other Boolean constraints on
the presence of features; (v) complex constraints, i.e. Boolean constraints involving values of attributes; (vi) mechanisms
for structuring and organising the information contained in a FM (other than the FM hierarchy); (vii) formal and tool-
independent semantics and (vii) tool support.

To our knowledge, the first textual language was FDL [10]. Apart from TVL, it is the only language for which a formal
semantics exists. It does not support attributes, cardinality-based decomposition and other advanced constructs.

XML-based file formats to encode FMs are used by the Feature Modelling Plugin [18], the FAMA framework [20] and
pure::variants [21]. These formats were not intended to be written or read by the engineer and are thus hard to interpret,
mainly due to the overhead caused by XML tags and technical information that is extraneous to the model. The semantics
of FAMA and pure::variants is tool-based, given by the algorithms that translate an FM into SAT, CSP or Prolog. It is thus not
readily accessible to an outsider.

Batory [19] proposed the GUIDSL syntax, in which the FM is represented by a grammar. The GUIDSL syntax is used as a
file format of the feature-oriented programming tools AHEAD [19] and FeatureIDE [25]. The GUIDSL format is aimed at the
engineer and is thus easy to write, read and understand. However, it does not support arbitrary decomposition cardinalities,
attributes, or the representation of the FM as a hierarchy.

The SPLOT [22] and 4WhatReason [23] tools use the SXFM syntax and file format.While the format uses XML formetadata
and the overall file structure, its representation of the FM is entirely text-based with the explicit goal of being human-
readable. It differs from the GUIDSL format in that it makes the tree structure of the FM explicit through (Python-style)
indentation. It supports decomposition cardinalities but not attributes.

Czarnecki [13] recently proposed the Concept Modelling Language (CML), a prototype language that is not yet fully
defined. Its syntax resembles that of regular expressions, whereas TVL is closer to programming languages.

The CVM framework [24,12] supports text-based variability modelling with VSL which has support for many constructs.
Attributes, however, can only be used as feature parameters and not in constraints.

KConfig is the configuration language of the Linux kernel. It is a configuration interface description language and aKConfig
file can be interpreted as a FM. KConfig supports structuringwith file includes. It only supports basic constraintswhich define
presence of features.

We should note that all these languages are remotely related to constraint programming, and several implementations
(including that of TVL) use constraint solvers internally. Moreover, as pointed out by Batory [19], FMs can be seen as
simplified grammars where products correspond to sentences. Similarly, FMs with attributes such as TVL can be seen as a
form of attribute grammar, albeit without the distinction of synthesised or inherited attributes [26,11]. What distinguishes
FMs from constraint programming and attribute grammars is their domain-specific nature and independence from any of
these technologies.

3. A guided tour of TVL

In this section we give an overview of the TVL syntax, illustrated using the PRISMAprepare FM introduced in Section 1.
Information about the formal grammar can be found online5 and in [27]. The following sub-sections introduce the major
parts of the language: features, attributes, constraints and structuring mechanisms.

4 http://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt.
5 http://www.info.fundp.ac.be/∼acs/tvl.

A. Classen et al. / Science of Computer Programming 76 (2011) 1130–1143 1133

The following TVLmodel is an excerpt of the PRISMAprepare FM.

1 / / Declaring a custom type :
2 enum or ientat ion in { hor izonta lLef t , horizontalRight , v e r t i c a l } ;
3
4 / / Declaring a structured type :
5 struct coord {
6 int x ;
7 int y ;
8 }
9

10 / / The feature model :
11 root Document {
12 / / And−decomposition of the root feature :
13 group allOf {
14 Sheet group [∗ . .∗] {
15 opt Tab , / / an optional feature
16 Page ,
17 opt Hole ,
18 Media ,
19 Staple ,
20 NumberingMethod
21 } ,
22 opt SpineCaption
23 }
24
25 / / Attr ibute dec larat ions of the root feature :
26 enum type in {normal , booklet , perfectBinding } ;
27 enum stackMethod in {none , o f f se t , mixed } ;
28
29 / / A constra int :
30 Document . type == booklet −> !Sheet . Hole ;
31 }
32
33 / / The features SpineCaption and Hole are extended :
34 SpineCaption {
35 or ientat ion orient ;
36 i f In : Document . type in { booklet , perfectBinding } ;
37 }
38
39 Hole {
40 coord posit ion ;
41 }

3.1. Feature declaration and hierarchy

Wewill ignore the first two declarations for the time being. The FM itself starts at line 11, with the declaration of the root
feature. The feature hierarchy, graphically depicted in Fig. 1, follows on lines 11 through 23.

The root feature, Document, is decomposed into two sub-features by an and-decomposition: Spine Caption and Sheet.
In TVL, each decomposition is introduced by the group keyword (line 13), which is followed by the decomposition type.
The and, or, and xor decomposition types were renamed to allOf, someOf and oneOf in TVL. These names are inspired
by [10] and make the language more accessible to people not familiar with the Boolean interpretation of decomposition.
The decomposition type can also be given by a cardinality, as is done for the Sheet feature on line 14. Cardinalities can use
constants, natural numbers, or the asterisk character (which denotes the number of children in the group). In our example,
group [*..*] on line 14 is thus equivalent to group [6..6] or group allOf.

The decomposition type is followed by a comma-separated list of features, enclosed in braces. If a feature is optional, its
name is preceded by the opt keyword (see, e.g., line 15). Each feature of the list can declare its own children, such as Sheet
on line 14. If each feature lists its children this way, the tree structure of the FMwill be reproduced in TVLwith nested braces
and indentation, as shown in Fig. 2(a). This can become a scalability problem for deepmodels, something we experienced in
industrial cases. To this end, TVL allows one to declare a feature in the decomposition of its parent by just providing a name.
A declared feature can then be extended later on in the code, as in Fig. 2(b).

Besides the group block, a feature can contain constraint and attribute declarations, all enclosed by a pair of braces. If
there is only a group block, braces can be omitted. This reduces the number of braces in a pure decomposition hierarchy. To
model a DAG structure (as in FORM [16]), a feature name can be preceded by the shared keyword, meaning that it is just a
reference to a feature already declared elsewhere. (This is not illustrated in the example.)

1134 A. Classen et al. / Science of Computer Programming 76 (2011) 1130–1143

root R group allOf {
Level1 group allOf {

Level2 group allOf {
Level3 group allOf {

. . .
}

}
}

}

root R group allOf {
Level1 group allOf {

Level2
}

}
Level2 group allOf {

Level3 group allOf {
. . .

}
}

(a) Reproduced in text. (b) Split up.

Fig. 2. Deep hierarchies can be split up in TVL.

Feature {
int x ;

}

Feature {
int x in [0 . . 1 0] ;

}

Feature {
int x i s 10;

}

Feature {
int x , i f In : i s 10 ,

ifOut : i s 0;
}

(a) Basic. (b) Domain restriction. (c) Fixed value. (d) Conditional value.

Fig. 3. Different ways of declaring an attribute in TVL.

3.2. Attributes

In our example, the Document feature has two attributes, indicating the types of document (line 26) and the stacking
method (line 27) supported by the printer. Both attributes are of type enum, meaning that their value is one in a fixed set of
values. This set of values is specified with the in keyword. The other attribute types supported by TVL are integer (int), real
(real) and Boolean (bool). While Boolean and enumerated attributes could be encoded with features, this often results in
unnecessary clutter of the diagram.

Attributes are declared like variables in C, in order to be intuitive for engineers. TVL further provides syntactic sugar to
define the domain and the value of an attribute as illustrated in Fig. 3. If the value of an attribute depends on whether its
parent feature is selected or not, the declaration shown in Fig. 3(d) can be used. Note that declarations (b), (c) and (d) could
be equally expressed by declaration (a) followed by a constraint. However, syntactic sugar such as this allows the engineer
to make models concise and to express her intentions clearly and intuitively.

Furthermore, to concisely specify cases in which the value of an attribute is an aggregate of another attribute that is
declared for each child, an aggregation function can be used in combination with the children and selectedChildren

keywords (followed by an ID denoting the attribute). This is not used in the case of PRISMAprepare, but a classical example
is an attribute price declared for each feature. The attribute has a fixed value in the leaf features: real price is 12.34;

and is calculated for all other features: real price is sum(selectedChildren.price);. Intuitively, this corresponds to
a synthesised attribute in an attribute grammar.

3.3. Constraints

A constraint in PRISMAprepare is that sheets of a booklet may not be punched. This constraint is expressed at line 30 of
the TVLmodel. As expected, the == denotes equality and -> implication.

Constraints in TVL are Boolean expressions inside the body of a feature. There is also syntactic sugar for guarded
constraints. For instance, if a document has a spine caption, it has to be a booklet or a perfect binding (for otherwise it is
impossible towrite on the spine of the document). Thismeans that the domain of the enumerated type attribute is restricted
if there is a spine caption. In TVL, this can be expressed with the guarded constraint at line 36. The ifIn: guard works just
as for attributes: the constraint only applies if the parent feature, SpineCaption, is selected. While ifIn:.. is equivalent to
SpineCaption -> .., it is more concise and requires less ‘decoding’ from the reader.

To facilitate specifying constraints and attribute values, TVL comes with a rich expression syntax. An overview is given in
Table 2. The syntax ismeant to be as complete as possible in terms of operators, to encouragewriting of intuitive constraints.
For instance, to restrict the allowed values of an enum, the set-style in operator can be used. For enum e in {a, b, c,

d, ..}, the constraint e in {b, c} is syntactic sugar for e != a && e != d && .., which is much less readable.

3.4. Structuring

TVL offers variousmechanisms that can help engineers structure largemodels. For instance, custom types can be defined
at the top of the file and then be used throughout the FM. This allows one to factor out recurring types and can thus reduce
consistency errors. In the PRISMAprepare FM, the type orientation is defined on top (at line 2) as it appears in several places
in the model (e.g. at line 35). Defining a custom type in this case increases the maintainability of the model as changes will
be required only in the type declaration. It is also possible to define structured types to group attributes that are logically

A. Classen et al. / Science of Computer Programming 76 (2011) 1130–1143 1135

linked. In the example, the type coord (at line 11) represents a pair of coordinates. It is used as a type for the position attribute
of the Hole feature (at line 40) which represents the position of the hole.

There are two mechanisms for structuring. The first is the include statement, which takes as parameter a file path.

include(./some/other/file);

As expected, an include statement will include the contents of the referenced file at this point. Includes are in fact
preprocessing directives and do not have any meaning beyond the fact that they are replaced by the referenced file.
Modellers can thus structure the FM according to their preferences.

The second structuring mechanism, hinted at before, is that features can be defined in one place and be extended later in
the code. Basically, a feature blockmay be repeatedwhich adds constraints and attributes to the feature. In our example, the
features Hole and SpineCaption are declared on lines 17 and 22, respectively. Their attributes and constraints are defined at
lines 39–41 and 34–37, respectively. These could have been defined at lines 17 and 22, too, but thiswould have just cluttered
the diagram.

These mechanisms allow modellers to organise the FM according to their preferences and can be used to implement
separation of concerns [28]. Thisway, the engineer can specify the structure of the FMupfront,without detailing the features.
Feature attributes and constraints can be specified in the second part of the file (as in our example), or in other files using
the include statement.

4. Names, types and well-formedness rules

4.1. Naming, scope and references

The rules for naming features, attributes, types, constants, enum values and struct fields are similar to other C-like
languages: they can use letters, digits, the underscore and cannot begin with a digit. Names are case-sensitive. Furthermore,
there is a list of reserved keywords that may not be used.

Details about naming conventions can be found in [27]. The important point is that the scope of all feature names is
global, but that feature names do not have to be globally unique. Only child features and attributes of the same feature must
have distinct names. This allows for more flexibility when naming features and is very important when it comes to large
industrial cases, where it is likely for features to have the same name. All feature references (inside constraints, for example)
must still be unambiguous. To reference a feature with an ambiguous name, one can use a qualified name, that is the feature
name prefixed by the names of its parents (separated by dots). A qualified name is unambiguous if the uppermost name is
unambiguous. A model that contains ambiguous names is invalid and should be refused by a TVL implementation. Usage of
qualified names can be helpful even for features with unique names. The parents in a qualified feature name give additional
information about what the feature denotes, making it easier for the reader to understand the model.

The rules for referencing attributes are similar. Inside the body of the feature declaring them, they can be referenced solely
with their name. Otherwise they have to be prefixed by the name of the feature that declared them. There are a number of
keywords that make referencing easier: parent denotes the parent feature of the feature in the body of which it is used,
root always denotes the root feature, and this denotes the feature in the body of which it is used. The this keyword is
useful when referring to a child of the current feature with an otherwise ambiguous name. Use of these keywords has the
advantage that the reader can immediately situate the referenced feature, without having to look up its name. This will
make a model easier to understand.

4.2. Type correctness

TVL is strongly and statically typed, and does not allow casting. Type correctness is defined as expected: expressions
defining the value of an attribute have to be of the same type as the attribute. Constraints have to be expressions of type
bool. The expressions themselves have to be correctly typed, that is, Boolean operators may only take Boolean operands,
numeric operators may only take numeric operands, and so on.

When a set is defined in extension, i.e. with a list of elements, all elements in the list need to have the same type.
Expressions involving attributes of type enum may only use enum values defined for the attribute.

4.3. Well-formedness rules

There are other rules a model must adhere to which are not enforced by the grammar. For instance, the grammar
allows one to declare cycles in the decomposition relation or to have several group blocks per feature, both of which
are not permitted. The restriction to a single group block is to ensure that a feature cannot be decomposed several times.
Decomposition cardinalities ⟨i, j⟩ have to be so that i ≤ j and j has to be less or equal than the number of child features. The
parent keyword may not be used for features having more than one parent.

The children keyword can be used in combination with an aggregation function to apply the function to the value of
the attribute of all children of the feature. Its use therefore requires that the attribute be declared for all the children of the

1136 A. Classen et al. / Science of Computer Programming 76 (2011) 1130–1143

feature, that the children all declare it with the same type and that this type is compatible with the aggregation function.
The same rules apply to the selectedChildren keyword with the addition that it cannot be used for the min and max

aggregation functions.
All the rules of this section should be checked by a TVL implementation. The next section assumes that a TVL model

adheres to all of them.

5. Semantics

In line with previous work of the authors [4,14], a language is not fully defined without a formal semantics. Fortunately,
part of the work has already been done elsewhere, mainly by Schobbens et al. [4] with the formal definition of Free Feature
Diagrams (FFD), a parameterised FM language.

However, we cannot reuse the FFD definition as is. FFD are based on an abstract syntax that is much more limited than
the concrete syntax of TVL. In Section 5.1, we thus define a translation from TVL to an abstract syntax close to that of FFD.
Furthermore, FFD do not formalise attributes or non-Boolean constraints. Also, they do not explicitly capture the notion of
optional feature, which they encode with an intermediate dummy feature that is ⟨0..1⟩-decomposed. We contribute these
missing pieces in Section 5.2.

For the definition of the semantics, we follow the guidelines of Harel and Rumpe [29], meaning that we formally define
the abstract syntax L of our language, the semantic domain S and the semantic function M : L → S.

5.1. Abstract syntax LTVL

The concrete syntax introduced in the previous section offers a number of syntactic shortcuts (structuring mechanisms,
types,. . .). In order to obtain an easily formalisable language, the abstract syntax for TVL will be that of a normal form with
fewer constructs but equal expressiveness.

Definition 1 (TVL Abstract Syntax, Extension of [4]). The syntactic domain LTVL is the set of all tuples (N, r, DE, ω, λ, A, ρ,
τ , V , ι, Φ) where:

• N is the (non-empty) set of features,
• r ∈ N is the root,
• DE ⊆ N ×N is the decomposition (hierarchy) relation between features. For (n, n′) ∈ DE, n is the parent and n′ the child

feature. For convenience, we will sometimes write n → n′ instead of (n, n′) ∈ DE,
• ω : N → {0, 1} labels optional features with a 1,
• λ : N → N × N indicates the decomposition operator of a feature, represented as a cardinality ⟨i..j⟩ where i is the

minimum number of children required in a configuration and j the maximum (we use angle brackets to distinguish
cardinalities from other tuples),

• A is the set of attributes,
• ρ : A → N is a total function that gives the feature declaring the attribute,
• τ : A → {int, real, enum, bool} assigns a type to each attribute,
• V is the set of possible values for enumerated attributes,
• ι : {a ∈ A|τ(a) = enum} → P (V) defines the domain of each enum,
• Φ ⊆ Lexp is a set of Boolean-valued expressions over the features N and the attributes A, expressing additional

constraints on the model. Lexp is the set of all correctly typed Boolean-valued expressions B that are formed according
to the grammar given in Table 2, where n ∈ N is a feature, a ∈ A is an attribute, d ∈ Z is an integer, q ∈ Q is a rational
number, t is an enum value and v ∈ V is an enum value.

Furthermore, each d ∈ LTVL must satisfy the following well-formedness rules:

• r is the unique root ∀n ∈ N(@n′
∈ N • n′

→ n) ⇔ n = r ,
• r is not optional ω(r) = 0,
• DE is acyclic @n1, .., nk ∈ N • n1 → .. → nk → n1,
• Terminal nodes are ⟨0..0⟩-decomposed.

We recall that the abstract syntax,LTVL, only covers a subset of the concrete TVL syntax defined in Section 3. A TVLmodel
using only constructs from LTVL is in normal form, and the subset of the TVL language reduced to models in normal form
is called TVLNF . In the following, we will show that any TVL model can be transformed into an equivalent TVLNF model.
The semantics of the TVL language is thus provided in two steps. A first step is to provide a formal semantics to the many
constructs and syntactic shortcuts that are not part of TVLNF by giving a syntactic translation from TVL to TVLNF . The second
step is to define the semantics of TVLNF , i.e. that of LTVL.

The concrete syntax of TVLNF is a subset of the concrete syntax of TVL. The only allowed constructs are those defining
the features and their hierarchy (N , r and DE), optional features (ω), cardinality-based decomposition operators (λ) and
attributes with basic types (A, ρ and τ). The excluded constructs are mainly the structuring mechanisms and the non-
cardinality decomposition operators. Furthermore, constraints in TVLNF (Φ) have to be expressions of Lexp. To obtain an

A. Classen et al. / Science of Computer Programming 76 (2011) 1130–1143 1137

Table 2
Expression syntax Lexp of LTVL .

B ::= true | false | n | a | v | E in S |

n excludes n | n requires n |

B && B | B || B | !B |

B -> B | B <- B | B <-> B |

E == E | E != E |

E <= E | E < E | E >= E | E > E |

and(B [, B]*) | or(B [, B]*) |

xor(B [, B]*)

E ::= n | a | t | d | q |

E + E | E - E | E / E | E * E | - E |

abs(E) | B ? E : E |

sum(E [, E]*) | mul(E [, E]*) |

min(E [, E]*) | max(E [, E]*)
S ::= { E [, E]* } |

[(d | *) .. (d | *)] |

[(f | *) .. (f | *)]

expression in Lexp from a TVLNF expression, we have to define operator precedence, associativity and parentheses, since
Table 2 abstracts away from these.We chose to define operator precedence in TVL and TVLNF to be the same as in C (see [27]).

Now, the remaining constructs map 1:1 to the elements of LTVL and Lexp in Definition 1. The first part of the semantics
is provided in Definition 2 which specifies how to translate constructs that only exist in TVL into TVLNF , thereby defining
their semantics.

Definition 2. A model in TVLNF is obtained from a model in TVL by applying the following transformation steps in the
specified order.

1. Includes. Eliminate all include preprocessing directives by replacing them with the content of the referenced files.
2. Constants. Eliminate constants const t c e; by replacing all occurrences of c by its definition e.
3. Types. Here we distinguish between types that merely rename basic types b t; and more complex structured types

struct t {b1 t1, b2 t2,..}. The former can be eliminated by replacing all occurrences of the defined type t by
the corresponding basic type b. Structured types can be eliminated in a two-step process. The first step is to flatten a
structured type t by replacing it by a number of individual types b1 t_t1; b2 t_t2;.., and to flatten attributes declared
as structs by replacing them by individual attributes. The flattened types are then eliminated in a recursive step.

4. Attribute domain and value specifications. The construct t a in s; allows one to specify the range of an attribute a
to be the set s. The in construct is removed and a constraint of the form this.a in s; is added. Similarly, the construct
t a is v; allows one to specify a fixed-value attribute a to be v. The is construct is removed and a constraint of the
form this.a == v; is added.

5. Conditional domain and value specifications. An attribute value or domain specification can also be guarded with the
keywords ifIn: and ifOut:, the syntax then is t a, ifIn: vin, ifOut: vout; where vin can be in s to specify
a domain or is v to specify a value. These constructs are removed and constraints of the form ifIn: this.a == v;

ifOut: this.a == v; ifIn: this.a in s; or ifIn: this.a in s; are added.
6. Guards. Guarded constraints ifIn: c; and ifOut: c; are replaced by equivalent constraints this -> (c); and

!this -> (c); respectively.
7. Aggregation with comprehension. Eliminate the keywords children and selectedChildren as follows, assuming

that c1, .., ck are the child features of the containing feature:
• Replace avg(children.a) by sum(children.a) / count(children), and similarly for selectedChildren.
• Replace fct(children.a) by fct(c1.a, ..., ck.a), where fct is one of the aggregation functions sum, mul, min,
max, and, or, xor.

• Replace count(children) by the number of children of the feature.
• Replace count(selectedChildren) by
sum((c1 ? 1 : 0), ..., (ck ? 1 : 0)).

• Replace fct(selectedChildren.a) by
fct((c1 ? c1.a : neut), ..., (ck ? ck.a : neut)), where fct is one of the aggregation functions sum, mul,
and, or, xor, and neut is the neutral element wrt. the aggregation function (i.e. 0 for addition, 1 for multiplication,
true for conjunction and false for disjunction and xor). Remember that the selectedChildren keyword for these
functions is only available if the parent decomposition enforces the selection of at least one feature.

8. Relative names. All relative names parent, this and root are resolved and replaced by unambiguous feature names.
9. Constraints. A single set of constraints is obtained in TVL by moving all constraints to the root feature.

10. Decomposition operators. First replace occurrences of oneOf, allOf and someOf by group [1..1], group [*..*]

and group [1..*] respectively. In a second step, replace each occurrence of * inside a cardinality by the number of
child features.

11. Distributed definitions. Gather feature definitions spread over different blocks into the single block inside the group
statement of its parent.

This translation will effectively eliminate all constructs that are not in TVLNF .

1138 A. Classen et al. / Science of Computer Programming 76 (2011) 1130–1143

5.2. Semantics of TVLNF

The semantic domain defines the universe in which an element of the syntactic domain is to be interpreted [29]. As in
the existing definition by Schobbens et al. [4], the semantic domain is that of product lines, meaning that a given FM should
be interpreted as a product line. In earlier definitions, a product line is formally defined as a set of products, and a product as
a set of features. While this definition is still relevant in our case, it does not capture the notion of attribute. We thus redefine
a product as a set of features that comes with a function providing a value for each attribute.

Definition 3 (Semantic Domain S). The semantic domain of TVL, denoted S, is the set of all products, each product p being a
couple p = (c, v) where c is a set of features and v is a valuation of the attributes, respecting τ and ι, formally:

S = P (P (N) × P (A → Z ∪ Q ∪ {true, false} ∪ V))

Basically, with this definition, each attribute is treated like a variable that is always defined, even if the feature that
declares it is not part of the product. We chose this interpretation as its flexible and emphasises the constraint-language
aspect of FMs. An alternative interpretation would have been to assume that attributes of non-selected features do not exist
(as if they were not declared). This would lead to several problems: what to do with attributes defined in terms of attributes
that do not exist because their parents are not in the product, or: what is the semantics of constraints over undeclared
attributes. Moreover, it would also cause problems when considering the semantics of FM configuration [30], where in an
intermediate state some features are selected, some deselected and some undecided.

Given the semantic domain from Definition 3, the semantic function describes how to interpret each element of the
syntactic domain from Definition 1.

Definition 4 (Semantic Function M). Given a TVL model d ∈ LTVL, its semantics is given by the function M : LTVL → S,
where M(d) is the set of all couples (c, v) with c ∈ P (N) being a valid feature set and v : A → Z ∪ Q ∪ {true, false} ∪ V
being a valid attribute valuation. Each (c, v) ∈ M(d) is such that:

• c contains the root: r ∈ c;
• c satisfies decomposition cardinality:

∀f ∈ c • λ(f) = ⟨m..n⟩
⇒ m − |optN | ≤ |mandc |
∧ |allc | ≤ n

where: optN = {g|g ∈ N ∧ ω(g) = 1 ∧ f → g}
mandc = {g|g ∈ c ∧ ω(g) = 0 ∧ f → g}
allc = {g|g ∈ c ∧ f → g}

• c includes each selected feature’s parent:

∀g ∈ c • f → g ⇒ f ∈ c

• c and v satisfy all the φ ∈ Φ , meaning that ∀φ ∈ Φ • [[φ]](c, v) |̸H false. The semantics of an expression, [[φ]](c, v), is
quite standard and included for reference in [27].

While one might think that optional features are rather easy to formalise, the existing formal semantics by
Schobbens et al. [4] only covers them indirectly (with syntactic preprocessing). Moreover, existing semantic discussions
such as those by Czarnecki and Eisenecker [17] are limited to the interplay between optional features and standard and-, or-
and xor-decompositions. As noted in [17], if one child of an ⟨1..j⟩-decomposed feature f is optional, then this is equivalent
to all its children being optional, or to all its children being mandatory and f being ⟨0..j⟩-decomposed. A similar observation
holds for a ⟨1..1⟩-decomposed feature with at least one optional child. This appears to cause confusion to the point that
existing tools generally support optional features only as children in an and-decomposition.

Intuitively, optionality has ‘priority over’ the decomposition relation: an and-decompositionmandates that all features be
included if their parent is, yet optional features are not bound by this requirement. Our definition generalises this intuition
to the case of arbitrary ⟨i..j⟩ cardinalities. As can be seen in the second point of Definition 4, optional features cause the lower
bound of a decomposition cardinality to decrease by the number of optional features optN . This alone would be incorrect; in
addition, the features counted to satisfy the lower bound are only the mandatory features of the configuration mandc . The
latter part is best illustrated with an example, consider:

1 root f group [3 . . 3] {
2 a , opt b , c
3 }

In that case, valid products are {f , a, b, c} and {f , a, c}. If only the lower bound were decreased, ⟨2..3⟩, then the products
{f , a, b} and {f , b, c}would be considered valid aswell. This iswhy inDefinition 4 the number of selectedmandatory children
of f has to be greater than the new lower bound.

A. Classen et al. / Science of Computer Programming 76 (2011) 1130–1143 1139

The concept of feature attribute is also not formally defined in the existing literature. As discussed above, feature
attributes exist independently of the feature that declares them. Our definition is purely declarative, it just requires that
the attribute values satisfy all constraints. Such a definition lends itself well to implementation in SAT or CSP solvers.
Furthermore, we chose not to fix attributes to a default value in case their parent feature is not part of the product. Basically,
the same constraints apply to attributes whether their parent feature is selected or not (since the model is just one big
constraint). Otherwise, it would be impossible to give fixed values to attributes (such as, the price of a feature). Furthermore,
TVL provides appropriate syntactic sugar:

1 root f group allOf {
2 opt a {
3 int i , i f In : in [1 . . 1 0] , ifOut : i s 0;
4 int j i s 42;
5 int k ;
6 }
7 }

Here, the value of the attribute i is between one and ten if a is in the product, and zero otherwise. The attribute j is fixed at
42 and k can take any value.

6. Evaluation

Two evaluations of TVLwere conducted: an empirical evaluation assessing TVL in industrial settings and a comparative
evaluation assessing the relative strengths of TVLwrt. other FM notations on a large (also industrial) case.

6.1. Empirical evaluation

The empirical evaluation of TVL was conducted by a different team of authors [9]. We will briefly recall their research
method and results. The research question addressed by this evaluation is: ‘‘What are the benefits of TVL for modelling PL
variability, as perceived by model designers and what are the PL variability modelling requirements that are not fulfilled by TVL?’’.
This question was broken down into the set of language quality criteria given in Table 3.

The evaluationwas carried out as a series of semi-structured interviewswith practitioners from industry. Each interview
was preceded by an analysis of an SPL from the participant’s company, of which a TVL model was created in advance.
Before each interview, the interviewee received an introduction to TVL followed by a walkthrough of the TVL model.
The interviewees were then asked to rate TVL wrt. the quality criteria from Table 3, followed by an open discussion. The
four companies (and their SPLs) were GeezTeam with PloneMeeting, Océ Software Laboratories with PRISMAprepare, NXP
Semiconductorswith a video processing unit and Virage Logic with OSGeneric.

The notation (criteria C1–C3 in Table 3) was generally well-received. The interviewees liked its simplicity and
conciseness, and the compactness of attributes and constraints. They also noted the advantages of a textual, programming-
like notation over a graphical or an XML-based language. While the structuring mechanisms (criterion C4) of TVL were
considered an important feature of the language, and an advantage over other languages, the interviewees also noted the
absence ofmore rigidmodularisationmechanisms. Some of the suggestedmechanismswere:modules that explicitly export
features or attributes, inheritance between diagrams, and parameterised modules.

The expressiveness (criterion C5) was evaluated based on the TVL model created prior to the interview. To completely
model the PloneMeeting case, TVL lacked string attributes; and for the PRISMAprepare case, it lacked the ability to express
cloning of a feature. Everything else could be expressed, in the case of PloneMeeting more concisely than before. During
the discussion, interviewees indicated other nice-to-have language features, such as: default values, optional attributes,
string and date types, generic validators (e.g. for e-mail addresses), and error or warning messages that should be displayed

Table 3
Language evaluation criteria. The criteria are based on the programming language qualities from [31,32], for more details see [9].

C1 Clarity of notation Themeaning of constructs should be unambiguous and easy to read for non-experts.
C2 Simplicity of notation The number of different concepts should be minimum. The rules for their

combinations should be as simple and regular as possible.
C3 Conciseness of notation The constructs should not be unnecessarily verbose.
C4 Modularisation The language should support the decomposition into several modules.
C5 Expressiveness The concepts covered by the language should be sufficient to express the problems

it addresses. Proper syntactic sugar should also be provided to avoid convoluted
expressions.

C6 Ease and cost of model portability The language should be platform independent.
C7 Ease and cost of model creation The elaboration of a solution should not be overly human resource-expensive.
C8 Ease and cost ofmodel translation The language should be reasonably easy to translate into other languages.
C9 Learning experience The learning curve of the language should be reasonable.

1140 A. Classen et al. / Science of Computer Programming 76 (2011) 1130–1143

Fig. 4. Graphical FM of the PRISMAprepare printing options.

during configuration. It should be noted that these are features that also almost none of the existing FM languages supports.
(Expressiveness wrt. other FM languages is evaluated in more detail in the next section.) The ease and cost criteria
(C6–C8) were positively evaluated. Participants noted the impressive time gains for model creation compared to a graphical
notation, as well as the implementation-independent semantics which facilitates model portability and translation. The
learning curve (criterion C9) was universally judged to be gentle.

This sums up the principal results of the empirical evaluation. The interested reader is referred to [9] for further details.

6.2. Comparative evaluation

The empirical evaluation examines the qualities of TVL in isolation. A comparative evaluation was conducted to address
the complementary research question:What are the strengths and weaknesses of TVL wrt. existing textual FM languages? From
the languages of Table 1, the study compares FM languages (which excludes KConfig) that are textual and human readable
(which excludes FMP, FAMAandpure::variants), anddocumented (which excludes CML). The FMrepresenting the variability
of the printing options of PRISMAprepare serves as the basis for the comparative study.

We created the initial FM of the PRISMAprepare printing options before the advent of TVL. The FM, shown in Fig. 4,
is graphical and has 152 features. Fig. 4 is not meant to be readable,6 it just illustrates the size of the FM. Grey lines are
crosscutting constraints (requires and excludes) while the colour of a feature indicates the number of numeric attributes
(from yellow meaning one to dark red meaning six) that the feature has. We subsequently modelled the printing options in
FDL, GUIDSL, SXFM, VSL and TVL.7

Results. Table 4 shows the key statistics of these models (absence of a value denotes zero). Since TVL and VSL support
enumerated and Boolean attributes, many features were replaced by such attributes. Binding, for instance has the children
top, left and right. In a sense, these are not really features, but rather ‘values’ for the binding. In TVL or VSL, binding thus
becomes an enumerated attribute of its parent feature, a change that is semantics-preserving. There are several such
xor-decomposed features with leaf children only, and they contribute the most to the reduction in the number of features
for the TVL and VSL models (138 features less).

Of the 69 attributes in the graphical FM, 37 are encodedwith features and 32 are textual annotations (the coloured boxes).
In TVL and VSL, no attributes are encoded with features. In FDL, GUIDSL and SXFM, the 32 numeric attributes could not be
encoded and the other 37 attributes were encoded with features.

The way in which some concepts are modelled (attributes vs. features) has an impact on the way to express constraints
on them. The graphical FMhas a total of 42 constraints. Only half of them are actually graphical (requires/excludes)while the
others are provided in the form of (TVL) annotations to the diagram. The TVLmodel encodes the same information with 23
constraints. Since FDL only has requires/excludes constraints, it cannot express 18 of the constraints. GUIDSL and SXFMallow
arbitrary Boolean constraints over the features, whichmeans that only the 11 constraints involving numeric attributes could
not be represented. Observe that constraints in SXFM have to be in conjunctive normal form, which is not very intuitive to
write or read. For this reason, there are no real requires/excludes constraints, and one of the more complex constraints was
split in two (resulting in the number 32 rather than 31). Attributes in VSL are in fact parameterised features, and enumerated
attributes are represented by features of type string with a fixed set of values. The semantics of such features, however, is
undefined.While constraints can bewritten and appear to be syntactically correct in the CVM framework, they are not taken

6 Although readers of the electronic version can zoom in.
7 The models are available at http://www.info.fundp.ac.be/∼acs/tvl/files/.

A. Classen et al. / Science of Computer Programming 76 (2011) 1130–1143 1141

Table 4
Model statistics for the PRISMAprepare printing options FM.

Graphical TVL FDL GUIDSL SXFM VSL

Features 152 14 152 164 152 14
- encoded as attributes 37 37
- encoded as enum values 101 101

Attributes 69 69 37 37 37 69
- encoded as features 37 37 37 37
- missing 32 32 32

Constraints 42 34 24 31 32 34
- requires/excludes 24 24 24
- Boolean constraints on features 7 7 32
- on Boolean/enum attributes 23
- on numeric attributes 11 11
- missing constraints 18 11 11 348

Depth 6 4 6 11 6 4

into account during integrity checking or configuration. Attributes in VSL are thus mere annotations and cannot be used for
tasks that involve automated reasoning.

The depth of the graphical FM and of the FDL and SXFM models is six due to their encoding of attributes with features,
while the depth of the TVL and VSL models is four. GUIDSL requires an additional parent feature in and-decompositions; it
has thus 12 more features and a depth of 11.

The reasonwe choose to include a graphical FM in this evaluation is to illustrate (i) the blowup caused by not having enum
and Boolean attributes and (ii) the graphical overhead of such large diagrams. There is, in fact, no graphical FM languagewith
formal semantics that does support attributes. We thus chose to represent the attributes and constraints of the graphical
FM with TVL. The ability of the FM to encode all of the constraints and numeric attributes is just because we chose to reuse
TVL and its semantics for this purpose.

Observations. A first observation is that the lack of numeric attributes in the existing languages makes it impossible
to model the whole case. The constraints here are only those inherent to the print options; the printer-related constraints
include even more numeric constraints.

Another general observation is that the requirement of feature names to be unique (in FDL, GUIDSL and SXFM) results
in cumbersome models, since the only sensible way to guarantee uniqueness in large models is to prefix each feature name
with the names of its parents. In FDL this further leads to inconsistent prefixes, since it requires names of non-leaf features
to start in uppercase. In our efforts to port the TVL model to FDL, GUIDSL and SXFM we noticed that even if some feature
names are unique all by themselves, it is hard to identify them when referenced in a constraint by their name alone.

An advantage of TVL also appears to be its well-defined syntax and semantics. For VSL, for instance, there is – to our
knowledge – no publicly available description of the syntax or the semantics. While the syntax can be mostly inferred from
examples, the semantics can only be guessed. The same holds for SXFM, where the syntax has to be inferred by inspecting
models created with the point-and-click interface.

6.3. Lessons learnt

The theory of cognitive fit [33] stipulates that the performance of an individual at a task depends on how well task
and information representation match. In the domain of variability modelling in SPLE, there are a number of tasks ranging
from informal discussions with stakeholders to actual formal model elaboration. Within this spectrum of activities, the
cognitive fit of each FM representation will likely vary. TVL targets the end of this spectrum, when it comes to creating
actual production FMs. The empirical evaluation largely confirms that a textual language has the best cognitive fit for these
activities. Graphical FMs, on the other hand, probably offer a better cognitive fit at the beginning of the spectrum (discussions
with stakeholders, or sketching). Furthermore, TVL does not preclude graphical visualisations which can be easily generated
from a TVLmodel.

Let us revisit the arguments made in the introduction. The example clearly shows the necessity for attributes when
modelling realistic cases. It also illustrates the advantages of enumerated attributes for achieving concise models. The
comparative survey further confirmed that attributes are absent from other textual languages. The observation that the
graphical nature of the syntax is a problem in industrial settings is confirmed by the empirical evaluation, especially in the

8 Constraints involving attributes appear to be annotations with no semantics (see below).

1142 A. Classen et al. / Science of Computer Programming 76 (2011) 1130–1143

reaction to criteria C3 and C7. Fig. 4 further illustrates the problem raised by the size of such a diagram. The evaluation also
shows that design goals of the language were largely met: human-readability (beyond the fact of not being XML-based)
is confirmed by positive feedback to criteria C1, C2 and C9; rich syntax and easy modelling were confirmed by positive
feedback to criteria C5-8; and TVL being lightweight by criterion C3.

As for the expressiveness, the empirical evaluation showed that TVL can handle most of the industrial cases and the
comparative evaluation confirmed that it is more expressive than existing textual languages.

Still, several shortcomings were pointed out. The main issue revealed during the empirical evaluation was the absence
of more powerful modularisation mechanisms. A recurring remark was also the absence of attribute types such as string
or date. While nothing technically prevents the addition of these types to the syntax, we explicitly left them out in our
desire to keep the language pure. That is, we wanted TVL to have a concise and clear semantics that can be implemented in
a straightforward way using declarative reasoners such as SAT or CSP. In consequence, we limited our data types to those
generally used in SAT or CSP. We have since reconsidered our stance on this and will add support for those types to future
revisions of TVL. To overcome the problem these types pose for declarative reasoners, they will only be allowed to appear
in constraints that can be solved by a non-declarative preprocessor. Another recurring request were feature cardinalities to
allow feature cloning (as in [17]). Again, the problem lies in defining a semantics for cloned features that is both intuitive
and easy to implement. In absence of such a semantics, we preferred to leave feature cardinalities out of TVL for the time
being.

Threats to validity of the empirical evaluation are discussed in detail in [9]. The authors judge that their ‘‘results are
valid for a wide range of organisations and products’’ [9], since it is based on four different cases. Threats to the validity of the
comparative study can stem from theway itwas conduced and from the choice of the case. Concerning the former,most risks
are mitigated by the process which consisted in translating a referencemodel (the graphical FM) into the various languages.
This task does not require expertise of the modeller in the subject, only in the target language. Furthermore, it makes sure
that comparisons between the producedmodels are meaningful, since all models refer to the same concepts. The risk posed
by the expertise in the target languages wasmitigated by consulting available documentation (althoughmost languages are
poorly documented) and by testing and validating the models with the respective tools. The choice of this particular case
does not seem to threaten the generality of the conclusions: most observations wemade are likely to bemade on anymodel
of similar size and complexity.

More anecdotal evidence of TVL’s acceptance include the fact that it was well received at the 2010 variability modelling
workshop [5,34] and that it was chosen as the FD language for the EU/FP7 project HATS9 [35].

7. Implementation

Tool support for TVL exists in the form of a Java library available at the TVL website.10 The library has two components.
The syntactic component is a parser implemented with the CUP11 parser generator. It performs all the checks discussed in
Section 4 (references, types, well-formedness), as well as model normalisation as described in Section 5.1. Among other
things, the syntactic component can be used to add TVL support to existing FM tools.

The semantic component of the library implements the semantics defined in Section 5.2. TVL models without numeric
attributes are first normalised and then translated into a Boolean CNF formula as described in [19,36,23]. To analyse the
model, the CNF formula is fed to the Sat4J12 SAT solver. We emphasise that this translation can deal with the whole
language except for numeric attributes,whichmeans that it permits efficient FManalysis even in thepresence of enumerated
attributes. For TVL models with numeric attributes we use the CHOCO13 CSP solver. The translation is very similar, except
that now also constraints on numeric attributes are taken into account. The CSP part of the library is still in development.
Although not the primary goal of the library, it is straightforward to implement analysers on top of it. A number of them
already exist for checking satisfiability of an FM or validity of a product.

The library serves as a reference implementation for TVL in Java. The information given here and in [27] is sufficient to
re-implement TVL from scratch. We are currently doing this using the term rewriting language ASF+SDF,14 which is very
natural for implementing model normalisation. This second implementation is unrelated to (and independent from) the
Java library and is part of an ongoing experiment to compare the maintainability of the two parser technologies. The TVL
grammar in the SDF format is also available online.

The Java librarywas usedduring the empirical evaluation in order to test syntactic correctness and integrity of themodels.
Being a library with a minimalistic front-end, it was not a subject of the empirical evaluation. Regarding the efficiency of
FM analysis, most of the results of this extensive research area [37] do apply to TVL. In particular, the Java library uses
SAT solving for analysing FMs (without numeric attributes), which was reported to be very efficient for FMs up to 10,000
features [38].

9 http://www.cse.chalmers.se/research/hats/.
10 http://www.info.fundp.ac.be/∼acs/tvl.
11 http://www2.cs.tum.edu/projects/cup.
12 http://www.sat4j.org.
13 http://www.emn.fr/x-info/choco-solver.
14 http://www.meta-environment.org/.

A. Classen et al. / Science of Computer Programming 76 (2011) 1130–1143 1143

8. Conclusion

We presented TVL, a textual FM language that targets IT professionals and contexts in which the cognitive fit of graphical
notations is bad.TVLprovides engineerswith a human-readable languagewith a rich syntax thatmakesmodelsmore concise
and natural. An important factor contributing to this, but neglected in most existing FM languages, are feature attributes.
TVL supports attributes of various types and formalises the notion as part of its formal semantics. A further advantage of
TVL, due to its text-based nature, is that there aremanywell-accepted applications (viz. text editors, source control systems,
diff tools, and so on) that support modelling out of the box. We hope that with these advantages, TVL contributes to a more
widespread adoption of FMs in industrial contexts. A reference implementation of TVL in Java, with a full parser and support
for FM analysis, is available online as open source.15

Acknowledgements

We thank our colleagues for their feedback on the language design, particularly EbrahimAbbasi, ArnaudHubaux, Raphaël
Michel, Germain Saval and Pierre-Yves Schobbens. We also thank Paul Faber who implemented most of the TVL Java library
and Anthony Cleve for his help with the ASF+SDF implementation. This work was partially funded by the Walloon Region
under the ERDF and the NAPLES project, the IAP Programme, Belgian State, Belgian Science Policy under the MoVES project,
the BNB and the FNRS.

References

[1] K. Pohl, G. Böckle, F.J. van der Linden, Software Product Line Engineering: Foundations, Principles and Techniques, Springer, 2005.
[2] A. Classen, P. Heymans, P.-Y. Schobbens, What’s in a feature: A requirements engineering perspective, in: Proceedings of FASE’08, pp. 16–30.
[3] K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson, Feature-oriented domain analysis, FODA, feasibility study, Technical Report, SEI, CMU, 1990.
[4] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, Y. Bontemps, Feature diagrams: a survey and a formal semantics, in: Proc. of RE’06, pp. 139–148.
[5] D. Benavides, D. Batory, and P. Grünbacher (Eds.), Proceedings of VaMoS’10, ICB Research Report, vol. 37, Universität Duisburg-Essen, 2010.
[6] L. Chen, M.A. Babar, N. Ali, Variability management in software product lines: a systematic review, in: Proceedings of SPLC’09, pp. 81–90.
[7] A. Hubaux, A. Classen, M. Mendonca, P. Heymans, A preliminary review on the application of feature diagrams in practice, in: [5], pp. 53–59.
[8] D. Benavides, P.T. Martín-Arroyo, A.R. Cortés, Automated reasoning on feature models, in: Proceedings of CAiSE’05, pp. 491–503.
[9] A. Hubaux, Q. Boucher, H. Hartman, R. Michel, P. Heymans, Evaluating a text-based feature modelling language: four industrial case studies, in: 3rd

International Conference on Software Language Engineeringm, SLE 2010 (in press).
[10] A. van Deursen, P. Klint, Domain-specific language design requires feature descriptions, J. Comput. Inf. Technol. CIT 10 (2002) 1–18.
[11] D. Batory, B.J. Geraci, Validating component compositions in software system generators, in: Proceedings of ICSR’96, pp. 72–81.
[12] A. Abele, Y. Papadopoulos, D. Servat, M. Törngren, M. Weber, The CVM framework — a prototype tool for compositional variability management, in:

[5], pp. 101–106.
[13] K. Czarnecki, Variability modeling: state of the art and future directions (keynote), in: [5], p.11.
[14] P. Heymans, P.-Y. Schobbens, J.-C. Trigaux, Y. Bontemps, R. Matulevicius, A. Classen, Evaluating formal properties of feature diagram languages, in:

Language Engineering, IET Softw. 2 (2008) 281–302 (special issue).
[15] M.L. Griss, J. Favaro, M.d. Alessandro, Integrating feature modeling with the RSEB, in: Proceedings of ICSR’98, pp. 76–85.
[16] K.C. Kang, S. Kim, J. Lee, K. Kim, G.J. Kim, E. Shin, Form: A feature-oriented reuse method with domain-specific reference architectures, Ann. Softw.

Eng. 5 (1998) 143–168.
[17] K. Czarnecki, U.W. Eisenecker, Generative Programming: Methods, Tools, and Applications, Addison-Wesley, 2000.
[18] M. Antkiewicz, K. Czarnecki, Featureplugin: feature modeling plug-in for eclipse, in: Proceedings of the OOPSLA’04 ETX Workshop.
[19] D.S. Batory, Feature models, grammars, and propositional formulas, in: Proceedings of SPLC’05, pp. 7–20.
[20] D. Benavides, S. Segura, P. Trinidad, A.R. Cortés, Fama: tooling a framework for the automated analysis of featuremodels, in: Proceedings of VaMoS’07,

pp. 129–134.
[21] D. Beuche, Modeling and building software product lines with pure: :variants, in: SPLC’08, p. 358.
[22] M. Mendonca, M. Branco, D. Cowan, S.p.l.o.t. - software product lines online tools, in: Proceedings of OOPSLA’09, pp. 761–762.
[23] M. Mendonca, Efficient reasoning techniques for large scale feature models, Ph.D. Thesis, University of Waterloo, 2009.
[24] M.-O. Reiser, Core concepts of the compositional variability management framework (CVM), Technical Report, Technische Universität Berlin, 2009.
[25] C. Kästner, T. Thüm, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, S. Apel, Feature IDE: a tool framework for feature-oriented software development,

in: Proceedings of ICSE’09, pp. 311–320.
[26] D.E. Knuth, Semantics of context-free languages, Math. Syst. Theory 5 (1971) 95–96.
[27] A. Classen, Q. Boucher, P. Faber, P. Heymans, The TVL specification, Technical Report, University of Namur, Belgium, 2010.
[28] P. Tarr, H. Ossher, W. Harrison, S.M.J. Sutton, N degrees of separation: multi-dimensional separation of concerns, in: Proc. ICSE’99, pp. 107–119.
[29] D. Harel, B. Rumpe, Modeling languages: syntax, semantics and all that stuff - part I: the basic stuff, Technical Report, Faculty of Mathematics and

Computer Science, The Weizmann Institute of Science, Israel, 2000.
[30] A. Classen, A. Hubaux, P. Heymans, A formal semantics for multi-level staged configuration, in: Proceedings of VaMoS’09, pp. 51–60.
[31] N. Holtz, W. Rasdorf, An evaluation of programming languages and language features for engineering software development, Eng. Comput. 3 (1988)

183–199.
[32] T. Pratt, Programming Languages : Design and Implementation, Prentice Hall, 1984.
[33] I. Vessey, Cognitive fit: A theory-based analysis of the graphs versus tables literature, Decis. Sci. 22 (1991) 219–240.
[34] Q. Boucher, A. Classen, P. Faber, P. Heymans, Introducing TVL, a text-based feature modelling language, in: [5], pp. 159–162.
[35] D. Clarke, N. Diakov, R. Hähnle, E.B. Johnsen, G. Puebla, B. Weitzel, P. Wong, Hats—a formal software product line engineering methodology, in:

Proceedings of FMSPLE’10, co-located with SPLC 2010.
[36] C. Sinz, Towards an optimal cnf encoding of boolean cardinality constraints, in: Proceedings of CP’05, pp. 827–831.
[37] D. Benavides, S. Segura, A. Ruiz-Cortés, Automated analysis of feature models 20 years later: a literature review, Inf. Syst. 35 (2010) 615–636.
[38] M. Mendonca, A. Wasowski, K. Czarnecki, Sat-based analysis of feature models is easy, in: Proceedings of SPLC’09, pp. 231–240.

15 http://www.info.fundp.ac.be/∼acs/tvl.

