
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

CTL Model Checking for Software Product Lines in NuSMV

Classen, Andreas

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Classen, A 2010, CTL Model Checking for Software Product Lines in NuSMV..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/326263158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/ctl-model-checking-for-software-product-lines-in-nusmv(943f7d83-6e42-4b8e-9c52-155c7e40bb06).html

PReCISE – FUNDP
University of Namur
Rue Grandgagnage, 21
B-5000 Namur
Belgium

TECHNICAL REPORT August 23, 2010 (revised in July 2011)

AUTHORS A. Classen
APPROVED BY P. Heymans

EMAILS {acs}@info.fundp.ac.be
STATUS Draft.

REFERENCE P-CS-TR SPLMC-00000002
PROJECT MoVES
FUNDING FNRS, the Walloon Region, Interuniversity

Attraction Poles Programme of the Belgian
State of Belgian Science Policy

CTL Model Checking for Software Product Lines in NuSMV

Copyright c© University of Namur. All rights reserved.

CTL Model Checking for Software Product Lines

in NuSMV

Andreas Classen∗

PReCISE Research Centre,
Faculty of Computer Science,

University of Namur
5000 Namur, Belgium
acs@info.fundp.ac.be

1 Introduction

In Software Product Line Engineering (SPLE), systems are developed in fami-
lies [8] and differences between members of a family are generally represented
by features. A member of a family (called “product”) is then defined as a set of
features and a Feature Diagram (FD) [10, 14] used to concisely model which sets
of features are valid products in the Software Product Line (SPL). The model
checking problem in this context is more difficult than in single systems engi-
neering as there are O(2n) different products (n being the number of features)
to model and model check [7].

We addressed this problem in [6, 4] with the introduction of Featured Tran-
sition Systems (FTS), a formalism to express the behaviour of all products of
the SPL in one model. FTS are Transition Systems (TS) [1, 3] in which transi-
tions are labelled with the features of an FD (in addition to being labelled with
actions). In FTS modelling, features are thus treated as first-class abstractions,
which means that the variability concern can be cleanly separated from the be-
haviour concern. Still, both concerns are linked and this link is exploited in
model checking algorithms.

FTS model checking algorithms try to avoid an exponential number of ver-
ifications by exploring the FTS rather than the TS of each individual product.
We have proposed FTS model checking algorithms for LTL [6] and CTL [5].
Those for LTL were implemented as part of a Haskell library available at the
FTS website.1 This report describes a tool chain for CTL model checking of
FTS with the symbolic NuSMV2 model checker. The tool chain is also available
at the aforementioned FTS website.

∗FNRS Research Fellow.
1http://www.info.fundp.ac.be/~acs/fts
2http://nusmv.irst.itc.it/

1

http://www.info.fundp.ac.be/~acs/fts
http://nusmv.irst.itc.it/

2 Background

Let us start with formal definitions of the fundamental concepts used here.
Just as in single systems development, the behaviour of an individual product
is represented with a TS [1]. A TS is a directed graph whose transitions are
labelled with actions, and whose states are labelled with atomic propositions.

Definition 1 (Transition System). A TS ts is a tuple ts = (S, Act, trans, I,
AP, L) where

• S is a set of states,

• Act is a set of actions,

• trans ⊆ S × Act × S is a set of transitions, with (s1, α, s2) ∈ trans

sometimes noted s1
α→ s2,

• I ⊆ S is a set of initial states,

• AP is a set of atomic propositions,

• L : S → 2AP is a labelling function.

An execution (also called behaviour) of ts is an infinite sequence σ = s0α1s1

α2 . . . with s0 ∈ I such that si
αi+1→ si+1 for all 0 ≤ i. A path is an execution

from which the information about the transitions has been removed, i.e., the
path π for the execution σ is the sequence s0s1 The ith state in a path π is
denoted by πi, the first state being π0. The semantics of a TS, written [[ts]]

T S
,

is its set of paths.
An FTS is basically a TS with another labelling function that labels tran-

sitions with features. In [5] we generalised FTS by allowing transitions to be
labeled with arbitrary Boolean functions over the features. This slightly more
general version of FTS is called FTS+.

Definition 2 (FTS+). An FTS+ is a tuple fts = (S, Act, trans, I, AP, L, d,
γ), where

• S,Act, trans, I, AP,L are defined as in Definition 1,

• d is a feature model,

• γ : trans →
(
{0, 1}|N | → {0, 1}

)
is a total function, labelling each tran-

sition with a feature expression, i.e., a Boolean function over the set of
features.

The TS of a single product can be obtained from an FTS+ through projec-
tion. Projection to some product basically consists in removing all the transi-
tions whose Boolean function is not satisfied by the product.

Definition 3 (Projection in FTS+). The projection of an FTS+fts to a product
p ∈ [[d]]

F D
, noted fts |p, is the TS t = (S, Act, trans′, {i}, AP, L) where

trans′ = {t ∈ trans|γ(t)(f1 ∈ p, .., fn ∈ p) = 1}.

2

The semantics of the FTS+ is given by the behaviours of all valid products.
Formally, that is the union of the standard TS semantics of all possible projec-
tions. This corresponds to the intuition that it represents the behaviour of all
products of the SPL.

Definition 4 (Semantics of FTS+).

[[fts]]
F T S

=
⋃

c∈[[d]]
F D

[[fts |c]]T S

Where [[d]]
F D
⊆ P(N) denotes the semantics of the FD d.

For a more gentle introduction to FTS, the interested reader is referred to [6].
A collection of illustrative examples is presented in [4]. A thorough discussion
of FTS+ and their relation of basic FTS is provided in [5].

3 Input Language

The input language of our implementation is based on an earlier feature-oriented
extension of the NuSMV input language of by Plath and Ryan [12].3 In this
section, we first provide a brief overview of the language. We then show that
its models are in fact FTS+ and that it can hence serve as a high-level language
for FTS+.

3.1 Language overview

Essentially, a NuSMV model consists of a set of variable declarations and a
set of assignments. The variable declarations define the state space and the
assignments define the transition relation. In each assignment, the value of a
variable in the next state is defined in function of the variable values in the
present state. For each variable, there can also be an assignment that defines
its initial value. Modules can be used to encapsulate and factor out recurring
sub-models. For the purpose of this discussion, we abstract away from them.

The typical example of a NuSMV model (taken from the NuSMV tutorial [2])
is the following.

MODULE main
VAR
request: boolean;
state: {ready, busy};

ASSIGN
init(state) := ready;
next(state) := case state = ready & request = 1: busy;

1: {ready, busy};
esac;

3More precisely, they used the earlier SMV model checker. The input language of NuSMV
is almost identical.

3

The above module describes a controller that is either busy treating a re-
quest or ready to receive one. Requests are controlled by the environment and
modelled as a non-deterministic variable. When there is a request and the con-
troller is ready, it will treat the request and be busy, it may continue to be busy
for a while and return to ready once the request is treated.

Let us formalise these concepts in order to facilitate the definition of the
fSMV/FTS+ translation of the next section.

Definition 5. Let V be a set of variables, D a set of (finite) domains or types,
and E(V) the set of all SMV expressions over V . Let A(V) be the set of as-
signments A(V) ⊆ {-, init, next} × V × E(V), that is, a set of triples (s, d, e)
where s distinguishes between d (the -), init(d) or next(d) for d ∈ V , and
e ∈ E is an expression.4 A base system m is a tuple m = (v, τ, a, p), where

• v ⊆ V is a set of variables,

• τ : V → D a function assigning a domain to each variable,

• a ⊆ A(v) is a set of assignments, and

• p ⊆ P(v) × P(v) is a (possibly empty) set of processes. A process is a
couple (vp, wp) where vp denotes the set of variables read by the process and
wp ⊆ vp denotes the set of variables written by the process. Furthermore,
SMV requires that the sets of written variables do not overlap.

For a model without parallel composition, the set p is empty. The semantics of
a base system is a TS or the parallel composition of several TSs [11].

The language by Plath and Ryan [12], hereafter called fSMV, is based on
superimposition [9]. A feature basically describes the changes to be made to the
original system. There are three categories of changes a feature can make:

INTRODUCE new variables into the system.

IMPOSE a new definition of an existing variable. This means that in the presence
of the feature, the init or next state definition of the variable will be
replaced. An IMPOSE clause can be guarded, meaning that it only has an
effect if a certain condition holds.

TREAT existing variables differently. When the value of the variable is read, e.g.
inside the definition of some other variable, the value read is modified by
the feature. A TREAT clause can also be guarded, but this is just syntactic
sugar [12] and will be omitted in our discussion.

Formally, an fSMV model is defined as follows.

Definition 6. An fSMV model is a pair (b,G), where b is a base model and G
an (ordered) list of features. Each feature f ∈ G is a tuple consisting of

• vf ⊆ V , a set of new variables;

• τf : vf → D, a type function;

4An expression alone is not an assignment, it just defines a value.

4

• pf : p → P(vf) × P(vf), a function that tells for each process whether
the new variables belong to it (read and write respectively); sets of written
variables cannot overlap;

• af ⊆ A(v ∪ vf), a set of INTRODUCE assignments;

• mf ⊆ E(v ∪ vf)×A(v), a set of guarded IMPOSE assignments (for (e, a) ∈
mf , e is the guard); and

• tf ⊆ A(v), a set of TREAT assignments.

We intentionally keep these definitions at a high level of abstraction. They
are sufficiently detailed to make the following discussion precise and abstract
enough to make it intuitive. In particular, we do not detail the syntax or
semantics of expressions or of the types. Furthermore there are a number of
rules on what constitutes a valid fSMV model (wrt. types, variable names, etc.)
which we also omit. The interested reader is referred to [11, 13] for a detailed
formal definition of SMV, NuSMV and fSMV.

As an example, consider the feature sleep which adds a switch to the system
that causes it to not accept any further request. The switch is modelled with
a new non-deterministic variable sleep. The system is changed in such a way
that if the system is sleeping and finished treating requests, then it will stay
ready, not accepting any new requests.

FEATURE sleep
INTRODUCE

VAR sleep: boolean;
CHANGE

IF sleep = 1 & busy = 0 THEN IMPOSE next(state) := ready;

Composing a base system and a feature yields a new base system. The
composition of base system and the preceding sleep feature gives the following
system.

MODULE main
VAR
request: boolean;
state: {ready, busy};
sleep: boolean;

ASSIGN
init(state) := ready;
next(state) := case sleep = 1 & busy = 0: ready;

1: case state = ready & request = 1: busy;
1: {ready, busy};

esac;
esac;

Composition can be formally defined as follows.

5

Definition 7. Composition of a base system b = (v, τ, a, p) and a feature
f = (vf , τf , pf , af ,mf , tf) is noted b ⊗ f and produces a new base system b′ =
(v′, τ ′, a′, p′), where

• v′ = v ∪ vf and τ ′ = τ ∪ τf
• a′ is obtained by first applying tf to a, then mf , and finally adding af ,

formally:

a′ = am ∪ af
am = {(s, d, e′)|(s, d, e) ∈ at ∧ ∃(g, (s′, d′, e′′)) ∈ mf

• s = s′ ∧ d = d′

⇒ e′ = case g : e′′; 1 : e esac;}
at = {(s, d, e′)|(s, d, e) ∈ a

∧ e′ = e[s′ ← e′′|(s′, e′′) ∈ tf]}

where e[s1 ← e1, . . . , sn ← en] denotes the simultaneous replacement of all
si in e by ei, 1 ≤ i ≤ n.

• p′={(v ∪ vf , w ∪ wf)|(v, w)∈p ∧ pf (v, w)=(vf , wf)}

3.2 From fSMV to FTS+

Composition produces a new NuSMV model that has no information about the
features it contains. Hence, to perform verification, products have to be com-
posed and model checked individually, which leads to an enumerative approach.
This is exactly what FTS+ model checking intends to avoid. Alternatively, an
fSMV model can be interpreted as an FTS+, so that FTS+ model checking is
equivalent to checking all compositions of the fSMV model.

We first recap the concept of transition in SMV. The set of assignments of
an SMV model can be interpreted as a Boolean function with two parameters:
a valuation of all variables in one state and in the next state. Given two states
s, s′ ∈ S, there is a transition s → s′ if and only if the variable values in these
states satisfy the Boolean function induced by the set of assignments a. We write
this s, s′ |= a. Similarly, the set of init assignments (noted ia = {(init, var, e) ∈
a}) can be interpreted as a Boolean function with one such parameter. A state
s satisfying all init assignments is written s |= ia. We assume that the condition
IV of [12] is verified: the order of features is irrelevant, i.e. two features commute
if both orders are well-defined: fi ⊗ fj = fj ⊗ fi. This assumption allows us to
consider a product as a set of features, instead of a list. We have the following
result.

Theorem 8. For each commutative fSMV model without parallel composition,
there is an FTS+ whose behaviours are those of all products in the fSMV model.

Proof. Given an fSMV model (b, {f1, . . . , fn}) with b = (v, τ, a, ∅) and fi = (vi,
τi, pi, ai, mi, ti), construct an FTS+ (S, Act, trans, init, AP, L, d, γ) where

(8.1) init is a designated initial state init = s0;

6

(8.2) The set of states is the set of all variable values, plus the fresh initial state:
S = {s0} ∪

∏
d∈v τ(d)×

∏
i∈{1,n}

∏
d∈vi

τi(d);

(8.3) Action labels are not used, transitions have a dummy label: Act = {ε}.
(8.4) Atomic propositions are derived from the states;

(8.5) The set of products can be derived from the set of valid feature lists of
the fSMV model: each required element (module or variable) has to be
introduced by a previous feature; and an element cannot be introduced
twice;

(8.6) Let p be a set of features, and l one of the lists from which it was derived
(see above). Since all such lists give the same results by commutativity,
b ⊗ p can be defined as b ⊗ l. Let ap be the transition relation of b ⊗ p.
For correctness, we must have: (s, s′) |= ap iff γ(s, s′)(p) = 1. Therefore
we use this as the definition of γ.

Similarly, we consider the initial states as resulting from an assignment at
time 0, and thus as a transition from the fresh initial state s0 : γ(s0, s′)(p) =
s′ |= ip, where ip is the condition on the initial state given by the init
assignments after application of the features in p.

The obtained FTS+ has by construction the same behaviours as the fSMV, all
prefixed by a single new transition. This transition is due to the new initial
state that has to be added because a feature in fSMV can modify the initial
state.

For fSMV models whose base system is the parallel composition of several
processes, we propose the following result.

Theorem 9. For each fSMV model with parallel composition, there exists a set
of FTS+ whose parallel composition has a set of behaviours equal to those of all
products in the fSMV model.

Proof. Given an fSMV model (b, fx), with b = (v, τ, a, {p1 . . . pk}), construct
the FTS+ of each process p ∈ {p1 . . . pk}, with p = (v, w), as follows

• Create a base system bp = (vp, τ, ap, ∅) where

– vp = v, the variables are those of the process
– ap = {m | m ∈ a ∧m ∈ A(v)}, the assignments are those that define

variables of the process

• Transform the fSMV model (bp, fx) into an FTS+ ftsp as described in
the proof of Theorem 8.

• The process context of ftsp is cp = (v, w).

The resulting FTS is given by ||p∈{p1...pk}ftsp, cp

Theorem 9 basically states that the fSMV language is a subset of the FTS+

language. The following theorem establishes that the converse also holds, i.e.,
that both languages are expressively equivalent.

7

Theorem 10. Any FTS+ can be translated into an fSMV.

Proof. Given an FTS+ (S, Act, trans, init, AP, L, d, γ), construct an fSMV
model (b, F) with b = (v, τ, a, ∅), where

(10.1) One variable of the fSMV, state, is used to encode all the states of the
FTS: τ(state) = S. Let d = (N, px), for every feature f ∈ N , the fSMV
will have a variable f with τ(f) = {0, 1}. Hence, v = {state} ∪N ;

(10.2) The initial value of the feature variables is 0, which remains constant. The
assignments related to the feature variables are thus aF = {(-, f, 0)|f ∈
N}. The initial value of the state variable is the initial state of the FTS+,
and its next value is derived from the transition relation of the FTS+.
The assignments related to the state variable are

as = {(init, state, init), (next, state, case case1 . . . casek esac;)}

where the casei are given by {state = s & γ(s α→ s′): s′; | s α→ s′ ∈ trans}.
The set of assignments is then a = aF ∪ as;

(10.3) Each feature imposes that its associated variable (which is part of the base
system) takes the value 1, i.e., F = {(∅, ∅, ∅, ∅, {(1, (-, f, 1))}, ∅)|f ∈ N}.

In consequence, composition of a base system with a set of features yields a
TS of which all transitions whose γ(s α→ s′) evaluates to 0 for the feature
variables have been removed. This corresponds exactly to projection as defined
in Definition 3. In order to limit the set of valid feature combinations to those
of [[d]], an additional constraint could be added to each casei in the definition
of the state variable: the Boolean function equivalent of the set [[d]]. (Another
solution would be to use the IVAR construct of NuSMV to add the Boolean
function equivalent of [[d]] as an invariant to the model.)

Note that Theorem 10 does not have to take parallel composition into ac-
count directly. Any parallel composition of two FTS+ is an FTS+ itself, and
can hence be translated into an fSMV. Theorem 10 also does not need process
contexts, meaning that it can be used for FTS+ without process contexts, too.

4 FTS+ model checking in NuSMV

As input, our implementation of FTS+ model checking in NuSMV uses an fSMV
model (i.e. a base system and a list of features) as well as one or more CTL prop-
erties.5 For each property it determines the products for which it is satisfied—
without resorting to an enumerative approach that model checks all possible
products individually.

The NuSMV extension and all other scripts discussed here are available at
the FTS website.6

5Properties expressed with the fCTL logic discussed in [5] can be used, too.
6http://www.info.fundp.ac.be/~acs/fts

8

http://www.info.fundp.ac.be/~acs/fts

4.1 Composition

To achieve this, features have to be encoded as part of the model. In order
to be able to reuse as much of the existing NuSMV machinery as possible, we
decided to encode features as part of the states. This is a slight derivation from
the symbolic encoding proposed in [5], where features are (as in pure FTS+)
encoded as part of the transition relation. Basically, each feature becomes a
Boolean state variable, that is non-deterministically initialised and whose value
never changes. Every change performed by a feature is guarded (at composition
time) by the corresponding feature variable.

All this is encapsulated by the composition operator. It differs from the
one discussed in the previous section in that the resulting NuSMV model has
information about which features it contains. For the example of the previous
section, the composition would result in the following NuSMV model.

MODULE features
VAR
fSleep: boolean;

ASSIGN
init(fSleep) := {0,1};
next(fSleep) := fSleep;

MODULE main
VAR
f: features;
request: boolean;
state: {ready, busy};
sleep: boolean;

ASSIGN
init(state) := ready;
next(state) := case f.fSleep = 1 & sleep = 1 & busy = 0: ready;

1: case state = ready & request = 1: busy;
1: {ready, busy};

esac;
esac;

First, a module containing all features (in this case, a single one) is added to the
system. To each feature corresponds one variable in this module, the variable
name being the feature name (with the first letter in uppercase) prefixed by the
letter f. The feature module is called features and is used in the main module
as a variable named f. A parameter called f is added to all other modules in
the model (not shown in the previous example), so that the feature module is
accessible inside the whole model. The feature variables can thus be referenced
in all modules.

These naming conventions allow us to easily distinguish feature variables
from ‘normal’ variables. All feature variables have the prefix f.f: the first f
identifies the variable of the main module that holds the feature module and

9

the second f is the one prefixed to every feature variable. We need to be able
to distinguish feature variables from the other variables when calculating the
products for which a certain property holds. An alternative to the naming
convention would have been to extend the NuSMV input language. We chose a
naming convention as this necessitates far less changes to the NuSMV codebase.

This composition operator is implemented in a PHP script compose.php.
The script reads the base system from standard input, takes the path to a
feature file in parameter, and writes a new NuSMV model to standard output.
The output can be piped to another composition call with a different feature.
The script implements the ‘basic’ composition as specified in Definition 7 as
well as our method described above, activated with the command line switch
-l. For the running example, the command line might look as follows.

php compose.php -l sleep.feat < base.smv > baseWithSleep.smv

4.2 Model checking

The output of the composition tool is a normal NuSMV model and can be
model checked directly by NuSMV. However, standard NuSMV model checking
does not fully exploit the feature encoding given in the previous section. Since
NuSMV executes the standard CTL model checking algorithm, it will report
false if it finds a counterexample. More precisely, it will return false if just
one of the products violates the property.

Basically, given a property φ, the algorithm will compute a Boolean function
χSat(φ)(s, p), where s (resp. p) is the Boolean encoding of some state (resp. some
product). χSat(φ) is true for all states and products that satisfy the property.
The normal model checking algorithm will just check whether there exists some
initial state for which χSat(φ)(s, p) is false. Unable to distinguish between
feature variables (belonging to p) and normal variables (belonging to s), the
test will existentially quantify over the feature variables which corresponds to
considering a single product only.

As discussed in [5], there is sufficient information to determine exactly which
products violate and which satisfy the property. The idea is to only quantify
χSat(φ) existentially over the variables that do not represent features. The result
is a Boolean function over the feature variables that represents exactly the
products for which the property holds.

This is what is done by our NuSMV extension. It adds a command line switch
-fbdd that, if set, performs the described calculation and prints the boolean
function into the normal NuSMV output. The extension itself is provided as a
patch for NuSMV 2.5.0.

5 Benchmarks

For benchmarking we used the elevator system by Plath and Ryan [12]. We
extended the SMV models provided with the original paper in two ways. First,
we made the number of floors (initially fixed at five) variable. For this, we had

10

to extended the NuSMV input syntax with quantifiers. These quantifiers are
implemented by a preprocessor in form of a PHP script. Secondly, we added
four more features to the system, giving a total of nine features. All features
are independent, which means that there are 29 products.

5.1 Elevator System

The elevator system is comprised of a number of platform buttons and a number
of cabin buttons. There is a single button on each platform, which calls the
elevator. The button press is modelled non-deterministically, and a pressed
button remains pressed until the elevator has served the floor and its doors
opened. The elevator will always serve all requests in its current direction
before it stops and changes direction. When serving a floor, the lift doors open
and close again. There are nine features that modify the behaviour of the lift.
Those marked with an asterisk were added by us.

Antiprank.* The lift buttons will not remain pushed until served. They have
to be held pushed by a person.

Empty. If the lift is empty, then all requests made in the cabin will be ignored.

Executive floor. One floor of the building has priority over the other floors
and will be served first.

Open if idle.* When idle, the lift opens its doors.

Overload The lift will refuse to close its doors when it is overloaded.

Park. When idle, the lift returns to the first floor.

Quick close.* The lift door cannot be kept open by holding the platform but-
ton pushed.

Shuttle.* The lift will only change direction at the first and last floor.

Two-thirds full. When the lift is two-thirds full, it will serve cabin calls before
platform calls.

To test the correctness of our approach we reduced the example to the five
features from [12] and managed to reproduce the feature interactions reported
in the original paper. Subsequently, we made some minor modifications to the
model to accommodate the additional features.

5.2 Methodology and Results

We ran a number of benchmarks on the elevator system, using properties of the
base system shown in Table 1. Each property was benchmarked individually.
The property numbers reported in the statistics refer to the numbers in Table 1,
also given to the properties in the NuSMV code. The benchmarks were run on
an Ubuntu machine with an Intel Core2 Duo at 2.80 GHz with 4 Gb of RAM.

The reported benchmarks compare (for each property)

11

Table 1: Benchmarked properties

ID Property
01 AG (landingBut2.pressed -> AF (lift.floor=2 & lift.door=open))
01’ !AG (landingBut2.pressed

-> AF (lift.floor=2 & lift.door=open & lift.direction=down))
02 AG (liftBut3.pressed -> AF (floor=3 & door=open))

03a AG (floor=2 & liftBut6.pressed & direction=up
-> A[direction=up U floor=6])

03b AG (floor=6 & liftBut1.pressed & direction=down
-> A[direction=down U floor=1])

04 !AG (door=closed -> AF door=open)
05a EF(floor=1 & idle & door=closed & AX(door=closed))
05b AG (floor=1 & idle & door=closed & AX(door=closed)

-> EG (floor=1 & door=closed))
05-part EF(AX(door=closed))

05c EF(floor=3 & idle & door=closed & AX(door=closed))
05d AG (floor=3 & idle & door=closed & AX(door=closed)

-> EG (floor=3 & door=closed))
05e EF (EG (door = closed))
05’ !AG(floor=4 & idle -> E [idle U floor=1])
06 !AG ((floor=3 & !liftBut3.pressed & direction=up) -> door=closed)
07 !AG ((floor=3 & !liftBut3.pressed & direction=down) -> door=closed)

• the runtime of a single NuSMV model check following our method (column
‘Single’ in the results tables);

• the total runtime of 29 model checks that enumerate all products explicitly
(column ‘Enumerative’ in the results tables).

The size of the NuSMV model of the product with all features ranges from
217 states for four floors, to 227 states for eight floors. These are the upper
bounds for the size of the models analysed in the enumerative benchmarks. As
explained earlier, our algorithm only needs one check, but requires an additional
variable for each feature. Its models are thus much larger, from 226 states to 236.
The models are distributed with the toolset and available at the FTS website.

An important factor in BDD based model checking is the variable order-
ing. In order to avoid computing static variable orderings and still be efficient,
NuSMV has the parameter -dynamic, which causes the BDD package to reorder
the variables during verification in case the BDD size grows beyond a certain
threshold. While this method works well on small to medium models (up to six
floors), its limitations become more and more apparent as the size of the mod-
els grows. For eight floors, NuSMV would spend more time reordering variables
than actually verifying the property.

In consequence, we computed variable orderings for each number of floors,

12

Table 2: Benchmark results for the elevator system with four floors.
Property Value Enumerative Single Speedup

01 false 17.84 0.14 127.43
01’ true 15.37 0.05 307.40
04 false 18.19 1.06 17.16
02 false 19.23 0.22 87.41
03a false 20.48 1.84 11.13
03b false 21.23 1.76 12.06
05a false 20.09 3.23 6.22
05b true 14.36 0.03 478.67
05-part true 16.47 0.06 274.50
05c false 19.94 1.86 10.72
05d true 14.68 0.03 489.33
05e false 18.3 1.06 17.26
05’ false 19.89 1.62 12.28
06 true 18.89 1.2 15.74
07 true 19.27 2.57 7.50

Table 3: Benchmark results for the elevator system with five floors.
Property Value Enumerative Single Speedup

01 false 29.38 0.44 66.77
01’ true 24.76 0.09 275.11
04 false 34.02 4.62 7.36
02 false 33.16 0.82 40.44
03a false 37.98 6.3 6.03
03b false 39.43 6.32 6.24
05a false 39.77 13.99 2.84
05b true 22.7 0.03 756.67
05-part true 29.25 0.16 182.81
05c false 35.52 8.66 4.10
05d true 23.44 0.04 586.00
05e false 34.09 4.63 7.36
05’ false 40.21 8.14 4.94
06 true 34.55 4.56 7.58
07 true 35.9 7.57 4.74

13

Table 4: Benchmark results for the elevator system with six floors.
Property Value Enumerative Single Speedup

01 false 44 1.05 41.90
01’ true 34.02 0.13 261.69
04 false 67.76 18.44 3.67
02 false 52.36 1.87 28.00
03a false 76.67 22.42 3.42
03b false 77.98 27.21 2.87
05a false 105.07 322.53 0.33
05b true 30.67 0.04 766.75
05-part true 54.63 0.32 170.72
05c false 88.63 78.36 1.13
05d true 30.93 0.05 618.60
05e false 67.45 18.39 3.67
05’ false 131.78 63.61 2.07
06 true 68.36 20.42 3.35
07 true 73.06 36.89 1.98

Table 5: Benchmark results for the elevator system with seven floors.
Property Value Enumerative Single Speedup

01 false 66.89 3.45 19.39
01’ true 44.34 0.17 260.82
04 false 214.75 109.67 1.96
02 false 86.98 5.58 15.59
03a false 160.43 51.35 3.12
03b false 169.91 66.45 2.56
05a false 487.98 571.69 0.85
05b true 38.39 0.04 959.75
05-part true 114.38 0.55 207.96
05c false 269.19 257.98 1.04
05d true 38.62 0.06 643.67
05e false 214.13 112.79 1.90
05’ false 568.56 241.53 2.35
06 true 142.42 48.37 2.94
07 true 160.3 128.84 1.24

14

Table 6: Benchmark results for the elevator system with eight floors.
Property Value Enumerative Single Speedup

01 false 99.14 4.96 19.99
01’ true 62.71 0.15 418.07
04 false 337.47 414.32 0.81
02 false 139.58 6.06 23.03
03a false 312.05 57.65 5.41
03b false 332.49 81.35 4.09
05a false 2180.58 2232.39 0.98
05b true 51.26 0.04 1281.50
05-part true 211.63 0.48 440.90
05c false 851.58 899.2 0.95
05d true 52.27 0.07 746.71
05e false 337.81 407.84 0.83
05’ false 2441.67 887.8 2.75
06 true 263.68 102.39 2.58
07 true 325.31 439.25 0.74

4 AG (landingBut2.pressed -> AF (lift.floor=2 & lift.door=open))
4 !AG (landingBut2.pressed -> AF (lift.floor=2 & lift.door=open & lift.direction=down))
4 !AG (door=closed -> AF door=open)
4 AG (liftBut3.pressed -> AF (floor=3 & door=open))
4 AG (floor=2 & liftBut4.pressed & direction=up -> A[direction=up U floor=4])
4 AG (floor=4 & liftBut1.pressed & direction=down -> A[direction=down U floor=1])
4 EF(floor=1 & idle & door=closed & AX(door=closed))
4 AG (floor=1 & idle & door=closed & AX(door=closed) -> EG (floor=1 & door=closed))
4 EF(AX(door=closed))
4 EF(floor=3 & idle & door=closed & AX(door=closed))
4 AG (floor=3 & idle & door=closed & AX(door=closed) -> EG (floor=3 & door=closed))
4 EF (EG (door = closed))
4 !AG(floor=4 & idle -> E [idle U floor=1])
4 !AG ((floor=3 & !liftBut3.pressed & direction=up) -> door=closed)
4 !AG ((floor=3 & !liftBut3.pressed & direction=down) -> door=closed)

5 AG (landingBut2.pressed -> AF (lift.floor=2 & lift.door=open))
5 !AG (landingBut2.pressed -> AF (lift.floor=2 & lift.door=open & lift.direction=down))
5 !AG (door=closed -> AF door=open)
5 AG (liftBut3.pressed -> AF (floor=3 & door=open))
5 AG (floor=2 & liftBut5.pressed & direction=up -> A[direction=up U floor=5])
5 AG (floor=5 & liftBut1.pressed & direction=down -> A[direction=down U floor=1])
5 EF(floor=1 & idle & door=closed & AX(door=closed))
5 AG (floor=1 & idle & door=closed & AX(door=closed) -> EG (floor=1 & door=closed))
5 EF(AX(door=closed))
5 EF(floor=3 & idle & door=closed & AX(door=closed))
5 AG (floor=3 & idle & door=closed & AX(door=closed) -> EG (floor=3 & door=closed))
5 EF (EG (door = closed))
5 !AG(floor=4 & idle -> E [idle U floor=1])
5 !AG ((floor=3 & !liftBut3.pressed & direction=up) -> door=closed)
5 !AG ((floor=3 & !liftBut3.pressed & direction=down) -> door=closed)

6 AG (landingBut2.pressed -> AF (lift.floor=2 & lift.door=open))
6 !AG (landingBut2.pressed -> AF (lift.floor=2 & lift.door=open & lift.direction=down))
6 !AG (door=closed -> AF door=open)
6 AG (liftBut3.pressed -> AF (floor=3 & door=open))
6 AG (floor=2 & liftBut6.pressed & direction=up -> A[direction=up U floor=6])
6 AG (floor=6 & liftBut1.pressed & direction=down -> A[direction=down U floor=1])
6 EF(floor=1 & idle & door=closed & AX(door=closed))
6 AG (floor=1 & idle & door=closed & AX(door=closed) -> EG (floor=1 & door=closed))
6 EF(AX(door=closed))
6 EF(floor=3 & idle & door=closed & AX(door=closed))
6 AG (floor=3 & idle & door=closed & AX(door=closed) -> EG (floor=3 & door=closed))
6 EF (EG (door = closed))
6 !AG(floor=4 & idle -> E [idle U floor=1])
6 !AG ((floor=3 & !liftBut3.pressed & direction=up) -> door=closed)
6 !AG ((floor=3 & !liftBut3.pressed & direction=down) -> door=closed)

7 AG (landingBut2.pressed -> AF (lift.floor=2 & lift.door=open))
7 !AG (landingBut2.pressed -> AF (lift.floor=2 & lift.door=open & lift.direction=down))
7 !AG (door=closed -> AF door=open)

0.10

1.00

10.00

100.00

1000.00

10000.00

4 5 6 7 8

Number of floors

S
pe

ed
up

 (l
og

ar
ith

m
ic

 s
ca

le
)

01

01'
04

02

03a

03b
05a

05b

05-part

05c
05d

05e

05'

06
07

Figure 1: Evolution of speedup with the number of floors (logarithmic scale).

15

and used these in all subsequent benchmarks. The model checks of the single
approach were run with parameters -df -i orderfile. Those of the enumer-
ative approach were run with -df -dynamic. It is important to note that the
variable orderings computed for the single approach cannot be reused for the
enumerative case. This is due to the fact that the enumerative approach pro-
duces 29 models with different sets of variables, which would require 29 variable
orderings for each level. However, due to the absence of the nine feature vari-
ables, the individual models of the enumerative cases are much smaller than the
single model in the single case. Therefore, the dynamic variable ordering, while
being the only option, should still be rather efficient for the enumerative case.

Results of these benchmarks are shown in Tables 2, 3, 4, 5 and 6.
The results show that our approach achieves order-of-magnitude speedups

over the enumerative approach. More precisely, we observed that our approach
is on average 130 times faster than the enumerative one. These observations
are reported for each property in Figure 1, where we show how speedup evolves
when the number of floors grows. Three clusters appear: four high outliers, with
speedups greater than 250 and up to 1000; five low outliers with speedups below
two or three and sometimes negative; and six stable properties with speedups
around ten. A trend that we observed is that with an increasing number of
levels, the outliers tend to become more extreme (the high speedups grow, the
low speedups descend). We believe that this reflects the importance of the static
variable ordering for large models.

In order to limit bias, we went to great lengths to ensure that the enumerative
benchmarks were as efficient as possible. For instance, the computation of the
29 feature compositions (to create the files that were model checked) for each
property was not included in the runtime. Furthermore, the large volume of log
files from these runs was cleaned after each run since it would slow down model
checking after several runs (because of huge inode lists in the parent folder).

Acknowledgements

We are grateful to Marco Roveri from FBK (Trento) who was of great help for
implementing the NuSMV extensions, and who helped us with static variable
orderings and seemingly arbitrary runtimes of NuSMV. Thanks also go to Nico-
las Maquet and Jean-François Raskin from ULB (Brussels) who got us started
with the NuSMV hacking in the initial version of the tool.

References

[1] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2007.

[2] R. Cavada, A. Cimatti, G. Keighren, E. Olivetti, M. Pistore, and M. Roveri.
NuSMV 2.2 Tutorial.

[3] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

16

[4] A. Classen. Modelling with FTS: a collection of illustrative examples. Tech-
nical Report P-CS-TR SPLMC-00000001, PReCISE Research Center, Uni-
versity of Namur, 2010. Available online.

[5] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay. Symbolic model
checking of software product lines. Submitted for review to the Interna-
tional Conference on Software Engineering, August 2010.

[6] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin.
Model checking lots of systems: Efficient verification of temporal proper-
ties in software product lines. In ICSE 32, pages 335–344. ACM, 2010.
Acceptance rate: 13.7

[7] A. Classen, P. Heymans, T. T. Tun, and B. Nuseibeh. Towards safer com-
position. In ICSE 31, Companion Volume, pages 227–230. IEEE, 2009.

[8] P. C. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. SEI Series in Software Engineering. Addison-Wesley, August
2001.

[9] N. Francez and I. Forman. Superimposition for inter- acting processes. In
Concur’90, pages 230–245, 1990.

[10] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-oriented
domain analysis (FODA) feasibility study. Technical Report CMU/SEI-90-
TR-21, SEI, CMU, November 1990.

[11] K. McMillan. Symbolic Model Checking. Kluwer, 1993.

[12] M. Plath and M. Ryan. Feature integration using a feature construct. Sci.
Comput. Program., 41(1):53–84, 2001.

[13] M. Plath and M. D. Ryan. The feature construct for smv: Semantics. In
FIW VI, pages 129–144. IOS Press, 2000.

[14] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps. Feature
Diagrams: A Survey and A Formal Semantics. In RE’06, pages 139–148,
2006.

17

	Introduction
	Background
	Input Language
	Language overview
	From fSMV to FTS+

	FTS+ model checking in NuSMV
	Composition
	Model checking

	Benchmarks
	Elevator System
	Methodology and Results

