
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Supporting Multiple Perspectives in Feature-based Configuration: Foundations

Hubaux, Arnaud; Heymans, Patrick; Schobbens, Pierre-Yves

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Hubaux, A, Heymans, P & Schobbens, P-Y 2010, Supporting Multiple Perspectives in Feature-based
Configuration: Foundations..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/326262899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/supporting-multiple-perspectives-in-featurebased-configuration-foundations(fc50dbaf-3148-4b12-9364-48b99648bf09).html

PReCISE – FUNDP
University of Namur
Rue Grandgagnage, 21
B-5000 Namur
Belgium

TECHNICAL REPORT March 14, 2010

AUTHORS A. Hubaux, P. Heymans, P.-Y. Schobbens
APPROVED BY P. Heymans

EMAILS ahu@info.fundp.ac.be
STATUS Draft version

REFERENCE P-CS-TR MPFD-000001
PROJECT MoVES
FUNDING Interuniversity Attraction Poles Programme of the Belgian

State, Belgian Science Policy

Supporting Multiple Perspectives in Feature-based
Configuration: Foundations

Copyright c© University of Namur. All rights reserved.

A. Hubaux, P. Heymans, P.-Y. Schobbens DRAFT VERSION

Supporting Multiple Perspectives in Feature-based
Configuration: Foundations

Arnaud Hubaux, Patrick Heymans, Pierre-Yves Schobbens

PReCISE Research Centre,
Faculty of Computer Science,

University of Namur
5000 Namur, Belgium

{ahu, phe, pys}@info.fundp.ac.be

Abstract. [Context & motivation] Feature diagrams have become common-
place in software product line engineering as a means to document variability
early in the lifecycle. Over the years, their application span has also been ex-
tended to assist stakeholders in the configuration of software products. [Ques-
tion/problem] However, existing feature-based configuration techniques offer
little support for tayloring configuration views to the profiles of the various stake-
holders. [Principal ideas/results] In this paper, we propose a lightweight, yet for-
mal and flexible, mechanism to leverage multidimensional separation of concerns
in feature-based configuration. [Contribution] We propose a technique to spec-
ify concerns in feature diagrams and to generate automatically concern-specific
configuration views. Three alternative visualisations are proposed. Our contribu-
tions are motivated and illustrated through excerpts of a real web-based meeting
management application which was also used for a preliminary evaluation.

1 Introduction

An increasing number of software developments adopt the paradigm of software prod-
uct line engineering (SPLE) [1]. The goal of SPLE is to rationalise the development of
families of similar software products. A key idea is to institutionalise reuse throughout
the development process to obtain economies of scale.

SPLE is becoming increasingly widespread in industry, but is also a very active
research area at the crossroads between many software development related disciplines.
An important research topic in SPLE is feature diagrams (FDs) [2, 3]. FDs are a simple
visual formalism whose main purpose is to document variability in terms of features,
i.e. high-level descriptions of the capabilities of reusable artefacts. The main concepts
of the language are features (represented as labelled nodes) and relationships between
features (edges). The language is described more accurately in Section 2. An example
of FD is given in Figure 1.

FDs have been given a formal semantics [3] which opened the way for safe and
efficient automation of various, otherwise error-prone and tedious, tasks such as consis-
tency checking, FD merging, product counting, etc. A repertoire of such automations
can be found in [4]. The kind of automation that we focus on in this paper is feature-
based configuration (FBC). FBC is an interactive process during which one or more

2 DO NOT CIRCULATE P-CS-TR FDL-000001

Supporting Multiple Perspectives in Feature-based Configuration: Foundations DRAFT VERSION

stakeholders select and discard features for a specific product being built. FBC is one
of the principal means to elicit product requirements in SPLE. In real projects, there
can be thousands of features whose legal combinations are governed by many and often
complex rules [5]. It is thus of crucial importance to be able to simplify and automate
the decision-making process as much as possible.

Currently, FBC techniques and tools facilitate the work of stakeholders in various
ways, including:

– ensuring that, at each configuration step, only legal and consistent decisions are
made [5, 6];

– propagating the decisions made so that stakeholders are only required to answer
those questions that necessitate human intervention (the answers to the other ques-
tions are inferred automatically) [5];

– suggesting default values, e.g., based on statistics of previous configurations [7];
– ordering the configuration in different phases so as to reflect the adopted decision-

making process [8–10];
– offering various kinds of visualisations of the FD [11].

Two challenges that FBC techniques fail to address in a satisfactory way are (1) tai-
loring the configuration environment according to the stakeholder’s profile (knowledge,
role, preferences. . .) and (2) managing the complexity resulting from the size of the FD.

In this paper, our objective is to address those two challenges. We do so by extending
FDs with multiple views. We propose an approach to formally define views on a FD
and, based on this, transformations to automatically generate FD visualisations in FBC
environments. A view is a simplified representation of a FD that has been tailored for
a specific stakeholder, role, task, or, to generalize, a particular combination of these
elements, which we call a concern. Views facilitate configuration in that they only focus
on those parts of the FD that are relevant for a given concern. Using multiple views is
thus a way to achieve separation of concerns (SoC) in FDs. SoC helps making FD-
related tasks less complex by letting stakeholders concentrate on the parts of the FD
that are relevant to them and hiding the others. Further tailoring of the visualisations is
provided by letting FBC users choose among three visualisation options: (1) “greyed
out”, (2) “pruned” and (3) “collapsed”. In this paper, we define a technique to specify,
and then automatically generate such views.

In the rest of this paper, we elaborate on these ideas. Section 2 introduces the basics
of FDs. Section 3 gives an overview of PloneMeeting, the motivating example that is
used throughout the paper. Section 4 presents our contribution by defining formally
how views are built and visualised. A preliminary theoretical and empirical evaluation
is reported in Section 5. Section 6 examines related work.

2 Background: Feature Diagrams

Schobbens et al. [3] defined a generic formal semantics for a wide range of FD di-
alects, which we exploit in this paper. The full details of the formalisation cannot be
reproduced here, only the basics. In essence, a FD d is a tuple (N, r, λ,DE,Φ) where
N denotes the set of features, r denotes the root of the FD, ∀n ∈ N • λ(n) returns the

P-CS-TR MPFD-000001 DO NOT CIRCULATE 3

A. Hubaux, P. Heymans, P.-Y. Schobbens DRAFT VERSION

cardinality 〈i..j〉 of the decomposition of nwhere i (resp. j) is the minimum (resp. max-
imum) number of children required in a product that contains n. For convenience, com-
mon cardinalities are denoted by Boolean operators, as shown in Table 1.DE ⊆ N×N
is the decomposition relation which forms a tree. All configuration constraints that are
not captured by λ and DE are called “extra constraints” and, in the formalisation, are
the conjuncts of the Boolean formula Φ.

Table 1. FD decomposition operators.

Concrete
syntax

Boolean
operator and: ⋀

Cardinality ⟨n..n⟩

or: ⋁

⟨1..n⟩

xor: ⨁

⟨1..1⟩ ⟨i..j⟩

f

g
h

 f

g h

non standard

f

g
h

 f

g h

f

g
h

 f

g h
X X

f

g
h

 f

g h
⟨i..j⟩ ⟨i..j⟩

f

g
h

 f

g h

optional

⟨0..1⟩

Classical File
explorer Classical File

explorer Classical File
explorer Classical File

explorer Classical File
explorer

This abstract syntax is typically rendered through one of two visual (concrete) syn-
taxes. The most common is a tree-shaped graph which we call the “classical” concrete
syntax. However, in this paper, we use an alternative visual syntax: the “file explorer”
syntax. Both syntaxes are recalled in Table 1. The file explorer syntax is often preferred
in FBC [12, 5] (1) because of the abundance of APIs that implement it, (2) because of
its scalability (width grows very slowly with the number of features and complexity can
be managed through “collapse and expand”), and (3) because many APIs allow to adorn
items with tick boxes, which are a convenient way of recording configuration choices.

A <equals> Enable voting
D.Yes <requires> A.Yes
D.No <requires> A.No
D.Abstention <requires> A.Abstention

Votes (V)

Enable voting (E)
Available vote values (A)

Yes (Y)
No (O)

Default vote value (D)

Yes (DY)
No (DO)

X

Abstention (B)

Abstention (DB)

Extra constraints

Available vote values = A
Default vote values = D

Abbreviations

Fig. 1. Voting-related features of the meeting manager in “file explorer” FD syntax.

A FD in the file explorer syntax is shown in Figure 1. It is an excerpt from our
motivating example (see Section 3). It describes the variability of the voting component
of a meeting management SPL. In abstract form, the FD of Figure 1 translates to:

N = {V,E, Ė, A, Ȧ, Y,O,B,D, Ḋ,DY,DO,DB}; r = V ;

DE = {(V,E), (V,A), (A, Y), ...} ; λ(V) = 〈3..3〉 ;λ(E) = 〈0..0〉 ;λ(A) = 〈1..3〉 ; . . .
Φ = (A⇔ E) ∧ (DY ⇒ Y) ∧ (DO ⇒ O) ∧ (DB ⇒ B)

4 DO NOT CIRCULATE P-CS-TR FDL-000001

Supporting Multiple Perspectives in Feature-based Configuration: Foundations DRAFT VERSION

Feature Ė, Ȧ and Ḋ are generated automatically to encode optionality (features
adorned with small hollow circles in the concrete syntax). They all have 〈0..1〉 multi-
plicities, i.e. λ(Ė) = λ(Ȧ) = λ(Ḋ) = 〈0..1〉. This is a purely technical trick in the
translation from concrete to abstract syntax. It has no incidence on the user notation.

The semantics of a FD d, also formalised in [3], is noted [[d]] and is the set of valid
feature combinations (aka products, aka configurations). Hence [[d]] ⊂ P(N). For ex-
ample, the semantics of the FD in Figure 1 contains 20 products, part of which are listed
below1:

{{V }, {V,E,A, Y,O,D,DY }, {V,E,A, Y,O,B}, {V,E,A, Y,O,B,D,DB}, ...}

Details, benefits, limitations and applications of the above semantics are discussed
extensively in [3]. We will rely on it in the remainder of this paper. But first, we explain
the motivations of our work based on the problems we encountered on a real project.

3 Motivating example

PloneGov2 is an international Open Source (OS) initiative coordinating the develop-
ment of secure, collaborative and evolutive eGovernment web applications. PloneGov
gathers hundreds of public organizations worldwide. This context yields significant di-
versity, which is the source of ubiquitous variability in the applications.

Our collaboration with PloneGov developers aims at addressing those variability
management challenges [13–15]. We focused on PloneMeeting, PloneGov’s meeting
management project. Meeting management typically follows a three-step process: (1)
meeting items, i.e. points to be discussed, are created and validated; (2) a meeting is cre-
ated and existing meeting items are put on its agenda; (3) after publication, the meeting
takes place and the decisions made on items are archived. In PloneMeeting, each item
and meeting has its own statemachine, reflecting the management workflow. A typical
workflow contains states like “Created”, “Closed” or “Archived”. The states and tran-
sitions of the workflow are selected and possibly customised during the installation of
PloneMeeting to be compliant with local policies.

PloneMeeting handles three different stakeholder profiles. The web administrator is
a Plone expert in charge of the installation, maintenance and update of the PloneMeeting
instance. The PloneMeeting manager is responsible for the base configuration of the
website, including meeting workflow definition. The users directly exploit the meeting
management functionalities as participants, meeting managers, observers, etc.

PloneMeeting is currently being re-engineered. A major challenge is to extend its
flexibility through systematic variability management so as to progressively turn it into
a SPL. We collaborated with the developers in designing a FD representing the con-
figuration options of PloneMeeting. A sample of this FD 3 is presented in Figure 2. It

1 “Dummy” features introduced to encode optionality are automatically filtered out by the se-
mantic function.

2 http://www.plonegov.org/
3 Re-engineered from PloneMeeting version 1.7 build 564.

P-CS-TR MPFD-000001 DO NOT CIRCULATE 5

A. Hubaux, P. Heymans, P.-Y. Schobbens DRAFT VERSION

essentially deals with the concepts introduced above, plus additional features related to
task management and voting capabilities. The extra constraints appear in the lower right
corner. The coloured areas should be ignored for now.

A major problem is that access requirements to these configuration options were not
clearly defined and FDs offer no way to do so. This lead to significant problems with
the applications. In the absence of clear access specifications, a coarse-grained policy
has been implemented: the web administrator and the PloneMeeting manager have both
access to all configuration options, while the users get access to none. A reported conse-
quence is that sometimes the PloneMeeting manager does not have sufficient knowledge
to fully understand the options and make decisions. The results were incorrect settings
of interfaces to external macros and runtime changes of meeting workflows that lead to
inconsistent meeting states. Additionally, users are denied any tailoring of their working
environment, e.g. default layouts or choosing how to display states.

The changing context also demands flexible definitions of access policies. For in-
stance, there can be variations in the access rights (e.g. the PloneMeeting manager
cannot control workflows) or stakeholder profiles (e.g. a Task Manager is needed to
configure the task portlet).

This situation provided the initial motivation for the solution presented in this paper.
However, as we will see, the solution is applicable to a wider variety of problems than
the sole definition of configuration access rights. Its ambition is to extend FDs with
support for multiple perspectives.

4 Multi-view Feature Diagrams

4.1 Basic definitions

Solving the problem described in the previous section requires being able to specify
which parts of the FD are configurable by whom. This can be achieved easily by aug-
menting the FD with a set V of views, each of which consists of a set of features.
Formally, a multiview FD is a tuple (N, r, λ,DE,Φ, V) where V = {v1, v2, . . . , vn} is
the set of views and ∀vi ∈ V • vi ⊆ N . A view can be defined for any profile or, more
generally, for any concern that requires only partial knowledge of the FD.

4.2 View specification

There are essentially two ways of specifying views. The most obvious is to enumerate,
for each view, the features that appear in it, or equivalently, to tag each feature of the
FD with the names of the views it belongs too. These are extensional definitions, which
might be very time-consuming and error-prone for large FDs without proper tool sup-
port. A natural alternative is thus to provide a language for intensional definitions of
views that takes advantage of the FD’s tree structure to avoid lengthy enumerations. To
avoid reinventing the wheel, we identified a simple subset of XPath (see Table 2) to fit
the purpose.4 An application to our motivating example is presented in Section 5.

4 For a formal definition, see http://www.w3.org/TR/xpath

6 DO NOT CIRCULATE P-CS-TR FDL-000001

Supporting Multiple Perspectives in Feature-based Configuration: Foundations DRAFT VERSION

Web
administrator

User

PloneMeeting
manager

Meeting Config

General

Title
Assembly members

Institution ID
Data

Meeting attributes

Start time
End time
Attendees
Place

Use groups as categories

Item insertion algorithm

At the end
Category order
Proposing group order

Workflow and security

Meeting workflow

Standard workflow
Collège workflow
Archive workflow

Zope 3 condition interface
Zope 3 action interface

User interface

Meeting display states

Archived
Created
Decided
Closed
Published

Default view

My items
All items
Available meetings
Decided meetings

Item duplication
Open annexes in separate window

Email notification
Tasks

Display macro

Task creator

Manager
Meeting manager
Owner

Votes

Enable voting
Vote encoder

Meeting manager
Voter

Available vote values

Yes
No

Default vote value

Yes
No

X

X

X

X

Abstention

Abstention

Task creator <requires> Display macro
Vote encoder <requires> Enable voting
A <equals> Enable voting
D.Yes <requires> A.Yes
D.No <requires> A.No
D.Abstention <requires> A.Abstention

Extra constraints

Available vote values = A
Default vote values = D

Abbreviations

Fig. 2. Excerpt of PloneMeeting’s FD. Coloured areas represent the stakeholders’ concerns.

P-CS-TR MPFD-000001 DO NOT CIRCULATE 7

A. Hubaux, P. Heymans, P.-Y. Schobbens DRAFT VERSION

Table 2. View query language

Path expression Meaning

* Select all the children of the current node (wildcard).
nodename Select all the children with name nodename of the current node.
/nodename Select the root node if it matches the name.
nodename1/nodename2 Select all the children with name nodename2 of node nodename1.
//nodename Select all the elements with name nodename, no matter where they appear.
nodename1//nodename2 Select all the descendants with name nodename2 of node nodename1.
path expr1 | path expr2 Select all the nodes matching path expr1 and path expr2.

In practice, extensional and intensional definitions can be used together. However,
for the formal developments, we are only interested in the features composing each
view. Therefore, we will abstract from the approach chosen to specify views. Also, as a
general policy, we consider that the root is part of each view, i.e. ∀vi ∈ V • r ∈ vi.

4.3 View coverage

An important property to be guaranteed by a FBC system is that all configuration ques-
tions be eventually answered [9], i.e. that a decision be made for each feature of the FD.
In our multi-view context, it is tempting to enforce this condition by imposing that⋃

v∈V
v = N

This is indeed a sufficient condition, but this is not necessary since some decisions can
usually be deduced from others. In Figure 2 for instance, in the web administrator’s
view, if the feature Display macro is selected, its ancestor Tasks will be too, although
the latter does not belong to the view.

A necessary and sufficient condition can be defined using the notion of propositional
defineability [16]. We need to ensure that the decisions on the features that do not appear
in any view can be inferred from (are propositionally defined by) the decisions made on
the features that are part of the view. Formally,

∀f /∈
⋃
v∈V

v • defines(
⋃
v∈V

v , f)

To evaluate defines, it suffices to translate the FD into an equivalent propositional
formula (which is done in linear time [17]) and apply the algorithm described in [16].
This check is co-NP complete, but this is only a theoretical result (e.g. FD satisfiability
is NP complete in theory but appears to be doable in practice [5]).

Features inN \
⋃
v∈V v that do not satisfy the above condition will have to be added

to existing views or new views will have to be created to configure them.

4.4 View interactions

Another important property of FBC is that it should always lead to valid configura-
tions [9]. In our case, doing the configuration through multiple views is not a problem

8 DO NOT CIRCULATE P-CS-TR FDL-000001

Supporting Multiple Perspectives in Feature-based Configuration: Foundations DRAFT VERSION

per se. This is because, although stakeholders only have partial views, the FBC system
knows the whole FD and is thus capable of propagating the choices made in one view
to the others. However, problems can arise when features belong to more than one view
or, more generally, when the selection of a feature in one view depends on the selection
of another feature in another view. If overriding of decisions across views is allowed,
this is not yet a problem. If not, or if overriding has to be restricted in some way, we
must introduce some form of conflict resolution.

This is a complex issue for which various strategies can be elaborated. One is to
introduce priorities on views [18]. Another one is to constrain the order in which views
are configured [10]. These proposals appeared in related work and are compared in
Section 6. They are not further discussed here since the scope of this paper is specifying
and visualising multiple perspectives on a FD.

4.5 Visualisation

Views are abstract entities. To be effectively used during FBC, they need to be made
concrete, i.e. visual. Henceforth, a visual representation of a view will be called a vi-
sualisation. The goal of a visualisation is to strike a balance between (1) showing only
features that belong to a concern and (2) including features that are not in the the con-
cern but that allow the user to make informed decisions. For instance, the Display macro
feature is in the view of the web administrator, but its parent feature Tasks is not: How
will that influence the decision making process? To tackle his problem, we see three
visualisation alternatives with different levels of details. They are depicted in Figure 3.

X

V
E
A

Y
O
B

DY
DO
DB

D

v1

X

V
E
A

Y
O
B

DY
DO
DB

D

V
E
A

Y

DY

D

V
E
Y

DY

D

Greyed Pruned Collapsed

O

O⟨0..2⟩

⟨3..3⟩ ⟨3..3⟩ ⟨2..4⟩

Fig. 3. Three alternative visualisations of FD views: greyed, pruned and collapsed.

The greyed visualisation is a mere copy of the original FD in which the features
that do not belong to the view are greyed out (e.g. A, B, DO and DB). Greyed out
features are only displayed but cannot be manually selected/deselected. In the pruned
visualisation, features that are not in the view are pruned (e.g. B, DO and DB) unless
they appear on a path between a feature in the view and the root, in which case they are
greyed out (e.g. A)5. In the collapsed visualisation, all the features that do not belong

5 Abstractly, when an optional feature is pruned, so is its parent “dummy” feature.

P-CS-TR MPFD-000001 DO NOT CIRCULATE 9

A. Hubaux, P. Heymans, P.-Y. Schobbens DRAFT VERSION

to the view are pruned. A feature in the view whose parent or ancestors are pruned is
connected to the closest ancestor that is still in the view. If no ancestor is in the view,
the feature is directly connected to the root (e.g. Y and O).

To implement these transformations and prove their correctness we need to formal-
ize them. The visualisation of a view v implies the transformation of the original FD
into a new FD such that dtv = (N t

v, r, λ
t
v, DE

t
v, Φ), where t, the type of visualisation,

can take one of three values: g (greyed), p (pruned) and c (collapsed).
The simplest case is the one of the greyed visualisation, since there is no transfor-

mation (i.e. dgv = d) beyond the greying of each feature f 6∈ v. The transformations for
the pruned and collapsed visualisations are given in Table 3. Basically, they filter nodes,
remove dangling decomposition edges and adapt the cardinalities accordingly6.

Table 3. Transformations of pruned and collapsed for a given view v.

Pruned

Np
v = {n ∈ N |n ∈ v ∨ ∃f ∈ v • (n, f) ∈ DE+}

DEpv = {DE ∩ (Np
v ×Np

v)}
λpv(f) = (mincardpv(f),maxcardpv(f))

Collapsed

Nc
v = v

DEcv = {(f, g)|f, g ∈ v ∧ (f, g) ∈ DE+ ∧ @f ′ ∈ v • ((f, f ′) ∈ DE+ ∧ (f ′, g) ∈ DE+)}
λcv(f) = (mincardcv(f),maxcardcv(f))

Pruned. Np
v , the set of features in this visualisation, is the subset of N limited to

features that are in v or have a descendant in v. The definition uses DE+, the transitive
closure of DE. Based on Np

v , we remove all dangling edges, i.e. those not in Np
v ×Np

v
to create DEpv . To compute the new cardinalities λpv(f), we define mincardpv(f) and
maxcardpv(f) as follows:

mincardpv(f) = max(0, λ(f).min− |orphanspv(f)|)
maxcardpv(f) = min(λ(f).max, |children(f)| − |orphanspv(f)|)

where orphanspv(f) = children(f)\Np
v i.e., the set of children of f that are not inNp

v .
λ(f).min and λ(f).max represent the minimum and maximum values of the original
cardinality, respectively. For the minimum, the difference between the cardinality and
the number of orphans can be negative in some cases, hence the necessity of take the
maximum between this value and 0. The maximum value is the maximum cardinality
of f in d if the number of children in v is greater. If not, the maximum cardinality is set
to the number of children that are in v.

Collapsed. The set of features N c
v of this visualisation is simply the set of features

in v. The consequence on DEcv is that some features have to be connected to their
closest ancestor if their parent is not part of the view.

6 We leave extra constraints untouched because they are usually not displayed in FBC systems.

10 DO NOT CIRCULATE P-CS-TR FDL-000001

Supporting Multiple Perspectives in Feature-based Configuration: Foundations DRAFT VERSION

The computation of cardinalities λcv(f) is slightly more complicated than in the
pruned case. Formally, mincardcv(f) and maxcardcv(f) are defined as follows:

mincardcv(f) =
P
minλ(f).min(ms mincv(f))

maxcardcv(f) =
P
maxλ(f).max(ms max

c
v(f))

where

ms mincv(f) = {mincardcv(g)|g ∈ orphanscv(f)}] {1|g ∈ children(f) \ orphanscv(f)}
ms maxcv(f) = {maxcardcv(g)|g ∈ orphanscv(f)}] {1|g ∈ children(f) \ orphanscv(f)}

The multisets ms mincv(f) and ms maxcv(f) collect the cardinalities of the descen-
dants of f . The left part of the union recursively collects the cardinalities of the col-
lapsed descendants whereas the right side adds 1 for each child that is in the view. The
indexes λ(f).min and λ(f).max of the min and max operators determine the num-
ber of minimum and maximum values to select, respectively. The λ(f).min minimum
values of the multiset are then summed to obtain the minimum cardinality of f . The
maximum value is computed similarly.

Table 4. Results of the computation of the transformations on Figure 4.5.

Greyed Pruned Collapsed
Ng

v1
DEg

v1
λg

v1
Np

v1
DEp

v1
λp

v1
Nc

v1
DEc

v1
λc

v1

{ V,
Ė,
E,
Ȧ,
A,
Y,
O,
B,
Ḋ,
D,
DY,
DO,
DB
}

{ (V, Ė),

(Ė,E),

(V, Ȧ),

(Ȧ,A),
(A, Y),
(A,O),
(A,B),

(V, Ḋ),

(Ḋ,D),
(D,DY),
(D,DO),
(D,DB)
}

λg
v1

(V) = 〈3..3〉,
λg
v1

(Ė) = 〈0..1〉,
λg

v1
(E) = 〈0..0〉,

λg
v1

(Ȧ) = 〈0..1〉,
λg

v1
(A) = 〈1..3〉,

λg
v1

(Y) = 〈0..0〉,
λg

v1
(O) = 〈0..0〉,

λg
v1

(B) = 〈0..0〉,
λg
v1

(Ḋ) = 〈0..1〉,
λg

v1
(D) = 〈1..1〉,

λg
v1

(DY) = 〈0..0〉,
λg

v1
(DO) = 〈0..0〉,

λg
v1

(DB) = 〈0..0〉

{ V,
Ė,
E,
Ȧ,
A,
Y,
O,
Ḋ,
D,
DY
}

{ (V, Ė),

(Ė,E),

(V, Ȧ),

(Ȧ,A),
(A, Y),
(A,O),

(V, Ḋ),

(Ḋ,D),
(D,DY)
}

λp
v1

(V) = 〈3..3〉,
λp
v1

(Ė) = 〈0..1〉,
λp

v1
(E) = 〈0..0〉,

λp
v1

(Ȧ) = 〈0..1〉,
λp

v1
(A) = 〈0..2〉,

λp
v1

(Y) = 〈0..0〉,
λp

v1
(O) = 〈0..0〉,

λp
v1

(Ḋ) = 〈0..1〉,
λp

v1
(D) = 〈0..1〉,

λp
v1

(DY) = 〈0..0〉

{ V,
Ė,
E,
Y,
O,
Ḋ,
D,
DY
}

{ (V, Ė),

(Ė,E),
(A, Y),

(A,O),

(V, Ḋ),

(Ḋ,D),
(D,DY)
}

λc
v1

(V) = 〈2..4〉,

λc
v1

(Ė) = 〈0..1〉,
λc

v1
(E) = 〈0..0〉,

λc
v1

(Y) = 〈0..0〉,
λc

v1
(O) = 〈0..0〉,

λc
v1

(Ḋ) = 〈0..1〉,
λc

v1
(D) = 〈0..1〉,

λc
v1

(DY) = 〈0..0〉

We illustrate in Table 4 the results of the transformations defined above. The column
of greyed simply contains the features, decomposition edges and cardinalities of the FD.
The boldfaced elements are those added by the normalised form described in Section 2.
They are needed here to compute of the transformations.

As for the pruned, we see that the decomposition edges containing B, DO and DB
have been pruned out and removed from the list, and so are their associated cardinalities.
The underlined cardinalities are those that have been re-computed. The new value of
λpv1(A) is obtained with 〈max(0, 1− 1)..min(3, 3− 1)〉 whereas the value of λpv1(D)
is 〈max(0, 1− 2)..min(1, 3− 2)〉.

P-CS-TR MPFD-000001 DO NOT CIRCULATE 11

A. Hubaux, P. Heymans, P.-Y. Schobbens DRAFT VERSION

The only node removed in visualisation 3 is A7. Which results in two collapsed
nodes (i.e. Y and O). These nodes are directly connected to the root as their parent is
pruned out, which is illustrated in Figure 4.5. We thus have to re-compute the cardinality
of V . Figure 4 presents the details of the re-computation of λcv1(V) that is reported in
Table 4. The cardinality of G is the same as in the pruned visualisation, as shown in
Figure 5.

ms minp
v1

(V) = {mincardc
v1

(Ȧ)}] {1, 1}
mincardc

v1
(V) =

P
min3{0, 1, 1} = 2

ms manp
v1

(V) = {maxcardc
v1

(Ȧ)}] {1, 1}
mincardc

v1
(V) =

P
max3{2, 1, 1} = 4

(a) λv1(V) = 〈2..4〉

ms minp
v1

(Ȧ) = {mincardc
v1

(A)}] {}
mincardc

v1
(Ȧ) =

P
min0{0} = 0

ms manp
v1

(Ȧ) = {maxcardc
v1

(A)}] {}
mincardc

v1
(Ȧ) =

P
max1{2} = 2

(b) λv1(Ȧ) = 〈0..2〉

ms minp
v1

(A) = {mincardc
v1

(B)}] {1, 1}
mincardc

v1
(A) =

P
min1{0, 1, 1} = 0

ms manp
v1

(A) = {maxcardc
v1

(B)}] {1, 1}
mincardc

v1
(A) =

P
max3{0, 1, 1} = 2

(c) λv1(A) = 〈0..2〉

ms minp
v1

(B) = {}] {}
mincardc

v1
(B) =

P
min0{} = 0

ms manp
v1

(B) = {}] {}
mincardc

v1
(B) =

P
max0{} = 0

(d) λv1(B) = 〈0..0〉

Fig. 4. Details of the computations of λcv1(V), λcv1(Ȧ), λcv1(A), and λcv1(B).

ms minp
v1

(D) = {mincardc
v1

(DO),mincardc
v1

(DB)}] {1}
mincardc

v1
(D) =

P
min1{0, 0, 1} = 0

ms manp
v1

(D) = {maxcardc
v1

(DO),maxcardc
v1

(DB)}] {1}
mincardc

v1
(D) =

P
max1{0, 0, 1} = 1

(a) λv1(D) = 〈0..1〉

ms minp
v1

(DO) = {}] {}
mincardc

v1
(DO) =

P
min0{} = 0

ms manp
v1

(DO) = {}] {}
mincardc

v1
(DO) =

P
max0{} = 0

(b) λv1(DO) = 〈0..0〉

ms minp
v1

(DB) = {}] {}
mincardc

v1
(DB) =

P
min0{} = 0

ms manp
v1

(DB) = {}] {}
mincardc

v1
(DB) =

P
max0{} = 0

(c) λv1(DB) = 〈0..0〉

Fig. 5. Details of the computations of λcv1(D), λcv1(DO), λcv1(DB).

7 And so is its parent dummy-feature Ȧ.

12 DO NOT CIRCULATE P-CS-TR FDL-000001

Supporting Multiple Perspectives in Feature-based Configuration: Foundations DRAFT VERSION

5 Preliminary evaluation

5.1 Theoretical evaluation

It is important to demonstrate that the above transformations are correct. As mentioned
earlier, FBC systems are meant to check the validity of the configuration choices based
on the original global FD, not on the visualisations. Still, a proof of correctness ensures
that no misleading FD constraints are shown to the stakeholders. Intuitively, the correct-
ness criterion should state that the produced visualisations preserve a form of semantic
equivalence with the original FD. We define it as follows: [[(N t

v, r, λ
t
v, DE

t
v, {})]] =

[[(N, r, λ,DE, {})]]|Nt
v

where | is a projection operator for powersets, i.e.A|B = {a|a =
a′∩B∧a′ ∈ A}. Intuitively, the criterion means that the valid configurations one could
infer from a visualisation are actually the valid configurations of the FD, when look-
ing only at the view-specific features (hence the projection), and regardless of the extra
constraints (hence the {} in the two tuples).

We present below a proof sketch for the pruned (p) and collapsed (c) visualisations.
There is no need to prove the greyed (g) visualisation since dgv = d.

Pruned. Before proving the semantic equivalence in the pruned visualisation (The-
orem 1), we have to prove that the recomputed decomposition edges do not corrupt the
structure of the FD, which is demonstrated in Lemma 1.

Lemma 1 (Correctness of DEpv). DEpv builds a correct tree that does not alter the
structure of the original FD.

Proof. According to the definitions of DEpv and Np
v , a removed edge has as target

node a feature that is not in the visualisation. Also, we know from the definition of Np
v

that removed edges belong to paths to leaf nodes that do not contain any feature in the
visualisation. Ergo, the removed paths cannot break the structure of the FD, hence the
visualisation still forms a correct tree. �

Theorem 1 (Semantic preservation of dpv). The pruned visualisations preserves the
semantic equivalence with the original FD:

[[(Np
v , r, λ

p
v, DE

p
v , {})]] = [[(N, r, λ,DE, {})]]|Np

v

Proof. The definition of [[·]] [17] specifies four conditions that must be satisfied by prod-
ucts to be valid. We use these conditions to prove the equivalence.

1. Every product contains the root feature. Since both dpv and d have the same root
feature, we know that all products will have the same root feature.

2. Every product satisfies the extra constraints. In this case, the set of constraints is
empty, hence it does not influence the equality.

3. Every feature is justified. In v, we know that the removed edges correspond to
features that are not in Np

v . The only features to justify are thus only those in Np
v .

As for d, all the features of N are justified but those not in Np
v are removed by the

projection operator from the set of products. Ergo, all features in Np
v are subject to

the same constraints in v and d.

P-CS-TR MPFD-000001 DO NOT CIRCULATE 13

A. Hubaux, P. Heymans, P.-Y. Schobbens DRAFT VERSION

4. Every feature satisfies the decomposition type. We have to prove that recomputed
cardinalities:

– do not allow illegal products to be built. An invalid product p of v is a product
that contains less or more features than allowed by the original FD projected
on Np

v . Let us first prove that less features than expected cannot be selected
for any feature f . We know that mincardpv(f) = λ(f).min− |orphanspv(f)|
if the result is positive, which means that the recomputed value only depends
on the features in Np

v . If the result is negative, then mincardpv(f) = 0, which
accounts for the fact that no features in Np

v can be selected at all. The validity
of the cardinality is thus ensured by features outside Np

v . It is thus not possible
to select less features than required among those that are in Np

v .
More features than necessary cannot be selected either. We know that if

|children(f)| − |orphanspv(f)| < λ(f).max

then
maxcardpv(f) = |children(f)| − |orphanspv(f)|

which means that we can select as many features as available in Np
c because

the original cardinality is greater than the number of available children of f in
Np
c . If it is not the case, we simply have maxcardpv(f) = λ(f).max, which is

the same condition as in d. It is thus not possible to select more features than
required among those that are in Np

v .
– do not exclude valid products. Valid products can be excluded if there is a fea-

ture f for which the interval between the minimum and maximum cardinality
is too reduced. As we have shown above, the reduction of the minimum and
maximum values only depend on the number of orphans. This means that the
interval cannot be reduced so that it excludes configurations containing features
in Np

c .

�

Collapsed. Like in the pruned visualisation, we prove the semantic equivalence
in the collapsed visualisation (Theorem 2), for which we first need to prove that the
recomputed decomposition edges do not corrupt the structure of the FD (Lemma 2).

Lemma 2 (Correctness of DEcv). DEcv builds a correct tree that does not alter the
structure of the original FD.

Proof. Lemma 1 already demonstrates that pruned paths do not alter the original struc-
ture of the FD. We have to prove that the collapsed children still form a tree and do not
break the structure of the FD. All collapsed edges being part of the transitive closure,
they are connected to an ancestor. The definition also makes sure that no feature f can
have more than one parent in the visualisation, which preserves the tree structure and
does not alter the FD by connecting together features that are not in a descendant/ances-
tor relationship. �

14 DO NOT CIRCULATE P-CS-TR FDL-000001

Supporting Multiple Perspectives in Feature-based Configuration: Foundations DRAFT VERSION

Theorem 2 (Semantic preservation of dcv). The collapsed visualisations preserves the
semantic equivalence with the original FD:

[[(N c
v , r, λ

c
v, DE

c
v, {})]] = [[(N, r, λ,DE, {})]]|Nc

v

Proof. Similarly to Theorem 1, we base ourselves on [17] to prove the equivalence.

1. Every product contains the root feature. Since both dcv and d have the same root
feature, we know that all products will have the same root feature.

2. Every product satisfies the extra constraints. In this case, the set of constraints is
empty, hence it does not influence the equality.

3. Every feature is justified. By definition, we know that any decision made for a
feature f such that (f, g) ∈ DEcv is propagated to its parent g. Following Lemma 2,
we know that the structure of the FD is preserved, which means that whenever a
decision is propagated from f to g, the state of all the features on the path between
f and g that are not in the visualisation is adapted accordingly.

4. Every feature satisfies the decomposition type. We have to prove that recomputed
cardinalities:

– do not allow illegal products to be built. An invalid product p of v is a product
that contains less or more fetures than allowed by the original FD projected on
N c
v . Let us first prove that less features than expected cannot be selected for

any feature f .
Base case. To do so, let us take i ∈ N , a leaf feature such that all its siblings
are also leaf nodes, i.e.

∀j ∈ {j|(h, i) ∈ DE ∧ (h, j) ∈ DE} • @k ∈ N • (h, k) ∈ DE

This means that mincardcv(i) = 0, which is the same as λ(i).min.
Inductive step. We know that all the children of the parent feature h of i are all
leaf nodes, which means that ms mincv(i) will contain (1) as many 1 as there
are features i ∈ children(h) ∧ i ∈ N c

v , and (2) as many 0 as there are features
i ∈ orphanscv(h) because the recursive step will return mincardcv(i) = 0
(base case). This means that these orphans features will not add up to the count
of selectable features. The sum of mincardcv(h) will decrease the minimum
bound by as many 0 as there are in the multiset because only the λ(h).min
minimum values are summed. The result is that one can only select as many
features as specified by the minimum cardinality minus the features that are not
in N c

v .
Let us now consider the features g such that g ∈ children(f) and prove that
not less features than expected can be selected. Therefore, we group the fea-
tures g ∈ children(f) in three classes:
• g ∈ N c

v , which means that g will simply add up 1 to the multiset;
• g ∈ orphanscv(f) ∧ @h ∈ N c

v • (g, h) ∈ DE+, for which we have that
mincardcv(g) = 0 because the recursion will reach the leaf node without
adding any 1 on the way down as no descendants are in N c

v (induction
hypothesis).

P-CS-TR MPFD-000001 DO NOT CIRCULATE 15

A. Hubaux, P. Heymans, P.-Y. Schobbens DRAFT VERSION

• g ∈ orphanscv(f) ∧ ∃h ∈ N c
v • (g, h) ∈ DE+, for which we recursively

go down the tree until we reach the leaf nodes. On the way back, we com-
pute the results of the parents of the leaf nodes (induction hypothesis). The
recursion finally propagates the results up to g by only considering the
minimum value of selectable features.

Among the values in the multiset, we only sum the λ(f).min values, which
ensures that, for the minimum amount of features that has to be selected, we
take the minimum value they can have. This way we know that the minimum
value of the cardinality does not allows to select less features than required
among those that are in N c

v

The maximum case is proved similarly, which means that the interval cannot
be reduced so that it excludes configurations containing features in Np

c .
– do not exclude valid products. As we have demonstrated, the reduction of the

minimum and maximum values only depend on the number of features that are
not in N c

v . This means that the interval cannot be reduced so that it excludes
configurations containing features in N c

c .

�

5.2 Empirical evaluation

As a preliminary evaluation, we applied the multi-view concepts to PloneMeeting (see
Section 3). With the chief developer, we identified and specified three stakeholder-
specific views: the coloured areas in Figure 2. The complete FD from which this sam-
ple is extracted is freely available online8. The orange area consists of the features that
should be made accessible to the web administrator. Those features require a deep un-
derstanding of the inner workings of PloneMeeting. The blue area contains the features
that should be made accessible to the PloneMeeting manager. They define “business”
configuration choices that do not evolve much at runtime and should not be edited by
regular users. The red area gathers the features that should be made accessible to the
end users. They are mainly dedicated to the visual aspects of the website.

The web administrator view was specified by the query in Figure 6(a). The feature
Workflow and security is in (line 1) as well as all its descendants (line 2), Email notifi-
cation (line 3) and Display macro (line 4). Figure 6(c) and Figure 6(b) specify the two
other views and should be interpreted similarly.

In our case, each feature was part of a view. Hence, the sufficient coverage condition
defined in Section 4.3 applies. This means that we did not have to test the necessary
condition to guarantee that no choice can be left undecided. The three visualisations
were then generated by applying the transformations given in Section 4.5 (details are
available in [19]).

Figures 7 to 12 present the results of these transformations for the pruned and col-
lapsed visualisations. Computed cardinalities are written explicitly in the FDs as well as
their computations. Computations of obvious results have been hidden for readability
reasons. The bold features are those that have been collapsed. The abbreviations used
in the computations of cardinalities are reported in Table 5

8 http://www.info.fundp.ac.be/˜acs/tvl

16 DO NOT CIRCULATE P-CS-TR FDL-000001

Supporting Multiple Perspectives in Feature-based Configuration: Foundations DRAFT VERSION

1 Meeting Config/Workflow and security
2 | //Workflow and security//*
3 | Meeting Config/Email notification
4 | Meeting Config/Tasks/Display macro

(a) Web administrator query

1 Meeting Config/Data
2 | //Data/Item insertion algorithm
3 | //Item insertion algorithm//*
4 | Meeting Config/User interface
5 | //User interface//*

(b) User query
1 Meeting Config/General
2 | //General//*
3 | Meeting Config/Data
4 | //Data/Meeting attributes
5 | //Meeting attributes//*
6 | //Data/Use groups as categories
7 | Meeting Config/Workflow and security
8 | //Workflow and security/Meeting workflow
9 | //Meeting workflow//*
10 | Meeting Config/Email notification
11 | Meeting Config/Tasks
12 | //Tasks/Task creator
13 | //Task creator//*
14 | Meeting Config/Votes
15 | //Votes//*

(c) PloneMeeting manager query

Fig. 6. Queries of the different views in Figure 2.

Table 5. Abbreviated feature names for the FD in Figure 2

Feature name Abbreviation
Meeting Config MC
General G
Data D
Workflow and security W
User interface U
Email notification E
Tasks T
Votes V

We summarize below the first feedback about views and visualisations that we col-
lected during a meeting with the chief developer of PloneMeeting.

Table 6. Number of features for the three views and the corresponding number of XPath lines for
the sample and complete FDs.

Profile Greyed Pruned Collapsed XPath
Sample Complete Sample Complete Sample Complete Sample Complete

Web administrator 57 193 11 48 10 47 4 5
User 57 193 20 75 19 74 5 9
PloneMeeting manager 57 193 36 120 36 120 15 22

Overall, the developer appreciated the simplicity and flexibility of view specifica-
tion. He particularly liked the fact that access rights do not have to be hard coded within
the FD. As depicted in Table 6, the pruned and collapsed visualisations of the sam-
ple (counting 57 features) and complete (counting 193 features) FDs offer significant
reductions in the number of features to be handled by end-users. Regarding view defi-

P-CS-TR MPFD-000001 DO NOT CIRCULATE 17

A. Hubaux, P. Heymans, P.-Y. Schobbens DRAFT VERSION

λpWA(MC) = 〈max(0, 7− 4)..min(7, 7− 4)〉 = 〈3..3〉
λpWA(T) = 〈max(0, 2− 1)..min(2, 2− 1)〉 = 〈1..1〉

(a) Cardinality computations.
Meeting Config

Workflow and security

Meeting workflow

Standard workflow
Collège workflow
Archive workflow

Zope 3 condition interface
Zope 3 action interface

Email notification
Tasks

Display macro

X

⟨3..3⟩

⟨1..1⟩

(b) FD of the pruned version of the Web administrator view.

Fig. 7. Pruned version of the Web administrator (WA) view.

mincardcWA(T) =
P
min2{0}] {1} = 1

ms mincWA(MC) = {mincardcWA(G),mincardcWA(D), mincardcWA(W),
mincardcWA(U), mincardcWA(T), mincardcWA(V)}]{1}

= {0, 0, 0, 1, 0}] {1, 1}
mincardcWA(MC) =

P
min7{0, 0, 0, 1, 0}] {1, 1} = 3

maxcardcWA(T) =
P
max2{0}] {1} = 1

ms maxcWA(MC) = {maxcardcWA(G),maxcardcWA(D), maxcardcWA(W),
maxcardcWA(U), maxcardcWA(T), maxcardcWA(V)}
]{1}

= {0, 0, 0, 1, 0}] {1, 1}
maxcardcWA(MC) =

P
max7{0, 0, 0, 1, 0}] {1, 1} = 3

λcWA(MC) = 〈3..3〉

(a) Cardinality computations.
Meeting Config

Workflow and security

Meeting workflow

Standard workflow
Collège workflow
Archive workflow

Zope 3 condition interface
Zope 3 action interface

Email notification
Display macro

X

⟨3..3⟩

(b) FD of the collapsed version of the Web administrator view.

Fig. 8. Collapsed version of the Web administrator (WA) view.

18 DO NOT CIRCULATE P-CS-TR FDL-000001

Supporting Multiple Perspectives in Feature-based Configuration: Foundations DRAFT VERSION

λpPM (MC) = 〈max(0, 7− 1)..min(7, 7− 1)〉 = 〈6..6〉
λpPM (D) = 〈max(0, 3− 1)..min(3, 3− 1)〉 = 〈2..2〉
λpPM (W) = 〈max(0, 3− 2)..min(3, 3− 2)〉 = 〈1..1〉
λpPM (T) = 〈max(0, 2− 1)..min(2, 2− 1)〉 = 〈1..1〉

(a) Cardinality computations.
Meeting Config

General

Title
Assembly members

Institution ID
Data

Meeting attributes

Start time
End time
Attendees
Place

Use groups as categories

Workflow and security

Meeting workflow

Standard workflow
Collège workflow
Archive workflow

Email notification
Tasks

Task creator

Manager
Meeting manager
Owner

Votes

Enable voting
Vote encoder

Meeting manager
Voter

Available vote values

Yes
No

Default vote value

Yes
No

X

X

Abstention

Abstention

⟨6..6⟩

⟨2..2⟩

⟨1..1⟩

⟨1..1⟩

(b) FD of the pruned version of the PloneMeeting manager view.

Fig. 9. Pruned version of the PloneMeeting manager (PM) view.

nition, XPath allows relatively concise definitions (last column of Table 6). The number
of lines needed to specify the 3 views of the sample and complete FDs are respectively
24 and 36. It means that for a difference of 136 features between the sample and com-

P-CS-TR MPFD-000001 DO NOT CIRCULATE 19

A. Hubaux, P. Heymans, P.-Y. Schobbens DRAFT VERSION

mincardcPM (MC) =
P
min7{0}] {1, 1, 1, 1, 1, 1} = 6

maxcardcPM (MC) =
P
max7{0}] {1, 1, 1, 1, 1, 1} = 6

λcPM (MC) = 〈6..6〉
mincardcPM (D) =

P
min3{0}] {1, 1} = 2

maxcardcPM (D) =
P
max3{0}] {1, 1} = 2

λcPM (D) = 〈2..2〉
mincardcPM (W) =

P
min3{0, 0}] {1} = 1

maxcardcPM (W) =
P
max3{0, 0}] {1} = 1

λcPM (W) = 〈1..1〉
mincardcPM (T) =

P
min2{0}] {1} = 1

maxcardcPM (T) =
P
max2{0}] {1} = 1

λcPM (T) = 〈1..1〉

(a) Cardinality computations.
Meeting Config

General

Title
Assembly members

Institution ID
Data

Meeting attributes

Start time
End time
Attendees
Place

Use groups as categories

Workflow and security

Meeting workflow

Standard workflow
Collège workflow
Archive workflow

Email notification
Tasks

Task creator

Manager
Meeting manager
Owner

Votes

Enable voting
Vote encoder

Meeting manager
Voter

Available vote values

Yes
No

Default vote value

Yes
No

X

X

Abstention

Abstention

⟨6..6⟩

⟨2..2⟩

⟨1..1⟩

⟨1..1⟩

(b) FD of the collapsed version of the PloneMeeting manager view.

Fig. 10. Collapsed version of the PloneMeeting manager (PM) view.
20 DO NOT CIRCULATE P-CS-TR FDL-000001

Supporting Multiple Perspectives in Feature-based Configuration: Foundations DRAFT VERSION

λpUser(MC) = 〈max(0, 7− 4)..min(7, 7− 4)〉 = 〈3..3〉
λpUser(T) = 〈max(0, 2− 1)..min(2, 2− 1)〉 = 〈1..1〉

(a) Cardinality computations.
Meeting Config

Data

Item insertion algorithm

At the end
Category order
Proposing group order

User interface

Meeting display states

Archived
Created
Decided
Closed
Published

Default view

My items
All items
Available meetings
Decided meetings

Item duplication
Open annexes in separate window

X

X

⟨2..2⟩

⟨1..1⟩

(b) FD of the pruned version of the User view.

Fig. 11. Pruned version of the User view.

plete FDs, only 12 additional XPath lines are needed. We have thus good hope that the
size of the XPath will scale with the growth of the FD.

Although a textual query language is favoured by developers, non-experts might
prefer defining views through an appropriate GUI. The generation of XPath expressions
from such a GUI would allow to reconcile both worlds: this would avoid the drawbacks
of both extensional and intensional definitions.

The developer made the following comments about the visualisations. The greyed
visualisation preserves the original tree structure and cardinalities at the expense of con-
ciseness. Although greyed out, the presence of irrelevant features was found to defeat
the purpose of views, i.e. tailor the configuration environment to the stakeholders’ pro-
file. The collapsed view, on the other hand, only displays directly relevant features. The
problem that developers observed is that the features present in the view might not pro-
vide enough context to allow stakeholders to make informed decisions. For instance, if
a view is defined by a sub-tree deep in the FD hierarchy, one might loose track of the
purpose of these features. The pruned visualisation was found to achieve a good balance
between simplicity and contextualisation. However, as shown in Table 6, the difference
between the number of features in the pruned and collapsed visualisations is very small.
The comparison between them is thus inconclusive at this stage, but we hope to further
explore this issue in future case studies.

P-CS-TR MPFD-000001 DO NOT CIRCULATE 21

A. Hubaux, P. Heymans, P.-Y. Schobbens DRAFT VERSION

mincardcUser(D) =
P
min3{0, 0}] {1} = 1

ms mincUser(MC) = {mincardcUser(G),mincardcUser(D), mincardcUser(W),
mincardcUser(U), mincardcUser(E), mincardcUser(T),
mincardcUser(V)}]{1}

= {0, 1, 0, 0, 0, 0}] {1}
mincardcUser(MC) =

P
min7{0, 1, 0, 0, 0, 0}] {1} = 2

maxcardcUser(D) =
P
max3{0, 0}] {1} = 1

ms maxcUser(MC) = {maxcardcUser(G),maxcardcUser(D), maxcardcUser(W),
maxcardcUser(U), maxcardcUser(E), maxcardcUser(T),
maxcardcUser(V)}]{1}

= {0, 1, 0, 0, 0, 0}] {1}
maxcardcUser(MC) =

P
max7{0, 1, 0, 0, 0, 0}] {1} = 2

λcUser(MC) = 〈2..2〉

(a) Cardinality computations.
Meeting Config

Item insertion algorithm

At the end
Category order
Proposing group order

User interface

Meeting display states

Archived
Created
Decided
Closed
Published

Default view

My items
All items
Available meetings
Decided meetings

Item duplication
Open annexes in separate window

X

X

⟨2..2⟩

(b) FD of the collapsed version of the User view.

Fig. 12. Collapsed version of the User view.

6 Related work

Dealing with real-world problems almost always implies dealing with multiple stake-
holders who have different and often inconsistent perspectives. Viewpoint-based ap-
proaches to requirements engineering (RE) have been around for nearly two decades
and address exactly those issues. They mainly support the identification, structuring,
reconciliation and co-evolution of heterogeneous requirements perspectives [20, 21].
The new techniques introduced in this paper are also motivated by the multi-perspective
nature of RE but they address specific types of developments (viz. SPLE), artefacts (viz.

22 DO NOT CIRCULATE P-CS-TR FDL-000001

Supporting Multiple Perspectives in Feature-based Configuration: Foundations DRAFT VERSION

FDs) and tasks (viz. definition and generation of configuration views). Viewpoint-based
RE techniques are not immediately applicable because they are more concerned with
the identification and reconciliation of viewpoints than with the specification and gen-
eration of viewpoint- (or concern-) specific views on a consolidated artifact (the FD in
our case). However, viewpoint-based RE techniques can usefully complement our ap-
proach in at least two ways: (1) they can be used upstream to help build a consistent FD
from heterogeneous viewpoints, and (2) they can be used downstream to resolve con-
flicts among configurations. The contribution of this paper lies right in the middle but it
would be interesting to further explore those complementarities in future work. For ex-
ample, the viewpoints elicited during RE might help to define configuration viewpoints.

More directly related work is found in the SPLE literature where a notorious prob-
lem is the poor scalability of FDs. In their basic form, they cannot cope with the hun-
dreds or thousands of features that one typically encounters in real projects. Early at-
tempts to manage the complexity of FDs [2, 22] were mainly concerned with separating
user-oriented from technical features. For this, they used simple techniques, namely
annotation and layering of the FD, but those remained informal and were not used to
generate views or for configuration. In OVM [1], a similar distinction was proposed
between internal and external variability, but had the same limitations as the aforemen-
tioned approaches.

More recently, researchers developed SoC techniques for FDs that reflect organ-
isational structures and tasks. Reiser et al. [23] address the problem of representing
and managing FDs in SPLs that are developed by several companies, as is common
in the automotive industry. They propose to structure FDs hierarchically so that each
of them can be managed separately by one of the partner companies. Local changes
are then propagated to other FDs through the hierarchy. Hierarchical decomposition in
SPLs was also studied by Thompson et al. [24], although not in relation to FDs. In
both cases, such hierarchies are straightforward to obtain with our techniques, which
is more general (it supports any decomposition scheme, not only hierarchical), more
formal and more readily automatable. Change propagation is a possible extension of
our work though.

Czarnecki et al. [8] have introduced multi-level staged configuration as a way of
sequencing FBC according to stakeholder interests at each configuration stage. This
idea was later formalised [9] and extended [10] to deal with arbitrarily complex con-
figuration processes (not only purely sequential ones). Although these and related [25,
26] approaches are automatable and directly applicable to configuration, they remain
limited to a single “tyrannical” decomposition scheme (e.g. stages, workflow activities)
which must be decided in advance and directly affects the FD.

Countering the “tyranny of the dominant decomposition” [27] is the general goal
of aspect-oriented approaches, including early aspects [28]. In the SPLE context, Ba-
tory et al. [29] introduced multi-dimensional SoC where a dimension is a set of features
addressing a particular concern. They use a so-called “origami matrix” to describe the
relationships between features across the dimensions. Their approach does not aim to
generate views but rather to compose features (described separately) along each di-
mension. Zhao et al. [18] share our goal of grouping features according to stakeholder
profiles and other typical concerns. A major limitation is that they do not display de-

P-CS-TR MPFD-000001 DO NOT CIRCULATE 23

A. Hubaux, P. Heymans, P.-Y. Schobbens DRAFT VERSION

composition operators in views, which greatly simplifies the problem. Features in views
are physically duplicated and mapped to features of the FD. These links are represented
as constraints between the views and the FD. The algorithms proposed to maintain the
consistency between views and the FD, and to handle conflictual decisions, are not
proved, and their complexity is not discussed. Their definitions are also not connected
with existing semantics of FDs. Nevertheless, their suggestion of using priorities among
views as a means to handle conflicts leads to a possible extension of our work.

7 Conclusion

In this paper, we have proposed an approach to specify and generate views on feature
diagrams in order to facilitate feature-based configuration, one of the main techniques to
define product requirements in software product lines. Three alternative visualisations
were proposed, each offering different levels of detail. This work was motivated by
an ongoing collaboration with the developers of an open source web-based meeting
management system.

Overall, we think that the key advantages of our approach are its flexibility (any de-
composition scheme can be used, alternative visualisations are proposed), its formality
(all concepts and algorithms are formally defined, correctness of visualisations is guar-
anteed) and its simplicity (easy to implement in most FBC environments). Still, there
are many limitations, and future work is needed in many aspects of this work.

First, a more thorough evaluation should be carried out. Currently, no formal vali-
dation was performed, so we have only preliminary results. In particular, we only heard
the voice of the developers whereas the viewpoint that really matters is the one of the
end-users. We should also compare our visualisations with others. In our work, we have
followed the idea of simplifying configuration by separating concerns but sticking to
the explorer view of feature diagrams. Other approaches exist, e.g. based on providing
advanced GUI. The different approaches should be compared and maybe combined.

Second, for the sake of simplicity, until now we did not address the problem of con-
flictual configuration decisions across views. Many strategies are possible to address
this issue, some of which have been discussed in the previous section. In general, the
“easy” way to resolve an inconsistency is as soon as it occurs: the configuration cannot
proceed until it has been resolved. The underlying assumption here is that views are
configured synchronously. But other policies are needed in case this assumption does
not hold, i.e. if we consider asynchronous product configuration. In this case, inconsis-
tency resolution needs to be performed after a first iteration through the configuration
process. This is a much more complex issue, which we are working on as well.

Third, implementation needs to be pursued. Currently, we only have standalone
algorithms implementing our transformations. The rest of our approach needs to be de-
veloped, integrated in a feature modelling and configuration environment, and properly
validated. These are just some of the many points on the agenda.

24 DO NOT CIRCULATE P-CS-TR FDL-000001

Supporting Multiple Perspectives in Feature-based Configuration: Foundations DRAFT VERSION

Acknowledgements

This work is sponsored by the Interuniversity Attraction Poles Programme of the Bel-
gian State, Belgian Science Policy, under the MoVES project.

References

1. Pohl, K., Bockle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer (July 2005)

2. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, SEI, Carnegie Mellon
University (November 1990)

3. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Feature Diagrams: A Survey and
A Formal Semantics. In: RE’06. (September 2006) 139–148

4. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models: A detailed
literature review. Technical Report ISA-09-TR-04, Applied Software Engineering Research
Group, University of Seville, Spain (2009)

5. Mendonça, M.: Efficient Reasoning Techniques for Large Scale Feature Models. PhD thesis,
University of Waterloo (2009)

6. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based feature models
and their specialization. Software Process: Improvement and Practice 10(1) (2005) 7–29

7. Czarnecki, K., She, S., Wasowski, A.: Sample spaces and feature models: There and back
again. In: SPLC’08, Limerick, Ireland (2008) 22–31

8. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged configuration through specialization and
multi-level configuration of feature models. Software Process: Improvement and Practice
10(2) (2005) 143–169

9. Classen, A., Hubaux, A., Heymans, P.: A formal semantics for multi-level staged configura-
tion. In: VaMoS’09, University of Duisburg-Essen (January 2009)

10. Hubaux, A., Classen, A., Heymans, P.: Formal modelling of feature configuration workflow.
In: SPLC’09, San Francisco, CA, USA (2009)

11. Botterweck, G., Thiel, S., Nestor, D., bin Abid, S., Cawley, C.: Visual tool support for
configuring and understanding software product lines. In: SPLC’08. (2008) 77–86

12. pure-systems GmbH: Variant management with pure::variants. http://www.pure-
systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf (2006) Technical White Paper.

13. Delannay, G., Mens, K., Heymans, P., Schobbens, P.Y., Zeippen, J.M.: PloneGov as an Open
Source Product Line. In: OSSPL’07, collocated with SPLC’07. (2007)

14. Hubaux, A., Heymans, P., Benavides, D.: Variability modelling challenges from the trenches
of an open source product line re-engineering project. In: SPLC’08, Limerick, Ireland (2008)
55–64

15. Unphon, H., Dittrich, Y., Hubaux, A.: Taking care of cooperation when evolving socially
embedded systems: The plonemeeting case. In: CHASE’09, collocated with ICSE’09. (May
2009)

16. Lang, J., Marquis, P.: On propositional definability. Artificial Intelligence 172(8-9) (2008)
991–1017

17. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of feature
diagrams. Computer Networks, doi:10.1016/j.comnet.2006.08.008, special issue on feature
interactions in emerging application domains (2006) 38

18. Zhao, H., Zhang, W., Mei, H.: Multi-view based customization of feature models. Journal
of Frontiers of Computer Science and Technology 2(3) (2008) 260–273

P-CS-TR MPFD-000001 DO NOT CIRCULATE 25

A. Hubaux, P. Heymans, P.-Y. Schobbens DRAFT VERSION

19. Hubaux, A., Heymans, P., Schobbens, P.Y.: Supporting mulitple perspectives in feature-
based configuration: Foundations. Technical Report P-CS-TR MPFD-000001, PReCISE
Research Centre, Univ. of Namur (2010)

20. Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: Viewpoints: A
framework for integrating multiple perspectives in system development. International Jour-
nal on Software Engineering and Knowledge Engineering 2 (May 1992) 31–58

21. Nuseibeh, B., Kramer, J., Finkelstein, A.: Viewpoints: meaningful relationships are difficult!
In: ICSE’03, Washington, DC, USA, IEEE Computer Society (2003) 676–681

22. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-oriented reuse
method with domain-specific reference architectures. Ann. Software Eng. 5 (1998) 143–168

23. Reiser, M.O., Weber, M.: Managing highly complex product families with multi-level feature
trees. In: RE’06, IEEE CS (2006) 146–155

24. Thompson, J.M., Heimdahl, M.P.: Structuring product family requirements for n-
dimensional and hierarchical product lines. Requirements Engineering Journal 8(1) (2003)
42–54

25. Metzger, A., Heymans, P., Pohl, K., Schobbens, P.Y., Saval, G.: Disambiguating the docu-
mentation of variability in software product lines: A separation of concerns, formalization
and automated analysis. In: RE’07. (October 2007) 243–253

26. Tun, T.T., Boucher, Q., Classen, A., Hubaux, A., Heymans, P.: Relating requirements and
feature configurations: A systematic approach. In: SPLC’09, San Francisco, CA, USA
(2009)

27. Tarr, P., Ossher, H., Harrison, W., Sutton, S.M.J.: N degrees of separation: multi-dimensional
separation of concerns. ICSE 00 (1999) 107

28. Baniassad, E., Clements, P.C., Araujo, J., Moreira, A., Rashid, A., Tekinerdogan, B.: Dis-
covering early aspects. IEEE Softw. 23(1) (2006) 61–70

29. Batory, D., Liu, J., Sarvela, J.N.: Refinements and multi-dimensional separation of con-
cerns. In: Proceedings of the 9th European software engineering conference held jointly
with 11th ACM SIGSOFT international symposium on Foundations of software engineer-
ing, New York, NY, USA, ACM (2003) 48–57

26 DO NOT CIRCULATE P-CS-TR FDL-000001

