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Abstract

In the scientific community, feature models are the de-facto standard
for representing variability in software product line engineering. This is
different from industrial settings where they appear to be used much less
frequently. We have and other authors have argued that feature models
lack concision, naturalness and expressiveness. Feature attributes, al-
though an efficient tool for making models intuitive and concise, are not
well understood and most existing notations do not support them at all.
The graphical nature of feature models’ syntax also appears to be a bar-
rier to industrial adoption. Finally, existing tool support for graphical
feature models is lacking or inadequate, and inferior in many regards to
tool support for text-based formats.

TVL, a text-based feature modelling language, was designed specif-
ically to address these shortcomings. In terms of expressiveness, TVL
subsumes most existing dialects. The main goal of designing TVL was to
provide engineers with a human-readable language with a rich syntax to
make modelling easy and models natural, but also with a formal semantics
to avoid ambiguity and allow powerful automations.

This report serves as the complete TVL specification and reference,
providing its syntax and semantics in every detail.

1 Introduction

Software product line engineering (SPLE) is an increasingly popular software
engineering paradigm which advocates systematic reuse across the software life-
∗Previously titled “Syntax and Semantics of TVL, a Text-based Feature Modelling Lan-

guage”. This text is not meant to be an introduction to TVL, rather a comprehensive refer-
ence. For a detailed introduction to TVL, the interested reader is referred to [1]; for a brief
overview, to [2].
†FNRS Research Fellow
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cycle. Central to the SPLE paradigm is the modelling and management of
variability, i.e. “the commonalities and differences in the applications in terms
of requirements, architecture, components, and test artefacts” [3]. Variability
is typically expressed in terms of features, i.e. first-class abstractions that shape
the reasoning of the engineers and other stakeholders [4].

A set of features can be seen as the specification of a particular product of
the product line (PL). Feature models (FMs) [5,6] delimit the set of valid prod-
ucts of the PL. FMs are directed acyclic graphs, generally trees, whose nodes
denote features and whose edges represent top-down hierarchical decomposition
of features. The meaning of a decomposition link is that, if the parent feature is
part of a product, then some of its child features have to be part of the product
as well. Exactly which and how many of the child features have to be part
depends on the type of the decomposition link. Consider the example FD in
Figure 1 modelling a product line of personal computers. The Computer con-
sists of a Motherboard, a CPU, a Graphic Card and some Accessories, which are
optional (indicated by the hollow circle); all of these features are then further
decomposed. In addition, although not shown in the figure, each of the features
has a price, which can be modelled as an attribute, a typed parameter attached
to each feature [7].

In the scientific community, FMs are the de-facto standard for representing
the variability of an SPL. Several sources—our industry partners, discussions at
the 2010 variability modelling (VaMoS) workshop [8] as well as recent literature
reviews [9,10]—suggest that in the industrial world, in contrast, FMs appear to
be used rarely.

Reasons for this, we believe, are their lack of conciseness and naturalness
when it comes to modelling realistic SPLs and the graphical nature of their
syntax [1]. Feature attributes, for instance, can be an efficient means to reduce
the size and complexity of a FM. Yet, the semantics of FMs with attributes is not
well understood and most existing notations and tools do not support them at
all. The graphical syntax further constitutes a psychological barrier for engineers
(having to draw models is deemed tedious and cumbersome) and poses a tooling
problem. Existing tools for graphical FMs are generally research prototypes and
are inferior in many regards to tool support for text-based formats (viz. text
editors, source control systems, diff tools, no opaque file formats and so on).

To overcome these shortcomings, we designed TVL (Textual Variability Lan-
guage), a text-based FM language. In terms of expressiveness, TVL subsumes
most existing dialects. The main goal of designing TVL was to provide engineers
with a human-readable language with a rich syntax to make modelling easy and
models natural, but also with a formal semantics to avoid ambiguity and allow
powerful automations. Further goals for TVL were to be lightweight (in contrast
to the verbosity of XML for instance) and to be scalable by offering mechanisms
for structuring the FM in various ways.

TVL is defined formally: its concrete, C-like, syntax is described by an LALR
grammar, but it also has a mathematical abstract syntax and a denotational se-
mantics. Having a well-defined tool-independent semantics further distinguishes
TVL from most existing languages. A formal semantics allows anyone to imple-
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ment the language, and this report contains all the information that is needed to
accomplish this. A reference implementation including a parser and a reasoning
library is available online.1

This report serves as the full specification for TVL. The journal paper [1]
provides a more gentle introduction to TVL as well as a survey of existing textual
variability modelling languages and other related work. It also presents two
evaluations, one industrial and one comparative. The detail of the industrial
evaluation was published separately by Hubaux et al. [11]. Since the journal
paper also covers the semantics of TVL, it shares some content with this report.

The report is structured as follows: Section 2 introduces the TVL syntax with
example code snippets before the formal EBNF grammar is given in Section 3.
Section 4 covers well-formedness rules for TVL models. The formal semantics
follows in Section 5.

2 Syntax

In this section we present an overview of the TVL syntax using code snippets
before giving the formal BNF grammar. The following sub-sections introduce
five major parts of the language: features, attributes, expressions, constraints
and modularisation mechanisms.

The different concepts of TVL will be illustrated using a basic personal com-
puter product family example FD presented in Section 1 and visible in Figure 1.

Computer

Motherboard CPU GraphicCard Accessories

Asus Aopen CoreI7 NvidiaAthlon ATI KeyboardAndMouse PhilipsScreen SamsungScreen

[0..2]

<<excludes>>
Legend

and-decomposition
xor-decomposition

group cardinality [i..j]
optional feature

[i..j]

Figure 1: Computer example FD

2.1 Feature hierarchy

The TVL language has a C-like syntax: it uses braces to delimit blocks, C-
style comments, semicolons to delimit statements. The rationale for this syntax
choice is that nearly all computing professionals have come across a C-like syntax
and are thus familiar with this style. Furthermore, many text editors have built-
in facilities to handle this type of syntax.

1http://www.info.fundp.ac.be/~acs/tvl
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In our example, the root feature, Computer, is decomposed into four sub-
features by an and -decomposition: Motherboard, CPU, GraphicCard and Acces-
sories. Furthermore, the Accessories feature is optional while the other three
features are mandatory. In TVL, this is written as follows:

root Computer {

group allOf {

Motherboard ,

CPU ,

GraphicCard ,

opt Accessories

}

}

A decomposition type in TVL is defined with the group keyword. Prede-
fined decomposition operators are allOf , as used in this example for an and -
decomposition, oneOf for xor -decompositions and someOf for or -decompositions.
It is also possible to specify a cardinality-based decomposition with the group
[i..j] syntax, where i and j are the lower and upper bounds of the cardinality.
When defining a cardinality, one can use the asterisk character * to denote the
number of children in the group, for instance group [1..*] would be equiva-
lent to group someOf . This way, the engineer does not have to update the
cardinality each time the number of children changes. Optional features like
Accessories are declared by putting the opt keyword in front of their name.

FMs most commonly have a tree structure but, sometimes, a directed acyclic
graph (DAG) structure – a feature can have several parents – might be use-
ful [12]. DAG structures can also be modelled in TVL with the shared keyword
associated to a feature name. This means that the shared feature has several
parents as it is illustrated in the following example where feature D has features
B and C as parents:

root A

group oneOf {

B group allOf {D},

C group allOf {shared D}

}

2.2 Attributes

In our example, the Motherboard has four attributes: a price, a width, an height
and a socket type. TVL supports four different attribute types: integer (int),
real (real), Boolean (bool) and enumeration (enum). In our example, price,
width and height are integers. Furthermore, the price value is limited to values
between 0 and 500. In TVL, this is expressed as follows:

Motherboard {

int price in [0..500];

int width;

int height;

}
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Attributes are thus declared by defining their type and name inside the
definition block of the feature they belong to. Each attribute declaration is
terminated by a semicolon. The in keyword is optional, it can be used to restrict
the domain of an attribute (which might speed up automated reasoning). When
declaring an attribute as an enumeration type, this means that it will take
exactly one of a set of predefined values. The socket, for instance, is either
LGA1156 or ASB1. We thus declare it as an enum.

Motherboard {

enum socket in {LGA1156 , ASB1};

}

For enumerations, the in keyword is mandatory. Notice the use of curly
braces here as opposed to square brackets for the price attribute above. In
TVL, square brackets are used to declare intervals and braces to declare lists.
Enumeration attributes are very similar to xor-decomposed features: they can
be seen as a shorthand notation which avoids clutter and boilerplate code.

In many cases, the value of an attribute will be calculated based on the val-
ues of some other attributes. The value of the price attribute of Accessories, for
example, is the sum of the prices of its children KeyboardAndMouse, PhilipsS-
creen and SamsungScreen. Furthermore, the value of an attribute might also
depend on whether its containing feature is selected or not. All this is written
as follows in TVL:

Accessories {

int price is sum(selectedChildren.price);

group [0..2] {

KeyboardAndMouse {

int price is 19;

},

PhilipsScreen {

int price is 99;

},

SamsungScreen {

int price , ifIn: is 149, ifOut: is 0;

}

}

}

The keyword is can be used to set the value of an attribute, e.g. Accessories,
KeyboardAndMouse and SamsungScreen. The keywords ifIn: and ifOut: are
guards that allow to specify the value of the attribute in the case in which the
containing feature is selected (ifIn:) or not selected (ifOut:). We illustrate this
with the price attribute of the SamsungScreen whose value will be 149 if the
feature is selected and 0 if not.

While the price of the KeyboardAndMouse, PhilipsScreen and SamsungScreen
features is fixed, the price of the Accessories is calculated: it is the sum (using
the aggregation function sum) of the values of the price attribute of its selected
children (using the selectedChildren keyword, which basically represents the
list of values of an attribute declared in all the selected child features). Other
operators are available and will be discussed in next section. A common mod-
elling pattern for attributes declared for all features is to compute the value
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of the parent feature’s attribute by aggregating the attribute values of its chil-
dren, up to the root. The price of a Computer, for example, will be calculated
by summing the prices of its selected sub-features, which in turn depend on the
prices of their sub-features, and so on until leaf features with fixed price values
are reached.

2.3 Expressions

In TVL, expressions are used to determine the value of an attribute (as explained
in the previous section) as well as to express constraints on the FM (detailed
in the following section). The language is strongly typed, each expression being
either of type bool, real or int. For more info about types see Section 4.

A basic expression is either an integer, a real, a Boolean, or a reference
to a feature, an attribute or a constant. Those basic expressions can then be
combined using classical operators: +, -, /, *, abs, for numeric values; !, &&,
||, ->, <-> for Boolean values as well as comparison operators >, >=, < or
<=. Classical FM cross-tree constraints excludes and requires can also be
used as Boolean expressions.

Furthermore, there are a number of aggregation functions sum, mul (mul-
tiplication), min, max, avg (average), count, and, or and xor. These ag-
gregation functions can simply be used on lists of expressions or they can be-
come powerful shorthand notations when used in combination with the chil-
dren or the selectedChildren keywords. These allow to aggregate the value
of an attribute that is declared for each child of a feature. The notation is
fct(children.attribute), or fct(selectedChildren.attribute) if the aggre-
gate should be calculated on selected children only.

A full listing of the expression syntax is given in Section 3.5.

2.4 Constraints

Constraints in TVL are attached to features (classical constraints that hold ‘for
the whole model’ can be attached to the root, for instance). They are simply
Boolean expressions that can be added to the body of a feature definition, as
with attribute declarations. They are terminated by a semicolon. The ifIn:
and ifOut: guards we have previously seen can be used on constraints, too.
In our computer example, the Motherboard feature has a socket attribute. The
value of this attribute depends on the choice of the actual motherboard, i.e. on
the choice of one of the sub-features. One way to model this in TVL is to define
a constraint in each child feature which basically ‘sets’ the value of its parent’s
attribute.

Motherboard {

enum socket in {LGA1156 , ASB1};

group oneOf {

Asus {

ifIn: parent.socket == LGA1156;

},

Aopen {
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ifIn: parent.socket == ASB1;

}

}

}

The constraint is guarded by ifIn:, which means that it is only applicable if
the containing feature is selected.

2.5 Data blocks

TVL can serve as an extensible storage format for feature modelling tools. It is
possible to attach to every feature a catalogue of key/value pairs which contain
additional, tool-specific, data. If, for instance, TVL were to be used as the storage
format for a graphical FM tool, the data block of a feature might contain the
coordinates of the feature on the screen and other style information:

Computer {

data {

"xPos" "123";

"yPos" "456";

}

}

Data blocks are the only part of the language that does not have a meaning
in terms of FMs. Their contents cannot be ‘referenced’ anywhere in the model.

2.6 Modularisation mechanisms

One of the main goals in designing TVL is modularity (to achieve scalability).
TVL thus offers various mechanisms that can help users to modularise large
models. First of all, custom types can be defined on at the top of the file and
then be used in the FM. This allows to factor out recurring types and can thus
reduce consistency errors. For instance, one might want to define the different
sockets upfront and then use it as a type in an attribute declaration:

enum cpuSocket {LGA1156 , ASB1};

...

Motherboard {

cpuSocket socket;

}

It is possible to define structured types to group attributes that are logically
linked. A dimension, for instance, is a couple (height, width) and can be de-
clared as such using a structured type. This type can then be reused inside the
Motherboard feature:

struct dimension {

int height;

int width;

}

...

Motherboard {

dimension size;

}
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Users can also specify constants using the const keyword followed by a type,
a name and a value. These constants can then be used inside expressions or
cardinalities.

const int maxRamBlocks 4;

Modularisation is achieved through two distinct mechanisms. The first is
the include statement, which takes as parameter the path of a file (relative
to the file containing the root feature). As expected, an include statement
will include the contents of the referenced file at this point. Includes are in fact
preprocessing directives and do not have any meaning beyond the fact that they
are replaced by the referenced file.

include (./ some/other/file);

The second mechanism is that features can be defined at one place and then
extended further in the code. This has two consequences: the definition of a
feature can be spread over a number of blocks and the physical hierarchy of the
FM does not have to be maintained inside the code (for instance, to break up
deeply nested hierarchies requiring lots of indentations).

Basically, once a feature has been defined in the group block of its parent
feature, its definition can be extended any number of times. In order to extend
a feature definition, one just adds a feature block with the same name to the file.
This block cannot be inside another feature, it has to start its own hierarchy.
Each feature block may add constraints and attributes to the feature body. The
children (with the group keyword) can only be defined in a single one of these
blocks.

This mechanism allows modellers to organise the FM according to their
preferences and can be used to implement separation of concerns [13]. For
example, one could separate different attribute concerns (e.g. attributes related
to price and attributes related to technical details, like the sockets). Another
scenario would be to declare part of the structure of the FM without detailing
each feature’s attributes and instead provide them later on:

root Computer {

group allOf {

Motherboard ,

CPU ,

GraphicCard ,

opt Accessories

}

}

Computer {

int price is sum(selectedChildren.price);

}

...

Motherboard {

dimension size;

...

}

...
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In this example, the decomposition of top feature Computer is defined at
the beginning while its attributes and those of Motherboard are declared further
down. The advantage of this is that the structure is easily understandable
because it is not cluttered by the attributes of the different features.

3 Grammar

The grammar is a conflict-free LALR grammar. To resolve some of the conflicts,
it needs operator priorities which are given in Table 2, Section 5. These priorities
are not further discussed here since they are rather standard and not of interest
to the discussion.

The grammar is given in extended Backus-Naur form (EBNF): terminals
are enclosed in double quotes, parentheses are used for grouping, S? means S is
optional, (S)+ means that S repeats one or more times and (S)* is a shortcut
for ((S)*)?. To make the rules more readable, non-terminals are written in
uppercase.

The starting non-terminal is the model, and quite naturally, a model is a
sequence of type, constant and feature declarations.

MODEL = ( TYPE | CONSTANT | FEATURE )*

3.1 Type and constant declarations

A type is either a simple type (i.e. it simply renames a basic type), or a struc-
tured type with several fields. The simple types have an ID and can have a
domain (declared with the in terminal). A structured type is just a list of sim-
ple types in curly braces, with the exception that a structured type can make
use of already declared simple types (the RECORD FIELD = ID ID ";" production
below).

TYPE = SIMPLE_TYPE

| RECORD ;

SIMPLE_TYPE = "int" ID "in" SET_EXPRESSION ";"

| "real" ID "in" SET_EXPRESSION ";"

| "enum" ID "in" SET_EXPRESSION ";"

| "int" ID ";"

| "real" ID ";"

| "bool" ID ";" ;

RECORD = "struct" ID "{" RECORD_FIELD+ "}" ;

RECORD_FIELD = SIMPLE_TYPE

| ID ID ";" ;

As expected, constants consist of the const terminal, their type, their iden-
tifier and their value.

CONSTANT = "const" "int" ID INTEGER ";"

| "const" "real" ID REAL ";"

| "const" "bool" ID ( "true" | "false" ) ";" ;
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3.2 Identifiers

The non-terminal ID can refer to types, constants, but also to features and
feature attributes. IDs have to start with a character and can contain numbers
as well as the underscore. There are two rules that are not formalised in the
grammar and will be detailed in Section 4: feature IDs have to start with an
uppercase letter and IDs in TVL are case sensitive.

ID = ("a"-"z" | "A"-"Z")

("a"-"z" | "A"-"Z" | "0-9" | "_") * ;

In order to allow feature names to occur several times, and to allow references
to an attribute of a feature inside the body of another feature, it is possible to
build chains of IDs separated with a dot. All IDs of a chain with at least two
IDs, except for the last one, have to denote features. The last element may be
a feature or an attribute. In this context, the terminals root, this and parent
help to make specifications more intuitive, as seen in Section 2.4.

SHORT_ID = "root"

| "this"

| "parent"

| ID ;

LONG_ID = SHORT_ID

| SHORT_ID "." LONG_ID ;

3.3 Feature declarations

A feature declaration consists of an ID (optionally preceded by the root termi-
nal) which is followed either by its body (that is, a number of FEATURE BODY ITEMs),
or directly by its children block (the FEATURE GROUP non-terminal) if one wants
to omit attribute or constant declarations. In case a feature is extended rather
than declared for the first time, it may use a long ID since the feature being
extended might not have a unique name. When extending the root this way,
the root terminal must be omitted.

FEATURE = "root" ID "{" FEATURE_BODY_ITEM+ "}"

| "root" ID FEATURE_GROUP

| LONG_ID "{" FEATURE_BODY_ITEM+ "}"

| LONG_ID FEATURE_GROUP ;

The feature body consists of several items which can be data blocks, constraints,
attributes or the group block declaring the child features.

FEATURE_BODY_ITEM = DATA

| CONSTRAINT

| ATTRIBUTE

| FEATURE_GROUP ;

The children body starts with the group terminal, followed by the cardinality
and the list of children. A cardinality can be either a predefined one, or an
interval of natural numbers which can be specified directly, with natural num-
bers, constants (the ID non-terminal) or the asterisk character as explained in
Section 2.1.
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FEATURE_GROUP = "group" CARDINALITY "{"

HIERARCHICAL_FEATURE

("," HIERARCHICAL_FEATURE )*

"}" ;

HIERARCHICAL_FEATURE = ( "opt" )? FEATURE

| ( "shared" | "opt" )? LONG_ID ;

CARDINALITY = "oneof"

| "someof"

| "allof"

| "[" (ID | NATURAL | "*" ) ".."

(ID | NATURAL | "*" ) "]" ;

3.4 Attributes and constraints

An attribute declared for a feature is either a single attribute (BASE ATTRIBUTE)
or a structured attribute. A structured attribute has to be of a structured type
defined previously (the first ID), have a name (the second ID) and may list the
fields of that structured type to define a body for them. A single attribute is
just a type followed by a name and, optionally, the body.

ATTRIBUTE = BASE_ATTRIBUTE

| ID ID "{" SUB_ATTRIBUTE+ "}" ;

BASE_ATTRIBUTE = "int" ID ATTRIBUTE_BODY? ";"

| "real" ID ATTRIBUTE_BODY? ";"

| "bool" ID ATTRIBUTE_BODY? ";"

| "enum" ID ATTRIBUTE_BODY? ";"

| ID ID ATTRIBUTE_BODY? ";" ;

SUB_ATTRIBUTE = ID ATTRIBUTE_BODY ";" ;

The attribute body allows to restrict the domain of an attribute, or to give it a
value as part of the attribute declaration (instead of doing it in the constraints).
A fixed value is defined with the is terminal. A domain is specified with the in
terminal followed by a SET EXPRESSION (second and third production). In this
case, one can further specify a conditional value assignment (which does not
make sense in the case the attribute value is fixed). Such a conditional value
assignment can also be specified alone, i.e. without being preceded by an is or
in statement.

ATTRIBUTE_BODY = "is" EXPRESSION

| "in" SET_EXPRESSION

( "," ATTRIBUTE_CONDITIONNAL ) ?

| "," ATTRIBUTE_CONDITIONNAL ;

A conditional value assignment allows to specify an is or an in statement that
should hold depending on whether the feature in which the attribute is declared
is selected (ifin: terminal) or not (ifout: terminal). If both cases are given,
they have to be separated by a comma and should start with the ifin: terminal.
The productions simply capture the eight possible combinations for this.
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ATTRIBUTE_CONDITIONNAL =

"ifin:" "is" EXPRESSION

"," "ifout:" "is" EXPRESSION

| "ifin:" "is" EXPRESSION

| "ifout :" "is" EXPRESSION

| "ifin:" "in" SET_EXPRESSION

"," "ifout:" "is" EXPRESSION

| "ifin:" "is" EXPRESSION

"," "ifout:" "in" SET_EXPRESSION

| "ifin:" "in" SET_EXPRESSION

"," "ifout:" "in" SET_EXPRESSION

| "ifin:" "in" SET_EXPRESSION

| "ifout :" "in" SET_EXPRESSION ;

A constraint declaration is just a boolean expression terminated by a semi-
colon. Just as an attribute value declaration, it can be guarded with the ifin:
or ifout: terminals.

CONSTRAINT = EXPRESSION ";"

| "ifin:" EXPRESSION ";"

| "ifout :" EXPRESSION ";" ;

3.5 Expressions

The expression syntax is meant to be as complete as possible in terms of op-
erators, to encourage writing of intuitive constraints. The meaning of most
productions should be clear.

EXPRESSION =

(* Reference to a feature/an attribute *)

LONG_ID

(* Grouping *)

| "(" EXPRESSION ")"

(* Classical FM constraints *)

| LONG_ID "excludes" LONG_ID

| LONG_ID "requires" LONG_ID

(* Conditional expression *)

| EXPRESSION "?" EXPRESSION ":" EXPRESSION

(* Boolean *)

| EXPRESSION "&&" EXPRESSION

| EXPRESSION "||" EXPRESSION

| EXPRESSION "->" EXPRESSION (* implication *)

| EXPRESSION "<-" EXPRESSION

| EXPRESSION "<->" EXPRESSION (* equivalence *)

| "!" EXPRESSION

| "true"

| "false"

(* Boolean aggregation *)

| "and" "(" (EXPRESSION_LIST | CHILDREN_ID) ")"

| "or" "(" (EXPRESSION_LIST | CHILDREN_ID) ")"

| "xor" "(" (EXPRESSION_LIST | CHILDREN_ID) ")"
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(* Comparison *)

| EXPRESSION "==" EXPRESSION

| EXPRESSION "!=" EXPRESSION

| EXPRESSION "<=" EXPRESSION

| EXPRESSION "<" EXPRESSION

| EXPRESSION ">=" EXPRESSION

| EXPRESSION ">" EXPRESSION

(* Domain restriction *)

| EXPRESSION "in" SET_EXPRESSION

(* Arithmetic *)

| EXPRESSION "+" EXPRESSION

| EXPRESSION "-" EXPRESSION

| EXPRESSION "/" EXPRESSION

| EXPRESSION "*" EXPRESSION

| "-" EXPRESSION

| "abs" "(" EXPRESSION ")"

| INTEGER

| REAL

(* Arithmetic aggregation *)

| "sum" "(" (EXPRESSION_LIST | CHILDREN_ID) ")"

| "mul" "(" (EXPRESSION_LIST | CHILDREN_ID) ")"

| "min" "(" (EXPRESSION_LIST | CHILDREN_ID) ")"

| "max" "(" (EXPRESSION_LIST | CHILDREN_ID) ")"

| "count" "(" (" children" | "selectedchildren ") ")"

| "avg" "(" (EXPRESSION_LIST | CHILDREN_ID) ")" ;

The in statements that can be used to define or restrict the domain of an at-
tribute require a SET EXPRESSION that specifies the set of values. A set expression
can either be a list of expressions inside curly braces (i.e. the set is defined in
extension) or an interval with integer, real or infinite (the * character) bounds
between square brackets (to define a set in intension).

SET_EXPRESSION =

"{" EXPRESSION_LIST "}"

| "[" (INTEGER | REAL | "*" ) ".."

(INTEGER | REAL | "*" ) "]" ;

An expression list is just a comma-separated list of expressions. Its main use
is in defining sets in extension, but it can also be used in combination with an
aggregation function. The domain of an enum (i.e. the values of an enum) is
actually an expression list where every expression is an ID non-terminal.

EXPRESSION_LIST = EXPRESSION ("," EXPRESSION_LIST )* ;

To concisely specify cases in which the value of an attribute is an aggregate of
another attribute that is declared for each child, the children statement can
be used (followed by a LONG ID denoting the attribute).

CHILDREN_ID = "selectedchildren" "." LONG_ID

| "children" "." LONG_ID ;
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3.6 Data blocks

A data block starts appropriately with the data terminal, followed by a key/-
value list in curly braces where key and value are separated by a blank and each
pair is terminated by a semicolon. There can be several data blocks in each
feature, all being merged when the diagram is parsed. Keys should be unique
for each feature. As noted before, data keys do not have any meaning in the
normal FD semantics.

DATA = "data" "{" DATA_PAIR+ "}" ;

DATA_PAIR = STRING STRING ";" ;

3.7 Values

For completeness sake, we also give the rules for naturals, integers, reals and
strings which are rather standard. Strings have to be enclosed in double quotes;
double quotes can be escaped with a backslash.

NATURAL = "0" | ["1" -"9"]["0" -"9"]* ;

INTEGER = "0" | (" -")?["1" -"9"]["0" -"9"]* ;

REAL = INTEGER "." (["0" -"9"]*["1" -"9"])? ;

STRING = ’"’ [^] ’"’ ;

4 Well-formedness

There are a number of rules a TVL model has to adhere to in order to be valid.

4.1 Naming, scope and references

The naming rules for names of features, attributes, types, constants, enum
values and struct fields are similar to other C-like languages: they can use
letters, digits, the underscore and cannot begin with a digit; names are case-
sensitive. Furthermore, there is a list of reserved keywords that may not be
used.

There is one mandatory naming convention, namely that feature names must
begin with a capital letter while names of attributes, types, constants and struct
fields must begin with a lowercase letter (enum values are exempt from this rule).
This prevents a number of potential naming conflicts. Of course, names have
to be unique within their scope, that is,

• child features and attributes of the same feature,

• all declared types,

• constants,

• struct fields that are siblings,

• enum values per enum type.
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are all required to have distinct names. Furthermore,

• no enum value may have the name of an attribute, a feature or a constant

• no constant may have the name of an attribute.

Feature and attribute names, however, do not have to be globally unique except
for the name of the root feature. To reference a feature called bar inside a
constraint, one can just use its name, i.e. write bar, or use a qualified name.
Assuming its parent feature to be called foo, a qualified name would be foo.bar,
or baz.foo.bar if baz is the parent of foo; and so on. A fully qualified name is
one that starts with the name of the root feature.

Each reference to a feature inside a constraint has to be unambiguous. This
means that if the name of the referenced feature is unique, it is sufficient to
put this name. Otherwise, an unambiguous qualified name has to be used, that
is, the feature name has to be prefixed by the names of its parents until the
uppermost name is unique. Since the name of the root feature has to be unique,
a fully qualified name is always unambiguous.

The rules for the referencing of attributes are similar. Inside the body of their
containing feature they can be referenced solely with their name. Otherwise
they have to be prefixed by the name of their containing feature. If this name
is ambiguous, the same rules as above apply.

There are a number of keywords to make referencing easier: parent denotes
the parent feature of the feature in the body of which it is used, root always
denotes the root feature and this denotes the feature in the body of which it is
used.

4.2 Type correctness

TVL is strongly typed, and does not allow type casting, furthermore, TVL type
checking can be performed statically. Type correctness is defined as expected:
expressions defining the value of an attribute have to be of the same type as
the attribute. Constraints have to be expressions of type bool. The expressions
themselves have to be correctly typed, that is, Boolean operators may only take
Boolean operands, numeric operators may only take numeric operands, and so
on.

When a set is defined in extension, i.e. with a list of elements, all elements
in the list need to have the same type, which is the type of the set. Expressions
involving attributes of type enum may only use enum values defined for the
attribute.

4.3 Other rules

The decomposition relation of the model has to be acyclic. While the grammar
allows to declare a cycle in the decomposition relation, this is not permitted.
Decomposition cardinalities 〈i, j〉 have to be so that i ≤ j and i has to be smaller
than or equal to the number of child features. There can only be one group
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block per feature. The parent keyword may not be used for features having
more than one parent.

The children keyword can be used in combination with an aggregation
function to apply the function to the value of the attribute of all children of the
feature. Its use therefore requires that the attribute is indeed declared for all the
children of the feature, that the children all declare it with the same type and
that this type is compatible with the aggregation function. The selectedChil-
dren keyword is similar, except for the fact that it ranges only over children
that were selected. The same rules apply here. In addition, this keyword cannot
be used for the min and max aggregation functions and it can only be used if
the decomposition relation of the parent feature is so that there will always be
at least one selected child.

In the following section, we consider that models are compliant with all those
well-formedness rules.

5 Semantics

In line with previous work of the authors [6,14], a language is not fully defined
without a formal semantics. Fortunately, part of the work has already been
done elsewhere, mainly by Schobbens et al. [6] with the formal definition of
Free Feature Diagrams (FFD), a parameterised FM language.

However, we cannot reuse the FFD definition as is. FFD are based on an
abstract syntax that is much more limited than the concrete syntax of TVL.
In Section 5.1, we thus define a translation from TVL to an abstract syntax
close to that of FFD. Furthermore, FFD do not formalise attributes or non-
Boolean constraints. Also, they do not explicitly capture the notion of optional
feature, which they encode with an intermediate dummy feature that is 〈0..1〉-
decomposed. We contribute these missing pieces in Section 5.2.

For the definition of the semantics, we follow the guidelines of Harel and
Rumpe [15], meaning that we formally define the abstract syntax L of our
language, the semantic domain S and the semantic function M : L → S.

5.1 Abstract syntax LTVL
The concrete syntax introduced in the previous section offers a number of syntac-
tic shortcuts (structuring mechanisms, types,. . . ). In order to obtain an easily
formalisable language, the abstract syntax for TVL will be that of a normal form
with less constructs but equal expressiveness.

Definition 1 (TVL Abstract Syntax, extension of [6]). The syntactic domain
LTVL is the set of all tuples (N, r, DE, ω, λ, A, ρ, τ, V, ι, Φ) where:

• N is the (non empty) set of features,

• r ∈ N is the root,
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• DE ⊆ N × N is the decomposition (hierarchy) relation between features.
For (n, n′) ∈ DE, n is the parent and n′ the child feature. For convenience,
we will sometimes write n→ n′ instead of (n, n′) ∈ DE,

• ω : N → {0, 1} labels optional features with a 1,

• λ : N → N × N indicates the decomposition operator of a feature, repre-
sented as a cardinality 〈i..j〉 where i is the minimum number of children
required in a configuration and j the maximum (we use angle brackets to
distinguish cardinalities from other tuples),

• A is the set of attributes,

• ρ : A→ N is a total function that gives the feature declaring the attribute,

• τ : A→ {int, real, enum, bool} assigns a type to each attribute,

• V is the set of possible values for enumerated attributes,

• ι : {a ∈ A|τ(a) = enum} → P(V ) defines the domain of each enum,

• Φ ⊆ Lexp is a set of Boolean-valued expressions over the features N and
the attributes A, expressing additional constraints on the model. Lexp is
the set of all correctly typed Boolean-valued expressions B that are formed
according to the grammar given in Table 1, where n ∈ N is a feature,
a ∈ A is an attribute, d ∈ Z is an integer, q ∈ Q is a rational number, t
is an enum value and v ∈ V is an enum value.

Furthermore, each d ∈ LTVL must satisfy the following well-formedness rules:

• r is the unique root ∀n ∈ N(@n′ ∈ N • n′ → n)⇔ n = r,

• r is not optional ω(r) = 0,

• DE is acyclic @n1, .., nk ∈ N • n1 → ..→ nk → n1,

• Terminal nodes are 〈0..0〉-decomposed.

We recall that the abstract syntax, LTVL, only covers a subset of the concrete
TVL syntax defined in Section 3. A TVL model using only constructs from LTVL
is in normal form, and the subset of the TVL language reduced to models in
normal form is called TVLNF . In the following, we will show that any TVL model

Table 1: Expression syntax Lexp of LTVL
B ::= true | false | n | a | v | E in S |

n excludes n | n requires n |
B && B | B || B | !B |
B -> B | B <- B | B <-> B |
E == E | E != E |
E <= E | E < E | E >= E | E > E |
and(B [, B]* ) | or(B [, B]* ) |
xor(B [, B]* )

E ::= n | a | t | d | q |
E + E | E - E | E / E | E * E | - E |
abs(E) | B ? E : E |
sum(E [, E]* ) | mul(E [, E]* ) |
min(E [, E]* ) | max(E [, E]* )

S ::= { E [, E]* } |
[ (d | *) .. (d | *) ] |
[ (f | *) .. (f | *) ]
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Table 2: Operator precedence in TVL and TVLNF

Associativity Operators
right !, (unary) -, and aggregation functions
non requires, excludes
left *, /
left +, -
non >, <, >=, <=
non ==, ! =, in
left &&
left ||
non <->
left ->

right <-
right ? :

can be transformed into an equivalent TVLNF model. The semantics of the
TVL language is thus provided in two steps. A first step is to provide a formal
semantics to the many constructs and syntactic shortcuts that are not part of
TVLNF by giving a syntactic translation from TVL to TVLNF . The second step
is to define the semantics of TVLNF , i.e. that of LTVL.

The concrete syntax of TVLNF is a subset of the concrete syntax of TVL. The
only allowed constructs are those defining the features and their hierarchy (N , r
and DE), optional features (ω), cardinality-based decomposition operators (λ)
and attributes with basic types (A, ρ and τ). The excluded constructs are mainly
the structuring mechanisms and the non-cardinality decomposition operators.
Furthermore, constraints in TVLNF (Φ) have to be expressions of Lexp. To obtain
an expression in Lexp from a TVLNF expression, we have to define operator
precedence, associativity and parentheses, since Table 1 abstracts away from
these. We chose to define operator precedence in TVL and TVLNF to be the
same as in C.

Definition 2 (Operator precedence in TVL and TVLNF ). Table 2 lists all op-
erators in decreasing order of precedence. The associativity of each operator is
given in the left column. Parentheses can be used to group expressions and force
a different evaluation order.

Now, the remaining constructs map 1:1 to the elements of LTVL and Lexp in
Definition 1. The first part of the semantics is provided in Definition 3 which
specifies how to translate constructs that only exist in TVL into TVLNF , thereby
defining their semantics.

Definition 3. A model in TVLNF is obtained from a model in TVL by applying
the following transformation steps in the specified order.

Includes. Eliminate all include preprocessing directives by replacing them
with the content of the referenced files.
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Constants. Eliminate constants const t c e; by replacing all occurrences of
c by its definition e.

Types. Here we distinguish between types that merely rename basic types b

t; and more complex structured types struct t {b1 t1, b2 t2,..}. The former
can be eliminated by replacing all occurrences of the defined type t by the
corresponding basic type b. Structured types can be eliminated in a two-step
process. The first step is to flatten a structured type t by replacing it by a
number of individual types b1 t t1; b2 t t2;.., and to flatten attributes declared
as structs by replacing them by individual attributes. The flattened types are
then eliminated in a recursive step.

Attribute domain and value specifications. The construct t a in s; al-
lows to specify the range of an attribute a to be the set s. The in construct
is removed and a constraint of the form this.a in s; is added. Similarly, the
construct t a is v; allows to specify a fixed-value attribute a to be v. The is

construct is removed and a constraint of the form this.a == v; is added.

Conditional domain and value specifications. An attribute value or do-
main specification can also be guarded with the keywords ifIn: and ifOut:, the
syntax then is t a, ifIn: vin, ifOut: vout; where vin can be in s to specify
a domain or is v to specify a value. These constructs are removed and con-
straints of the form ifIn: this.a == v; ifOut: this.a == v; ifIn: this.a

in s; or ifIn: this.a in s; are added.

Guards. Guarded constraints ifIn: c; and ifOut: c; are replaced by equiv-
alent constraints this -> (c); and !this -> (c); respectively.

Aggregation with comprehension. Eliminate the keywords children and
selectedChildren as follows, assuming that c1, .., ck are the child features of the
containing feature:

• Replace avg(children.a) by sum(children.a) / count(children), and sim-
ilarly for selectedChildren.

• Replace fct(children.a) by fct(c1.a, ..., ck.a), where fct is one of the
aggregation functions sum, mul, min, max, and, or, xor.

• Replace count(children) by the number of children of the feature.

• Replace count(selectedChildren) by
sum((c1 ? 1 : 0), ..., (ck ? 1 : 0)).

• Replace fct(selectedChildren.a) by
fct((c1 ? c1.a : neut), ..., (ck ? ck.a : neut)), where fct is one
of the aggregation functions sum, mul, and, or, xor, and neut is the neutral
element wrt. the aggregation function (i.e. 0 for addition, 1 for multiplica-
tion, true for conjunction and false for disjunction and xor). Remember
that the selectedChildren keyword for these functions is only available if
the parent decomposition enforces the selection of at least one feature.

Relative names. All relative names parent, this and root are resolved and
replaced by unambiguous feature names.
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Constraints. A single set of constraints is obtained in TVL by moving all
constraints to the root feature.

Decomposition operators. First replace occurrences of oneOf, allOf and
someOf by group [1..1], group [*..*] and group [1..*] respectively. In a sec-
ond step, replace each occurrence of * inside a cardinality by the number of
child features.

Distributed definitions. Gather feature definitions spread over different
blocks into the single block inside the group statement of its parent.

This translation will effectively eliminate all constructs that are not in TVLNF .

5.2 Semantics of TVLNF

The semantic domain defines the universe in which an element of the syntactic
domain is to be interpreted [15]. As in the existing definition by Schobbens et
al. [6], the semantic domain is that of product lines, meaning that a given FM
should be interpreted as a product line. In earlier definitions, a product line is
formally defined as a set of products, and a product as a set of features. While
this definition is still relevant in our case, it does not capture the notion of
attribute. We thus redefine a product as a set of features that comes with a
function providing a value for each attribute.

Definition 4 (Semantic domain S). The semantic domain of TVL, denoted S,
is the set of all products, each product p being a couple p = (c, v) where c is a set
of features and v is a valuation of the attributes, respecting τ and ι, formally:

S = P(P(N)× P(A→ Z ∪Q ∪ {true, false} ∪ V ))

One could argue that the attributes should in fact not be part of the semantic
domain, that they are just helpers to express additional constraints between
features. While this is a valid interpretation for FMs, it will preclude a number
of possibilities offered by attributes, essentially further reasoning or filtering
based on the values of the attributes (such as attribute optimisation [7, 16]).

Basically, each attribute is treated like a variable that is always defined,
even if the feature that declares it is not part of the product. We chose this
interpretation as its flexible and emphasises the constraint-language aspect of
FMs. An alternative interpretation would have been to assume that attributes of
non-selected features do not exist (as if they were not declared). This would lead
to several problems: what to do with attributes defined in terms of attributes
that do not exist because their parents are not in the product, or: what is the
semantics of constraints over undeclared attributes. Moreover, it would also
cause problems when considering the semantics of FM configuration [17], where
in an intermediate state some features are selected, some deselected and some
undecided.

Given the semantic domain from Definition 4, the semantic function de-
scribes how to interpret each element of the syntactic domain from Definition 1.
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Definition 5 (Semantic functionM). Given a TVL model d ∈ LTVL, its seman-
tics is given by the function M : LTVL → S, where M(d) is the set of all couples
(c, v) with c ∈ P(N) being a valid feature set and v : A→ Z∪Q∪{true, false}∪
V being a valid attribute valuation. Each (c, v) ∈M(d) is such that:

• c contains the root: r ∈ c;
• c satisfies decomposition cardinality:

∀f ∈ c • λ(f) = 〈m..n〉
⇒ m− |optN | ≤ |mandc|
∧ |allc| ≤ n

where: optN = {g|g ∈ N ∧ ω(g) = 1 ∧ f → g}
mandc = {g|g ∈ c ∧ ω(g) = 0 ∧ f → g}
allc = {g|g ∈ c ∧ f → g}

• c includes each selected feature’s parent:

∀g ∈ c • f → g ⇒ f ∈ c

• c and v satisfy all the φ ∈ Φ, meaning that ∀φ ∈ Φ • [[φ]](c, v) 6|= false.
The semantics of an expression, [[φ]](c, v), is quite standard and given in
Table 3.

While one might think that optional features are rather easy to formalise,
the existing formal semantics by Schobbens et al. [6] only covers them indirectly
(with syntactic preprocessing). Moreover, existing semantic discussions such as
those by Czarnecki and Eisenecker [18] are limited to the interplay between op-
tional features and standard and-, or- and xor -decompositions. As noted in [18],
if one child of an 〈1..j〉-decomposed feature f is optional, then this is equivalent
to all its children being optional, or to all its children being mandatory and f
being 〈0..j〉-decomposed. A similar observation holds for a 〈1..1〉-decomposed
feature with at least one optional child. This appears to cause confusion to the
point that existing tools generally support optional features only as children in
an and -decomposition.

Intuitively, optionality has ‘priority over’ the decomposition relation: an
and -decomposition mandates that all features be included if their parent is, yet
optional features are not bound by this requirement. Our definition generalises
this intuition to the case of arbitrary 〈i..j〉 cardinalities. As can be seen in
the second point of Definition 5, optional features cause the lower bound of a
decomposition cardinality to decrease by the number of optional features optN .
This alone would be incorrect; in addition, the features counted to satisfy the
lower bound are only the mandatory features of the configuration mandc. The
latter part is best illustrated with an example, consider:

root f group [3..3] {

a, opt b, c

}
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Table 3: Expression semantics in TVLNF , that is, the value of [[φ]](c, v).

[[true]] = true [[and(B1, .., Bk)]] = true iff
∧

i∈[1,k][[Bi]]
[[false]] = false [[or(B1, .., Bk)]] = true iff

∨
i∈[1,k][[Bi]]

[[n]] = true iff n ∈ c [[xor(B1, .., Bk)]] = true iff
⊕

i∈[1,k][[Bi]]
[[a]] = v(a) [[E1 + E2]] = the value of [[E1]] + [[E2]]

[[a == t]] = true iff v(a) equals t [[E1 - E2]] = the value of [[E1]] − [[E2]]
[[a != t]] = true iff v(a) does not equal t [[E1 / E2]] = the value of [[E1]] / [[E2]]

[[E in S]] = true iff [[E]] ∈ [[S]] [[E1 * E2]] = the value of [[E1]] ∗ [[E2]]
[[n1 requires n2]] = true iff n1 6∈ c ∨ n2 ∈ c [[-E]] = the value of −[[E]]
[[n1 excludes n2]] = true iff n1 6∈ c ∨ n2 6∈ c [[abs(E)]] = the absolute value of [[E]]

[[B1 && B2]] = true iff [[B1]] ∧ [[B2]] [[B1 ? E1 : E2]] = if [[B1]], then [[E1]], otherwise [[E2]]
[[B1 || B2]] = true iff [[B1]] ∨ [[B2]] [[sum(E1, .., Ek)]] = the value of

∑
i∈[1,k][[Ei]]

[[!B]] = true iff [[B1]] equals false [[mul(E1, .., Ek)]] = the value of
∏

i∈[1,k][[Ei]]
[[B1 -> B2]] = true iff [[B1]] ⇒ [[B2]] [[min(E1, .., Ek)]] = the smallest value of the [[Ei]]
[[B1 <- B2]] = true iff [[B2]] ⇒ [[B1]] [[min(E1, .., Ek)]] = the greatest value of the [[Ei]]

[[B1 <-> B2]] = true iff [[B1]] ⇔ [[B2]] [[{ E1, .., Ek }]] = the set {[[Ei]]|i ∈ [1, k]}
[[E1 == E2]] = true iff [[E1]] equals [[E2]] [[[ d1 .. d2 ]]] = the interval [d1, d2]
[[E1 != E2]] = true iff [[E1]] does not equal [[E2]] [[[ * .. d ]]] = the interval ]−∞, d]
[[E1 < E2]] = true iff [[E1]] < [[E2]] [[[ d .. * ]]] = the interval [d,+∞[
[[E1 > E2]] = true iff [[E1]] > [[E2]] [[[ f1 .. f2 ]]] = the interval [f1, f2]

[[E1 <= E2]] = true iff [[E1]] ≤ [[E2]] [[[ * .. f ]]] = the interval ]−∞, f ]
[[E1 >= E2]] = true iff [[E1]] ≥ [[E2]] [[[ f .. * ]]] = the interval [f,+∞[

In that case, valid products are {f, a, b, c} and {f, a, c}. If only the lower bound
were decreased, 〈2..3〉, then the products {f, a, b} and {f, b, c} would be consid-
ered valid as well. This is why in Definition 5 the number of selected mandatory
children of f has to be greater than the new lower bound.

The concept of feature attribute is also not formally defined in the existing
literature. As discussed above, feature attributes exist independently of the
feature that declares them. Our definition is purely declarative, it just requires
that the attribute values satisfy all constraints. Such a definition lends itself
well to implementation in SAT or CSP solvers. Furthermore, we chose not
to fix attributes to a default value in case their parent feature is not part of
the product. Basically, the same constraints apply to attributes whether their
parent feature is selected or not (since the model is just one big constraint).
Otherwise, it would be impossible to give fixed values to attributes (such as,
the price of a feature). Furthermore, TVL provides appropriate syntactic sugar:

root f group allOf {

opt a {

int i, ifIn: in [1..10] , ifOut: is 0;

int j is 42;

int k;

}

22



}

Here, the value of the attribute i is between one and ten if a is in the product,
and zero otherwise. The attribute j is fixed at 42 and k can take any value.
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