
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Feature Management Applied to On-Board Software Building Blocks

Bourdoux, Arnaud; Demonceau, Laurent; Parisis, Paul; Classen, Andreas; Boucher, Quentin

Published in:
Proceedings of DASIA 2009, DAta Systems In Aerospace, May 2009, Istanbul, Turkey

Publication date:
2009

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Bourdoux, A, Demonceau, L, Parisis, P, Classen, A & Boucher, Q 2009, Feature Management Applied to On-
Board Software Building Blocks. in Proceedings of DASIA 2009, DAta Systems In Aerospace, May 2009,
Istanbul, Turkey. ESA.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/publications/feature-management-applied-to-onboard-software-building-blocks(9c0ae46b-e28e-41f9-bb53-7670d4dad9a7).html

FEATURE MANAGEMENT APPLIED
TO ON BOARD SOFTWARE BUILDING BLOCKS

Arnaud Bourdoux (1), Laurent Demonceau (1) , Paul Parisis (1)
Andreas Classen (2) , Quentin Boucher(2)

(1) SPACEBEL s.a., Liège Science Park, B4031 Angleur, Belgium, +32 4 361 81 11

arnaud.bourdoux@spacebel.be, laurent.demonceau@spacebel.be, paul.parisis@spacebel.be
(2)Facultés Universitaires Notre Dame de la Paix, Namur, Belgium,

andreas.classen@info.fundp.ac.be

1. KEY WORDS

Software Product Line Engineering, Feature
Management, On Board Software, Component,
Reference Architecture, Building Blocks, Reuse,
CFDP.

2. ABSTRACT

This paper devises the Software Product Line
Engineering and more particularly the Feature
Management as an efficient way of managing the
variability of generic on board software building
blocks. The principles of Feature Management
are sketched along with its impact on the
software development lifecycle. A use case of
Feature Management applied to CFDP
developed by Spacebel [14] illustrates the
method. Other possible applications in the
context of the reuse of on board software
building blocks in reference architecture are
discussed.

3. CONTEXT

Reference architecture, building blocks and reuse
are becoming increasingly important subjects in
on board software development. In order to
reduce engineering and development costs,
reusable components are becoming more and
more sought after.

However, software building blocks cannot
always be taken off the shelf and reused as is.
They must often be modified to match specific
mission needs, unless reuse is taken into account
at building block design time through sufficient
genericity to embrace potentially variable needs.

The reuse of generic building blocks can then
lead to significant overweight in terms of
memory footprint and processor load. It can also
result in dead code. These issues are typical of

flight software, where memory and computing
resources are limited and reliability is critical.

Software genericity and flight code constraints
therefore tend to go against each other. Reused
component could reveal less efficient than those
that would have specifically been developed for
the mission.

An industrial process for managing and
producing generic components while mastering
the resulting overweight is thus necessary. It
must allow the selection of the required
functionality while the unnecessary functionality
is wiped out.

4. FEATURE MANAGEMENT OVERVIEW

4.1 Software Product Line Modelling

Software Product Line Engineering (SPLE) is an
emergent software engineering paradigm
institutionalising reuse throughout the software
lifecycle. A software product line (SPL) can be
defined as "a set of software-intensive systems
that share a common, managed set of features
satisfying the specific needs of a particular
market segment or mission and that are
developed from a common set of core assets in a
prescribed way" [5]. By adopting SPLE, one
expects to benefit from economies of scale and
thereby to improve the cost, productivity, time to
market, and quality of developing software.

"Central to the SPLE paradigm is the modelling
and management of variability, i.e. the
commonalities and differences in the
applications in terms of requirements,
architecture, components, and test artefacts"
[10]. This variability is commonly expressed
using features, which appear to be first class
abstractions that shape the reasoning of the

mailto:arnaud.bourdoux@spacebel.be
mailto:laurent.demonceau@spacebel.be
mailto:paul.parisis@spacebel.be
mailto:andreas.classen@info.fundp.ac.be

engineers and other stakeholders [4]. A set of
features is a product of the SPL.

Features can be grouped in feature diagrams
(FDs), which model the variability of the SPL at
a high level of granularity: an FD expresses the
set of products of the SPL. They are generally
used (i) to capture commonality and variability,
(ii) to represent dependencies between features,
(iii) to determine combinations of features that
are allowed and disallowed in the SPL, and (iv)
to guide the configuration process.

Basically, FDs are trees1 whose nodes denote
features and whose edges represent top-down
hierarchical decomposition of features. Each
decomposition indicates that, given the presence
of the parent feature in a product, some
combination of its children should also be
present in the product. In the same idea, for a
feature to be selectable for a product, its parent
must also be selected. In addition to their tree-
shaped backbone, Feature Diagrams can also
contain additional constraints, usually specified
in propositional logic.

Among the standard analysis tasks for FDs are
(i) satisfiability checking, i.e. to check whether
the FD is not overconstrained and admits no
product, (ii) product checking, i.e. to check
whether a particular product is part of the
product line, (iii) dead feature search, i.e. to
uncover features that never appear in a product
or simply (iv) to calculate the number of
products in the product line.

A number of FD notations have been proposed in
the literature (see for example [2], [6], [7], [8],
[9] or [13]) and at the moment, there is no
unified and universally accepted one. However,
most of these notations are very similar and the
preceding description applies to all of them. FDs
have a formal semantics, which can be easily
implemented in propositional logic. Many
analysis tasks can thus be automated using off-
the-shelf satisfiability solvers.

4.1 Feature Management Implementation

A binding mechanism has been developed with
the objective of managing such a large number
of features while keeping the code easily
readable and maintainable. It relies on a simple
way of tagging the source code. A tag consists in
a formatted comment that includes a feature

1 Sometimes, directed acyclic graphs (a node can have
several parents) are used, too.

name. Its scope extends over the next functional
block so that there is no need to tag the end of
the block. A block can be a simple declaration or
statement, a more complex construct or even a
complete function or file.

Complete files or functions can be attached to
features during software engineering, using the
usual UML tool. Tags are then automatically
introduced in the source code generated by the
tool. When only particular sections of code are
being used by given features, tags may however
need to be manually added at design and coding
time.

To create a final product, also called Featured
Version, the complete library is first passed,
together with the selected feature set, through a
parser developed in Flex and Bison that removes
the code corresponding to not selected features.
The resulting code is then compiled normally
using the standard C compiler. As the feature
tags are also present in the UML models, the
generated documentation also only contains
information relevant to the features that are
actually part of the build.

An important characteristic of the code tagging
approach is that functional blocks correspond to
structural elements of the C source code i.e.
elements of the Abstract Syntax Tree (AST) of
the language. This implies that the pruned code
will always be syntactically correct as it is only
possible to remove groups of statements that
belong together. This is illustrated in Figure 1
which contains an example of tagged code on the
left and its associated AST on the right. There,
the highlighted nodes of the AST correspond to
tagged portions of code. /*@feature:feature
A@*/ is an example of tag covering a whole
function, in this case function 1. If feature_A is
not part of a product, the whole function will be
removed, i.e. the source code associated to the
Function node of the AST (as well as all its sub-
nodes) will be pruned. /*@feature:feature B@*/
and /*@feature:feature C@*/ each cover a case
block.

This means that if, for example, feature_B is not
part of a product, the case block where
switchVar equals 1 will be removed of the
source file. This deletion keeps the code
syntactically correct as it removes the whole case
block (highlighted in Figure 1). Finally, the
/*@feature:feature B:feature C@*/ tag covers a
function call that will be removed only if none of
feature B and feature C are selected in a product.

Once again, the deletion of
this statement keeps the code
syntactically correct as it
corresponds to a node of the
AST.

Figure 1 presents only a few
examples of functional
blocks but the same holds for
all other functional blocks
such as loops, groups of
statements enclosed by
braces, …

5. FEATURE MANAGEMENT IN THE
SOFTWARE PROCESS

Feature Management is not limited to source
code. It concerns the complete software
development and also the associated
documentation and tests. It has to be considered
during the initial product development, and each
time the product is going to be reused in a
particular project.

5.1 Development Time

Feature management must be taken into account
very early in the software development life-
cycle. The feature diagram elaboration must be
part of the engineering effort. It actually benefits
to the engineering as it obliges to identify all the
features, the relation between them and their
variability before the software implementation.
At the end of the development, every feature
must be carefully characterized in terms of its
resources consumption.

Creating the features and elaborating the feature
diagram must be seen as a crucial activity. One
aspect of the problem that needs to be carefully
thought about is the granularity of the features,
i.e. the depth of the feature tree. Too fine
granularity indeed raises the development costs,
as each new feature introduces an overhead in
the engineering process, while too coarse
granularity misses the goal of using feature
management, as additional development could
then still be needed at reuse time.

5.2 Reuse Time

At reuse time, only the requirements related to
the selected Features are applicable to the
product. The Feature selection is therefore a
major activity driving the software requirements.
The Feature Set to be proposed for a particular
project is the minimum set for which the
associated software requirements fully cover the
user requirements. As the memory footprint and
processor load impact of each feature is know,
the resource budget corresponding to the Feature
Set can be directly obtained.

From there, the requirements relative to the
selected Feature Set are flowed down to the
architecture, to the code and to the tests.
Following this approach, documentation
produced using a feature set does not contain
irrelevant information, and only the applicable
tests are executed on a featured version build.

6. CFDP USE CASE

Spacebel has been developing a flight-qualified
implementation of the CCSDS File Delivery
Protocol (CFDP) [14]. As described here below,
the CFDP is a very versatile protocol that offers
a wide range of options, from simple one-way,
best-effort point-to-point transfers to
acknowledged exchanges transmitted via several
waypoints. Because of the wide spectrum of
possibilities offered by the protocol, a CFDP
implementation has to be highly modular, in
order to easily switch from one option set to the
other, depending on specific missions’
constraints and needs.

This modularity requirement actually makes the
CFDP library development a use case of choice
for the deployment of feature management.
Indeed, it would not be reasonable to propose a
complete, generic version of the library to an
integrator, as only a subset of the functionalities
of the protocol are likely to be used for a specific
mission.

6.1. Overview of the CFDP

The CCSDS has developed the CFDP standard
to complement the existing packet standards and
to anticipate the needs of future missions. The
CFDP proposes a file transfer protocol that
efficiently copes with characteristics that are
typical of the space data systems, missions and
environment. The protocol can operate according
to various profiles suited to specific mission
needs and system constraint.

In its simplest form, the protocol provides Core
Procedures with file delivery capability operating
across a single link (i.e. point-to-point).

For more complex mission scenarios, where no
direct link is available between file source and
destination, the protocol offers Extended
procedures and Store and Forward Overlay
(SFO) procedures; both allowing end-to-end file
transfers which can span multiple CFDP
waypoint nodes thus providing end-to-end
accountability through multiple hops capable of
automatic store & forward operations.

In addition to the purely file delivery-related
functions, the protocol also includes file
manipulation commands and Filestore
management services that provide control over
the storage medium and management of the
remote file systems.

The CFDP can therefore be used in various ways
and support a wide range of options. Among
others:

 Space-to-ground, ground-to-space and space-
to-space directions of transfer are possible
across an arbitrary network.

 The network can contain multiple links with
disparate availability, as well as underlying
subnetworks with heterogeneous protocols.

 The communication link can be
unidirectional, half duplex, full duplex and
can exhibit near-Earth or deep space delays.

 The file delivery path may contain one or
several links and waypoints.

 The relaying of files at waypoints can be
immediate or deferred upon complete file
reception at waypoint.

 The file transfer can be reliable or on a best
effort basis.

 Various retransmission strategies can be
selected from unacknowledged to various
flavours of acknowledged mode: positive,
negative, deferred, asynchronous, immediate
and prompted.

 Checksum can optionally be enabled on the
individual packets and on the entire file.

 Proxy operations can be used to initiate the
delivery of a file from a remote CFDP entity
to some other user, either to the local user
itself or to the user of some third CFDP
entity.

6.2. Feature Management Applied to CFDP

Depending on the mission, each of the
aforementioned capabilities can either be a
mandatory feature or a useless waste of
resources. Feature Management has thus been
applied to the CFDP Flight library development
to yield a generic building block that contain all
the features but that can easily be tailored to
strictly fit a particular projects needs.

The various protocol options have first been
expressed as features, and the library feature
diagram created. Roughly sixty features have
been identified, spread on three hierarchy levels.
Each feature has then been attached to software
items such as packages, functions or even
sections of code.

The code tagging approach described in section 4
has also been applied. It proved well integrated
in the standard UML based development
environment. It allowed automatically and
optimally building versions of the CFDP Library
corresponding to a selected and coherent set of
features.

7. PROSPECTIVES

The Packet Utilization Standard is another
typical example of an on board software building
block. It also shows a high degree of variability
from mission to mission.

One could therefore easily imagine applying the
feature management process to a PUS
implementation, probably with the services and

subservices as a starting point of the feature
diagram, then refined with implementation
options relevant to each of the subservices.

Subsequent projects relying on the PUS would
then benefit of having a reusable building block
tailorable to the mission with minimum effort
and adapted to the available resources. The
development effort would thus be limited to the
interfaces with the lower levels of the software
(accessing the avionics), which by definition
tend to be more specific.

More generally, any software component which
use is widespread in space missions can be a
good candidate for a generic building block.
Among those, components displaying a large
number of options are the ones that should be
targeted by a feature management approach.
Examples of such components could be high-
level FDIR applications, communication
protocols, or equipment managers.

8. CONCLUSIONS

Feature Management is an efficient solution for
managing the variability of generic software
components that offer various options, profiles,
capability sets or alternative implementations of
a same function. It is an enabling technology for
the efficient reuse of On Board Software
Building Blocks.

9. REFERENCES
[1] D. Batory, D. Benavides, and A. Ruiz-Cortes. Automated
analysis of feature models: Challenges ahead.
Communications of the ACM, December 2006.

[2] Don S. Batory. Feature Models, Grammars, and
Propositional Formulas. In Proceedings of the 9th Int.
Software Product Line Conference (SPLC), pages 7-20,
2005.

[3] David Benavides, Pablo Trinidad Martín-Arroyo, and
Antonio Ruiz Cortés. Automated reasoning on feature
models. In Advanced Information Systems Engineering, 17th
International Conference, CAiSE 2005, pages 491-503,
Porto, Portugal, June 2005.

[4] Andreas Classen, Patrick Heymans, and Pierre-Yves
Schobbens. What's in a feature: A requirements engineering
perspective. In José Luiz Fiadeiro and Paola Inverardi,
editors, Proceedings of the 11th International Conference on
Fundamental Approaches to Software Engineering
(FASE'08), Held as Part of the Joint European Conferences

on Theory and Practice of Software (ETAPS'08), volume
4961 of LNCS, pages 16-30. Springer, 2008.

[5] Paul C. Clements and Linda Northrop. Software Product
Lines: Practices and Patterns. SEI Series in Software
Engineering. Addison-Wesley, August 2001.

[6] Ulrich W. Eisenecker and Krzysztof Czarnecki.
Generative Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[7] M. Griss, J. Favaro, and M. d'Alessandro. Integrating
feature modeling with the RSEB. In Proceedings of the Fifth
International Conference on Software Reuse (ICSR), pages
76-85, Vancouver, BC, Canada, June 1998.

[8] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University,November
1990.

[9] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim,
Euiseob Shin, and Moonhang Huh. Form: A feature-oriented
reuse method with domain-specific reference architectures.
Annales of Software Engineering, 5:14- 168, 1998.

[10] Klaus Pohl, Gunter Bockle, and Frank van der Linden.
Software Product Line Engineering: Foundations, Principles
and Techniques. Springer, July 2005.

[11] Pierre-Yves Schobbens, Patrick Heymans, Jean-
Christophe Trigaux, and Yves Bontemps. Feature Diagrams:
A Survey and A Formal Semantics. In Proceedings of the
14th IEEE International Requirements Engineering
Conference (RE'06), pages 139-148, Minneapolis,
Minnesota, USA, September 2006.

[12] Pierre-Yves Schobbens, Patrick Heymans, Jean-
Christophe Trigaux, and Yves Bontemps. Generic semantics
of feature diagrams. Computer Networks (2006),
doi:10.1016/j.comnet.2006.08.008, special issue on feature
interactions in emerging application domains, page 38, 2006.

[13] A. van Deursen and P. Klint. Domain-Specific Language
Design Requires Feature Descriptions. Journal of Computing
and Information Technology, 10(1):1-17, 2002.

[14] Laurent Demonceau, Paul Parisis, Massimiliano
Ciccone, Gianluca Furano, Robert Blommestijn, CCSDS File
Delivery Protocol for Future ESA Missions, DASIA 2008

[15] CCSDS File Delivery Protocol (CFDP), CCSDS 727.0-
B-4, Recommendation for Space Data
System Standards, Blue Book, Issue 4, January 2007

[16] CCSDS File Delivery Protocol (CFDP), CCSDS 720.1-
G-2, Part1: Introduction and Overview, Green Book, Issue2,
September 2003

[17] CCSDS File Delivery Protocol (CFDP), CCSDS 720.2-
G-2, Part2: Implementer guide, Green Book, Issue2,
September 2003

[18] CFDP Notebook of Common Inter-Agency Tests for
Core Procedures, November 2001

