
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Towards a Unifying Conceptual Framework for
Inconsistency Management Approaches: Definitions and Instantiations
Hubaux, Arnaud; Cleve, Anthony; Schobbens, Pierre-Yves; Keller, Anne; Muliawan, Olaf;
Castro, Sergio; Mens, Kim; Deridder, Dirk; Van Der Straeten, Ragnhild

Publication date:
2009

Link to publication
Citation for pulished version (HARVARD):
Hubaux, A, Cleve, A, Schobbens, P-Y, Keller, A, Muliawan, O, Castro, S, Mens, K, Deridder, D & Van Der
Straeten, R 2009, Towards a Unifying Conceptual Framework for Inconsistency Management Approaches:
Definitions and Instantiations..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repository of the University of Namur

https://core.ac.uk/display/326261823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/towards-a-unifying-conceptual-framework-for-inconsistency-management-approaches-definitions-and-instantiations(73403f82-bd72-4517-98bc-6cd210b26ab7).html

PReCISE – FUNDP
University of Namur
Rue Grandgagnage, 21
B-5000 Namur
Belgium

TECHNICAL REPORT May 14, 2009

AUTHORS A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Mu-
liawan, S. Castro, K. Mens, D. Deridder, R. Van Der
Straeten

APPROVED BY P. Heymans
EMAILS {ahu|acl|pys}@info.fundp.ac.be,

{anne.keller|olaf.muliawan}@ua.ac.be,
{sergio.castro|kim.mens}@uclouvain.be,
{dderidde|rvdstrae}@vub.ac.be

STATUS Draft version
REFERENCE P-CS-TR WP4CM-000001

PROJECT MoVES
FUNDING Interuniversity Attraction Poles Programme of the Belgian

State of Belgian Science Policy

Towards a Unifying Conceptual Framework for
Inconsistency Management Approaches

Definitions and Instantiations

Copyright c© University of Namur. All rights reserved.

A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Muliawan, S. Castro, K. Mens, D. Deridder, R. Van Der Straeten

THE PRESENT DOCUMENT IS AN EXTENDED VERSION OF A PAPER
SUBMITTED TO MODELS 2009. THE TECHNICAL PART HAS OTH-
ERWISE NOT BEEN PUBLISHED OR SUBMITTED ELSEWHERE.

2 P-CS-TR WP4CM-000001

Towards a Unifying Conceptual Framework for Inconsistency Management Approaches: Definitions & Instantiations

Towards a Unifying Conceptual Framework for
Inconsistency Management Approaches

Definitions and Instantiations

Arnaud Hubaux1, Anthony Cleve1, Pierre-Yves Schobbens1, Anne Keller2, Olaf
Muliawan2, Sergio Castro3, Kim Mens3, Dirk Deridder4, and Ragnhild Van Der

Straeten4

1 PReCISE Research Centre, University of Namur
Rue Grandgagnage 21, 5000 Namur, Belgium
{ahu|acl|pys}@info.fundp.ac.be

2 Department of Mathematics and Computer Science, Universiteit Antwerp
Middelheimlaan 1, 2020 Antwerpen, Belgium

{anne.keller|olaf.muliawan}@ua.ac.be
3 Department of Computing Science and Engineering, Université catholique de Louvain

Place Ste Barbe 2, 1348 Louvain-la-Neuve, Belgium
{sergio.castro|kim.mens}@uclouvain.be

4 Systems and Software Engineering Lab, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium

{dderidde|rvdstrae}@vub.ac.be

Abstract. The problem of managing inconsistencies within and between models
is omnipresent in software engineering. Over the years many different inconsis-
tency management approaches have been proposed by the research community.
Because of their large diversity of backgrounds and the diversity of models be-
ing considered, it is difficult to pinpoint what these approaches have in common
and what not. As a result, researchers encounter difficulties when positioning
and comparing their work with existing state-of-the-art, or when collaborating
on or combining different approaches. Also, end-users have a hard time mak-
ing informed decisions to select the most appropriate approach. To address these
problems, we present a unifying conceptual framework of definitions and ter-
minology, independent of any concrete inconsistency management approach or
(modelling) language. The contribution is a formal framework providing a com-
mon understanding of what (in)consistency means, what inconsistency manage-
ment involves and what assumptions are commonly made by existing approaches.
The formalisation is also illustrated with four instantiations taken from different
research fields.

Keywords. Inconsistency management, models, conceptual framework, formalism.

1 Introduction

The problem of managing inconsistencies is omnipresent in software engineering [1].
It appears at every phase of the software life-cycle, ranging from requirements, anal-
ysis, architecture, design, implementation and testing to maintenance and evolution.

P-CS-TR WP4CM-000001 3

A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Muliawan, S. Castro, K. Mens, D. Deridder, R. Van Der Straeten

Inconsistencies occur within and between models that are built with different languages
and are of various types like requirements models, feature models, use cases, UML
design models and even program code. Inconsistencies result from the violations of
consistency conditions that can be as diverse as architectural and design guidelines,
programming conventions, well-formedness rules and tests.

In spite of the importance of using models in software development and the need
for dealing with inconsistencies, there is a lack of a unifying conceptual framework for
model inconsistencies that encompasses all these different phases and models, and that
allows to focus on what all these approaches have in common, and what distinguishes
them. We encountered this particular problem in our MoVES research project (moves.
vub.ac.be) where the lack of such common understanding hindered our comparison
of different inconsistency management approaches. The MoVES partners belong to dif-
ferent communities among which requirements engineering, software product-line en-
gineering, model-driven engineering, software maintenance and evolution and database
engineering. Existing inconsistency classifications [2–7] focus on defining and classify-
ing different types of inconsistencies that can be encountered. In contrast, the achieve-
ment of a common and unequivocal frame of reference and the specification of a basic
set of requirements for inconsistency management approaches are barely tackled.

More specifically, one misses a reference framework for inconsistency management
providing a common understanding of (1) what the different involved models and lan-
guages are, (2) what an inconsistency really means and (3) what inconsistency man-
agement tasks are supported. The contribution of this paper is to formally define such
a framework that lays down the foundation for our future work where the proposed
formalism will be used to: understand existing inconsistency management approaches,
compare such approaches systematically, classify them, identify synergies between ap-
proaches and reuse approaches from one domain to another.

The framework proposed in this paper results from an incremental and bottom-up
process exploiting the research background of the authors. Our starting point consisted
of a collection of domain-specific approaches dedicated to the management of incon-
sistencies occuring within and between (1) UML models [8], (2) source code and struc-
tural regularities on that code [9], (3) database schemas and associated queries [10] and
(4) model transformations [11]. The concrete instantiations of the framework in these
areas we present bring forth early evidence of the applicability of the framework as a
backbone for the unification of inconsistency management approaches.

The remainder of the paper is structured as follows. Section 2 introduces the uni-
fying conceptual framework. After an intuitive description of our framework (2.1), we
introduce an instantiation (2.2) that serves as an illustration for its rigourous definition
(2.3). Section 3 details four instantiations of the formal definition of the framework.
Section 4 explores related work. Section 5 proposes avenues for future work and con-
cludes the paper.

2 Inconsistency Framework

In this section we introduce our unifying conceptual framework for inconsistency man-
agement approaches. We first introduce the involved concepts informally, then illustrate

4 P-CS-TR WP4CM-000001

Towards a Unifying Conceptual Framework for Inconsistency Management Approaches: Definitions & Instantiations

them on a concrete inconsistency management approach, before finally providing some
more formal definitions.

2.1 Intuitive definition

Following [1], inconsistency management minimally involves (1) the specification of
consistency conditions to be checked, (2) the detection of violations of these conditions
(called inconsistencies), and (3) the handling of these detected inconsistencies.

Specifying the consistency conditions boils down to defining the model(s) of interest
and the conditions these models and their elements need to adhere to in order to be con-
sistent. An inconsistency is detected whenever a particular consistency condition about
the models and elements it is checked on, does not hold. Handling an inconsistency is
done according to a chosen handling strategy, executing a series of actions, which can
include correcting the models and their elements, changing or relaxing the consistency
conditions [12] or tolerating or ignoring the inconsistency [13] (for example to postpone
its resolution to a later date).

Our conceptual framework reflects this trinity and is composed of three main com-
ponents: consistency specification, inconsistency detection and inconsistency handling,
as illustrated schematically in Figure 1. A consistency specification defines the consis-
tency conditions, expressed in some condition language(s), and the models (and their
elements), expressed in some modelling language(s), that should respect these condi-
tions. To detect inconsistencies, the consistency conditions are checked on (a subset of)
the models and expressed in terms of the elements and language elements which they
are composed of. Inconsistency handling amounts to changing the conditions and/or
models. How and what actions exactly are chosen and executed, depends on the chosen
inconsistency handling strategy.

Consistency Specification

Inconsistency DetectionInconsistency Handling

Models
defined on

Elements

Language
elements

Conditions

Modelling languagesCondition languages
composed of

expressed in terms of

instance of

expressed in terms of

expressed in expressed in

Inconsistencies

cause

composed of

Inconsistency
handling
actions

composed of
change

checked on

Fig. 1. Overview of the inconsistency framework.

P-CS-TR WP4CM-000001 5

A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Muliawan, S. Castro, K. Mens, D. Deridder, R. Van Der Straeten

2.2 Illustrative example

Before passing to our formalisation, we introduce a concrete instantiation on which we
will illustrate the different components of the framework. Van Der Straeten et al. [8, 14]
present an inconsistency specification and detection approach for UML models. The
approach focuses on three kinds of UML diagrams: class diagrams, state machines and
sequence diagrams. It supports specification and detection of a variety of inconsisten-
cies that can be observed between those diagrams. The consistency conditions in this
approach are expressed as rules in Description Logics [15]. The approach is elaborated
in Section 3.2.

Figure 2 shows a class diagram, a state machine diagram and a sequence diagram
that describe parts of the design of an automatic teller machine (ATM). Whereas the
class diagram shows the different classes involved and how they are structurally inter-
related, the state machine diagram details the specific states and transitions in case of
an inquiry transaction, and the sequence diagram shows the scenario in case the inquiry
transaction gets cancelled after the account number of the account to inquire is asked.

readPIN() : Integer
readAccountNbr() : Integer
displayAmount(amount : Cash) : void

CustomerConsole
getAccountNbr() : Integer
displayCash(amount : Cash) : void
printReceipt() : void
verifyPIN() : Boolean

cash : Cash
ATM

performTransaction() : void
getCustomerSpecifics() : void
cancelTransaction() : void

transactionId
Transaction

performSession() : void
handleFailedTransaction() : void
cancel() : void

sessionId : Integer
Session

cancelTransaction() : void
getCustomerSpecifics() : void

Inquiry

0..1
1

1 1

1

0..1

1 0..1

(a) Class diagram

ChooseTransaction

PrintReceipt

AccountEntry

DisplayCash

GetCustomerSpecifics

cancel()

printReceipt()

displayCash(balance)

getAccountNbr()

[INQUIRY]

(b) State diagram

atm : ATM s : Session

:Inquiry

:CustomerConsole
1: Inquiry(atm, s, card)

performTransation()

getAccountNbr()

readAccountNbr()

cancel()
cancel()

cancelTransaction()

getCustomerSpecifics()

(c) Sequence diagram

Fig. 2. Examples of class, state machine and sequence diagrams of an ATM.

A possible consistency condition that we may want to express over such interre-
lated diagrams is the fact that every operation (like cancelling a transaction) specified
on a transition in a state machine diagram or on a message in a sequence diagram,
needs to be defined in the corresponding class. In [8], inconsistencies of this type are

6 P-CS-TR WP4CM-000001

Towards a Unifying Conceptual Framework for Inconsistency Management Approaches: Definitions & Instantiations

classified as “dangling feature references” (referred to as DFR in the remainder of the
paper, cf. Section 3.2). In the example of Figure 2, this condition is violated because the
cancel() operation called on a transition in the state diagram and sent to an instance
of the ATM class in the sequence diagram is not defined in the class ATM. As explained
in [7, 8], each consistency condition can be expressed in either the Description Logic
SHIQ(D−) or in the Description Logic query language nRQL [16]. In particular, the
condition DFR can be expressed in nRQL as (taken from [7]):

(retrieve (?op ?c)
(or (and (?m Message) (?m ?mend receiveEvent)

(?mend ?ev OccurrenceSpecificationeventEvent)
(?ev ?op ReceiveOperationEventoperationOperation) (?op Operation)
(?mend ?l covered) (?l ?cend LifelinerepresentsConnectableElement)
(?cend ?c type) (?c Class) (neg (?c ?op ClassownedOperationOperation)))

(and (?stm ProtocolStateMachine) (?stm ?r region) (?r Region)
(?r ?t transition) (?t ProtocolTransition) (?t ?op referred)
(?op Operation) (?c Class) (?stm ?c BehaviorcontextBehavioredClassifier)
(neg (?c ?op ClassownedOperationOperation)))))

This query uses variables (symbols beginning with “?”), concepts like Message, Oper-
ation, Region and roles like covered and receiveEvent linking concepts to-
gether. These concepts and roles are obtained from automatically translating the UML
metamodel into the DL SHIQ(D−).

In the next subsection, we will define the conceptual framework more formally,
using this running example to explain and illustrate the different definitions introduced.

2.3 Formal definition

A formal backbone is a mandatory step in the unification of existing inconsistency man-
agement approaches. It provides a rigourous and unequivocal basis for the understand-
ing of, comparison of and reasoning about such approaches. Formally, the inconsistency
framework can be defined as follows:

Definition 1 (Inconsistency Framework F). Our inconsistency framework F is the
set of all tuples (s, d, h) where:

– s ∈ S is a consistency specification;
– d ∈ D is an inconsistency detection specification;
– h ∈ H is an inconsistency handling specification.

We will refer to each such tuple f ∈ F as an inconsistency management approach.

The definitions of S, D andH are given in the remainder of this section.

Consistency specification The specification of consistency s ∈ S is centered around
the definition of consistency conditions which must be respected by the different models
in order for them to be consistent. As shown in Figure 3, every condition is expressed
in terms of the elements of one or more models and in terms of the elements of their
modelling languages. Every consistency condition is expressed in some condition lan-
guage, which can be a logic language, a constraint language, an imperative language or

P-CS-TR WP4CM-000001 7

A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Muliawan, S. Castro, K. Mens, D. Deridder, R. Van Der Straeten

another executable language. The consistency conditions can be expressed in different
languages. Every model is expressed in a modelling language, which can be a general-
purpose modelling language, a domain-specific one or even a programming language.
Like conditions, models can be expressed in different languages (e.g. UML, Java and
SQL).

Condition
Conditionmodel ∈ M

defined on Element (E)
Element (E)element ∈ E

Element (E)
Element (E)language
element ∈ LE

Condition
Conditioncondition ∈ C

Modelling language (ML)Modelling language (ML)modelling language ∈ ML
Condition language (ML)Condition language (ML)condition language ∈ CL

composed of

composed of

expressed in terms of

instance of

expressed in terms of

expressed in

η

ε

λ

μ

expressed in

φ

γ

Fig. 3. Consistency specification (S).

Example 1. The consistency specification sUML of the framework instantiation fUML =
(sUML, dUML, hUML) corresponding to the example of subsection 2.2 is defined as:

– The setMUML of models considered for detecting inconsistencies. The three mod-
els presented in Figure 2 give MUML = {mc,mt,ms} where mc is the class
diagram of Figure 2(a), mt is the state machine diagram of Figure 2(b) and ms is
the sequence diagram of Figure 2(c).

– The set MLUML of modelling languages in which these models are expressed. In
the case of our example, this is the set {UMLclass, UMLstate, UMLsequence} of
sublanguages of UML corresponding to the different kinds of models considered.
For example, UMLclass is the sublanguage of UML describing the syntax and se-
mantics of UML class diagrams. Alternatively, we could have opted to consider the
UML as a single language which is the union of all its sublanguages corresponding
to the different kinds of diagrams supported by UML.

– The set CUML of consistency conditions defined over those models. An example
of such a condition was given in Section 2.2. This condition as well as others de-
scribed in [8] express possible domain-independent inconsistencies that can occur
within and between UML sequence, UML class and UML state machine diagrams.
The fact that these conditions are domain independent implies that they are ex-
pressed in terms of language elements only and do not refer to concrete model
elements. For example, the nRQL query shown earlier on does not directly refer
to actual classes like ATM or concrete operations like cancel. This does not im-
ply that model-specific conditions cannot be expressed. In that case, the condition

8 P-CS-TR WP4CM-000001

Towards a Unifying Conceptual Framework for Inconsistency Management Approaches: Definitions & Instantiations

would also refer to concrete model elements, e.g., a condition stating that every
class that specialises the Transaction class should also implement an operation
cancelTransaction.

– The set CLUML of languages in which those conditions are expressed is defined as
{SHIQ(D−), nRQL}. As explained in Section 2.2, each condition is expressed
in either the description logic SHIQ(D−) or in the query language nRQL.

This brings us to our formal definition of a consistency specification.

Definition 2 (Consistency Specification s ∈ S). A consistency specification s ∈ S is
a tuple (C,CL,M,ML, γ, µ, Φ) where:

– C is a set of conditions;
– CL is the set of condition languages in which the conditions are expressed;
– M is a set of models;
– ML is a set of modelling languages in which the models are expressed;
– γ : C → CL is a total surjective function determining for each condition the

language in which it is expressed;
– µ : M → ML is a total surjective function determining for each model the lan-

guage in which it is expressed;
– Φ : C → P(P(M)) is a total function defining for each condition the models on

which it is defined.

Example 2. Revisiting the consistency specification sUML of example 1 we can now
say that it is the tuple (CUML, CLUML,MUML,MLUML, γUML, µUML, ΦUML) where:

– γUML : CUML → CLUML specifies for each condition whether it is expressed in
either the description logic SHIQ(D−) or in nRQL.

– µUML : MUML → MLUML is a function which maps the class diagram mc to
UMLclass, the state machine mt to UMLstate and the sequence diagram ms to
UMLsequence.

– ΦUML : CUML → P(P(MUML)). This calls for clarification. Intuitively, Φ
maps a condition to the set of models on which it is defined, which is why we
need at least a powerset. In our case, MUML = {mc,ms,mt} so P(MUML) =
{{}, {mc}, ..., {mc,ms}, ..., {mc,ms,mt}}. Our DFR consistency condition of
Section 2.2, however, states that every operation specified on a transition in a state
machine diagram or on a message in a sequence diagram, needs to be defined in
the corresponding class in the class diagram. That is a condition over all possible
combinations of a class diagram on the one hand and a sequence diagram or state
machine diagram on the other hand. In other words, it is a constraint over the set
{{mc,ms}, {mc,mt}} which is not in P(MUML) but in P(P(MUML)). More
complex conditions could require an even more complex range for Φ. However,
as stated before, we conceived our formalism in a bottom-up way. For each of the
four different inconsistency management approaches which inspired the formalism,
having a powerset of a powerset as target largely sufficed.

Definition 2 does not define the concept of model nor the concept of modelling
language. Typically, a model is composed of a set of elements, each element being a

P-CS-TR WP4CM-000001 9

A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Muliawan, S. Castro, K. Mens, D. Deridder, R. Van Der Straeten

basic building block for model design. For instance, the UML class diagram in Fig-
ure 2(a) consists of elements like the class ATM and the property cash. In addition,
the model defines links between its different elements. For instance, the nesting of
cash inside ATM can be represented as a link of type ownedAttribute between
ATM and cash. However, since the ownedAttribute association is an important
model element in its own right, we can also see it as a model element linked to each
of the elements ATM and cash. Similarly, a modelling language can be seen as a
set of language elements, where a language element is a basic language concept. For
instance, the language elements of UML class diagrams are, among others, Class,
Operation, MultiplicityElement, ownedAttribute, owneOperation
connected to each other as defined in the UML metamodel.

Seen this way, the elements and their connecting links that belong to either a mod-
elling language or a model, define a graph which we will call an element graph.

Definition 3 (Element Graph G). For a given set V of elements, and a given set A
of directed links (x,y) between these elements, where x, y ∈ V , we define the element
graph as the directed graph G = (V,A). We use the notation vertices(G) = V to get
the vertices of the graph.

Our sole purpose in defining models and modelling languages as graphs of elements
is to provide a minimalistic formal representation of the elementary building blocks of
which such models or modelling languages consist. Having such an abstract representa-
tion is essential to formally specify inconsistency detection and handling, in particular
to reason at the proper level of detail about elements involved in inconsistencies. Note
that this by no means restricts or imposes concrete instantiations of our framework to
actually represent their models and modelling languages as graphs. Element graphs are
used here merely to formally represent the elements being manipulated by the specifi-
cations, as opposed to prescribing the transformation of languages and models into a
generic mathematical structure (like in [17]).

Based on this definition, we can now define the graphGM of all model elements. We
deliberately put all model elements in a single graph because of the possible occurrence
of shared elements. For example, a model element representing a class ATM may occur
both in a class diagram and in a sequence diagram. Such a shared element will be
represented as a single element in the model element graph GM . This implies that the
set M of all models does not define a partition over GM . However, we do require that
GM contains only model elements occurring in at least one model of M .

Definition 4 (Model Element Graph GM). GM is the element graph (E,AE) where
E is the set of all model elements and AE the set of arcs between them. Every model
m ∈M defines a subgraph of GM such that

⋃
m∈M vertices(m) = E.

The graph GL of all elements of modelling languages in ML is defined analogously:

Definition 5 (Language Element Graph GL). GL is the element graph (LE,ALE)
where LE is the set of all language elements and ALE the set of arcs between them.
Every modelling language l ∈ML defines a subgraph of GL such that⋃
l∈ML vertices(l) = LE.

10 P-CS-TR WP4CM-000001

Towards a Unifying Conceptual Framework for Inconsistency Management Approaches: Definitions & Instantiations

Evidently the model and language element graph are not unrelated. We define the
relation between model elements and the language elements of which they are a lin-
guistic instance [18] as follows:

Definition 6 (Linguistic instance of η). η : E → LE is the total function determining
the linguistic instance of which language element each model element is.

Example 3. For our framework instantiation fUML, the language element graph GL
corresponds to part of the UML metamodel. The model element graph GM contains all
model elements of the class, state and sequence diagrams of Figure 2. Figure 4 illus-
trates this on a very small subset of the class and state diagram of Figure 2, along with
the respective subset of their metamodels. The model and language element graphs that
correspond to, respectively, the models and metamodels of Figure 4(a), are shown in
Figure 4(b). Note how, in GL, language elements like Class and Operation, which
are shared between UMLclass and UMLstate, are represented as single language el-
ements in the graph. Similarly, model elements like the cancel operation, which are
shared between different diagrams, appear as a single element in GM . The figure also
shows a few instance-of relations between model elements and their corresponding lan-
guage elements. In order not to clutter the figure, only a limited set of instance-of rela-
tions is shown. Of course, in reality, η defines a mapping for every element of GM to
its corresponding element in GL.

UML
Models

UML UMLclass
UMLstate

String name
Class

String name
Operation

String name
Property

*
ownedAttribute ownedOperation

0..1

*

0..1

*

Transition

referredOperation

*

RegionProtocolState
Machine

0..1

1..*0..1

*

contains

contains

mt

hasbehaviour
0..1

instance of

r
psm

CT

GCS
mc

cash
ATM

cancel()

State0..1*
contains0..1

*

target

1

*

1

source

*

(a) UML language and models

GL
UMLclass UMLstate

Property

String name

Operation

String name

Class

String name

Transition

referredOperation **

ownedOperation

0..1

*

ownedAttribute

0..1

*

0..1

*contains

Region

ProtocolStateMachine

0..1

1..*

 contains

GM

mc mt

behaviourATM

 CashAtt

cash

ownedAttCash ATMCls psm containsrgs

 rrefferedop

CancelOp

containsoptc

cancel

0..1

hasbehaviour 0..1

η
instance of

State

0..1

*

 contains 1 1

source target

* *

ATM

CTGCS

containst1

ownedop

containst2

sourcest

targetst

(b) Language and model element graphs

Fig. 4. The left part depicts a very limited subset of the UML metamodel for class diagrams and
state machines and a sample of the related models from the illustrative example. The right part
shows the corresponding elements as part of the language graph GL and the model graph GM .

P-CS-TR WP4CM-000001 11

A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Muliawan, S. Castro, K. Mens, D. Deridder, R. Van Der Straeten

Equipped with these definitions of elements and language elements, we are now
set to refine the definition of a condition. A condition c ∈ C can be defined on a set of
model elements and/or a set of modelling language elements. Without loss of generality,
a condition can involve the models only (e.g. a condition stating that a given model
cannot be empty), the modelling languages only (e.g. the nRQL query shown before) or
both (e.g. a condition on a UML class diagram representing the Factory design pattern
stating that all factory classes have public methods of which the name starts with
make). A condition can span several models written in different modelling languages.
Evidently, the specification of a condition should also be compatible with the function
Φ which specifies, for each condition, the models on which it is defined (cf. definition
2). All this can be formalised as follows:

Definition 7 (Condition Specification c ∈ C). Every condition c ∈ C is defined over
a set of elements and/or a set of language elements such that:

– ε : C → P(E) is the total function returning, for a given condition c, the set of
model elements ε(c) compatible with Φ(c), i.e.:

ε(c) ⊆ {
⋃

m∈MΦ(c)

vertices(m) |MΦ(c) =
⋃

p∈Φ(c)

p}

– λ : C → P(LE) is the total function returning, for a given condition c, the set of
language elements λ(c) compatible with Φ(c), i.e.:

λ(c) ⊆ {
⋃

m∈MΦ(c)

η(vertices(m)) |MΦ(c) =
⋃

p∈Φ(c)

p}

Example 4. To illustrate Definition 7, we consider again the condition DFR. The λ
function returns the set of involved UML language elements like Class, Operation,
Lifeline, Message, ownedOperation, etc. ε returns the empty set in this case
because the condition specification does not involve any model elements. Consider,
however, a condition stating that the transactionId of each Transaction needs
to be composed of two digits followed by an integer number. For this condition, εwould
return at least the Transaction class and the transactionId property.

Inconsistency detection As illustrated in Figure 5 the inconsistency detection activ-
ity of the framework returns a set of inconsistencies raised by the evaluation of the
conditions on a particular set of models. These inconsistencies can involve the model
elements and links between those elements. The inconsistency detection does not go
any step further than (1) gathering the set of inconsistencies and (2) providing acces-
sors to the involved conditions and elements allowing to understand and reason about
these inconsistencies. Observe that no link is kept to the language elements involved in
the violation of the condition. This is because we assume the language definition to be
stable and not the source of the inconsistency. Also, one can always gain access to the
involved language elements indirectly, either via the involved model elements (with the
η-relation), or via the conditions (with the λ-relation).

Before elaborating further on inconsistency detection, we need to define what an
inconsistency is.

12 P-CS-TR WP4CM-000001

Towards a Unifying Conceptual Framework for Inconsistency Management Approaches: Definitions & Instantiations

Condition
Conditioninconsistency ∈ I

is composed of
Condition

Conditioncondition ∈ C
causes δ

Condition
Conditionmodel ∈ M

graph elements ∈ GE

checked on

Fig. 5. Inconsistency detection (D).

Definition 8 (Inconsistency i ∈ I). An inconsistency i ∈ I is a tuple (c, IE, IA)
where:

– c ∈ C is the violated condition;
– IE ⊆ P(E) is the set of model elements involved in the inconsistency, where
IE ⊆ ε(c) ∪ {e|η(e) ∈ λ(c)}.

– IA ⊆ P(AE) is the set of links between model elements of which at least one is
involved in the inconsistency, i.e., ∀(x, y) ∈ IA • x ∈ IE ∨ y ∈ IE.

Intuitively, the constraint on IE says that the only elements involved in an inconsis-
tency can either be those model elements that are explicitly referred to in the condition,
or instances of language elements that are used in the condition. The one on IA says
that the arcs involved in an inconsistency must be related to an inconsistent element.

In the definition, the set of model elements IE and the set of links IA are treated
separately. An alternative would have been to return a powerset of subgraphs of GM .
The disadvantage of that approach is that it would not discern whether the elements
linked together or the links are involved in the inconsistency. Based on this definition
of inconsistency, the detection can defined as follows.

Definition 9 (Inconsistency Detection Specification d ∈ D). An inconsistency detec-
tion specification d ∈ D is a function δ : C × P(M) → P(I). This partial function5

returns the set of inconsistencies resulting from the evaluation of c ∈ C on a set of
models Md with the additional constraint that Md ∈ Φ(c). For Definition 8 to be cor-
rect, we also have to enforce that the elements in IE belong to Md. However, we don’t
formalise it here for reason of succintness.

Example 5. The function δ is implemented in fUML by using RacerPro, a DL reason-
ing engine. Evaluation of the nRQL query corresponding to DFR shown in Section
2.2 contains the tuple ((?op cancel)(?c ATM)). This tuple returns the set of model
elements IE involved in the particular inconsistency. In this case the set IE is limited
to the operation cancel and the class ATM. Remark that this set can be extended by
adding the variables returned by the query (for example, also the message or transition
involved could be returned by the query).

Definition 9 is purposefully not specific about how the detection is actually per-
formed since this may vary significantly from one inconsistency management approach

5 δ is partial to account for cases like run-time errors or infinite loops in the conditions.

P-CS-TR WP4CM-000001 13

A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Muliawan, S. Castro, K. Mens, D. Deridder, R. Van Der Straeten

to another and from one condition language to another. Note that δ(c,Md) takes as sec-
ond parameter an element of P(M). This means that δ has to be called as many times
as there are model tuples to check. The reason is that the detection process should be as
flexible as possible and neither compel a specific checking order nor require all models
to be evaluated. For instance, in the case of our illustrative example, only a subset of the
models MUML may need to be checked because the modeler only finished modeling
that subset. For a given instantiation, the order in which models are checked might need
to be prescribed because of some constraints or simply to respect some heuristic, e.g.,
checking first models with higher chances to fail.

Condition
Conditionmodel ∈ M

Condition
Conditioninconsistency ∈ I

Element (E)
Element (E)inconsistency
handling action

∈ A

changes Condition
Conditioncondition ∈ C

Δ

Fig. 6. Inconsistency handling specification (H).

Inconsistency handling In inconsistency management approaches, detected inconsis-
tencies are handled according to actions. Actions define the changes to be performed on
models or conditions to resolve the inconsistency. Which models and conditions are se-
lected to be handled and how they are changed is determined by handling strategies. A
handling strategy is a combination of different actions applied to a set of selected mod-
els and conditions. A strategy is more subtle than the mere application of a series of
actions leading to the resolution of inconsistencies. Possible strategies include but are
not limited to resolving, deferring, ignoring and circumventing inconsistency occur-
rences [13]. Other examples of handling strategies are: strategies that do not introduce
new (temporary) inconsistencies or strategies that do not delete model elements.

Our framework specifies the handling in terms of its impact on models and condi-
tions based on a set of predefined actions, as depicted in Figure 6 and defined below.

Definition 10 (Inconsistency Handling Specification h ∈ H). An inconsistency han-
dling specification h ∈ H is defined as a tuple (A,∆) where:

– A is the set of possible inconsistency handling actions;
– ∆ : P(I) × P(A) → P(M) × P(C) × τ is an inconsistency handling function

that derives from the detected inconsistencies and the available handling actions
an handling strategy defining which and how models and conditions are altered.

The inconsistency handling function ∆ calls for more explanation. First, the avail-
able handling actions determine how the models and the conditions have to be changed
in order to resolve the inconsistency. By using the P(A) we are able to propose sev-
eral handling actions to resolve the inconsistencies. The P(I) is used here to allow
the handling of several inconsistencies. For instance, one can want to resolve all in-
consistencies with the same resolution pattern or related to the same model. Secondly,

14 P-CS-TR WP4CM-000001

Towards a Unifying Conceptual Framework for Inconsistency Management Approaches: Definitions & Instantiations

the definition of ∆ typically accounts for priority criteria, criticality of the models, or
inter-dependencies between handling actions. Based on these parameters, the handling
strategy (1) determines the models and conditions to be altered and (2) specifies a trans-
formation function τ establishing how, based on the selected actions, they are actually
altered. These new model and condition sets replace their original versions and define a
revised version of f . The formal specification of τ and how the framework f is actually
updated go beyond the scope of this paper.

3 Instantiations of the framework

In this section we provide several instantiations of the inconsistency framework pre-
sented above. These instantiations show how putting an existing approach in the frame-
work can be helpful to better understand the strengths and limitations of a given ap-
proach.

3.1 Template

Below we give a brief description of the template we will use for the different instanti-
ations of the framework.

– Introduction: provides a general introduction to the instantiation;
– Illustration: graphically illustrates the inconsistency management problem;
– Framework instantiation: instantiates the formal framework defined in this paper;
– Consistency conditions:describes the way consistency conditions are expressed;
– Inconsistency detection: elaborates on the inconsistency detection process;
– Inconsistency resolution: addresses the inconsistency resolution phase.

3.2 Instantiation 1 : Inconsistencies in Model-driven Engineering

Introduction Inconsistency management plays an important role in the context of MDE
due to the following reasons.

– Models are assets in MDE. Different views of the software system are covered by
different models. Because of the wide variety of models and the many relationships
that can exist between them, managing these models is a very complex task and
inconsistencies can arise easily.

– A model is described in a certain modelling language, e.g., the UML. The UML
contains several diagram types, each described in a certain language. Each model
must be legitimate with respect to the languages in which it is expressed.

– Because transformation of models is another important part of MDE, consistency
between, e.g., refined models or between different evolved versions of a model is
also an important issue.

– For some companies inconsistencies are more than the specification of general co-
herence rules between or within models. Models are regarded as inconsistent if they
do not comply with specific software engineering practices or standards followed
by the company.

P-CS-TR WP4CM-000001 15

A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Muliawan, S. Castro, K. Mens, D. Deridder, R. Van Der Straeten

The Unified Modeling Language (UML) [19] is currently the standard modelling
language for object-oriented software development and well on its way to become a
standard in MDE. The visual representation of UML consists of a set of different di-
agram types. Each diagram type is described in a certain language. Examples of such
languages are class diagrams, sequence diagrams, communication diagrams and state
machine diagrams. The different diagram types describe different aspects of a software
system under study. A class diagram renders the static structure of the system. Sequence
diagrams focus on the interaction of different instances of classes, i.e., objects, in a cer-
tain context. Communication diagrams describe how different objects are related to
each other. Finally, state machines define how the state of a certain object changes over
time. A model consists of different such diagrams. We deliberately confine ourselves
to three kinds of UML diagrams: class diagrams, sequence diagrams and state machine
diagrams.

Inconsistencies We base ourselves on a classification of inconsistencies that can be
observed between (evolving) UML class, sequence and state diagrams (presented in
[14, 8, 7]). The classification is based on two dimensions. The first dimension indicates
whether structural or behavioural aspects of the models are affected. We will confine
ourselves to structural inconsistencies in this paper. The second dimension concerns the
level of the affected model. We differentiate between two levels, the Specification level
and the Instance level. The specification level contains model elements that represent
specifications for instances, such as classes, associations and messages. Model elements
specifying instances, such as objects, links are at the instance level. In terms of UML
diagrams, this would naturally imply that structure diagrams, such as class diagrams
belong to the specification level and behaviour diagrams, such as sequence and state
machine diagrams belong to the instance level. However, sequence diagrams can also
belong to the specification level representing role interactions.

Behavioural Structural
invocation interaction inconsistency dangling type reference

Specification observation interaction inconsistency inherited cyclic composition
connector specification missing

Specification- specification incompatibility instance specification missing
specification behaviour incompatibility

Instance invocation behaviour inconsistency
observation behaviour inconsistency

Instance invocation inheritance inconsistency disconnected model
observation inheritance inconsistency
instance behaviour incompatibility

Table 1. Two-dimensional inconsistency table.

Inconsistencies can occur at the Specification level, between the Specification and
Instance level, or at the Instance level. The classes of observed inconsistencies are

16 P-CS-TR WP4CM-000001

Towards a Unifying Conceptual Framework for Inconsistency Management Approaches: Definitions & Instantiations

listed in table 1. We confine ourselves to structural inconsistencies in this report be-
cause those inconsistencies can be detected and handled by Description Logic queries
(cf. Chapter 6 in [7]). Consider as an example the instance specification missing incon-
sistency.

Instance specification missing occurs when an element definition does not exist
in the corresponding class diagram(s). This class of inconsistencies represents among
others the dangling feature reference, referred to as DFR in Section 2.2 and the dan-
gling association reference, referred to as DAR in the remainder of the report. Dan-
gling (inherited) association reference arises when a certain link (to which a stimulus
(or stimuli) is related) in a sequence diagram is an instance of an association that does
not exist between the classes of the linked objects (or between the ancestors of these
classes).

Description Logics (DLs) [15] that are a fragment of first-order logic, are investi-
gated as a formalism for the definition, detection and handling of inconsistencies. DLs
are a family of logic languages that were primarily used for modelling database con-
ceptual schemata. Nowadays they are often used as a foundation for ontology languages
(e.g., OWL [20]). One of the most expressive DLs, i.e., SHIQ(D−) that is supported
by the DL reasoning engine RacerPro is used to encode the UML metamodel and the
UML models. For detecting and handling the structural inconsistencies of our approach,
the Description Logic query language nRQL [16] is used.

In our approach an inconsistency can be resolved by an inconsistency resolution
rule. A generic inconsistency resolution rule has the form: IF inconsistency X
occurs in model M THEN change model M so that X is resolved.
There are typically multiple resolutions for a particular inconsistency and each one is
represented by one rule. Hence, all rules pertaining to a certain inconsistency X have the
same expression inconsistency X occurs in model M in their conditions.
The occurence of an inconsistency in a model is detected by querying the data repre-
senting the model, i.e., the model elements. A certain state of the model attests to the
presence of a particular inconsistency.

A rule’s conclusion states how to resolve the detected inconsistency. It consists of a
sequence of statements, where each statement is responsible for either adding data to the
model or removing data from the model. As such, the model elements are rearranged so
that the inconsistency is resolved. However, in order for a certain inconsistency resolu-
tion to be applicable, some model elements typically need to be present or in a particular
configuration. Therefore, this is also checked in the condition of the rule, after checking
the occurrence of the inconsistency.

Illustration Figure 7 represents how the approach is fitted into the proposed frame-
work. The UML metamodel is presented by SHIQ(D−) terminological expressions.
UML models are represented as assertional statements, i.e., logical constants and how
these constants are related through relations defined in the terminological part. Struc-
tural inconsistencies are expressed as logical queries. The queries are written in nRQL.
Queries representing the inconsistencies use the concepts defined in the DL Tbox rep-
resenting the UML metamodel but are executed by the RacerPro reasoning engine on
the Aboxes representing the UML models.

P-CS-TR WP4CM-000001 17

A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Muliawan, S. Castro, K. Mens, D. Deridder, R. Van Der Straeten

Inconsistency Handling

Condition
Condition

Abox

nRQL
SHIQ(D)

Expressed in

Expressed in

Condition
Condition

Inconsistency (I)

Returns

Structural
inconsistency

(n1)

Consistency
management

RACOoN
(t1)

Detects and
handles

Tbox

Expressed in

make use of Tbox concepts
and relations

Condition
Condition

DL Query

UML2
Metamodel

UML2
Model

represents

represents

Class diagram Sequence
diagram

State machine
diagram

defined and
executed on

defined on Condition
ConditionInconsistency
Resolutions

Condition
Condition

DL Rules

nRQL

expressed in

defined and
executed on

expressed in

resolve

Inconsistency Detection

Consistency Specification

Fig. 7. Framework instantiation for UML inconsistency management using DLs

Regarding inconsistency handling, we focus on resolution actions that modify mod-
els in order to resolve inconsistencies. We use the term inconsistency resolution to in-
dicate a set of resolution actions that resolve a certain inconsistency.

Framework instantiation fUML refers to the framework instantiation of the approach
presented in this section. The consistency specification sUML of the framework instan-
tiation fUML = (sUML, dUML, hUML) is defined as:

– The set MUML of models considered for detecting inconsistencies.
– The set MLUML of modelling languages in which these models are expressed. In

the case of our example, this is the set {UMLclass, UMLstate, UMLsequence} of
sublanguages of the UML corresponding to the different kinds of models consid-
ered. For example, UMLclass is the sublanguage of the UML describing the syntax
and semantics of UML class diagrams. Remark that there is no unique way to cre-
ate a framework instantiation for a given inconsistency management approach. For
example, we could have regarded UML as a single language with different types of
models. That choice, however, has an impact when comparing approaches. An in-
teresting point of comparison between inconsistency management approaches for
UML is the different types of UML models they can deal with. However, when
regarding UML as a single modelling language that encompasses all models, this
difference becomes less apparent.

– The set CUML of consistency conditions defined over those models. An example
of such a condition was given above. This condition as well as others described in
Table 1 express possible domain-independent inconsistencies that can occur within
and between UML sequence, UML class and UML state machine diagrams. The

18 P-CS-TR WP4CM-000001

Towards a Unifying Conceptual Framework for Inconsistency Management Approaches: Definitions & Instantiations

fact that these conditions are domain independent implies that they are expressed in
terms of language elements only and do not refer to concrete model elements. For
example, the nRQL query shown earlier on does not directly refer to actual classes
like ATM or concrete operations like cancel.

– The setCLUML = {nRQL} of languages in which those conditions are expressed.
As explained, each structural consistency condition of Table 1 is expressed in the
query language nRQL.

– γUML : CUML → CLUML specifies for each condition that it is expressed in
nRQL.

– µUML : MUML →MLUML is a function which maps class diagrams toUMLclass,
state machine diagrams to UMLstate and sequence diagrams to UMLsequence.

– According to the definition, ΦUML : CUML → P(P(MUML)).

Consistency Specification Example conditions belonging to CUML expressing a dan-
gling association reference are:
The association typing the connector is not an element of the model or there is no asso-
ciation typing the connector.

(retrieve(?l ?assoc ?m) (or (and (?l instancespecification)
(neg (?l (has_known_successor classifierspec))))
(and (?l ?assoc classifierspec) (?assoc association)
(not (?assoc ?m member)))))

The association typing the connector does not exist between the classes of the ob-
jects connected through the connector.

(retrieve (?c ?assoc cl) (and (?c connector) (?c ?assoc associationtype)
(?c ?cl base) (?cl class) (?end ?assoc owningassociation)
(not (?end ?cl definedType)) (not (?supercl ?cl general))
(?end ?supercl definedType)))

For our framework instantiation fUML, the language element graphGL corresponds
to part of the UML metamodel that describes class, sequence and state diagrams. The
model element graph GM contains all model elements of the models considered (cf.
Figure 4).

Every condition c ∈ CUML is defined over a set of elements and/or a set of language
elements such that:

– εUML : CUML → P(EUML) is the total function returning, for a given condition
c, the set of model elements involved. In our approach εUML returns the empty set.

– λUML : CUML → P(LEUML) is the total function returning, for a given con-
dition c, the set of language elements λUML(c) compatible with ΦUML(c). The
λUML function for the condition DAR returns the set of involved UML language
elements like Class, Association, Connector, owningAssociation,
associationType, etc. In this approach, the UML metamodel is translated to
a DL Tbox and consistency conditions are written using concepts defined in the
DL Tbox representing the UML metamodel. Therefore, we refine the definition
of the λUML function as follows: λUML = κ ◦ λ′UML :CUML → P(TDL) →

P-CS-TR WP4CM-000001 19

A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Muliawan, S. Castro, K. Mens, D. Deridder, R. Van Der Straeten

P(LEUML) where TDL represents the set of roles and concepts representing UML
metamodel concepts. The function κ : P(TDL) → P(LEUML) represents the
mapping from these roles and concepts towards the corresponding UML meta-
model concepts.

Inconsistency detection The function δUML is implemented in fUML by using Racer-
Pro, a DL reasoning engine. Evaluation of the above presented nRQL queries over a
set of models selected by the user can result in tuples of which each returns the set of
model elements IE involved in the particular inconsistency.

Inconsistency Handling The approach focusses on inconsistency management, which
means that inconsistencies are tolerated in the Aboxes and as such in the UML models.
Our focus is to detect inconsistencies over the model. However detecting an inconsis-
tency can be a false positive, i.e., the queries are manually written and can contain
errors. Our approach does not take any handling actions over consistency conditions
into consideration.

An inconsistency occurrence can be resolved by possibly a set of resolutions. Each
resolution is expressed as a DL rule in the nRQL language. Resolutions are applied
on the DL Aboxes representing the UML model. The following two rules represent
possible resolutions for the DAR inconsistency. The condition of each rule includes a
check − DAR statement representing the query verifying the DAR condition. Other
statements included in the condition of the rule check whether certain model elements
necessary to resolve the inconsistency, are available in the model. The first rule below
expresses the creation of a new association from the target class to the source class,
whereas the second rule uses the existing association if this exists.

(firerule
(and (check-DAR ?assoc ?m)

(?m ?con connectorr)
(?m ?mendsend sendEvent)
(?mendsend ?lifelinesend coveredsub)
(?lifelinesend ?connectableelsend represents)
(?connectableelsend ?classsend base)
(?m ?mendreceive receiveEvent)
(?mendreceive ?lifelinereceive coveredsub)
(?lifelinereceive ?connectableelreceive represents)
(?connectableelreceive ?classreceive base)
(user-option-addAssoc ?assocname))

((related (new-ind assoc ?assocname) ?assocname name)
(related (new-ind assoc ?assocname)

(new-ind end ?classsend) memberend)
(related (new-ind assoc ?assocname)

(new-ind end ?classreceive) memberend)
(related ?class (new-ind end ?classsend) ownedattribute)
(related ?class2 (new-ind end ?classreceive)

ownedattribute)
(related ?con (new-ind assoc ?assocname)

associationtype)
(forget-role-assertion ?con ?assoc associationtype))
)

(firerule
(and (check-DAR ?m ?assoc)

(?m ?con connectorr)
(user-option-useAssoc ?assocuser)

)

20 P-CS-TR WP4CM-000001

Towards a Unifying Conceptual Framework for Inconsistency Management Approaches: Definitions & Instantiations

(
(related ?m (new-ind connector ?assocuser) connectorr)
(related (new-ind connector ?assocuser) ?assocuser associationtype)
(forget-role-assertion ?m ?con connectorr)
)

)

We denote the set of possible inconsistency resolution rules presented in our ap-
proach as AUML. The inconsistency handling function ∆UML : P(I)×P(AUML)→
P(MUML)×τ derives from the detected inconsistencies and the available handling ac-
tions a handling strategy defining which and how models are altered. Currently this is
a manual process. However based on an analysis of the possible relationships between
resolution rules [21] we are trying to automate this process.

3.3 Instantiation 2: Co-evolving Source Code and Structural Design Regularities

Introduction Keeping the source code of a program consistent with the design regu-
larities and programming conventions that govern its design is an important issue in
software development and evolution. Many tools exist for defining and checking such
design regularities (e.g., commonly accepted best practice patterns, code conventions,
etc.). Whereas some tools are restricted to checking a fixed set of built-in regularities,
others are more generic and can allow their users to define and verify customised reg-
ularities. In particular, the technique of intensional views [22] and their associated tool
suite IntensiVE [9] belong to the latter category. In this technique, regularities are de-
fined intensionally with a declarative language (in terms of sets of software artefacts
and binary structural relationships between those sets) and can be checked against the
source code. Inconsistencies are detected when the source code does not respect the de-
fined regularities. Inconsistencies need to be fixed manually, either by fixing the source
code, refining the rules defining the regularities, or by tagging some of the irregularities
as accepted exceptions to the rule.

Illustration An example of a well-known design regularity that could be defined and
checked against the code is the factory design pattern [23]. This pattern is typically
implemented with factory objects that create certain kinds of objects, called products,
implementing a particular interface, as illustrated in Figure 8. The pattern requires that
all factories belonging to a same family must be able to create the same set of prod-
ucts. A possible inconsistency of this requirement would occur if there exists a factory
that cannot instantiate some product. An example of such an inconsistency is shown in
Figure 9: the AlternativeFactory cannot create objects of class Product1.

With the intensional views approach, a simplified version of the factory design pat-
tern implementation of Figure 8 could be defined in terms of two intensional source-
code views VFact and VProd and a relation Cinstantiates over these views, as shown in
figures 8 and 9. As stated above, both views and relations are defined by means of rules
in a declarative language. The language is SOUL [24], a Prolog-dialect that can reason
over actual source code artefacts. For example, the view VFact of all factory classes
could be defined in terms of the following logic query which collects all classes in the
class hierarchy with root Factory, but excluding that root class:

P-CS-TR WP4CM-000001 21

A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Muliawan, S. Castro, K. Mens, D. Deridder, R. Van Der Straeten

DefaultFactory AlternativeFactory

Factory

Product1

Product

Product2 Product3

Fig. 8. An implementation of the Factory design
pattern

Default
Factory

Alternative
Factory

Product1

Product2

Product1

Insta
ntiat

es

Inc
on
sis
ten

cy
?

Fig. 9. An inconsistency in the implementation
of the Factory design pattern

classBelow(?class,[Factory])

and the view VProd of all product classes could be defined in terms of a logic query that
collects all non-abstract classes below the class Product:

classBelow(?class,[Product]),
not(abstractClass(?class))

The relation Cinstantiates would be a relation between VFact and VProd defined as:
∀f ∈ VFact • ∀p ∈ VProd • isCreatedBy(?f, ?p), where isCreatedBy is a logic
predicate, defined as :

isCreatedBy(?f, ?p) if
classHasMethod(?f, ?m),
methodInstantiatesClass(?m, ?p)

In other words, this binary relation requires that for every factory class and every prod-
uct class, the factory class must have a method that can create instances of the product
class. Every violation of this condition is an inconsistency. For example, as illustrated
in Figure 9 an inconsistency would occur if the class AlternativeFactory has no
method that can create instances of the class Product1.

Framework instantiation Let fIV = (sIV , dIV , hIV) refer to the framework instan-
tiation of the intensional views technique, where the consistency specification sIV is
defined as a tuple: (CIV , CLIV ,MIV ,MLIV , γIV , µIV , ΦIV). More specifically, we
can define each of the components of this consistency specification as follows:

– CLIV is the condition language6 in which we describe our structural regularities.
An example of such a regularity was already presented above. In general, a struc-
tural regularity is described as a logic expression of the form

Q1x ∈ V1 • Q2y ∈ V2 • p(x, y)

6 To be precise, it’s a singleton set consisting of a single condition language.

22 P-CS-TR WP4CM-000001

Towards a Unifying Conceptual Framework for Inconsistency Management Approaches: Definitions & Instantiations

whereQ1 andQ2 are set quantifiers (like ∀, ∃, ∃!), V1 and V2 are intensional source-
code views (declared as logic queries in the logic language SOUL) and p is a binary
logic predicate written in the SOUL language.

– CIV is a set of structural regularities we want to verify over the source code. In our
example above, there was only such condition so CIV would be the singleton set
consisting of the sole condition Cinstantiates described above.

– The intensional views technique reasons over the source code of programs in some
programming language (like Smalltalk, Java, C or Cobol).MLIV thus corresponds
to the programming language of the program we want to reason about.7 However,
we don’t reason over the source code directly, but by using a logic library of pred-
icates that can reason over that source code. Therefore, MLIV corresponds to that
library of predicates (reasoning over programs in a different programming language
only requires changing the logic library).

– MIV is the source code of the program we want to reason about. How that code is
actually accessed is determined by the logic library defined in MLIV .

– In our case, γIV : CIV → CLIV is a trivial function because we only have one
condition language, so any condition is mapped to that condition language.

– µIV : MIV → MLIV is trivial too, since we consider only one programming
language.

– ΦIV : CIV → P(P(MIV)) maps every condition to the source code artefacts it
is defined over. For example ΦIV (Cinstantiates) is the set consisting of the classes
DefaultFactory, AlternativeFactory, Product1, Product2 and Product3
as well as the instance creation relations between these classes.

Figure 10 graphically illustrates the instantiation of the framework for the incon-
sistency management of design and code using IntensiVE. Consistency conditions are
represented as constraints on software views. These software views are intensionally de-
fined over source code elements such as classes, methods, etc. The language in which
both views and their constraints are represented is SOUL.

Consistency conditions According to our definition of consistency specification, ε is a
function that will return the relevant source code elements presented in a source code
representation, that are intensionally defined by the software views used in a condi-
tion. In our example, the code elements are the class Product, the class Factory, and
the classes below them. λ is a function returning for every source code element, the
language element to which it belongs to (e.g., for the code element Factory, its corre-
sponding language element is Class).

Inconsistency detection An inconsistency will be detected if a specified relationship
does not hold for certain source code elements belonging to the Intensional Views be-
ing checked. According to our definition, the inconsistency detection specification is
a function mapping a consistency definition and a set of models, to an inconsistency:
δ : C × P(M)→ P(I)

We have to not that in our instantiation of our framework, P(M) will be reduced to
a singleton model M , since only one model is implied. In the context of our example,
the inconsistencies are found in the following way:

7 To be precise, it’s a singleton set consisting of a single language.

P-CS-TR WP4CM-000001 23

A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Muliawan, S. Castro, K. Mens, D. Deridder, R. Van Der Straeten

Consistency Specification

Inconsistency DetectionInconsistency Handling

A parse tree,
views

defined on A class, a
method, a

query

A source code
element

Views,
Relationships

Source code
representation for a given

language

Constraints over views
with the form:

Q1 x ∈ V1, Q2 y ∈ V2 / p(x,y) composed of

expressed in terms of

instance of

expressed in terms of

expressed in expressed in

Inconsistencies

cause

composed of

Inconsistency
handling
actions

composed of
change

checked on

Fig. 10. Framework instantiation for code-design inconsistency management

– evaluate the extents of the views VFact and VProd referred by the predicate isCreatedBy;
– evaluate the predicate isCreatedBy in the cross product of these two views;
– report all the the elements f ∈ VFact and p ∈ VProd for which the predicate
isCreatedBy does not hold;

Inconsistency resolution In the case that inconsistencies are detected, one of the fol-
lowing actions has to be taken

– modify one of the views definition;
– modify the code referred by the views;
– modify the conditions over the views (i.e., either changing the predicates or the

quantifiers)

3.4 Instantiation 3: inconsistencies between data models and queries over those
models (in the context of database schema evolution)

Introduction Analyzing the impact of database schema8 evolutions on associated pro-
grams can be also considered as another example of consistency management problem.
Indeed, the impact of schema transformations can be defined as the set of database
queries becoming inconsistent with respect to the new schema. Recent studies show
that schema evolutions may have a dramatic impact on queries, reaching up to 70%
query loss per schema version [25].

Illustration Figure 11 provides an example of a SQL query becoming inconsistent
due to the renaming of table CUSTOMER into table CLIENT. Figure 12 further il-
lustrates how the general problem of checking the consistency of a query against its
database schema can be considered as an instance of our inconsistency management
framework. The consistency conditions reference the query language (SQL, COBOL,

8 Here, data model and database schema are considered as synonyms

24 P-CS-TR WP4CM-000001

Towards a Unifying Conceptual Framework for Inconsistency Management Approaches: Definitions & Instantiations

SELECT Name, Address FROM CUSTOMERQuery

Table CUSTOMER

Num
Name
Address

id: Num

CLIENT

Num
Name
Address

id: Num

Cleve, Rue Grandgagnage 5000 Namur
...

ERROR: TABLE CUSTOMER does not exist

ALTER TABLE CUSTOMER
RENAME TO CLIENT

Fig. 11. A SQL query becoming inconsistent due to an evolving relational schema.

CODASYL, IMS, etc.) and the database schema metamodel. Our approach makes use
of the Generic Entity-Relationship model [26] (GER) for describing database schemas.
The GER model encompasses the major database paradigms (relational, network, hi-
erarchical, ER, UML and XML models) and allows to specify database structures at
different levels of abstraction (conceptual, logical and physical).

Consistency Specification

Inconsistency Detection

Queries
defined on

Query elements

Syntactic Query
language
elements

Query
consistency

condition

Query languageGrammar annotation
language composed of

instance of

expressed in terms of

expressed in expressed in

Inconsistencies

cause

composed of

composed of

checked on
Schemas Schema

elements

GER language
elements

instance of

GER

expressed in

composed of

composed of

Fig. 12. Framework instantiation for query-schema inconsistency management

Framework instantiation The consistency specification sQS9 of the framework instan-
tiation fQS = (sQS , dQS , hQS) is defined as:

9 QS denotes Query-Schema

P-CS-TR WP4CM-000001 25

A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Muliawan, S. Castro, K. Mens, D. Deridder, R. Van Der Straeten

– The set MQS of models (queries and schemas) considered for detecting inconsis-
tencies.

– The set MLQS of modelling languages in which these models are expressed. In
this case, this is the set {GER,SQL,CODASY L,COBOL, · · ·}.

– The set CQS of consistency conditions defined over those models.
– The set CLQS contains a grammar annotation language, defined on top of the SDF

syntax definition formalism [27].
– γQS : CQS → CLQS specifies for each condition that it is expressed in our gram-

mar annotation language.
– µQS : MQS → MLQS is a function which maps the queries to their query lan-

guage and the schemas to the GER language.
– According to the definition,ΦQS : CQS → P(P(MQS)). In practice, we iteratively

check a set of queries against a single schema. Each checking involves a couple
(query, schema).

For our framework instantiation fQS , the language element graph GL contains (1)
syntaxic constructs of the query grammar and (2) GER constructs (entity type, attribute,
relationship types, collections, groups, etc.). The model element graph GM contains all
model elements of the models considered. For the queries, GM is close to an abstract
syntax tree. For the schemas is contains instances of the GER constructs (e.g. entity
type CUSTOMER, attribute NAME, etc.).

Every condition c ∈ CQS is defined over a set of elements and/or a set of language
elements such that:

– εQS : CQS → P(EQS) is the total function returning, for a given condition c, the
set of model elements involved. In our approach εQS returns the empty set.

– λQS : CQS → P(LEQS) is the total function returning, for a given condition
c, the set of language elements λQS(c) compatible with ΦQS(c). The λQS func-
tion for the condition returns (1) the set of involved query language elements like
TableName, FromClause, ColumnName, GroupByClause, etc, combined
with (2) the set of GER constructs like entity type, attribute, etc.

Consistency conditions As already indicated, the consistency conditions that must hold
between a query and its database schema express the relationships between the query
language of interest and its underlying schema metamodel (the GER). According to our
approach, the consistency conditions consists of domain-specific grammar annotations
defined over the query language syntax. Let us consider the following simplified syntax
for SQL queries:

SelectClause FromClause -> Query
"SELECT" Column-list -> SelectClause
"FROM" Table-list -> FromClause
{Column ’,’}+ -> Column-list
{Table ’,’}+ -> Table-list

We can impose several consistency conditions on the instances of syntax production
Query. First, we need to make sure that each table name occuring in the from clause

26 P-CS-TR WP4CM-000001

Towards a Unifying Conceptual Framework for Inconsistency Management Approaches: Definitions & Instantiations

of the query corresponds to a declared table in the database schema. Since in the GER
model, a SQL table is represented as an entity type, this condition can be expressed as
follows:

for each t:Table in FromClause : isAnEntityType(t)

This condition is not sufficient for ensuring the consistency of the query. In addition,
it is required that each column name of the select clause corresponds to a column of at
least one table of the from clause. In the GER model, a column is represented as an
attribute. Thus, this second consistency rule can specified through the following second
condition:

for each c:Column in SelectClause :
exists t:Table in FromClause : isAnAttributeOf(c,t)

Inconsistency detection Based on the annotated grammar of the data manipulation lan-
guage, a inconsistency detection tool is automatically derived. This tool is based on
the ASF+SDF technology [28]. It takes as inputs a set of queries (i.e., instances of the
query language grammar) together with the underlying schema description, and returns
the set of detected inconsistencies wrt the specified consistency conditions.

The generated ASF+SDF consistency checker actually implements function δQS of
our framework instantiation. It returns a set of inconsistencies, each of which is linked
(1) to the violated condition and (2) the source code location of the inconsistent query.

Inconsistency handling Our QS instantiation mainly focusses on the inconsistency de-
tection activity. As we are checking consistency in the context of impact analysis, the
detected inconsistencies are to be considered as potential. Depending on the impact,
the database manager may decide to cancel a desired schema evolution. In this case, no
inconsistency handling actions must be undertaken. But in case the schema evolution is
performed, the inconsistent queries have to be reexpressed against the new schema. We
have proposed in [10] a co-transformational approach to schema-query co-evolution,
according to which query transformations are associated to schema transformations.
In this context, fully automated inconsistency handling is possible in the presence of
semantics-preserving schema transformations.

3.5 Instantiation 4: Inconsistencies in model transformation specifications

Introduction Specifying model transformations can be done in a visual manner. The
tool, MoTMoT, developed at the University of Antwerp employs UML diagrams to
represent model transformations. Class diagrams and activity diagrams are used and
checked if they correspond to the syntax of the UML profile for Story Driven Modeling.

Story Driven Modeling (SDM) is a model transformation language supporting an
imperative control flow for graph transformations. Evaluating consistencies can be done
on two levels: on the one hand, the specification level where the transformation is mod-
eled using a mix of UML class and activity diagrams. On the other hand we have the ex-
ecution level where an input model is processed and transformed resulting in an output

P-CS-TR WP4CM-000001 27

A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Muliawan, S. Castro, K. Mens, D. Deridder, R. Van Der Straeten

model. At the specification level preconditions are verified to see if the transformation
is modeled according to the SDM language, at the execution level the transformation
is executed and sample output models can be checked on their equivalence. For the
remainder of this subsection we focus only on the specification level.

Illustration The tool MoTMoT can only parse correct SDM diagrams. For this reason
we use OCL constraints to maintain a strict consistency. In MoTMoT we cannot tolerate
any inconsistency and consistency resolution is then focused on fixing the elements
involved in the constraint to achieve a consistency.

In this illustration we focus on just a select number of constraints, however all con-
straints in MoTMoT are set up in a similar manner. OCL constraints are defined on
UML class diagrams and activity diagrams, so the following constraints will only in-
volve those language elements.

– Each state in the UML activity diagram should be linked to a UML class diagram.
The class diagram contains the description of the graph transformation. This is valid
for all states, except when the state is a code state (containing Java code instead) or
a link state (referring to another control flow):

context MotMotActionStateFacade
inv: isTransPrimitiveState() implies
hasTransPrimitivePackage() = true

So for each action state in the activity diagram and if that state is supposed to be
contain a transformation diagram, we check if that state indeed has a link to a class
diagram.

– All classes within a class diagram, which are part of a graph transformation, should
have a type. The classes represent typed nodes, the existence of untyped nodes is
prohibited. This is done with the constraint:

context MotMotClassFacade
inv: isPartOfTransformation() implies
getTypeName() <> ’’

So, for each class which is part of a transformation pattern we look that they have
a type attached to it.

Observe figure 13 where we show an incorrect UML activity diagram. The state
named Create List Impl is missing a tagged value to denote it is connected to a
class diagram. All other states in the diagram do have a connection with a tagged value
motmot.transprimitivepackage, a link to the UML package containing the
matching class diagram.

Framework instantiation The instantiation of the framework can be seen on figure 14.
The consistency specification sTM 10 of the framework instantiation fTM = (sTM , dTM , hTM)
is defined as:

The consistency specification is defined as:
10 TM denotes Transformation Model

28 P-CS-TR WP4CM-000001

Towards a Unifying Conceptual Framework for Inconsistency Management Approaches: Definitions & Instantiations

<<loop>>
Remove associations

{motmot.transprimitive=removeAssociations}

List Implementation
{motmot.transprimitive=listImpl}

Create List Impl

Fig. 13. Illustration of an incorrect UML Activity Diagram for MoTMoT

– The set MTM of models (UML class and activity diagrams) considered for detect-
ing inconsistencies.

– The set MLTM of modelling languages in which these models are expressed. In
this case, this is the set {UML, Java, · · ·}.

– The set CTM of consistency conditions defined over those models.
– The set CLTM is set in the OCL.
– γTM : CTM → CLTM specifies for each condition that it is expressed in OCL

and Java.
– µTM : MTM → MLTM is a function which maps class and activity diagrams to
UML and Java (the diagrams could contain Java code).

– According to the definition, ΦTM : CTM → P(P(MTM)).

For our framework instantiation fTM , the language element graph GL contains the
UML language elements for class and activity diagrams. The model element graph GM
contains all model elements of the models considered.

Every condition c ∈ CTM is defined over a set of elements and/or a set of language
elements such that:

– εTM : CTM → P(ETM) is the total function returning, for a given condition c,
the set of model elements involved. In our approach εTM returns the empty set.

– λTM : CTM → P(LETM) is the total function returning, for a given condition c,
the set of language elements λTM (c) compatible with ΦTM (c). The λTM function
for the condition returns the set of involved UML language elements like Class,
Association, ActionState, TaggedValue, etc.

P-CS-TR WP4CM-000001 29

A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Muliawan, S. Castro, K. Mens, D. Deridder, R. Van Der Straeten

Consistency Specification

Inconsistency DetectionInconsistency Handling

SDM diagrams
defined on A class, a state,

a tagged
value, ...

UML class and
sequence diagram

meta-classes

OCL
constraints

UML, JavaOCL, Java
composed of

expressed in terms of

instance of

expressed in terms of

expressed in expressed in

Control flow,
diagram

inconsistencies

cause

composed of

Inconsistency
handling
actions

composed of

change
checked on

Fig. 14. Framework instantiation for Model Transformation specifications

Consistency conditions The first set of inconsistencies we want to avoid are violations
of the SDM syntax. For example, a class diagram represents a graph pattern for MoT-
MoT. Each class represents a node in the graph pattern. Each class requires a model
element type tag to know which model element is represented. Conditions are spec-
ified in the Object Constraint Language (OCL) and deal specifically with the layout
of model transformation specifications. The conditions are checked on UML class di-
agrams. UML class diagrams have to conform to the UML language (this is usually
enforced through the UML diagram tool) and the OCL conditions for MoTMoT trans-
formation models. Structural inconsistencies are flagged and shown to the user. Due to
the nature of the transformation tool, user input is required to fix inconsistencies and
automatic consistency resolution is not possible.

The second set of inconsistencies involve transformation specifications where the
validation process is successful, though the execution of the specification does not yield
the expected output. The SDM language is not sufficiently expressive or the model
transformation or the transformation has a correct syntax though the semantics do not
hold any ground.

Inconsistency detection There are basically two manners to enforce consistent models
representing model transformations. The UML profile for SDM restricts users in their
use of UML model elements: only a subset of model elements can be used, therefore
limiting the language. OCL constraints impose more syntactic conditions on the models.
For example, every state in the control flow of the transformation should contain a
graph rewriting. An OCL constraint could impose that states include graph rewriting
diagrams.

AndroMDA is a tool which translates SDM diagrams into Java code and has an
OCL validation tool built in. Before translation, a validation phase is run and if the
model cannot be validated a set of violated constraints is shown, along with a comment
explaining the error and possibly offering a suggestion to fix the violated constraint.

30 P-CS-TR WP4CM-000001

Towards a Unifying Conceptual Framework for Inconsistency Management Approaches: Definitions & Instantiations

Inconsistency resolution Consistency resolution involves three stages:

– Sample models are used to verify conditions. There are correct models and models
which violate one or more conditions. The test coverage should cover all present
conditions, however it is impossible to verify the absence of errors. This is a caveat
we have to take into account. While models could appear as consistent models, they
are not valid models for the transformation engine. In this case we move onto the
following stage.

– After identifying and fixing conditions, the at-this-time correct models are put
through the transformation engine. If the transformation fails, this is a signal that
despite the conditions, these were not sufficient to prevent a failed transformation.
The solution is two-fold: adjust the current conditions to be more strict and add
more conditions for a more complete validation of the models.

– After these two stages the next step is evaluation of the result the transformation en-
gine puts out. Even if all conditions are satisfied and the model can be transformed,
the result can be unexpected. In this case several resolution options are available.
• The transformation engine could be the cause, it produces the wrong results.

The transformation engine should be fixed. For this purpose additional test data
is necessary for evaluation.

• The language could lack expressiveness to capture the intended transformation.
Language extensions are necessary.

4 Related Work

The different concepts and definitions constituting the proposed framework are inspired
by the research background of the authors [8–11] and by several definitions and classi-
fications of inconsistencies that can be found in the literature [2–7, 29–31]. These ex-
isting inconsistency classifications focus on the definition and classification of different
inconsistency types but do not achieve a common frame of reference for inconsistency
management approaches.

The viewpoints framework has been developed by Finkelstein et al. [32] and ex-
tended by Nentwich et al. [33] to handle inconsistencies in software development using
different viewpoints. The framework focuses on the definition and usage of viewpoints
and uses particular technology to detect and handle inconsistencies. In Küster [34] a
general methodology for consistency management of object-oriented behavioral models
is introduced. The approach contains generic definitions of consistency conditions, con-
sistency concepts (a way to group consistency conditions) and consistency. However,
the focus is on the methodology comprising activities and specific techniques for, e.g.,
automatically translating models into a semantic domain using a rule-based approach
relying on graph transformation. Nuseibeh et al. [35, 13] introduce a framework for
managing inconsistencies. The framework itself consists of a repository of pre-defined
consistency rules and of some components, such as a component detecting the incon-
sistencies using the consistency checking rules, a diagnosing component, a handling
component. Spanoudakis et al. [1] present a survey of inconsistency management tech-
niques. The survey is organized along a conceptual framework that views inconsistency

P-CS-TR WP4CM-000001 31

A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Muliawan, S. Castro, K. Mens, D. Deridder, R. Van Der Straeten

management as a process composed of different activities. While the framework in-
cludes definitions of overlap relations between model elements and inconsistency in
terms of these overlaps, its main focus is on the process of consistency management.

These different frameworks guided the elicitation of concepts and definitions of our
framework. Yet, they all have a certain focus and use specific techniques for detection or
handling of inconsistencies or define a set of concrete inconsistencies. Instead, we target
a unifying framework suitable for instantiation by different communities, hence the
need for the formal specification of a shared vocabulary. Our work provides a common
ground to assess the complementarity of the above described approaches.

5 Conclusion and future work

In this paper, we proposed a novel conceptual framework paving the way toward the
unification of existing inconsistency management approaches. The aim of our formali-
sation is to concisely and unambiguously define a frame of reference that can be used
unequivocally by framework customizers and users to understand and compare different
approaches. The benefits for implementers using the framework by making instantia-
tions of it, are that (1) they have a common vocabulary, (2) the framework gives them a
reference framework such that they do not have to start from scratch, and (3) the frame-
work allows them to reflect on their own approach and discover their shortcomings,
advantages or disadvantages.

We instantiated the framework on four different inconsistency management ap-
proaches from different domains operating at different phases of the software life-cycle.
We are working on a further refinement of the formalism and an assessment of its gen-
erality by validating it on existing inconsistency management approaches found in lit-
erature.

Our aim in the near future is to use the framework to compare the instantiations
and to try to come up with a taxonomy or classification of the different inconsistency
management approaches based upon the observed differences and similarities.

The definition of inconsistency handling touched upon the need to represent revised
versions of the model and condition sets. The necessity to deal with their evolution, and
incidentally the evolution of the framework, marks the limit of the current formalisation.
Neither the framework’s evolution nor the reasoning about traces of changes are cur-
rently supported. Further, we assumed the modeling languages described in the frame-
work to be stable and not a possible source of inconsistencies. This assumption needs
to be dropped in case we want to incorporate language evolution in the framework. In
the future, we envisage the extension of our framework in the context of evolution by
adding activities like impact analysis, model co-evolution and language evolution.

Theoretical extensions of the framework will concentrate on the fosterage of auto-
mated analyses and reasonings and on the study of including evolution issues in the
framework.

32 P-CS-TR WP4CM-000001

Towards a Unifying Conceptual Framework for Inconsistency Management Approaches: Definitions & Instantiations

Acknowledgements

This research is funded by the Interuniversity Attraction Poles Programme of the Bel-
gian State, Belgian Science Policy.

References

1. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineering: Survey
and open research issues. In K., C.S., ed.: Handbook of Software Engineering and Knowl-
edge Engineering. Volume 1. World Scientific Publishing Co. (2001) 329–380

2. S.Easterbrook, A. Finkelstein, J.K., Nuseibeh, B.: Coordinating distributed viewpoints: the
anatomy of a consistency check. Concurrent Engineering 2(3) (1994) 209–222

3. Engels, G., Küster, J.M., Heckel, R., Groenewegen, L.: Towards consistency-
preserving model evolution. In: IWPSE ’02: Proceedings of the International Workshop
on Principles of Software Evolution, New York, NY, USA, ACM Press (2002) 129–132

4. Liu, W., Easterbrook, S., Mylopoulos, J.: Rule based detection of inconsistency in UML
models. In Kuzniarz, L., Reggio, G., Sourrouille, J.L., Huzar, Z., eds.: Blekinge Institute of
Technology, Research Report 2002:06. UML 2002, Model Engineering, Concepts and Tools.
Workshop on Consistency Problems in UML-based Software Development. Workshop Ma-
terials, Department of Software Engineering and Computer Science, Blekinge Institute of
Technology (2002) 106–123

5. Sourrouille, J.L., Caplat, G.: Constraint checking in uml modeling. In: SEKE ’02: Proceed-
ings of the 14th international conference on Software engineering and knowledge engineer-
ing, New York, NY, USA, ACM Press (2002) 217–224

6. Elaasar, M., Briand, L.: An overview of uml consistency management. Technical Report
Technical Report SCE-04-18, Carleton University, Ottawa, Canada (2004)

7. Van Der Straeten, R.: Inconsistency Management in Model-driven Engineering. An Ap-
proach using Description Logics. PhD thesis, Department of Computer Science, Vrije Uni-
versiteit Brussel, Belgium (September 2005)

8. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using Description Logic to
maintain consistency between UML models. In: Proc. of the 6th Int. UML Conf. (UML’03).
Volume 2863 of LNCS., Springer (2003) 326–340

9. Mens, K., Kellens, A.: IntensiVE, a toolsuite for documenting and testing structural source-
code regularities. 10th Conference on Software Maintenance and Re-engineering (CSMR)
(2006) 239–248

10. Cleve, A., Hainaut, J.L.: Co-transformations in database applications evolution. In Lämmel,
R., Saraiva, J., Visser, J., eds.: Generative and Transformational Techniques in Software En-
gineering. Volume 4143 of Lecture Notes in Computer Science., Springer (2006) 409–421

11. Schippers, H., Gorp, P.V., Janssens, D.: Leveraging uml profiles to generate plugins from
visual model transformations. Electr. Notes Theor. Comput. Sci. 127(3) (2005) 5–16

12. Gorp, P.V., Altheide, F., Janssens, D.: Towards 2d traceability in a platform for contract
aware visual transformations with tolerated inconsistencies. Enterprise Distributed Object
Computing Conference, IEEE International 0 (2006) 185–198

13. Nuseibeh, B., Easterbrook, S.M., Russo, A.: Making inconsistency respectable in software
development. Journal of Systems and Software 58(2) (2001) 171–180

14. Simmonds, J., Van Der Straeten, R., Jonckers, V., Mens, T.: Maintaining consistency between
UML models using Description Logic. L’OBJET 10(2-3) (2004) 231–244

15. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The Descrip-
tion Logic Handbook: Theory, Implementation and Applications, 2nd Edition. Cambridge
University Press (2007)

P-CS-TR WP4CM-000001 33

A. Hubaux, A. Cleve, P.-Y. Schobbens, A. Keller, O. Muliawan, S. Castro, K. Mens, D. Deridder, R. Van Der Straeten

16. Wessel, M., Möller, R.: A high performance semantic web query answering engine. In:
Proc. of the Int. Workshop on Description Logics (DL’05). Volume 147 of CEUR Workshop
Proceedings. (2005)

17. Boyd, M., McBrien, P.: Comparing and transforming between data models via an interme-
diate hypergraph data model. Journal on Data Semantics IV 3730 (2005) 69–109

18. Kühne, T.: Matters of (meta-)modeling. Soft. and Syst. Modeling 5(4) (2006) 369–385
19. Object Management Group: Unified Modeling Language specification version 2.2.

formal/2009-02-02 (March 2009)
20. W3C Recommendation: OWL Web Ontology Language Semantics and Abstract Syntax.

TR/owl-semantics/ (February 2004)
21. Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting and resolving model inconsistencies

using transformation dependency analysis. In Nierstrasz, O., Whittle, J., Harel, D., Reggio,
G., eds.: Model Driven Engineering Languages and Systems, 9th International Conference,
MoDELS 2006, Genova, Italy, October 1-6, 2006, Proceedings. Volume 4199 of Lecture
Notes in Computer Science., Springer (2006) 200–214

22. Mens, K., Kellens, A., Pluquet, F., Wuyts, R.: The intensional view environment. Inter-
national Conference on Software Maintenance (ICSM) Industrial and Tool Volume (2005)
81–84

23. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
(1995)

24. Wuyts, R.: A Logic Meta-Programming Approach to Support the Co-Evolution of Object-
Oriented Design and Implementation. PhD thesis, Vrije Universiteit Brussel (2001)

25. Curino, C.A., Moon, H.J., Tanca, L., Zaniolo, C.: Schema evolution in wikipedia: toward a
web information system benchmark. In Cordeiro, J., Filipe, J., eds.: International Conference
on Enterprise Information Systems (ICEIS). (2008) 323–332

26. Hainaut, J.L.: A generic entity-relationship model. In: Proceedings of the IFIP WG 8.1
Conference on Information System Concepts: an in-depth analysis, North-Holland (1989)

27. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism sdf—
reference manual—. SIGPLAN Not. 24(11) (1989) 43–75

28. van den Brand, M., van Deursen, A., Heering, J., de Jong, H., de Jonge, M., Kuipers, T., Klint,
P., Moonen, L., Olivier, P., Scheerder, J., Vinju, J., Visser, E., Visser, J.: The ASF+SDF Meta-
Environment: a Component-Based Language Development Environment. In Wilhelm, R.,
ed.: Compiler Construction (CC ’01). Volume 2027 of Lecture Notes in Computer Science.,
Springer-Verlag (2001) 365–370

29. Hnatkowska, B., Huzar, Z., Kuzniarz, L., Tuzinkiewicz, L.: A systematic approach to consis-
tency within UML based software development process. In Kuzniarz, L., Reggio, G., Sour-
rouille, J.L., Huzar, Z., eds.: Blekinge Institute of Technology, Research Report 2002:06.
UML 2002, Model Engineering, Concepts and Tools. Workshop on Consistency Problems
in UML-based Software Development. Workshop Materials, Department of Software Engi-
neering and Computer Science, Blekinge Institute of Technology (2002) 16–29

30. Harel, D., Rumpe, B.: Modeling languages: Syntax, semantics and all that stuff, part i: The
basic stuff. Technical report, Jerusalem, Israel, Israel (2000)

31. Lange, C., Chaudron, M.R.V., Muskens, J., Somers, L.J., Dortmans., H.: An empirical in-
vestigation in quantifying inconsistency and incompleteness of uml designs. In Kuzniarz, L.,
Huzar, Z., Reggio, G., Sourrouille, J.L., Staron, M., eds.: Proceedings of the IEEE Workshop
on Consistency Problems in UML-Based Software Development II. (2003) 26–34

32. Finkelstein, A., Gabbay, D.M., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency handling
in multi-perspective specifications. In Sommerville, I., Paul, M., eds.: Proceedings of fourth
European Software Engineering Conference (ESEC1993). Volume 717 of Lecture Notes in
Computer Science., Springer (September 1993) 84–99 Garmisch-Partenkirchen, Germany.

34 P-CS-TR WP4CM-000001

Towards a Unifying Conceptual Framework for Inconsistency Management Approaches: Definitions & Instantiations

33. Nentwich, C., Emmerich, W., Finkelstein, A., Ellmer, E.: Flexible consistency checking.
ACM Trans. Softw. Eng. Methodol. 12(1) (2003) 28–63

34. Küster, J.M.: Consistency Management of Object-Oriented Behavioral Models. PhD thesis,
University of Paderborn (March 2004) Paderborn, Germany.

35. Nuseibeh, B., Easterbrook, S.M.: The process of inconsistency management: A framework
for understanding. In: DEXA Workshop. (1999) 364–368

P-CS-TR WP4CM-000001 35

