
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Formal Modelling of Feature Configuration Workflows

Hubaux, Arnaud; Classen, Andreas; Heymans, Patrick

Published in:
Proceedings of the 13th International Software Product Lines Conference (SPLC'09), San Francisco, CA, USA

Publication date:
2009

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Hubaux, A, Classen, A & Heymans, P 2009, Formal Modelling of Feature Configuration Workflows. in D John &
M Dirk (eds), Proceedings of the 13th International Software Product Lines Conference (SPLC'09), San
Francisco, CA, USA. SEI, Carnegie Mellon University, pp. 221-230.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/publications/formal-modelling-of-feature-configuration-workflows(9fd9d698-b386-4749-87ed-5a8a0d64ba2e).html

Formal Modelling of Feature Configuration Workflows

Arnaud Hubaux, Andreas Classen∗ and Patrick Heymans

PReCISE Research Centre,

Faculty of Computer Science,

University of Namur

5000 Namur, Belgium

E-mail: {ahu,acs,phe}@info.fundp.ac.be

Abstract

In software product line engineering, the configuration
process can be a long and complex undertaking that in-
volves many participants. When configuration is supported
by feature diagrams, two challenges are to modularise the
feature diagram into related chunks, and to schedule them
as part of the configuration process. Existing work has only
focused on the first of these challenges and, for the rest,
assumes that feature diagram modules are configured se-
quentially. This paper addresses the second challenge. It
suggests using YAWL, a state-of-the-art workflow language,
to represent the configuration workflow while feature dia-
grams model the available configuration options.The prin-
cipal contribution of the paper is a new combined formal-
ism: feature configuration workflows. A formal semantics is
provided so as to pave the way for unambiguous tool speci-
fication and safer reasoning about of the configuration pro-
cess. The work is motivated and illustrated through a con-
figuration scenario taken from the space industry.

1 Introduction

In software product line engineering (SPLE), one distin-
guishes two principal activities: domain engineering and
application engineering [16]. Domain engineering consists
in developing a set of core assets that can be configured and
combined to create different products of the software prod-
uct line (SPL). The variability provided by these assets is
commonly documented in a feature diagram (FD) [13, 20].
During application engineering, this variability is progres-
sively resolved in a configuration process. During this pro-

∗FNRS Research Fellow.

cess, it is decided which features created during domain
engineering are selected for inclusion and which are dis-
carded [4].

In a large industrial project, the configuration process it-
self may be a complex activity taking up to several months
and involving a variety of stakeholders [17]. This calls
for ways (A) to elaborate large and complex FDs, (B) to
distribute the configuration task among stakeholders and
(C) to define and enact the workflow of the configuration
process [19, 8, 11, 2].

Point (A) deals with the elaboration of the diagram,
which is an important point, but not the focus of this pa-
per. Point (B) was largely solved by the multi-level staged
configuration (MLSC) approach of Czarnecki et al. [5] for
which we provided a formal semantics in [2]. This ap-
proach, however, fails to provide support for modelling and
enacting the configuration process. The purpose of this pa-
per is to provide a solution to this problem, and thereby
address point (C). The recent issues faced by Spacebel, a
partner company specialised in aerospace software, to mas-
ter and better decompose their configuration process were
additional incitements to tackle this problem.

To do so, we build on our earlier work on formal se-
mantics for FDs [20, 15, 2] and add the process perspective
by linking FDs with YAWL [22], a state-of-the-art work-
flow language. YAWL was originally introduced to sub-
sume most workflow modelling languages [22], and comes
with a formal semantics and powerful verification and ex-
ecution tool. In essence, our approach consists in linking
FDs to tasks and conditions of a workflow. This combined
formalism, called feature configuration workflow (FCW), is
given a complete mathematical semantics so as to avoid am-
biguity and develop efficient and safe automated reasoning
tools [12]. The formalisation follows the well-established
guidelines of Harel and Rumpe [12], according to whom

each modelling language L must possess an unambiguous
mathematical definition for three distinct elements: (1) the
syntactic domain LL, a.k.a. abstract syntax; (2) the se-
mantic domain SL, which formalises the real-world con-
cepts that the language models; (3)t he semantic function
ML : LL → SL, also written [[·]]L, which defines the map-
ping between both domains.

A preliminary evaluation of the language was carried out
in collaboration with our industrial partner for an SPL of
spacial file delivery protocol libraries (CFDP) [3, 7]. Al-
though tool support is still to be provided, we propose an
implementation strategy.

The paper is structured as follows. Section 2 introduces
FDs, MLSC and YAWL, along with the CFDP product
line which motivates the approach and serves as illustra-
tion throughout the paper. We introduce the integrated se-
mantics in Section 3 and illustrate it with the CFDP library.
Section 4 addresses implementation strategies and Section 5
explores related work and discusses the benefits and limita-
tions of the formalism. Section 6 concludes the paper.

2 Background

We briefly recall the concepts of FD and MLSC, show
how they apply to the CFDP case, and what their limitations
are. We also introduce YAWL, the workflow language we
use in the remainder of the paper.

2.1 Feature diagrams and multi-level
staged configuration

An FD [13, 20] models the variability of an SPL at a high
level of granularity and, by that means, expresses the set of
products of the SPL; a product being a set of features. An
example is shown in Figure 2. Basically, FDs are trees1

whose nodes denote features and whose edges represent
top-down hierarchical decomposition of features. Features
can be mandatory or optional. Optionality is often indicated
with an empty circle on top of the feature. Each decompo-
sition tells that, given the presence of the parent feature in a
product, some combination of its children should be present
in the product, too. Which combinations are allowed de-
pends on the type of the decomposition, which is indicated
by a cardinality 〈i, j〉: if a feature has k(≥ i) children, then
if the parent is selected for inclusion in the product, at least i
and at most j of its children have to be included in the prod-
uct, too. For convenience, some common cardinalities are
referred to by their equivalent Boolean operator, as shown
in Table 1. FDs can also contain additional constraints that
may crosscut the tree structure, usually specified in (a sub-
set of) propositional logic [1]. Schobbens et al. surveyed

1Sometimes, directed acyclic graphs (a feature can have several par-
ents) are used, too.

Table 1. FD decomposition types

and : ∧
or : ∨

xor : ⊕

〈n..n〉
〈1..n〉
〈1..1〉
〈i..j〉

a

a

a

a

i..j

Cardinality Concrete
syntax

Boolean
operator

and formally defined FDs in [20]. Definition 1 recalls the
essence of their formalism which we reuse in this paper.

Definition 1 (Feature Diagram [20]) Formally, an FD d
can be defined as a tuple (N, r, λ,DE,Φ) where N is a set
of features, r the root feature, λ assigns a decomposition
operator to each feature, DE is the set of decomposition
edges between features, and Φ the set of crosscutting con-
straints. The semantics of an FD, noted [[d]]

F D
, is the set of

products (i.e. a set of sets of features) that it allows.

At the core of application engineering is the specification
of the product to build [16]. In our context, this specifica-
tion is obtained by configuring the FD, i.e. by gradually
removing the variability until only those features that are
part of the final product remain. In large industrial projects,
the configuration has to be carried out in a modular way,
each module focusing on a specific concern, task or role of
the overall business. Identifying these modules is of ma-
jor interest to practice since none of the stakeholders has
the combined knowledge to configure the whole product, or
because the product is developed by different teams [17, 5].

Czarnecki et al. proposed the concept of MLSC [5],
where each FD denotes a module (Czarnecki et al. call it
level) and modules are configured sequentially. Depend-
ing on how the modules are linked, the configuration of
one module induces an automatic specialisation of the next
module’s FD. The links between modules are explicitly
through inter-module links, that is Boolean formulae (sim-
ilar to the constraints of Φ) over the features of the mod-
ules [2]. Figure 1 gives an overview of an MLSC process
in which configuration is carried out by different stakehold-
ers having specific roles. These three roles configure their
respective FDs in turn. Each FD only contains the features
that correspond to the expertise and responsibility assigned
to the role in the process. The inter-module links between
the features are illustrated with dashed lines.

In earlier work, we provided a formal definition and
semantics for MLSC as an extension of Definition 1 [2].
While the semantics of an FD is defined in terms of sets
of products, the semantics of MLSC is defined in terms of
configuration paths that can be taken when configuring a
product. Along each such path, the initially full product

Global System
Administrator

Department System
Administrator

Local User

Figure 1. Example of MLSC.

space ([[d]]
F D

) progressively shrinks (i.e., products are dis-
carded) until only one product is left, at which point the path
stops. The FDs corresponding to the various modules are
organised in an FD collection as defined below. Whereas
an FD specifies allowed products, an FD collection speci-
fies allowed configuration paths. Hence, this is said to be a
dynamic semantics of FDs [2].

Definition 2 (Feature diagram collection [2]) Formally,
an FD collection d = (N,L, r, λ,DE,Φ) is obtained
by placing the FDs of individual modules under an and-
decomposed artificial root, and adding the inter-module
links to the set of constraints Φ. The set L defines a
partition over the features N \ r accounting for the module
decomposition. The semantics, [[d]]

MLSC
, is the set of legal

configuration paths.

Note that Definitions 1 and 2 deliberately omit the details
of the semantics (available in [2]), since these are not crucial
to the understanding of the paper. In the remainder, module
names will be typeset with a frame: module .

2.2 Motivating scenario

Spacebel is a Belgian software company developing
software for the aerospace industry. We collaborate with
Spacebel on the development of a product line for flight-
grade libraries implementing the CSSDS File Delivery Pro-
tocol (CFDP) [7, 3]. The CFDP is a file transfer protocol
specifically designed for space requirements, such as long
transmission delays. The protocol was conceived to cover
the needs of a broad range of space missions. For a given
mission, however, only part of the protocol is used, and
since resources for onboard software are limited, all CFDP
implementations are actually mission-specific. Spacebel
thus built an SPL of CFDP libraries, where each library can
be tailored to the needs of a specific mission.

The FD of the CFDP library product line counts 80 fea-
tures, has a maximal depth of four and contains ten addi-
tional constraints. A simplified excerpt of this FD appears
in Figure 2. The principal features provide the capability to
send (Send) and receive (Receive) files. The Extended fea-
ture allows a device to send and receive packets via other de-
vices (such as a lander transmitting via an orbiting satellite).

CFDP
library

Send Receive PUS Extended Reboot

Reboot
Entity

Reboot
PUS

Send
Aknowldeged

mode

Send File
system

Operations

Receive
Aknowldeged

mode

Receive
File system
Operations

PUS
Rename

PUS
Copy

PUS Copy ⇒ Send ∧Receive
PUS Rename ⇒ Send File system Operations ∧Receive F ile system Operations
Extended ⇒ Send ∧Receive
Reboot PUS ⇒ PUS

Figure 2. Sample FD of the CFDP library.

The Reboot feature allows the protocol to resume transfers
safely after a sudden system reboot. PUS stands for Packet
Utilisation Standard, part of the ESA standard for transport
of telemetry and telecommand data (TMTC). The PUS fea-
ture implements the CFDP related services of this standard.

The extensions to MLSC that we propose in this paper
are motivated by the problems we encountered when apply-
ing it to automate the CFDP configuration process. A num-
ber of different stakeholders participate in the configura-
tion of a mission-specific CFDP library. Initially, Spacebel
decides which features are mature enough for the mission
(flight-grade vs. ground station), while leaving as much
variability as possible. In certain cases, a Reseller nego-
tiates the contract. The Reseller can, depending on the
contract, or for other commercial reasons, further config-
ure the product. The configuration task is then passed on to
the company that builds the software for the mission. The
system engineer (SE) makes initial high-level choices and
passes the task of refining these choices onto the network
integrator (NWI) and the TMTC integrator (TTI). These
two configure in parallel the parts of the library they are
responsible for. For technical reasons (e.g. reduction of
available CPU time due to overruns by other components),
integrators might have to come back to the SE to warrant
or change some feature selections. The configuration can
therefore be an iterative procedure until a final configura-
tion is determined, and the library is finally delivered by
Spacebel.

MLSC, as defined in [5, 2], is too restrictive to account
for a complex scenario such as this one. Indeed, the original
MLSC approach assumes the process to be purely sequen-
tial, but this is not the case here: (1) the NWI and TTI per-
form configuration in parallel, (2) the configuration by the
reseller is optional, (3) the FD of Spacebel is not fully con-
figured when its intervention is over, and (4) configuration
iterates between SE and NWI/TTI.

Spacebel

Reseller

System Engineer

Network Integrator

Product
release

TMTC Integrator

Legend
Conditions

Start End

Task Split

AND

Join
XOR AND XOR

(loop)

Figure 3. CFDP configuration workflow.

2.3 YAWL

As the limitations we just identified indicate, we need
support for modelling and enforcing configuration pro-
cesses that are more complex than mere sequences. Work-
flow modelling languages and tools serve this purpose.

Among the possible options, we picked YAWL as it is
formal [22], has extensive tool support [21] and is known to
cover a large variety of real-world modelling patterns [23].
In [23], van der Aalst et al. conduct a study of 20 workflow
patterns and compare the coverage of 15 workflow man-
agement systems and associated languages. They conclude
that the suitability of those systems “leaves much to be de-
sired” [23], and propose YAWL as an alternative covering
a maximal set of modelling patterns.

The scenario introduced in the previous section can be
represented by the YAWL workflow shown in Figure 3.
YAWL is inspired by Petri nets. Its principal constructs
are conditions and tasks , which roughly correspond
to places and transitions in Petri nets. There are two special
conditions, start and end .2 In Figure 3, each task, except
for (loop) and Product release , denotes a configuration
activity, and is annotated with the name of the stakeholder
performing the configuration. Spacebel is split in two
with a XOR split, meaning that only one of the outgoing
transitions is executed, which captures well the optional na-
ture of Reseller . System engineer joins both paths and
then splits again, but this time with an AND split, meaning
that the Network and TMTC integrator run in paral-
lel. From there, the configuration process is either finished
(Product Release) or continues with System engineer .

Formally, a workflow is defined as follows.

Definition 3 (Workflow [22]) A workfloww is defined as a
tuple (C, i, o, F, T, split, join) where C denotes the set of
conditions, i ∈ C is the unique start and o ∈ C the unique
end condition (single entry and exit points of the workflow),
F is the flow relation between conditions and tasks, T de-
notes the set of tasks. split (resp. join) is the function de-
termining the type of the task split (resp. join) behaviour, i.e.

2Generic conditions, illustrated in Figure 4, will be detailed later.

OR, AND, XOR. The semantics of w, noted [[w]]
Y AW L

,
is a transition system (S,→), and each state s ∈ S is a
set of tokens x, where x is the condition in which the token
resides.

The semantics of YAWL is based on a state space which
only keeps track of active conditions, i.e. conditions that
contain a token. Each task of a workflow is actually en-
coded by four different conditions, and one of them indi-
cates that the task is active. For a given task t, we denote
this condition activeCondition(t).

3 Feature configuration workflows

Having introduced FDs and YAWL, we now introduce
the new combined formalism of feature configuration work-
flows (FCWs) and illustrate it with the Spacebel case.

3.1 Formalism

In a nutshell, an FCW is a workflow, such as the one
shown in Figure 3, where tasks are now associated with fea-
ture modules: the FD will have to be configured during the
task’s execution. We consider that the FDs configured in
each task are different, and that the different FDs are related
through inter-module links, i.e. they form an FD collection,
just like in MLSC. For the Spacebel case, these FDs will be
projections of the one shown in Figure 2.

Using YAWL to model the CFDP configuration process
allows us to overcome the restrictions of MLSC identified
in Section 2.2. From a purely structural viewpoint, it pro-
vides an immediate solution to the representation of paral-
lel modules through AND split, optional modules through
XOR split and iterative configurations through backward
transitions.

Relaxing the limitation that FD modules be completely
configured before passing on to the next module is of a more
fundamental nature. Ideally, the formalism should be flexi-
ble enough to overcome this limitation but rigid enough to
enforce the time when modules have to be configured. This
is achieved by specifying, separately for each module, the
task in which it can be configured, and the point at which
configuration has to be finished. This point is represented
by a condition in the workflow.

We now provide a formal semantics for FCWs. As
in [20, 2], the formalisation follows the best practice re-
called in the introduction [12]. The following definitions
formalises the intuitive description of FCWs we just gave.

Definition 4 (Abstract syntax LFCW) An FCW m ∈
LFCW is a tuple (w, d, task, stop) such that:

• w is a workflow, i.e. w = (C, i, o, F, T, join, split).

• d is an FD collection, i.e. d = (N,L, r, λ,DE,Φ).

• task ⊆ L × T is a total injective function assigning
each module to a task in the workflow.

• stop ⊆ L×C is a total function assigning each module
to a condition (its stop) in the workflow.

Intuitively, the task of a module is the only task of the
workflow during which the associated module can be con-
figured, while the stop of a module denotes the point at
which the configuration of a module needs to be done. The
reason why task and stop of a module are dissociated, is to
be able to capture cases where the partial configuration of a
module is completed by subsequent modules, or where the
configuration iterates, such as between the SE, the NWI and
the TTI in the Spacebel case.

As for MLSC, the semantic domain of the FCW lan-
guage is also based on the notion of configuration path, in-
troduced informally in Section 2.1, and defined as follows.

Definition 5 (Semantic domain SCP [2]) Given a finite
set of featuresN , a configuration path π is a finite sequence
π = σ1...σn of length n > 0, where each σi ∈ PPN
is called a stage. If we call the set of such paths C, then
SCP = PC.

This definition, however, only partially captures the intu-
ition given in Section 2.1. Hence, additional constraints are
given in Definition 6. Indeed, a configuration path should
be a sequence that starts with all possible products (6.1) and
where, at each step, at least one product is eliminated (6.2)
until only one remains (6.3).

Definition 6 (Legal configuration path [2]) Given an FD
d ∈ LFD, a legal configuration path π = σ1..σn is such
that:

(6.1) σ1 = [[d]]
F D

(6.2) ∀i ∈ {2..n} • σi ⊂ σi−1

(6.3) |σn| = 1

We are now set to define the semantics of an FCW. In this
definition, we make use of the following helper that reduces
a set of sets A to the sets containing elements of B.

Definition 7 (Reduction A |B)

A |B
4
= {a ∩B|a ∈ A}

The semantics of an FCW is the set of legal configura-
tion paths (see 8.A in Definition 8) which follow a valid
sequence of workflow states (8.B). Intuitively, this means
those configuration paths where the products eliminated in
a step pertain to the module whose task is being executed
(8.B.2), and where the stops encountered during the work-
flow execution are respected (8.B.3). This intuition is for-
malised by saying that each stage σ of the configuration

path can be associated to a step s in the workflow, i.e. a
sequence ϕ of pairs (σ, s), that verifies the two above con-
ditions and a minor well-formedness condition (8.B.1).

Definition 8 (FCW Semantics [[m]]
F CW

) For m ∈
LFCW , [[m]]

F CW
returns the set of paths π ∈ SCP such

that π = σ1 . . . σn and a valid sequence of YAWL states
ρ ∈ [[w]]

Y AW L
such that ρ = s1 → . . .→ sk such that:

(8.A) let d′ be d without Lskip, π is a legal configuration
path wrt. d′;

(8.B) ∃ a sequence ϕ : (σ1, s1), . . . , (σn, sk) such that:

(8.B.1) both the configuration path and the workflow se-
quence evolve stepwise:

∀ . . . (σa, sb)(σc, sd) . . . ∈ ϕ
• (a = c ∨ a = c− 1) ∧ (b = d ∨ b = d− 1)

(8.B.2) only one module is configured at a time, i.e. there
is no overlapping during module configuration:

∀ . . . (σa, sb)(σa+1, sb) . . . ∈ ϕ
•modules(sb) 6= ∅ ∧ ∃Li ∈ modules(sb)
• (σa \ σa+1) |Li

6= ∅
∧ (σa \ σa+1) |Li

⊆ (σa |Li
\ σa+1 |Li

)

(8.B.3) all the stops of the modules are satisfied:

∀(σa, sb) ∈ ϕ • ∀Li ∈ stops(sb) • |σa |Li
| ≤ 1

where:

• c(s) is the set of conditions active in state s.

• modules returns the set of modules active in a given
state s:

modules(s) ⊆ L
• {Li|activeCondition(task(Li)) ∈ c(s)}

• Lskip = L\ (
⋃
s∈ρ modules(s)) is the set of modules

that do not appear in a given sequence ρ.

• Conversely, Ldo = L \Lskip is the set of modules that
do appear in a given sequence ρ.

• stops returns the set of modules that should be fully
configured in a given state s:

stops(s) ⊆ L • {Li ∈ Ldo|stop(Li) ∈ c(s)}

Configuration workflow

Spacebel

Reseller

System Engineer

Network Integrator

TMTC Integrator

Final Satellite Product
release

task(Spacebel)

task(Reseller)

task(System Engineer) task(TMTC Integrator)

task(Network Integrator) stop(Network Integrator)

stop(TMTC Integrator)

stop(System Engineer)

stop(Spacebel)

stop(Reseller)

Legend
Conditions
Start End Generic

Task Split
AND

Join
XOR AND XOR

Worflow transition
Task assignment function
Condition assignment function

Spacebel FD
CFDP library

PUS

Extended
Reboot

Send

Receive

Reboot Entity
Reboot PUS

Send Filestore Operations
Send Aknowldeged mode

Receive Filestore Operations
Receive Aknowldeged mode

PUS Copy
PUS Rename

Reseller FD
CFDP library

PUS

Extended
Reboot

Send

Receive

Reboot Entity
Reboot PUS

Send Filestore Operations
Send Aknowldeged mode

Receive Filestore Operations
Receive Aknowldeged mode

PUS Copy
PUS Rename

Network Integrator FD
CFDP library

Send

Receive

Send Filestore Operations
Send Aknowldeged mode

Receive Filestore Operations
Receive Aknowldeged mode

TMTC Integrator FD
CFDP library

PUS
PUS COPY
PUS RENAME

System Engineer FD
CFDP library

PUS

Extended
Reboot

Send
Receive

Reboot Entity
Reboot PUS

(loop)

1 2

3

3

Figure 4. Example of FCW applied to the Spacebel scenario.

3.2 Motivating scenario revisited

Section 2.2 introduced the configuration scenario of the
CFDP. This scenario is now re-used to illustrate our defini-
tion of FCW. Figure 4 depicts three types of artefacts: (1)
the FD modules, (2) the configuration workflow and (3) the
mappings between both. Note that the concrete syntax pre-
sented here is used for illustrative purpose only and is not
meant to be prescriptive.

The module decomposition is based on the sample dia-
gram of Figure 2. The decomposition into modules of the
original FD in Figure 2 produces five FDs, each account-
ing for the roles and responsibilities defined in Section 2.2.
(For readability, the FDs are shown in a directory tree-like
fashion and the internal constraints are omitted.) Since the

individual FDs are all projections of a single diagram, the
inter-module links are equivalence relations (⇔) defined
pair-wise between all features. Indeed, for every feature in
one module (e.g., PUSS in Spacebel) for which there is a
feature with the same name in another module (e.g., PUSR
in Reseller), there is an inter-module link requiring them
to co-occur (i.e., PUSS ⇔ PUSR) in all products where
one of them appears.

The configuration workflow is a simple extension of the
one in Figure 3. The Final Satellite condition is added
to indicate moment on which the SE, NWI and TTI have
finished configuring the product.

The mapping of the modules to the tasks follows
directly from the module decomposition. The map-
ping to the stops, however, requires some further ex-

planation. The Final Satellite stop, to which three
tasks System Engineer , Network Integrator and
TMTC Integrator point, indicates the group formed by
these modules: as long as the stop is not satisfied, the loop
has to continue. The two other modules, including the op-
tional Reseller module, map onto end , the second stop,
since their configuration time does not matter. Note that, if
the Reseller task is not executed, its features are not part
of the configuration paths, meaning that the constraint 8.B.3
is automatically satisfied.

Figure 5 illustrates how this FCW can be executed,
which eventually results in a fully configured product.
The workflow starts with the Spacebel task (indicated
by the arrow in Figure 5(a)), where the responsible per-
son decides that the PUS Copy feature shall not be in-
cluded. As a consequence, the feature becomes unavail-
able in the TMTC Integrator task. The next task is the
System Engineer , who decides to include all the features
that are available to him as shown in Figure 5(b). This
decision again causes other features to be selected auto-
matically, including those of the previous module. Finally,
Network - and TMTC Integrator finalise the configura-
tion process in parallel. Their choices eliminate all remain-
ing variability, meaning that both stops are satisfied, and
that the workflow has reached the end.

In the following section we look at how an automated
tool could guide such a scenario.

4 Towards automation

In the life of an FCW, we distinguish roughly two phases:
the elaboration phase and the usage phase. The tool support
required during the elaboration phase needs to enable the
construction of models that conform to the given abstract
syntax (elements of LFCW). Ideally, the tool should also
allow to analyse them according to syntactic and semantic
criteria. The usage phase, in the case of FCW, is the config-
uration process. A tool supporting this phase should be able
to enact the configuration process as specified by a given
FCW.

The back-end for all but purely graphic tools is a rea-
soner. In the present case, we make use of the reasoner
inside the YAWL editor and execution engine [21], and of a
logic truth maintenance system (LTMS) [10], derivative of
a SAT solver, to reason about FDs.3 Similar to how YAWL
and FD semantics were integrated in Definitions 4 and 8,
these two back-ends have to be extended and integrated to
produce FCW tool support. We first outline basic strategies

3An FD d can be easily encoded as a Boolean formula Γd ∈ B(N)
where the free variables are the features of d, so that, given a configuration
c ∈ [[d]]F D , fi = true denotes fi ∈ c and false means fi 6∈ c [14,
1, 15]. The encoding of d into Γd is such that evaluating the truth of an
interpretation c in Γd is equivalent to checking whether c ∈ [[d]]F D .

for tool support and identify challenges; we then provide
FCW analysis properties which are solutions to these chal-
lenges.

Given the existence of editors for LFD and LY AWL,
building a pure editor for LFCW is more of a technical
than intellectual challenge; it suffices to add an interface
allowing to assign modules to tasks and conditions. The
real challenge is to extend such an editor with FCW-related
features such as support for modelling patterns as well as
analysis tasks that alert the user of possible problems with
the FCW. While common analysis tasks for YAWL (e.g.,
check soundness) and FDs (e.g., check consistency) still ap-
ply to the YAWL/FD parts of the FCW (allowing existing
implementations to be reused), there are FCW-related anal-
ysis tasks, detailed in the following section, that have to be
added.

For the configuration tool, we can extend the implemen-
tation strategy we already provided for MLSC [2]. Essen-
tially, this consists in using an LTMS to maintain an ex-
pression (Γd ∧∆d) ∈ B(N) where Γd is the Boolean logic
encoding of the FD d, and ∆d records all decisions made by
the user. Using an LTMS has several benefits: (i) it propa-
gates implications of each new decision, (ii) it can be used
to determine which features are included/excluded or yet
to be decided, and, most importantly, (iii) since it always
maintains a satisfiable expression, the LTMS will prevent
the user from making decisions that would be incompatible
with earlier decisions. To correctly implement the seman-
tics of Definition 8, this strategy needs to be extended to
take condition 8.B into account [21].

Here again, integration of the execution engine with a
configuration tool is rather technical and can be done by
message passing through web services. The real challenge
is to prevent the user from making decisions that lead to
dead ends: even though the LTMS can prevent inconsisten-
cies of decisions and check satisfaction of stop conditions, it
cannot readily predict (and prevent) unsatisfiable stop con-
ditions, since they depend on the path taken in the work-
flow. In such a case, the workflow execution would have to
be rolled back to the task dealing with the configuration of
the module in question, which, in real-world configuration
processes, could mean a delay of several weeks.

We are currently working on solutions to these chal-
lenges, which are required before efficient tool support can
be implemented. Our preliminary findings indicate that
‘problematic’ workflows, i.e. those where unsatisfiable stop
conditions might occur, can be identified by analysing the
underlying workflow.

5 Discussion

After an overview of related work, we highlight the no-
ticeable benefits of FCW and set forth the future work.

1

Spacebel FD
CFDP library

PUS

Extended
Reboot

Send

Receive

Reboot Entity
Reboot PUS

Send Filestore Operations
Send Aknowldeged mode

Receive Filestore Operations
Receive Aknowldeged mode

PUS Copy
PUS Rename

✗ System Engineer FD
CFDP library

PUS

Extended
Reboot

Send
Receive

Reboot Entity
Reboot PUS

Network Integrator FD
CFDP library

Send

Receive

Send Filestore Operations
Send Aknowldeged mode

Receive Filestore Operations
Receive Aknowldeged mode

TMTC Integrator FD
CFDP library

PUS
PUS Copy
PUS Rename

✗

(a) Step 1 – Configuration by Spacebel

2

Spacebel FD
CFDP library

PUS

Extended
Reboot

Send

Receive

Reboot Entity
Reboot PUS

Send Filestore Operations
Send Aknowldeged mode

Receive Filestore Operations
Receive Aknowldeged mode

PUS Copy
PUS Rename

✓

✓

✓

✓
✓

✗

✓
✓

System Engineer FD
CFDP library

PUS

Extended
Reboot

Send
Receive

Reboot Entity
Reboot PUS

✓
✓
✓
✓
✓

✓
✓

Network Integrator FD
CFDP library

Send

Receive

Send Filestore Operations
Send Aknowldeged mode

Receive Filestore Operations
Receive Aknowldeged mode

✓

✓

TMTC Integrator FD
CFDP library

PUS
PUS Copy
PUS Rename

✓
✗

(b) Step 2 – Configuration by the System Engineer

3

3

Spacebel FD
CFDP library

PUS

Extended
Reboot

Send

Receive

Reboot Entity
Reboot PUS

Send Filestore Operations
Send Aknowldeged mode

Receive Filestore Operations
Receive Aknowldeged mode

PUS Copy
PUS Rename

✓

✓

✓

✓
✓

✗

✓
✓
✗

✓
✗

✓
✓

System Engineer FD
CFDP library

PUS

Extended
Reboot

Send
Receive

Reboot Entity
Reboot PUS

✓
✓
✓
✓
✓

✓
✓

Network Integrator FD
CFDP library

Send

Receive

Send Filestore Operations
Send Aknowldeged mode

Receive Filestore Operations
Receive Aknowldeged mode

✓

✓

✓
✗

✓
✗

TMTC Integrator FD
CFDP library

PUS
PUS Copy
PUS Rename

✓
✗

✓

(c) Step 3 – Parallel configuration by the Network Integrator and the TMTC Integrator

Figure 5. Example of valid module configuration derivable from Figure 4.

5.1 Related work

Dreiling et al. [9] claim that the knowledge about con-
figuration processes is usually owned by experts, i.e. in-
dividual employees or external contractors, on which the
company is dependent. In order to gain independence in
such situations, companies need to establish accurate inter-
nal control structures. As a means to capture the configura-
tion process explicitly, Dreiling et al.propose model-based

configuration. Thereby, they make the configuration pro-
cess more intuitive to a larger audience, lower configuration
costs and enhance process-awareness. Recker et al. [18]
go along the same line and advocate a dedicated engineer-
ing process integrating configurable process models into the
system development lifecycle. Although not specific for
SPLE, the configurable process models they propose can
be applied to any system in need of a flexible and sharp de-
composition of tasks. In fact, FCWs, as we propose them,

also provide a means to capture configuration knowledge
and to make it accessible to non-experts. In addition, FCWs
capture information about the variability of the system.

Specific to SPLs, Deelstra et al. [6] report that prod-
uct configuration is a “time-consuming and expensive ac-
tivity”. That is, the gains of reusing core assets developed
during domain engineering can be outweighed by the lack
of adapted technologies to derive individual products dur-
ing application engineering. For that reason, they study the
problems that can occur during product configuration and
narrow the benefits from the upfront investments. Their re-
sults notably show that both tacit knowledge and the lack of
appropriate clustering of variation points are severe imped-
iments to efficient product configuration.

Rabiser et al. [17] propose an approach supporting prod-
uct configuration based on decision models (DMs). Essen-
tially, decision models represent assets (e.g. features) tied to
decisions, bound together through logic dependencies. De-
cisions stand for the intervention of a role selecting assets
during product configuration. Decisions, roles and assets
are thus all part of a single DM. They also discuss how
models need to be prepared to meet the requirements of a
specific project before allowing product derivation.

5.2 Benefits

The primary benefit of FCWs is that they allow explicit
modelling of non-trivial configuration processes, thereby
overcoming the original limitations of MLSC and bringing
assistance to the product management. From the resource
allocation perspective, FCWs facilitate the task assignment
to the different roles played by the stakeholders. From the
control standpoint, stops of an FCW provide milestones for
the project manager and keep him informed about the evo-
lution of the configuration process, whereas feedback loops
allow to define synchronisation points among roles.

The DMs proposed by Rabiser et al. [17] differ from
FCWs in that the configuration process is entangled within
the DM. By separating the workflow from the actual de-
cisions (i.e. the feature modules), we argue that FCW
achieves better separation of concerns between process and
decision making. However, FCWs and DMs could be
deemed complementary. Indeed, the FD that belongs to a
module of an FCW could be readily replaced by a DM. This
would preserve separation of concerns at the process level,
while still offering fine-grained scheduling of the configu-
ration process inside each module.

As pinpointed in Section 4, a direct consequence of the
formal definition is the possibility to statically reason about
FCWs. In order to make configuration less time-consuming
and error-prone, FCW automation capitalises on existing
analysis techniques for FDs and YAWL to provide a uni-
fied reasoning framework supporting, for instance, illegal

FCW detection, FCW normal form evaluation and feature
dependency resolution. Aside from FCW legality, one also
wants to enforce that only valid products are built, which
can only be guaranteed if every configuration stage respects
the semantics of the FCW. The automated propagation of
constraints, the prevention of illegal feature selection and
the strict control over the executed tasks all contribute to
safer and more efficient product configuration.

5.3 Future work

In its current state, our approach has some limitations
that are subject to future work:

• As shown in Figure 4, configurations of Network
and TMTC integrators are conducted in parallel. The
strong assumption taken here is that both modules be-
long to a shared FD enforcing configuration consis-
tency along the process. However, it is very likely
that real-life practices will demand support for asyn-
chronous configuration, where decisions need to be
merged at some point.

• Another practical aspect we abstracted from is the sim-
ple fact that decisions might be changed or cancelled
during the configuration process. Further investiga-
tions should clarify whether the formalism should take
such actions into account. It is, however, clear that a
tool implementation needs to allow them.

• We assume that for an FCW there is a single partition
of the variability space into modules, and that this par-
tition is performed according to a single criterion (the
role performing the action in the case of Spacebel).
However, Grünbacher et al. [11] assert that there ex-
ist several ways to structure the variability space, and
propose different views of a single model, such as the
organisational structure and the market needs. We are
currently working on adapting FCWs to similarly sup-
port multiple views, or module decompositions, in or-
der to better reflect current practices.

Beyond these limitations, numerous other extensions can
be envisionned. For instance, so far we only made lim-
ited use of the possibilities that YAWL offers since we ig-
nored a number of constructs. Hierarchical workflows [22],
for instance, could be used to specify the high-level work-
flow of the whole SPL configuration process, whereas sub-
workflows would correspond to single product configura-
tion. Similarly, multiple task instances could be interpreted
as feature cloning [4]. Furthermore, new case studies might
reveal recurrent design patterns for the different elements of
an FCW.

The validation of our approach is rather preliminary. In
addition to the assessment from Spacebel, further studies

will be needed to confirm the suitability of FCWs to a large
range of cases. Preferably, we will investigate industrial
and open source cases including parallel and/or distributed
product configuration.

6 Conclusion

In this paper, we introduced a new formalism called, Fea-
ture Configuration Workflow (FCW), allowing to organise
interrelated FDs as part of an unambiguous configuration
workflow. For this formalism, we proposed a semantics that
builds upon previous work on multi-level staged configura-
tion and YAWL. We presented a tool implementation strat-
egy for automating relevant analyses. A preliminary evalu-
ation with Spacebel, an industrial partner, helped to identify
the benefits and needed extensions of the formalism. A thor-
ough validation is still needed to ensure the applicability in
a broader context.

Acknowledgements

We would like to thank Arnaud Bourdoux and Paul Pari-
sis from Spacebel and Prof. Pierre-Yves Schobbens for their
collaboration. This work is sponsored by the Interuniversity
Attraction Poles Programme of the Belgian State of Belgian
Science Policy under the MoVES project and the FNRS.

References

[1] D. S. Batory. Feature Models, Grammars, and Propositional
Formulas. In SPLC’05, pages 7–20, 2005.

[2] A. Classen, A. Hubaux, and P. Heymans. A formal seman-
tics for multi-level staged configuration. In VaMoS’09. Uni-
versity of Duisburg-Essen, January 2009.

[3] Consultative Committee for Space Data Systems (CCSDS).
CCSDS File Delivery Protocol (CFDP): Blue Book, Issue
4. Number CCSDS 727.0-B-4. National Aeronautics and
Space Administration (NASA), January 2007.

[4] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Formal-
izing cardinality-based feature models and their specializa-
tion. Software Process: Improvement and Practice, 10(1):7–
29, 2005.

[5] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged con-
figuration through specialization and multi-level configura-
tion of feature models. Software Process: Improvement and
Practice, 10(2):143–169, 2005.

[6] S. Deelstra, M. Sinnema, and J. Bosch. Product derivation
in software product families: a case study. J. Syst. Softw.,
74(2):173–194, 2005.

[7] L. Demonceau, P. Parisis, M. Ciccone, G. Furano, and
R. Blommestijn. CCSDS file delivery protocol for future
ESA missions. In DASIA’08. ESA Publications, May 2008.

[8] D. Dhungana, T. Neumayer, P. Grunbacher, and R. Rabiser.
Supporting evolution in model-based product line engineer-
ing. In SPLC’08, pages 319–328. IEEE CS, 2008.

[9] A. Dreiling, M. Rosemann, W. van der Aalst, L. Heuser, and
K. Schulz. Model-based software configuration: patterns
and languages. European Journal of Information Systems,
15:583–600, 2006.

[10] K. Forbus and J. de Kleer. Building Problem Solvers. 1993.
[11] P. Grunbacher, R. Rabiser, D. Dhungana, and M. Lehofer.

Structruring the product line modeling space: Strategies and
examples. In VaMoS’09. University of Duisburg-Essen, Jan-
uary 2009.

[12] D. Harel and B. Rumpe. Modeling languages: Syntax, se-
mantics and all that stuff - part I: The basic stuff. Technical
Report MCS00-16, Faculty of Mathematics and Computer
Science, The Weizmann Institute of Science, Israel, Septem-
ber 2000.

[13] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-
son. Feature-Oriented Domain Analysis (FODA) Feasi-
bility Study. Technical Report CMU/SEI-90-TR-21, SEI,
Carnegie Mellon University, November 1990.

[14] M. Mannion. Using First-Order Logic for Product Line
Model Validation. In SPLC’02, pages 176–187, Aug. 2002.

[15] A. Metzger, P. Heymans, K. Pohl, P.-Y. Schobbens, and
G. Saval. Disambiguating the documentation of variability
in software product lines: A separation of concerns, formal-
ization and automated analysis. In RE’07, pages 243–253,
October 2007.

[16] K. Pohl, G. Bockle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer, July 2005.

[17] R. Rabiser, P. Grunbacher, and D. Dhungana. Supporting
product derivation by adapting and augmenting variability
models. In SPLC’07, pages 141–150. IEEE CS, 2007.

[18] J. Recker, J. Mendling, W. Van Der Aalst, and M. Rose-
mann. Model-driven enterprise systems configuration. In
Proceedings of the 18th International Conference on Ad-
vanced Information Systems Engineering (CAiSE’06), 2006.

[19] M.-O. Reiser and M. Weber. Managing highly complex
product families with multi-level feature trees. In RE’06,
pages 146–155. IEEE CS, 2006.

[20] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bon-
temps. Feature Diagrams: A Survey and A Formal Seman-
tics. In RE’06, pages 139–148, September 2006.

[21] W. van der Aalst, L. Aldred, M. Dumas, and A. Ter Hofst-
ede. Design and Implementation of the YAWL System. In
CAiSE 2004, 2004.

[22] W. van der Aalst and A. ter Hofstede. Yawl: yet another
workflow language. Information Systems, 30(4):245–275,
2005.

[23] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and
A. Barros. Workflow patterns. Distributed and Parallel
Databases, 14(3):5–51, July 2003.

