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ABSTRACT

Aims. We study the possibility that extrasolar two-planet systems, similar to the ones that are observed, can be in a stable Kozai-
resonant state, assuming a mutual inclination of the orbital planes of order Imut ∼ 40−60◦.
Methods. Five known multi-planet systems that are not in mean motion resonance were selected, according to defined criteria, as
“possible prototypes” (υAndromedae, HD 12661, HD 169830, HD 74156, HD 155358). We performed a parametric study, integrating
several sets of orbits of the two planets, obtained by varying the (unknown) inclination of their orbital planes and their nodal longitudes,
thus changing the values of their masses and mutual inclination. We also take into account the reported observational errors on the
orbital elements. These numerical results are characterized using analytical secular theory and frequency analysis. Surface of section
techniques are also used to distinguish between stable and chaotic motions.
Results. Frequency analysis offers a reliable way of identifying the Kozai resonance in a general reference frame, where the argument
of the pericenter of the inner planet does not necessarily librate around ±90◦ as in the frame of the Laplace plane, through the non-
coupling of the eccentricities of the two planets. We find that four of the five selected systems (υ Andromedae, HD 12661, HD 169830
and HD 74156) could in principle be in Kozai resonance, as their eccentricities and apsidal orientations are such that the system enters
in the stability region of the Kozai resonance in 20−70% of the cases, provided that their mutual inclination is at least 45◦. Thus, a large
fraction of the observed multi-planet systems has observed orbital characteristics that are consistent with stable, Kozai-type, motion in
3D. Unstable sets of orbits are also found, due to the chaos that develops around the stability islands of the Kozai resonance. A variety
of physical mechanisms that could generate the necessary large mutual inclinations are discussed, including (a) planet formation;
(b) type II migration and resonant interactions during the gas-dominated phase; (c) planetesimal-driven migration and resonance
crossing during the gas-free era; (d) multi-planet scattering, caused by the presence of an additional planet.

Key words. planetary systems – celestial mechanics – methods: N-body simulations – methods: analytical

1. Introduction

More than 25 extrasolar multi-planetary systems have been de-
tected. Nonetheless the spatial resolution of their orbits is still
not possible. The majority of detections are performed by the
radial velocity technique, which is based on measuring only the
line of sight component of the star’s velocity. This results in an
indetermination of some orbital parameters – the inclination of
the orbital plane to the plane of the sky and the longitude of the
node –, but also in a poor determination of the masses: only min-
imal masses can be inferred.

Because of this lack of knowledge, as well as a general be-
lief that planetary systems would tend to resemble the solar sys-
tem in being composed of co-planar orbits, only a few studies
on the dynamics of the extrasolar systems have been devoted
to the three-dimensional (3D) problem. Among the analytical
studies of 3D exosystems that are not in mean motion resonance
(MMR), are the works of Michtchenko et al. (2006) and Libert
& Henrard (2007, 2008). In the latter, a 12th order expansion in
eccentricities and inclinations of the perturbative potential of the
3D secular three-body problem was used to study the dynamical

� FNRS Research Fellow.
�� We wish to dedicate this paper to the memory of Jacques Henrard,
a teacher and a friend, who strongly encouraged us to have this
collaboration.

features of the problem, which can be reduced to a two degrees
of freedom problem, by referring the orbits to the Laplace plane.
The main concern in this work was the position and stability of
the equilibria in this problem, and in particular the generation of
stable Kozai equilibria through bifurcation from a central equi-
librium, which itself becomes unstable at high mutual inclina-
tion. This implies that, around the stability islands of the Kozai
resonance, chaotic motion of the planets occurs.

Some articles have noted the importance of the Kozai res-
onance on the long-term behavior of extrasolar systems, when
the orbital planes of the planets have a high mutual inclination
(for instance, the case of the υ Andromedae system, Stepinski
et al. 2000; Chiang et al. 2001). The Kozai resonance offers
a secular phase-protection mechanism such that the system re-
mains stable, even though both orbits may suffer large-scale
variations both in eccentricity and inclination; in other words,
the variations can be large but occur in a coherent fashion, dic-
tated by the resonance condition, such that close approaches do
not occur (see the original paper of Kozai 1962). Generally the
goal of previous numerical studies was to analyze the stability
of the detected systems, with regards to different mutual incli-
nation values. The aim of the present work is different, as we
try to examine the possibility of two-planet exosystems being
locked in a stable Kozai-resonant state. In particular, a paramet-
ric study is undertaken for five real multi-planet systems that
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are not in mean-motion resonance (υ Andromedae, HD 12661,
HD 169830, HD 74156, HD 155358) by varying the (unknown)
inclinations of their orbital planes and their nodal longitudes,
thus changing their masses and mutual inclination.

The analytical works of Michtchenko et al. (2006) and Libert
& Henrard (2007, 2008) on the Kozai resonance were developed
in the Laplace-plane reference frame. In this frame, the Kozai-
resonant regions are characterized by the coupled variation of
the eccentricity and inclination of the inner planet and the libra-
tion of its pericenter argument about ±90◦ (Kozai 1962). In this
work we will show that, when a general reference frame is con-
sidered, the libration of this angle is not necessary for the system
to be in Kozai resonance, so that a new characterization method
is needed.

The paper is organized as follows. In Sect. 2, the
Hamiltonian formulation of the 3D secular three-body problem
of Libert & Henrard (2007) is recalled, and a new characteri-
zation of the Kozai resonance is given for systems considered
in a general reference frame. The possibility of extrasolar sys-
tems being in Kozai resonance is examined in Sect. 3. Our results
are summarized in Sect. 4 and physical mechanisms that could
generate the large mutual inclinations required for the Kozai-
resonant state are discussed.

2. Hamiltonian formulation of the 3D secular
three-body problem

2.1. Analytical modeling of the problem

In this section we recall the analytical modeling of the 3D secu-
lar three-body problem and the main results obtained by Libert
& Henrard (2007). Let us consider a system consisting of a cen-
tral star of mass m0 and of two planets of mass m1 and m2, with
m1 being the closest to the central star. The Hamiltonian of this
system, in the usual Jacobi coordinates, is (see e.g. Brouwer &
Clemence 1961):

H = −Gm0m1

2a1
− Gm0m2

2a2
−Gm1m2

⎡⎢⎢⎢⎢⎣ 1
|r1 − r2| −

(r1|r2)

r3
2

⎤⎥⎥⎥⎥⎦ , (1)

where ai, ri, ri and G are, respectively, the osculating semi-major
axis, the position vector, the norm of the position vector of the
mass mi, and the universal gravitational constant.

A set of canonical variables is formed by use of the classical
modified Delaunay’s elements (see for instance Laskar 1990):

λi = mean longitude, Li = mi
√

Gm0ai
pi = − longitude of the pericenter,

Pi = Li

[
1 − √1 − ei

2
]

qi = − longitude of the node,

Qi = Li

√
1 − e2

i [1 − cos ii] ,

(2)

where ei and ii are the eccentricities and inclinations of the plan-
ets. In order to expand the last term of Eq. (1) in powers of the
elements (i.e. a generalization of the Laplace-Lagrange secular
theory to higher order in eccentricity and inclination, see e.g.
Murray & Dermott 1999), Libert & Henrard (2007) used the
non-dimensional variables Ei =

√
2Pi/Li instead of the eccen-

tricities ei and S i =
√

2Qi/Li instead of the inclinations ii; these
variables are related to Delaunay’s canonical variables and, at
least for small to moderate eccentricities and inclinations, they
have similar meanings and values.

For systems that are far from a mean motion resonance, the
Hamiltonian of the system can be averaged over the “fast vari-
ables” λi (to first order in the mass ratio), as in Libert & Henrard
(2007), to obtain the following expression:

K =
∑

k, j1, j2,il,l∈4
Bk, j1, j2

il
E | j1|+2i1

1 E | j2|+2i2
2 S |k+ j1|+2i3

1 S |k+ j2|+2i4
2 cosΦ, (3)

where Φ = j1(p1−q1)− j2(p2−q2)− k(q1−q2). All variables ai,
Ei, S i, pi and qi now designate values averaged over the fast
variables λi. As the mean longitudes are ignorable, the associ-
ated moments Li are constant and so are the semi-major axes ai.
Then, this secular Hamiltonian describes a four degrees of free-
dom problem. Libert & Henrard (2007, 2008) have shown that an
expansion made of all terms such that the sum of the exponents
in E1, E2, S 1 and S 2 is less or equal to 12 depicts the behavior of
the system with enough accuracy, even when the eccentricities
are as large as in many of the observed extrasolar systems.

In the three-body problem, Jacobi’s reduction, also known as
the elimination of the nodes (Jacobi 1842), allows us to reduce
the Hamiltonian function (3) to a two degrees of freedom func-
tion only. The reduction is based on the existence of additional
integrals of motion, namely the invariance of the total angular
momentum, C, both in norm and in direction. The constant di-
rection of the vector C defines an invariant plane perpendicular
to it. This plane is known as the invariant Laplace plane. The
choice of this plane as plane of reference implies the following
relations:

q1 − q2 = ±180◦ (4)

(L1 − P1) cos i1 + (L2 − P2) cos i2 = C (5)

(L1 − P1) sin i1 + (L2 − P2) sin i2 = 0 (6)

with C being the norm of the total angular momentum. Another
quantity, related to the total angular momentum, is frequently
used. This is known as the angular momentum deficit (Laskar
1997):

AMD =
2∑

i=1

Li

(
1 −
√

1 − e2
i cos ii

)
= L1 + L2 −C. (7)

The dimensionless angular momentum deficit, denoted by the
symbol Σ, has the following expression:

Σ =
AMD

L2
(1 − μ) (8)

where μ = m1/(m1 + m2). For a fixed value of this quantity (or
equivalently for a fixed value of C), the relations (5)−(6) allow
us to calculate the values of the inclinations as functions of the
eccentricities.

As mentioned above, the problem is now reduced to two de-
grees of freedom only, described by the following Hamiltonian
– see Libert & Henrard (2007) for more details:

K =
∑
nl ,l∈5

Enl x
n1
1 y

n2
1 xn3

2 y
n4
2 χ

n5 , (9)

where xi, yi are the new Poincaré-like canonical variables (wi de-
notes the opposite of the (averaged) argument of the pericenter
pi − qi), i.e.

xi =
√

2Pi coswi and yi =
√

2Pi sinwi, (10)

and χ is the part of the angular momentum deficit related to the
mutual inclination of the orbits, i.e.

χ = AMD − P1 − P2 = AMD −
(
x2

1 + y
2
1 + x2

2 + y
2
2

)
/2. (11)
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Table 1. Parameters of the five exosystems analyzed in this work. All the parameters come from Butler et al. (2006), excepted those of the system
HD 155358 from Schneider’s catalog (http://exoplanet.eu/).

a e ω (deg) m sin i (MJup) MStar (MSun) error on e error on ω (deg)
υ And 0.832 0.262 245.5 1.98 1.32 0.021 5.3

(c-d) 2.54 0.258 279 3.95 0.032 10
HD 12661 0.831 0.361 296.3 2.34 1.11 0.011 2.6

2.86 0.017 38 1.83 0.029 0
HD 169830 0.817 0.310 148 2.9 1.43

3.62 0.33 252 4.1
HD 74156 0.29 0.6360 181.5 1.8 1.21

3.35 0.583 242.4 6
HD 155358 0.628 0.112 162 0.89 0.87

1.224 0.176 279 0.504

Thus, the evolution of the system can be followed on the
(x, y) plot, where, at any given moment, the polar radius is
roughly proportional to the eccentricity of the planet and the
polar angle is the argument of pericenter. Note that the coeffi-
cients Enl only depend on the mass ratio and the ratio of the
semi-major axes.

2.2. Characteristics of the Kozai resonance in a general
reference frame

According to Libert & Henrard (2007), the origin x1 = x2 = y1 =
y2 = 0 is an equilibrium of the averaged planetary three-body
problem, reduced to two degrees of freedom. This equilibrium
corresponds to circular orbits, and, according to (7), to the max-
imal mutual inclination compatible with a fixed value of AMD.
When the angular momentum deficit is small, this equilibrium
is stable. For larger mutual inclinations, it becomes unstable,
generating a large chaotic zone and, by bifurcation, two regu-
lar regions, the so-called Kozai resonances (Michtchenko et al.
2006). These resonant regions are characterized, in the Laplace-
plane reference frame that we are using, by the coupled variation
of the eccentricity and the inclination of the inner planet and the
libration of the argument of the pericenter of the same planet ω1
around±90◦ (Kozai 1962). The critical value of the mutual incli-
nation, which corresponds to the change of stability of the cen-
tral equilibrium, has been calculated by Jefferys et al. (1966) and
Robutel (1995), for vanishingly small semi-major axis ratios and
by Libert & Henrard (2007) for values of the semi-major axes
and mass ratios compatible with those of extrasolar systems. For
mass ratios between 0.5 and 2, the critical mutual inclination is
of the order of 40◦−45◦.

The aforementioned definition of the Kozai resonance is re-
lated to the use of the Laplace-plane reference frame. We can ask
ourselves whether this characterization is also valid for a general
reference frame, such as the one formed e.g. by considering the
plane of the sky (perpendicular to the line of sight) as our refer-
ence plane. In the following, we will adopt this general reference
frame and hence the angle ii will denote the inclination of the or-
bital plane of the mass mi with respect to the plane of the sky.

The libration of the argument of the pericenter of the in-
ner planet ω1 around ±90◦ is not a necessary characteristic of
the Kozai resonance, when the system is viewed in a general
reference frame. To show this, we use the HD 169830 system
(see Table 1), assuming initial inclinations of 45◦ for both or-
bital planes (i.e. masses multiplied by 2/

√
2) and Ω1 = 81.5◦,

Ω2 = 0◦, i.e. a mutual inclination value of Imut = 55◦ (see
Eq. (12) below). Figure 1 represents the time evolution of the
orbital elements of this system (on the left) and the same system

referred to the Laplace-plane reference frame (on the right). To
translate into the Laplace plane, we let the planets evolve un-
til their nodal lines are aligned. Once the system reaches this
configuration, we switch to the Laplace plane by using the re-
lations (5) and (6). In our example, we obtain: i′1 = 31.79◦,
i′2 = 9.30◦, ω′1 = 273.4◦, ω′2 = 230.8◦, Ω′1 = 180◦ and Ω′2 = 0◦,
where the prime symbol refers to the Laplace-plane reference
frame. As shown in Fig. 1, the system is well in Kozai resonance
since, in the Laplace plane, we observe a coupled variation of
the eccentricity and inclination of the planet m1 and the libration
of ω′1 around 270◦. However, in the general reference frame, the
argument of the pericenterω1 circulates, even though the system
is in Kozai resonance.

The coupling between the eccentricity and inclination of
the inner planet is also a feature that is not observed in both
reference frames. Indeed, no obvious relation between the ele-
ments e1 and i1 of the system can be deduced in the general ref-
erence frame, just by looking at the long-term behavior in Fig. 1.

To better understand the characteristics of the Kozai reso-
nance and the coupling between the orbital elements that it in-
duces, independent of the adopted reference frame, we propose
here a new method in which we identify and order (by ampli-
tude) the main frequencies in the timeseries of each orbital ele-
ment to reveal the existing correlations.

Before analyzing the case of a system in Kozai resonance,
let us recall the main results of Libert & Henrard (2008) about
the decomposition in frequencies of a system with a secular,
non-resonant, behavior. First we focus on the HD 12661 system
(see parameters in Table 1), assuming an inclination of i = 30◦
for both orbital planes (i.e. double masses) and a mutual in-
clination of 30◦. The orbital evolution of this system is rep-
resented in Fig. 2, both in the general reference frame and in
the Laplace-plane frame. In this example we adopt the maximal
value of the argumentω1 that is consistent with the observational
data (i.e. ω1 = 298.9◦). We perform frequency analysis on the
corresponding timeseries, using the algorithm first introduced
by Champenois (1998), based on the original work of Laskar
(1993).

Table 2 (left panel) summarizes the main spectral lines that
dominate the long-term behavior of the orbital elements defined
in the general reference frame. The trigonometric terms are listed
in descending amplitude, starting from c1 (largest amplitude)
down to c4. Bold type c1 denotes the mean precession rate of
an angular variable in circulation. As suggested by Fig. 2 (left),
the eccentricities e1 and e2 have the same spectral decomposi-
tion. The same is true for the inclinations i1 and i2. Furthermore,
we remark that the decomposition of ei is strongly related to the
one of Δ� = �1 − �2. The main frequency of the two eccen-
tricities equals the mean precession rate of the difference of the

http://exoplanet.eu/
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Fig. 1. Time variations on 5×105 years of the exosystem HD 169830 with i1 = i2 = 45◦ and Imut = 55◦ in the general sky plane reference frame (on
the left) and in the Laplace-plane reference frame (on the right). The dotted lines stand for the outer body m2. The integrations are performed with
Swift (with the time of periastron passage of the outer planet as the initial epoch). Even though the system is in Kozai resonance, the argument ω1

circulates in the general reference frame.

Fig. 2. Long-term time evolution of the exosystem HD 12661 with i1 = i2 = 30◦ and Imut = 30◦ in the general sky plane reference frame (on the
left) and in the Laplace-plane reference frame (on the right). The dotted lines stand for the outer body m2.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810843&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810843&pdf_id=2
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Table 2. Main results concerning the long-term behavior of the system HD 12661 with i1 = i2 = 30◦ and a mutual inclination of 30◦, obtained by
decompositions in frequencies of the elements reproduced in Fig. 2. The system is analyzed in the general sky plane reference frame (left table)
and in the Laplace-plane reference frame (right table). The periods are expressed in years.

Periods e i ω1 ω2 Δ� ΔΩ 2ω1

70 508 c1 c2 c1, c2

2380 c2 c4

35 254 c3

2464 c4 c4

6059 c1 c2 c1 c2

3030 c2

3921 c3

2020 c4 c2

22 218 c1

3166 c3

6629 c4 c4

32 439 c1

5580 c3

5171 c4

2303 c3

1211 c3

11 109 c1

3166 c3

Periods e′ i′ ω′1 ω′2 Δ�′ 2ω′1
70 508 c1 c3 c2 c2 c1, c2 c2

2380 c2 c1 c4 c1

35 254 c3 c4

2464 c4 c2 c4

2553 c4 c4

4761 c1

5106 c1

2303 c3

23 503 c3 c3 c3

longitudes of the pericenters. The same coupling between
the two eccentricities is found in the second-order Laplace-
Lagrange secular theory (see e.g. Murray & Dermott (1999)).
Thus, neglecting short-period terms, the extrema of ei are
reached when sinΔ� = 0 and, for similar reasons, the extrema
of ii when sinΔΩ = 0.

The same system can be viewed and analyzed in the Laplace-
plane frame. As shown by Fig. 2 (right), the behavior of the
inclinations and of the angles is quite different, in terms of
frequencies (for a quantitative measure, see Table 2, right panel).
However, once again, both eccentricities are influenced by the
same frequencies and in the same order as before; the inclina-
tions i′1 and i′2 also have the same decomposition, but with very
different frequencies than i1 and i2. Thus the choice of the refer-
ence frame does not influence the coupling of the eccentricities,
but changes the coupling between the elements such that the lo-
cal extrema of e′i and i′i are reached when sin 2ω′1 = 0 and the
global extrema of e′i and i′i when sinΔ�′ = 0.

In order to perform the same analysis, but for a system in
Kozai resonance, let us consider the same exosystem HD 12661
but assume now a higher value for the mutual inclination (45◦).
As shown by the long-term behavior, represented in Fig. 3, such
a system is well in a Kozai-resonant state. A quick look at the
figures enables us to see a major difference with respect to the
previous case: the eccentricities are not influenced by the same
frequencies any longer.

When studying the system in the general reference frame, the
frequency analysis (summarized in Table 3, left panel) reveals
the following couplings (neglecting short-period terms): the in-
clinations have the same frequency decomposition and reach
their extrema when sinΔΩ = 0, while the eccentricity of the
outer planet reaches its extrema when sinΔ� = 0. The two main
frequencies of ω1 are such that the main one coincides with the
main (common) frequency of i1 and i2, while the second one is
the same as the main frequency of the eccentricity of the inner
planet, e1. The same kind of behavior is observed in all cases that
we found to be in Kozai resonance (as verified by moving to the
Laplace-plane reference frame); namely, the main frequency of
the planetary inclinations is also the main frequency of ω1, while

the fundamental mode of e1 is not the main frequency of Δ�. As
a result, the eccentricities of both planets are not coupled.

We also perform a frequency analysis on the timeseries of the
orbital elements of the same system, as defined in the Laplace-
plane frame. As expected, we found the features described in
the work of Kozai (1962). The reduction to the Laplace plane
simplifies the relations between the orbital elements, since there
are now two main frequencies instead of three: again neglecting
short-period terms, the eccentricity of m1 as well as the incli-
nations of both planets reach extremal values when sin 2ω′1 =
0 while the eccentricity of the planet m2 is extremal when
sinΔ�′ = 0. Thus, the eccentricities e′1 and e′2 are again un-
coupled, but e′1, i′1, i′2 and ω′1 now have a common fundamental
frequency: the frequency of libration of the resonant angle.

In conclusion, we have compared in this section the dynam-
ical behavior of a system in Kozai resonance to a secular, non-
resonant, system. We conclude that the main characteristic that
can be used to descriminate between the two cases is the cou-
pling or non-coupling of the eccentricities of the two planets.
Furthermore, we have shown that the libration of the argument of
the pericenter of the inner planet and the coupling between its ec-
centricity and inclination (i.e. the “usual” definition of the Kozai
resonance) depends upon adopting the Laplace-plane reference
frame. On the other hand, the Kozai resonance can safely be
identified in an abstract reference frame, using frequency analy-
sis; The system is in Kozai resonance if e1 and e2 are uncoupled
and the main frequency of ω1 is the fundamental mode of the
inclinations. We will use this criterion to identify the Kozai res-
onance, in the parametric study of the five systems that follows.

2.3. Illustration

To visualize the different dynamics between a system with the
orbital parameters of HD 12661 and Imut = 30◦ or 45◦ (i1 =
i2 = 30◦ as in the previous section), we can draw for both
cases the so-called representative plane, introduced by Libert &
Henrard (2007). This is the plane for which x1 = x2 = 0, i.e.
both pericenter arguments are fixed to ±90◦. We insist on the
fact that this plane is not a surface of section, as the phase-space
is four dimensional. However, almost all orbits have to cross the
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Fig. 3. Same representation as Fig. 2 for the same system considered with a higher mutual inclination: Imut = 45◦.

Table 3. Main results concerning the long-term behavior of the system HD 12661 with i1 = i2 = 30◦ and a mutual inclination of 45◦, obtained by
decompositions in frequencies of the elements reproduced in Fig. 3. The system is analyzed in the general sky plane reference frame (left table)
and in the Laplace-plane reference frame (right table). The periods are expressed in years.

Periods e1 e2 i ω1 ω2 Δ� ΔΩ 2ω1

6439 c1 c2 c2

9980 c2 c1 c4 −c1, c2

3220 c3

18 152 c4 c2 c4

4904 c3

3914 c4 c3

9092 c1 c1 c2 −c1, c4 c1

4546 c2 c3 c2

22 069 c3 c3

3770 c4 c4 c4

3031 c3

102 261 −c1, c3

Periods e′1 e′2 i′ ω′1 ω′2 Δ�′ 2ω′1
6439 c1 c1 c1 c1

9980 c2 c1 c3 c2 c1, c2 −c1, c2 c2

3220 c3 c2 c3

18 152 c4 c2 c4 c4 c4

3914 c3 c4 c3 c3 c3

4990 c4 c4

representative plane, and the points of intersection have to follow
a constant energy curve. For a better picture of the dynamics, we
plot several level curves of (9) on the plane (e′1 sinw′1, e

′
2 sinw′2)

for w′i = ±90◦. Figure 4 shows the representative planes obtained
for the parameters of the HD 12661 system with Imut = 30◦ (left
panel) and Imut = 45◦ (right panel). In the first case, the equilib-
rium is stable and corresponds to circular orbits. In the second
case, as the mutual inclination is higher than the critical value,
the equilibrium is unstable and gives birth by bifurcation to the
two (stable) Kozai equilibria.

The crosses represent the intersections of the two
“HD 12661” orbits with the representative planes. For the lower
value of Imut, the four intersection points correspond to (e′1 min,
e′2 max) when (ω′1, ω

′
2) = (90◦, 90◦), (270◦, 270◦) and (e′1 max,

e′2 min) when (ω′1, ω
′
2) = (90◦, 270◦), (270◦, 90◦). The fact that

each intersection point is located in a different quadrant of the
plane shows that the angle ω′1 (and ω′2) circulates.

On the contrary, all intersection points in the right panel of
Fig. 4 ((e′1 min, e′2 min) for (ω′1, ω

′
2) = (270◦, 90◦), (e′1 min,

e′2 max) for (270◦, 270◦), (e′1 max, e′2 min) for (270◦, 90◦) and
(e′1 max, e′2 max) for (270◦, 270◦)) are situated on the right-hand
side of the representative plane, which means that the argument
of pericenter of the inner planet ω′1 librates around 270◦. Hence,
it is obvious from Fig. 4 that the HD 12661 system must be in
Kozai resonance, if Imut = 45◦. It is important to note the fact
that, even if the system seems to be located close to what looks
like a “separatrix”, no information regarding the stability of the
system can be deduced from this representation alone, as it is
neither a surface of section nor a complete plot of the orbits.
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Fig. 4. Representative planes (e′1 sinw′1, e

′
2 sinw′2) for the HD 12661 system with Imut = 30◦ (a1/a2 = 0.294, m1/m2 = 1.279, Σ = 0.0440) on the

left and with Imut = 45◦ (a1/a2 = 0.284, m1/m2 = 1.279, Σ = 0.0714) on the right. The difference in the dynamics of the two cases is obvious.

3. Possible extrasolar systems in Kozai resonance

In this section we probe the possibility that some of the observed
extrasolar systems can harbor Kozai-type motion. We remind the
reader that observational uncertainties and/or incomplete mod-
eling from our part (e.g. the absence of general-relativistic pre-
cession) are such that one cannot identify candidate systems for
Kozai-type motion with the desired certainty; this is not the pur-
pose of this study. What we wish to show is that a large frac-
tion of the observed multi-planet systems has physical (masses)
and orbital (orbital separations, eccentricities and apsidal-line
orientations) parameters that are consistent with 3D Kozai-type
motion, provided that the mutual inclination is above a critical
value.

3.1. Methodology

At present, 25 multiple extrasolar systems have been detected.
Among them, we analyze five multi-planet systems, which
were selected according to the following criteria: (a) they
have two significant planets that are not in mean-motion reso-
nance; (b) these planets have masses less than 10 MJup and (c)
their orbital periods are longer than 30 days. We note that
υAndromedae is a three-planet system, but the innermost planet,
υ And b, has a smaller mass than the other two, is very close
to the star (a ≈ 0.06 AU) and has a very small eccentricity
(e ≈ 0.03), so that its effect on the other two planets is small
enough to ignore, to a first approximation (Stepinski et al. 2000).
Similarly, a third planet candidate recently has been announced
for HD 74156 (Bean et al. 2008). This is a Saturn-sized planet
but, interestingly enough, is supposed to orbit between the two
larger, previously known, planets. Although Barnes et al. (2008)
suggest that this planet was in fact “predicted” as a pre-requisite
for the stability of the system, Baluev (2007) on the other hand
argues that in fact it may be a false detection, caused by annual
systematic errors. For these reasons we decided not to take into
account this planet and proceed in analyzing HD 74156, assum-
ing only the two previously established planets.

Table 1 gives the parameters of the five selected sys-
tems as well as the errors on the values of the eccentricities
and arguments of pericenters for two of them. We adopt the

parametrization of Butler (2006) for υ Andromedae, HD 12661,
HD 169830 and HD 74156. The parameters of the exosystem
HD 155358 can be found in the Extrasolar Planets Catalog of
Jean Schneider, available on the web site http://exoplanet.
eu/catalog.php. Let us recall that, as the spatial resolution of
their orbits is currently impossible, we have no information on
the inclinations of their orbital planes to the plane of the sky1 (i)
and on the longitudes of their nodes (Ω), but also we only have a
poor determination of the masses: the quantities mi sin ii are the
observed masses of the planets, corresponding to the real ones
only in the case of i = 90◦. Thus, these values constitute lower
bounds to the real mass values.

To examine the possibility of the five systems of Table 1 be-
ing locked in a Kozai-resonant state, we compute the long-term
orbital behavior of each system, assuming different values of the
(unknown) inclinations of the orbital planes to the plane of the
sky and of the (unknown) nodal longitudes (sky-plane reference
frame). The numerical integrations are performed using the sym-
plectic method of Wisdom & Holman (1991), as is implemented
in the SWIFT package (Levison & Duncan 1994). Thus, this
study neglects the post-Newtonian effects, mainly the general-
relativistic precession caused by the host star, which may give
significant corrections for planets with very small orbital radii.
We choose to vary both inclinations of the orbital planes in the
same way (i1 = i2 = i), to keep the mass ratio constant. To in-
crease the mutual inclination of the two orbital planes, we vary
the difference of the nodal longitudes since

cos Imut = cos i1 cos i2 + sin i1 sin i2 cosΔΩ. (12)

Note that, for a fixed value of Imut, the two cases ΔΩ(=Ω1 −
Ω2) < 0 and ΔΩ > 0 have to be treated separately as they do not
correspond to the same configuration.

Five values of the inclination i are considered (i =
90◦, 75◦, 60◦, 45◦, 30◦), which means that the considered masses
of the planets are between one and two times the reported val-
ues. Concerning the values of the longitudes of the nodes, we
select them in such a way that the mutual inclination, defined by
Eq. (12), is equal to 40◦, 45◦, 50◦, 55◦ and 60◦ – in general higher

1 Harrington et al. (2006) have found a lower bound of i = 30◦ for the
planet υ And b that is not considered in this study.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810843&pdf_id=4
http://exoplanet.eu/catalog.php
http://exoplanet.eu/catalog.php
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Table 4. Results of the numerical computation of the long-term behavior of the five systems assuming different values of the common inclination of
the orbital plane to the plane of the sky (i) and of the difference of the nodal longitudes (ΔΩ). In this table are summarized the different occurrences
of the Kozai-resonant state of the five systems with high mutual inclination and an indication of the percentage of chaos observed in the results.

Exosystems Inclination Imut of the Kozai-resonant state Imut of the Kozai-resonant state % of chaoticity
for ΔΩ < 0 for ΔΩ > 0

υ Andromedae i = 30◦ 45−60 (lib) 60 (lib) ±80%
HD 12661 i = 45◦ – 55−60 ±50%

i = 30◦ 60 (lib) 45−60 (lib)
HD 169830 i = 90◦ 55−60 55−60 ±40%

i = 75◦ – 50−60
i = 60◦ – 50−60
i = 45◦ – 45−60

HD 74156 i = 90◦ 45−60 45−60 ±30%
i = 75◦ 45−60 45−60
i = 60◦ 50−60 45−60
i = 45◦ 45−60 –

HD 155358 – – – ±80%

values than the critical mutual inclination. For each integration,
all the other parameters are the same as in Table 1.

3.2. Numerical results

The results of the computation of the long-term behaviors of the
five systems, analyzed according to the criterion introduced in
Sect. 2.2, are summarized in Table 4. For each inclination, i,
that is considered, the mutual inclination range, corresponding
to a Kozai-resonant state, is given. The notation (lib) indicates
a Kozai-resonant state that is also characterized by the libration
of ω1 in the sky-plane reference frame. In the last column, we
indicate, for each exosystem, the percentage of integrations that
turned out to be chaotic, in the sense that we observed a non-
periodicity in the orbital evolution in less than 100 000 years.
This non-periodicity may be related to the chaos that develops
around the stability islands of the Kozai resonance, as will be
shown by the surfaces of section in Sect. 3.3.

According to Table 4, four of the five systems can be in a
Kozai-resonant state, as their eccentricities and secular phases
are such that the system would be placed inside the island of sta-
ble motion of the Kozai resonance, provided that their masses
and mutual inclination are high enough. For the υ Andromedae
system, only double the reported masses (i.e. i = 30◦) would
enable the system to be in Kozai resonance. Note that a high
percentage of chaotic behavior is observed when we consider a
high initial mutual inclination for this system. These results are
in agreement with Fig. 8 of Stepinski (2000), which reports small
variations of the eccentricities in the case of high mutual incli-
nation and double masses of the planets. As we see, these small
variations at high mutual inclination are due to the Kozai mech-
anism. The same kind of behavior is observed for the HD 12661
system, for which, however, many more cases turn out to be sta-
ble. Note that only for these two systems is the Kozai resonance
also revealed by the libration of ω1 (in the sky-plane reference
frame).

The systems HD 169830 and HD 74156 have a quite similar
behavior, in the sense that the possibility of the Kozai resonance
exists for a large range of masses and mutual inclinations. The
planets of these two systems are far from each other (HD 74156
is even a hierarchical system2), which explains the small amount
of chaotic evolution. Furthermore, both masses already being

2 We remind the reader that we have chosen to ignore the HD 74156 d
dubious planet candidate.

quite high, the Kozai resonance is only present for large values
of the inclination i.

Finally, no Kozai behavior was found in any representation
of the HD 155358 system. Only a few regular solutions were
found. This is because of the relatively small orbital separation
between the two planets.

3.3. Sensitivity to observational uncertainties

Uncertainties in the observational data are large. Table 1 gives
an idea of the observational errors on the orbital parameters of
the two “well-observed” systems, υAndromedae and HD 12661.
Even if these errors are quite small, we show in this section that
they can have an important effect on the dynamical state of these
systems.

To see the influence of the observational errors on the Kozai-
resonant states identified in the previous section, we perform a
set of numerical integrations in which the best-fit parameter val-
ues of Table 1 are used for all initial elements except one (ei-
ther e1, e2, ω1 or ω2). The extremal values for this element are
always considered.

We find that the Kozai resonance is in general not influenced
by these small changes, except when the initial mutual inclina-
tion is assumed close to the critical value. For instance, the sys-
tems υ Andromedae and HD 12661 (with i = 30◦) are quite
sensitive to the observational errors for Imut ≈ 45◦, but not for
higher values. In this case, the most influential initial parameter
seems to be the argument of pericenter of the inner planet, ω1.

In order to illustrate these results, we draw, in Fig. 5, two rep-
resentative planes for the HD 12661 system (i1 = i2 = 30◦ and
Imut = 45◦), assuming the minimum (left) or maximum (right)
value for ω1. Note that the difference is less than 3◦, but it in-
duces a significant change in the dynamics. Indeed, in the first
case, the argument of pericenter ω′1 circulates (no Kozai), while
in the second case it librates (Kozai).

This change of dynamics is more obvious on the surfaces of
section, displayed in Fig. 6. We define the surface of section by
setting x2 = 0 (i.e. w′2 = ±90◦) with ẋ2 < 0, projected on the
plane (e′1 cosw′1, e

′
2 sinw′2). We refer to Libert & Henrard (2007)

for more details. For the maximum value of ω1 (right), the mo-
tion is regular. On the contrary, for the minimum value of ω1
(left), chaotic motion is observed; the orbit follows the unstable
manifolds emanating from the central equilibrium.
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Fig. 5. Same representative planes as the right one of Fig. 4 (HD 12661 system with i1 = i2 = 30◦, Imut = 45◦), but where the observational error
on the parameter ω1 is taken into account: ω1 = 293.7◦ on the left and ω1 = 298.9◦ on the right.

Fig. 6. Surfaces of section defined as x2 = 0 with ẋ2 < 0, projected on the plane (e′1 cosw′1, e
′
2 sinw′2), for the same system as in Fig. 5 (HD 12661

system with i1 = i2 = 30◦, Imut = 45◦ and ω1 = 293.7◦ on the left, ω1 = 298.9◦ on the right).

4. Discussion and conclusions

In the present work, we studied the possibility that five known
extrasolar systems, composed of two major planets not in mean
motion resonance, are in a stable Kozai-resonant state. The
Kozai resonance offers a secular protection mechanism for sys-
tems with high mutual inclination (Imut 	 40−60◦) and large
eccentricities such that, although variations of large amplitude
are induced both in eccentricity and inclination, these are cor-
related such that the system remains stable. Hence, stable 3D
systems with high eccentricities can exist, provided that they are
protected by such a resonance condition.

We have undertaken a parametric study, varying the (un-
known) inclinations of the orbital planes of the observed plan-
ets to the plane of the sky as well as their (unknown) nodal
longitudes (which amounts to varying their masses and mutual
inclination). We have shown that the systems υ Andromedae,
HD 12661, HD 169830 and HD 74156 can be in Kozai reso-
nance for a wide range of initial values, summarized in Table 4,
provided that their mutual inclination is at least 45◦. This means

that their eccentricities and apsidal orientation are favorable for
the Kozai condition to hold; namely, coupled variations of e′1
and i′1 and libration of the argument of pericenter ω′1 of the in-
ner planet, when measured in the Laplace-plane reference frame.
Only the exosystem HD 155358 does not seem compatible with
a Kozai behavior, as high values of Imut tend to destabilize the
system.

Moreover, with the exception of υ Andromedae (80%), only
30−50% of our initial conditions lead to chaotic motion, related
to the separatrix of the Kozai resonance. This result highlights
the non-negligible probability for currently detected exosystems
to have high mutual inclinations. Indeed, our study has revealed
stable configurations of exosystems with mutual inclinations as
high as 60◦. A few cases were found to be stable, but not related
to the Kozai state. The identification of the Kozai resonance was
based on the frequency decomposition criterion, introduced in
Sect. 2.2. This is based on spectral characteristics that are in-
dependent of the adopted reference frame (here, the sky-plane
reference frame), contrary to the well-known coupling of e′1, i′1

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810843&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810843&pdf_id=6
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andω′1, which is a feature observed upon reduction of the system
to the Laplace-plane reference frame.

It is important to note that throughout this study we neglected
general-relativistic effects, which could be significant for the in-
ner planets of the five systems, as is the case for binary sys-
tems (Wu & Murray 2003; Fabrycky & Tremaine 2007; Takeda
et al. 2008) and for the “Hot Jupiter” planets (Adams & Laughlin
2006). Moreover, we should note that these five systems may
still harbor additional, yet undetected, planetary companions that
could significantly modify their dynamics. Finally, as we have
pointed out in Sect. 3.3, the existence or not of Kozai resonances
in the selected systems can be sensitive to observational uncer-
tainties in the orbital elements. A small change in the orbital pa-
rameters, matching the range of observational errors, can some-
times bring the system in (or out) a Kozai-resonant state. This is
particularly true if we consider values of Imut close to the critical
value (	40◦−45◦, depending on the ratios of masses and semi-
major axes). Thus, the observations are not yet robust enough
to identify with the desired certainty extrasolar systems that are
Kozai-resonant candidates. However, our study must be regarded
as one that probes the possibility that secular, two-planet, ex-
osystems are in Kozai resonance: four of the five systems studied
have physical/orbital characteristics that, in 3D, are consistent
with a Kozai-resonant state, provided that the mutual inclination
is between 45◦ and 60◦.

For these reasons, we argue that, assuming mutual inclina-
tions in the above range, the probability for an exosystem to be
in a Kozai-resonant state should not be negligible. Non-coplanar
configurations of exosystems seem possible, as the preliminary
results for the Upsilon Andromedae system by the HST Fine
Guiding Sensor show a large mutual inclination angle ∼35◦ be-
tween the orbital planes of planets c and d (McArthur et al.
2007). Such observational evidence would support the possi-
bility of Kozai-type motion for extrasolar planets. Given that,
we should ask ourselves what mechanisms, and with what effi-
ciency, can produce systems with high mutual inclination values.
In the next paragraphs we discuss several possible dynamical
mechanisms.

The formation of giant planet cores by collisions of smaller
embryos is a violent dynamical process characterized by orbital
excitation. In such an environment, systems in secular or Kozai
resonance can be formed. Such an example was given in the
work of Levison et al. (1998). Thus, a possible scenario is that
the Kozai resonance can be established very early in the life of a
planetary system. This, in turn, raises important questions about
how such 3D multi-planet systems behave in the presence of the
protostellar gas nebula.

If a 2D two-planet system is embedded in a heavy gaseous
disc, type II migration, combined with mean motion resonance
interactions, can boost the eccentricities and inclinations of the
planets to very high values, thus favoring the establishment of
a Kozai resonance. This scenario has been studied by Thommes
& Lissauer (2003), where this mechanism resulted in capture in
the 2/1 MMR at high Imut. Our preliminary results show that we
can have a similar effect in the vicinity of 3/1 MMR, but not
near resonances of higher order, which are consistent with the
semi-major axis ratios of the systems considered in this study.

Another possible mechanism consists of planetesimal-driven
migration and resonance crossing, a mechanism that is thought
to have shaped the orbits of the giant planets in our solar system
(Tsiganis et al. 2005). Our numerical experiments have shown
that, due to the large masses of the extrasolar planets consid-
ered here (2−4 MJup), no significant migration can be induced
on the planets by a “standard” planetesimals disc. Very high

disc masses may be needed, which is probably not a realistic
assumption.

Multi-planet scattering, caused by the previous presence of
an additional planet in the system, seems to be a rather promiss-
ing mechanism. This is in fact the mechanism that is generally
invoked to explain the large eccentricities observed in many ex-
osystems (see for instance Ford et al. 2005, who studied a 2D
case). Concerning the mutual inclination distribution, Chatterjee
et al. (2007) reported, from their numerical planet-planet scatter-
ing simulations, quite high relative inclinations between plane-
tary orbits (some values as high as 40◦−60◦). As our first results
show, 3D scattering (starting with e 	 0.001 and Imut 	 0.01◦)
can lead to high values of Imut, together with eccentricities that
are consistent with the ones given in Table 1. The final values
of e and Imut depend on the masses and relative semi-major axes
of the planets. A detailed study of this mechanism is under way
and statistical results will be presented in a forthcoming paper.
At present, this seems to be the most promising scenario for
forming 3D systems at Imut > 40◦. We note however, that the
correct astrophysical picture should include a massive gaseous
disc in which the planetary orbits slowly evolve and become un-
stable, thus leading to close encounters; otherwise, we should
accept planet formation on a priori unstable orbits. We believe
that soon we will be able to present our results on such a con-
crete scenario.
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