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Global dynamics of high area-to-mass ratios

GEO space debris by means of the MEGNO

indicator

S. Valk ∗ , N. Delsate and A. Lemâıtre and T. Carletti

University of Namur, Département de Mathématique, Unité de Systèmes

Dynamiques, 8, Rempart de la Vierge, B-5000, Namur, Belgium

Abstract

In this paper we provide an extensive analysis of the global dynamics of high-area-
to-mass ratios geosynchronous (GEO) space debris, applying a recent technique
developed by Cincotta et al. (2000), Mean Exponential Growth factor of Nearby

Orbits (MEGNO), which provides an efficient tool to investigate both regular and
chaotic components of the phase space.

We compute a stability atlas, for a large set of near-geosynchronous space debris
by numerically computing the MEGNO indicator, to provide an accurate understand-
ing of the location of stable and unstable orbits as well as the timescale of their
exponential divergence in case of chaotic motion. The results improve the analy-
sis presented in Breiter et al. (2005a) notably by considering the particular case of
high-area-to-mass ratios space debris. The results indicate that chaotic orbits region
can be highly relevant, especially for very high area-to-mass ratios.

Then, we provide some numerical investigations and an analytical theory which
lead to a detailed understanding of the resonance structures appearing in the phase
space. These analyses bring to the fore a relevant class of secondary resonances on
both sides of the well-known pendulum-like pattern of geostationary space debris,
leading to complex dynamics of such objects.
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Long-term evolution – Geosynchronous orbit – High area-to-mass ratios –
Secondary resonances
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1 Introduction

Recent optical surveys in high-altitude orbits, performed by the European
Space Agency 1 m telescope on Tenerife (Canary islands), have discovered a
new unexpected population of 10 cm size space debris near the geostationary
region (GEO). These objects sometimes present highly eccentric orbits with
eccentricities as high as 0.55 (Schildknecht et al., 2005, 2004). Following the
initial guess of Liou and Weaver (2004) who suggest that this new population
may be GEO objects with high area-to-mass ratios, recent numerical and ana-
lytical investigations were performed to defend this assumption (Anselmo and
Pardini, 2005; Liou and Weaver, 2005). In addition, these authors and oth-
ers, such as Chao (2006) and later Valk et al. (2008) presented some detailed
results concerning the short- and long-term evolution of high area-to-mass ra-
tios geosynchronous space debris subjected to direct solar radiation pressure.
More specifically, these latter authors mainly focused their attention on the
long-term variation of both the eccentricity and the inclination vector. More-
over, some studies concerning the effects of the Earth’s shadowing effects on
the motion of such space debris were given in Valk and Lemâıtre (2008).

However, no concern about the intrinsic stability of such uncommon orbits
has been given so far. In other words, up to the present, nobody ever dealt
with the question to know whether these orbits are really predictable or not
on the time scales of their investigations.

The objective of this paper is basically twofold. The first goal is the inves-
tigation of the long-term stability of high area-to-mass ratios space debris
subjected to the direct solar radiation pressure, by means of the MEGNO crite-
rion. Second, still considering high area-to-mass ratios, we bring to the fore a
relevant class of additional secondary structures appearing in the phase space.

The paper is organized as follows. In Section 2, we focus our attention to
the specification of the underlying model and we give some details about the
numerical aspects of the method. In Section 3, for the sake of completeness
we dwell upon the detailed definition of the Mean Exponential Growth factor
of Nearby Orbits indicator, also providing a review of its main properties, in
order to understand the behavior of the chaos indicator. Then in Section 4, in
the framework of the validation of our implementation, we retrieve the results
obtained by Breiter et al. (2005). We also discuss the significance of the time
of integration, recently reported by Barrio et al. (2007). In Section 5, we apply
the MEGNO technique in order to give a insightful understanding of the stability
of high area-to-mass ratios space debris. More specifically, we show that the
orbits of such peculiar space debris are extremely sensitive to initial condi-

2



tions, especially with respect to the mean longitude and the semi-major axis.
Second, we perform extended analyses, showing that the related 2-dimensional
phase space is dominated by chaotic regions, in particular when the area-to-
mass ratio is large. In addition, we also provide some results presenting the
importance of the initial eccentricity value in the appearance of chaotic region.
Finally, in Section 6, we give extensive numerical and analytical investigations
of the additional patterns which will be identified as secondary resonances.

2 The model

For the purpose of our study, we consider the modeling of a space debris
subjected to the influence of the Earth’s gravity field, to both the gravitational
perturbations of the Sun and the Moon as well as to the direct solar radiation
pressure. As a consequence the differential system of equations governing the
dynamics is given by

r̈ = apot + a$ + a⊙ + arp ,

where apot is the acceleration induced by the Earth’s gravity field which can
be expressed as the gradient of the following potential

U(r, λ, φ) = −µ
r

∞
∑

n=0

n
∑

m=0

(

Re

r

)n

Pm
n (sin φ)(Cnm cos mλ+ Snm sin mλ) , (1)

where the quantities Cnm and Snm are the spherical harmonics coefficients
of the geopotential. The Earth’s gravity field is modelised using the EGM96

model (Lemoine et al., 1987). In Eq. (1), µ is the gravitational constant of the
Earth, Re is the Earth’s equatorial radius and the quantities (r, λ, φ) are the
geocentric spherical coordinates of the space debris. Pm

n are the well-known
Legendre functions. It is worth noting that the potential (1) is subsequently
expressed in Cartesian coordinates by means of the Cunningham algorithm
(Cunningham, 1970).

Both the accelerations a$ and a⊙ result from the gravity interaction with a
third body of mass m∗, where ∗ = $ and ∗ = ⊙, and can be expressed with
respect to the Earth’s center of mass

a∗ = −µ∗

(

r − r∗

‖r − r∗‖3
+

r∗

‖r∗‖3

)

,

where r and r∗ are the geocentric coordinates of the space debris and of the
mass m∗, respectively. The quantity µ∗ is the gravitational constant of the
third-body. In our implementation, we choose the high accurate solar system
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ephemeris given by the Jet Propulsion Laboratory (JPL) to provide the posi-
tions of both the Sun and the Moon (Standish, 1998).

Regarding the direct solar radiation pressure, we assume an hypothetically
spherical space debris. The albedo of the Earth is ignored and the Earth’s
shadowing effects are not taken into account either. The acceleration induced
by the direct solar radiation pressure is given by

arp = Cr Pr

[

a⊙
‖r − r⊙‖

]2
A

m

r − r⊙

‖r− r⊙‖
,

where Cr is the adimensional reflectivity coefficient (fixed to 1 further on in
this paper) which depends on the optical properties of the space debris surface;
Pr = 4.56 × 10−6 N/m2 is the radiation pressure for an object located at the
distance of 1 AU; a⊙ = 1 AU is a constant parameter equal to the mean
distance between the Sun and the Earth and r⊙ is the geocentric position of
the Sun. Finally, the coefficient A/m is the so-called area-to-mass ratio where
A and m are the effective cross-section and the mass of the space debris,
respectively.

3 The Mean Exponential Growth factor of Nearby Orbits

For the sake of clarity we present in this section the definition and some prop-
erties of the MEGNO criterion.

Let H(p, q), with p ∈ R
n, q ∈ T

n, be a n-degree of freedom Hamiltonian
system and let us introduce the compact notation x = (p, q) ∈ R

2n as well
as f = (−∂H/∂q, ∂H/∂p) ∈ R

2n, then the dynamical system is described by
the following set of ordinary differential equations

d

dt
x(t) = f(x(t),α) , x ∈ R

2n , (2)

where α is a vector of parameters entirely defined by the model. Let φ(t) =
φ(t; x0, t0) be a solution of the flow defined in Eq. (2) with initial conditions
(t0,x0), then it has associated the Lyapunov Characteristic Number (hereafter
LCN), defined by (Benettin et al., 1980)

λ = lim
t→∞

1

t
ln

‖δφ(t)‖
‖δφ(t0)‖

, (3)

where δφ(t), the so-called tangent vector, measures the evolution of an initial
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small deviation δφ(t0) ≡ δ0 between φ(t) and a nearby orbit, and whose evo-
lution is given by the variational equations (terms of order O(δ2) are omitted)

δ̇φ =
d

dt
δφ(t) = J(φ(t)) δφ(t) , with J(φ(t)) =

∂f

∂x
(φ(t)) , (4)

where J(φ(t)) is the Jacobian matrix of the differential system of equations,
evaluated on the solution φ(t). Let us note that the definition of the LCN,
given by Eq. (3), can also be written in an integral form

λ = lim
t→∞

1

t

∫ t

0

δ̇φ(s)

δφ(s)
ds ,

where δφ = ‖δφ‖, δ̇φ = δ̇φ · δφ/δφ.

The Mean Exponential Growth factor of Nearby Orbits (hereafter MEGNO) Yφ(t)
is based on a modified time-weighted version of the integral form of the LCN
(Cincotta and Simó, 2000). More precisely

Yφ(t) =
2

t

∫ t

0

δ̇φ(s)

δφ(s)
s ds ,

as well as its corresponding mean value to get rid of the quasi-periodic oscil-
lation possibly existing in Yφ(t)

Y φ(t) =
1

t

∫ t

0
Yφ(s) ds .

In the following we will omit the explicit dependence of Y and Y on the specific
orbit φ, once this will be clear from the context.

Actually, this latter allows to study the dynamics for long time scales, where
generically limt→∞ Y (t) does not converge, while limt→∞ Y (t) is well defined
(Cincotta et al., 2003). Consequently, the time evolution of Y (t) allows to
derive the possible divergence of the norm of the tangent vector δ(t), giving
a clear indication of the character of the different orbits. Indeed, for quasi-
periodic (regular) orbits, Y (t) oscillates around the value 2 with a linear
growth of the separation between nearby orbits. On the other hand, for chaotic
(irregular) motion, the modulus of δ grows exponentially with time, and Y (t)
oscillates around a linear divergence line. Cincotta et al. (2003) showed that,
for the quasi-periodic regime, Y (t) converges to 2, that is a fixed constant,
independent of the orbit. Moreover, it has been shown that ordered motions
with harmonic oscillations, i.e. orbits very close to a stable periodic orbit, re-
sult asymptotically to Y (t) = 0.

These latter properties can also be used to compute efficiently a good esti-
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mation of the LCN, or similarly the Lyapunov time Tλ = 1/λ, by means of
a linear least square fit of Y (t). Indeed, in the case of an irregular orbit, the
time evolution of Y (t) may be easily written as

Y (t) ≃ a⋆ t+ d, t→ ∞,

where a⋆ is simply related to the LCN by the relation a⋆ = λ/2 and d is close
to zero.

Regarding the numerical computation of the MEGNO indicator, we adopt the
same strategy as in Goździewski et al. (2001). To be specific, in addition to
the numerical integrations of both the equations of motion and the first order
variation equations, we consider the two additional differential equations

d

dt
y =

δ̇ · δ
δ · δ ,

d

dt
w = 2

y

t
, (5)

which allow to derive the MEGNO indicators as

Y (t) = 2 y(t)/t, Y (t) = w(t)/t .

The MEGNO criterion, unlike the common Lyapunov variational methods, takes
advantage of all the dynamical informations for the orbits and the evolution
of its tangent vector, which results in shorter times of integration, to achieve
comparable results. Moreover, a couple of applications found in the literature
(e.g. Goździewski et al. 2001, 2008; Breiter et al. 2005; Cincotta and Simó
2000 justify and confirm that the MEGNO is relevant, reliable and provides an
efficient way for the investigation of the dynamics by detecting regular as well
as stochastic regimes.

3.1 MEGNO and numerical integrations

As previously mentioned, in order to evaluate the MEGNO indicator, we have to
integrate the differential system of equations of motion (2), the linear first or-
der variational system of equations (4) as well as the two additional differential
equations (5). We choose to write both the expressions of the perturbing forces
and the variational system, i.e. the Jacobian matrix, in rectangular coordinates
positions-velocities. In such a way we can overcome both the null eccentricity
and the null inclination singularity present in the dynamics of space debris
(Valk et al., submitted for publication). Moreover the explicit analytical ex-
pressions of the vector fields allows us to avoid the difficulties inherent in the
classical method of neighboring trajectories (two particles method).

In order to numerically integrate the two differential systems of equations, we
adopted the variable step size Bulirsh-Stoer algorithm (see e.g. Bulirsh and
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Stoer 1966 and Stoer and Bulirsch 1980). Let us note that, for the purpose of
validation, the numerical integrations were also made with a couple of other
numerical integrators. However, the Bulirsh-Stoer algorithm seems to be the
best compromise between accuracy and efficiency. Moreover, as quoted by
Wisdom (1983): What is more important for this study, Benettin et al. (1980)
found that the maximum LCE did not depend on the precision of their calcu-
lation. It appears likely that as long as a certain minimum precision is kept,
maximum LCE’s may be accurately computed, even though it is not possible
to precisely follow a specified trajectory for the required length of time.

Although this latter observation was formulated in the framework of both Lya-
punov variational method and Hamiltonian systems, it seems that it remains
relevant in the computation of the MEGNO criterion, at least in the particular
case of our analysis.

3.2 Influence of the initial tangent vector δ0

By construction MEGNO depends on the initial value of the tangent vector δ0,
although the latter does not influence significantly the detection of chaotic
region. Nevertheless we preferred to adopt the strategy of initialize randomly
the initial tangent vectors in order to avoid some parts of artificially created
zones of low MEGNO due to the proximity of δ0 to the minimum Lyapunov expo-
nent direction (Breiter et al., 2005). Moreover, as pointed out by Goździewski
et al. (2001), the random sampling of δ0 is relevant in the sense that different
initial tangent vectors can lead to different behaviors of the MEGNO time evolu-
tion while considering the same orbit. This observation has been reported in
the framework of extra-solar planetary systems and seems to remain similar
in the case of Earth orbiting objects and more generally for high-dimensional
dynamical systems (having more than 3 degrees of freedom).

Regarding the impact of the choice of the initial tangent vector δ0, we per-
formed a set of exhaustive numerical investigations of regular orbits. More
specifically, we compared the time-evolution of the MEGNO using different ini-
tial tangent vectors and identical generic initial conditions. The results confirm
that the random choice of the initial tangent vector induce a significant ran-
dom behavior in the way MEGNO approaches the limit value 2, hence preventing
this information from being useful to check the stability/instability character
of regular orbits. Actually, when considering a slightly perturbed two-body
problem (such as the central attraction disturbed by the oblateness of the
Earth), the way MEGNO converge to 2 is completely unpredictable , leading
to more or less 50% of convergence of Y (t) to 2 from above and the other
remaining 50% from below. This result is formally discussed in the follow-
ing subsections. However, when the order of magnitude of the perturbation
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is larger, the result does not completely hold anymore. In particular, when
considering the perturbing effects induced by the 1:1 resonance, the MEGNO

evolution no longer depends on the random choice of the initial tangent vec-
tor. In this latter case, the intrinsic stability of the chosen orbits seems also to
dictate the evolution of the MEGNO as reported in Cincotta et al. (2003). More
specifically, the stability of the orbit seems to influence the time-evolution of
the MEGNO the stronger the orbit is closer to a stable or unstable equilibrium
point. For instance, regarding the orbits extremely close to a stable equilib-
rium point, the MEGNO generally approaches slowly the limit value 2 from below
even though some infrequent orbits present a MEGNO convergence from above.
Conversely, the orbits initially close to the separatrices generally present a
MEGNO approaching the value 2 from above.

3.3 MEGNO for integrable systems

In this paragraph we will study the MEGNO indicator for integrable Hamiltonian
systems and we will show that generically (if the system is not isochronous)
it always converges to 2, moreover the way Y (t) reaches this limit value, say
from higher or lower values, depends only on the choice of the initial tangent
vector and not on the orbit itself.

So let us consider an integrable Hamiltonian system and suppose to write it
in action-angle variables, H = H(p), p ∈ B ⊂ R

n denotes the action variables
and q ∈ T

n denotes the angle variables. Then the Hamiltonian equations are

ṗ = 0 ,

q̇ =
∂H
∂p

= ω(p) .

The tangent space (to a given orbit) can be split into the action direction
and angle direction, namely δ = (δp, δq), thus the variational system can be
written as

δ̇p = 0 ,

δ̇q =
∂2H
∂p2

δp = M(p) δp .

If the system is isochronous then M ≡ 0, thus δp and δq are constant and
Y (t) = 0 for all t. On the other hand, if the system is non-isochronous we get
δp(t) = δp(0) and δq(t) = δq(0) + M(p(0)) δp(0)t. To simplify the notations
let us introduce

M (p(0)) = M0, δp(0) = ξ0 and δq(0) = η0 .
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Using the definition of MEGNO, we get

Y (t) =
1

t

∫ t

0

(M0ξ0)
2s+M0ξ0 · η0

(ξ0)
2 + (η0)

2 + 2M0ξ0 · η0s+ (M0ξ0)
2s2

s ds ,

and this integral can be explicitly computed and we obtain

Y (t) = 2 − M0ξ0 · η0

t(M0ξ0)
2

log[1 + 2M0ξ0 · η0t+ (M0ξ0)
2t2]+

− 2

t

√

(M0ξ0)
2 − (M0ξ0 · η0)

2

(M0ξ0)
2



arctan
M0ξ0 · η0 + (M0ξ0)

2t2
√

(M0ξ0)
2 − (M0ξ0 · η0)

2

− arctan
M0ξ0 · η0

√

(M0ξ0)
2 − (M0ξ0 · η0)

2



 .

(6)

One can check that the square root is well defined, i.e. positive, and thus one
can cast (6) into

Y (t) = 2 − M0ξ0 · η0

t
F1(t) −

1

t
F2(t) ,

where F1 and F2 are positive functions and F2 is bounded, we can then con-
clude that

(1) if M0ξ0 · η0 > 0 then Y (t) approaches 2 from below;
(2) if M0ξ0 · η0 < 0 then Y (t) approaches 2 from above, in fact for large t

the first contribution dominate the bounded term F2.

In this last part we will consider if and under which assumptions the previous
results concerning the convergence Y → 2 are still valid, for a quasi–integrable
Hamiltonian system of the form H(p, q, ǫ) = H0(p)+ ǫV (p, q). The main idea
is the following, fix ǫ > 0 but small and consider a “non–chaotic”orbit φǫ,
namely an orbit without a positive Lyapunov exponent (or if you prefer with
a bounded MEGNO), then if ǫ is sufficiently small this orbit is a perturbation of
an orbit existing also for ǫ = 0, φ0, and we can check that Yφǫ

= Yφ0
+ O(ǫ),

hence the smallness of such ǫ–correction cannot change “the way Y goes to
2”. More precisely the Hamilton equations are now

ṗ = −∂H
∂q

= −ǫ∂V
∂q

q̇ =
∂H
∂p

= ω(p) + ǫ
∂V

∂p
,
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Fig. 1. MEGNO for quasi–integrable Hamiltonian system. We consider the evolution
of Yφǫ

for the system H = p2
1/2 + p2 + ǫ cos q1 + ǫ cos(q1 − q2). On the left panel

ǫ = 10−4 while on the right panel ǫ = 10−3. In both cases ǫ is small enough to
confirm the theoretical predictions, let observe that in this case the matrix M is
given by ( 1 0

0 0 ) and thus the sign condition reads Mδp,0 · δq,0 = δ1
p,0δ

1
q,0.

and a similar decomposition can be done for the variational system

δ̇p = −ǫ ∂
2V

∂p∂q
δp − ǫ

∂2V

∂q2
δq

δ̇q =

(

∂2H
∂p2

+ ǫ
∂2V

∂p2

)

δp + ǫ
∂2V

∂p∂q
δq .

Looking for δp and δq as ǫ–power series, i.e. δp = δp,0 + ǫδp,1 + . . . and
δq = δq,0 + ǫδq,1 + . . . , and collecting together, in the definition of MEGNO,
terms contributing to the same power of ǫ, we can thus get

Yφǫ
(t) =

1

t

∫ t

0

(M0δp,0)
2s+M0δp,0 · δq,0

(δp,0)2 + (δp,0)2 + 2M0δp,0 · δq,0s+ (M0δq,0)2s2
s ds+ O(ǫ)

= Yφ0
(t) + O(ǫ) .

4 Validation of the method

To validate our method we first apply the technique on a simplified model,
containing only the Earth’s gravity field expanded up to the second degree
and order harmonics, namely, J2 = −C20, C22 and S22. For the purpose of the
analysis, we followed a set of 12 600 orbits, propagated over a 30 years time
span, that is the order of 104 fundamental periods (1 day) empirically required
by the method (Goździewski et al., 2001). As reported in Breiter et al. (2005),
a 30 years time span seems to be relatively small for long-term investigation
of geosynchronous space debris. However, on the one hand, the numerical in-
tegration of variational equations in addition to the extrapolation of the orbit
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Fig. 2. The MEGNO computed as a function of initial mean longitudes λ0 and osculat-
ing semi-major axis a0. The equations of motion include the central body attraction
as well as the second degree and order harmonics J2, C22 and S22. The mean longi-
tude grid is 1◦ and the semi-major axis grid is 1 km, spanning the 42164 ± 35 km
range. The initial conditions are e0 = 0.002, i0 = 0.004, Ω0 = ω0 = 0. Time at epoch
is 25 January 1991. The patterns have been obtained using two different times of
integration, tf = 30 years [left] and tf = 300 years [right].

is quite time consuming. Indeed, the simulation with a entry-level step size
of 400 seconds takes approximately 20 seconds per orbit when including only
the Earth’s gravity field whereas it takes 42 seconds with a complete model,
which is already significant to examine large sets of initial conditions (typi-
cally more than 104 orbits). On the other hand, the analysis of the following
section, will bring to the fore some indications about the Lyapunov times and
it will result smaller than 30 years. As a consequence, the integration time can
be considered as sufficiently large in the particular case of our study.

For the purpose of this validation study, we consider a set of initial conditions
defined by a mean longitude λ grid of 1◦, spanning 90◦ on both sides of the
first stable equilibrium point and a semi-major axis a grid of 1 km, spanning
the 42164± 35 km range. The other fixed initial conditions are e0 = 0.002 for
the eccentricity, i0 = 0.004 for the inclination, Ω0 = ω0 = 0 for the longitude
of the ascending node and the argument of perigee, respectively. These values
have been fixed to compare our results for the nearly-geosynchronous orbits
with the ones of Breiter et al. (2005). As pointed out by Breiter et al. (2005),
due to the 1:1 resonance, good variables to present our results will be (a0, σ0),
where a0 is the osculating initial semi-axis and σ is the so-called resonant
angle, i.e. σ = λ− θ with the sidereal time θ.

Figure 2 (left panel) shows the MEGNO values computed using 30 years of inte-
gration time. We identify clearly a blow-up of the typical double pendulum-like
pattern related to the 1:1 resonance, let observe the horizontal range of 180◦.
Both the stable and the two unstable equilibrium points are clearly visible.
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We observe that the phase space seems to be essentially filled in with MEGNO

values Y (t) ≃ 2, that is plenty of regular orbits. Moreover, the two separa-
trices are also identifiable and are associated with neighboring MEGNO values
2 < Y (t) ≤ 4. Therefore, following the properties defined in Section 3, one
could consider that these orbits are chaotic, however, we will show that this
conclusion is false. Indeed, a careful identification of the MEGNO time evolu-
tion shows that the latter always approach slowly the limit 2 from above. The
closer to the separatrice, the slower the convergence. More precisely, none of
the above simulated orbits presents a MEGNO time-evolution around a linear di-
vergence line, leading to the conclusion that these orbits are actually unstable
periodic orbits, and as a matter of fact also regular.

To clarify this point, we performed a similar study but using a significantly
longer time-span, namely 300 years. The results are showed in Figure 2 (right
panel). For the sake of comparison, the color bars have been taken identical on
both plots. Let us observe that the maximum value reached by the MEGNO is 4
for the left panel and 2.5 for the right one. In the 300 years simulation (Figure
2, right), the MEGNO values, associated with orbits close to the separatrices, turn
out to be, on average, smaller than in Figure 2 (left panel), reaching almost the
limit Y (t) → 2, due to the longer time of integration. Similarly, the dark zone
in the neighborhood of the stable equilibrium point corresponding to MEGNO

values close to zero, is strongly shrunk, supporting the result that, in the limit
of infinitely large t, only the orbit originating from the exact stable equilibrium
point leads to Y = 0 whereas the neighboring trajectories converge slowly to
Y (t) = 2.

Let us note that the importance of integration time has been recently reported
by Barrio et al. (2007) in the framework of applications of the MEGNO method,
and it is here confirmed. Moreover, the latter paper also underlines some
spurious structures appearing in the maps of the variational chaos indicators,
explaining the presence of some background patterns (Figure 2), “suggesting
that the same periodic orbit is more or less regular depending on the initial
conditions choice”.

5 High area-to-mass ratios analysis

The study of the long-term stability of near-geosynchronous objects has re-
cently received an increasing interest by the scientific community. In the par-
ticular case of classical near-geosynchronous objects, the problem has been
solved by computing the MEGNO indicator for a family of simulated geostation-
ary, geosynchronous and super-geosynchronous orbits. The concept of classical
near-geosynchronous object determines an object the period of which is close
to the sidereal day (1 day), subjected by the main gravitational effects of the
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Earth, including the 1:1 resonance, the luni-solar perturbing effects as well as
the solar radiation pressure for small area-to-mass ratio (A/m ≪ 1 m2/kg).
According to Breiter et al. (2005) and Wytrzyszczak et al. (2007), the near-
geostationary region presents chaotic orbits only very close to the separatrices
due to the irregular transits between the libration and the circulation regimes.
Regarding the super-geostationary orbits, all the orbits seem to be entirely reg-
ular on the time scale of the investigations, that is a few decades.

The aim of this section is to provide a more extensive analysis of the dynamics
of near-geosynchronous space debris, subjected to the solar radiation pressure
with high area-to-mass ratios (typically A/m≫ 1 m2/kg). Our main objective
is to study the effects of high area-to-mass ratios on the stability of the prin-
cipal periodic orbits and on the chaotic components. This analysis is divided
into three parts. First, § 5.1, we focus our attention on the sensitivity to ini-
tial conditions; then, § 5.2, we report results of dedicated numerical analyses
which emphasize the importance of the area-to-mass ratio value. Finally, in
Subsection 5.3, we study the influence of both the initial eccentricity and time
at epoch.

Let us recall that for large area-to-mass ratios, the solar radiation pressure
becomes the major perturbation, by far larger than the dominant zonal gravity
term J2 (Valk et al., 2008). In this particular case, the larger the area-to-
mass ratio, the more affected the dynamics of the near-geosynchronous space
debris, leading to daily high-amplitude oscillations of the semi-major axis,
yearly oscillations of the eccentricity as well as long-term variations of the
inclination. As an illustration, Figure 3 shows the orbital elements histories
of the first 210 years of an initial geosynchronous high area-to-mass ratio
space debris (A/m = 10 m2/kg). The yearly variation of the eccentricity
reaches 0.2, which confirms the expected values predicted by the theories (see
e.g. Anselmo and Pardini 2005 and Liou and Weaver 2005). The inclination
variation presents a well known long-term variation whose period is directly
related to the area-to-mass ratio value. Regarding the longitude of ascending
node as well as the argument of perigee, they both present a libration regime
due to the chosen set of initial conditions. For further details, we refer to Valk
et al. (2008) as well as Chao (2006) where a full description of the long-term
motion of high area-to-mass ratios space debris is given.

5.1 Sensitivity to initial conditions

To start with, we follow the evolution of two high area-to-mass ratio space
debris (A/m = 10 m2/kg) defined by two sets of very close initial condi-
tions, differing only in the 10th digits in mean longitude. Figure 4 shows the
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Fig. 3. Time-evolution of the typical high area-to-mass ratio space debris. Or-
bital elements over 210 years for a A/m = 10 m2/kg, initial conditions are
(a0 = 42166.473 km, e0 = 0.002, i0 = 0.004,Ω0 = ω0 = 0,M0 = 4.928). Time
at epoch is 25 January 1991.
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differences of the dynamical variables for the two orbits, confirming the hy-
pothesis that the sensitivity to initial conditions is especially relevant for the
semi-major axis and resonant angle whereas the difference between the other
orbital elements remain small. Consequently, we first focus our attention on
the time-evolution of the semi-major axis and on the resonant angle. As a
complement to Figure 3, we numerically compute two orbits for two space de-
bris with different area-to-mass ratios, A/m = 1 m2/kg and A/m = 10 m2/kg,
whose initial condition have been chosen near the separatrices, to emphasize
their chaotic behaviours. Figure 5 shows a blow-up of the evolution of the
semi-major axis (top panels) and of the resonant angle (middle panels) over
the time span of 250 years. It is clear that the semi-major axis present some
irregular components over its evolution, related to some transitions between
different regimes of motion, clearly identifiable in the resonant angle plots.
In addition we also computed the corresponding MEGNO time-evolution. The
bottom panel in each graph, shows the time-evolution of the MEGNO indicator
as well as its corresponding mean value.First, we see that the time-evolution
of Y (t) presents a quasi-linear growth almost since the beginning of the inte-
gration process, leading to the conclusion that these orbits are clearly chaotic
over that time scale. Therefore, we also computed the linear fit Y (t) ≃ a⋆ t+d
in both cases in order to evaluate the Lyapunov time Tλ, by means of the
LCN λ or similarly the linear regression coefficients a⋆ = λ/2. Let us remark
that to avoid the initial transient state, the least square fits were performed
on the last 85% of the time interval. This latter analysis brings to the fore the
fact that larger area-to-mass ratios lead to smaller Lyapunov times, i.e. larger
Lyapunov Characteristic Number. Indeed, for A/m = 1 m2/kg, the Lyapunov
time turns out to be on the order of 11 years whereas it reaches the value
Tλ ≃ 3.7 years for A/m = 10 m2/kg. Second, let us also remark that the
behavior of the MEGNO indicator is of particular interest in these cases. A care-
ful analysis of Y (t) underlines some irregular patterns directly related to the
evolution of σ, in particular when the orbits seem to transit across the separa-
trices. Finally, we can also highlight the fact that the sudden changes between
libration and circulation regimes occur mainly when the inclination changes
its sign of variation, especially at the maximum value for A/m >> 1 m2/kg
and at the minimum for A/m ≤ 1 m2/kg (Figure 5, top panels, dashed line),
with an empirical long-term periodicity of TΩ, that is the long-term periodicity
of the longitude of the ascending node which is all the more smaller that A/m
is large (Valk et al., 2008).

5.2 Extended numerical analyses

We considered a set of 12 600 simulated orbits with various initial semi-major
axes and mean longitudes. All the before-mentioned perturbing effects were
taken into account with several values of the area-to-mass ratios regarding
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Fig. 4. Effect of sensitivity to initial conditions for high area-to-mass ratio space
debris. The figure shows the differences between two orbits with the same initial
conditions (a0 = 42166.473 km, e0 = 0.002, i0 = 0.004,Ω0 = ω0 = 0,M0 = 4.928)
differing from the 10th digit in mean longitude λ0. On each graph, the left vertical
scale shows the deviations (∆a,∆e,∆i,∆Ω,∆ω,∆σ) and the right vertical scale the
order of magnitude of the difference (−, a0∆e, a0∆i, a0∆Ω, a0∆ω, a0∆σ) [meters].
Time at epoch is 25 January 1991.
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Fig. 5. For each graph, we show the orbital evolution of the semi-major axes a (solid
line) superimposed with the evolution of the inclinations (dashed line) [top panels].
The time evolution of the resonant angles [middle panels] and the time-evolution
of the MEGNO indicator (Y and Y =< Y (t) >) as well as the corresponding linear
fit Y (t) ≃ a⋆ t + d [bottom panels]. The area-to-mass ratios are A/m = 1 m2/kg in
the upper panel and A/m = 10 m2/kg in the lower one. The initial conditions are
chosen near the separatrices. The computed linear regression coefficients are given
by a⋆ = 0.043 (for A/m = 1 m2/kg) and a⋆ = 0.134 (for A/m = 10 m2/kg).
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the solar radiation pressure. Results are reported in Figure 6, in the case
A/m = 1 m2/kg (top left panel), we recognize the same pendulum-like pat-
tern as in Figure 2. Considering the same integration time (30 years), we
notice that the MEGNO values tend to be slightly larger than in Figure 2 (left).
Moreover, some irregularly distributed MEGNO values are clearly visible close
to the two saddle unstable stationary points. These results completely agree
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Fig. 6. The MEGNO computed as a function of initial mean longitudes λ0 and initial
(osculating) semi-major axis a0. The equations of motion include the central body
attraction, the second degree and order harmonics J2, C22 and S22, the luni-solar in-
teraction as well as the perturbing effects of the solar radiation pressure. The mean
longitude grid is 1◦ and the semi-major axis grid is 1 km, spanning the 42164±35 km
range. The initial conditions are (e0 = 0.002, i0 = 0.004,Ω0 = ω0 = 0). The inte-
gration time is 30 years from epoch fixed at 25 January 1991. The patterns have
been obtained using four different area-to-mass ratios, A/m = 1, 5, 10, 20 m2/kg,
respectively top left, top right, bottom left and bottom right panel.

with those presented by Breiter et al. (2005) where the solar radiation pres-
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sure was taken into account but only for very small area-to-mass ratios (typ-
ically 0.005 m2/kg). Indeed, our latter analysis shows that in addition to the
luni-solar perturbations, the solar radiation pressure (with small to moderate
area-to-mass ratios, that is 0 ≤ A/m ≤ 1 m2/kg), do not change considerably
the phase space pattern.

On the other hand the remaining panels of Figure 6 show that the phase por-
trait becomes significantly more intricate with increasing area-to-mass ratios.
Indeed, the width of the stochastic zone in the neighbourhood of the separa-
trices becomes relevant with a large displacement of the separatrices on the
phase plane. The larger chaotic region can readily be explained by the oscu-
lating motion of the separatrices due to the before-mentioned daily variations
of the semi-major axis with respect to some mean value as well as by the
increasing amplitudes of the eccentricities. These variations lead inevitably to
transits between both the regions separating libration and circulation motion
for orbits initially close to the separatrices.

Fig. 7. Cartoon to illustrate the difference between mean and osculating initial con-
ditions with respect to the semi-major axis (s.m.a.) evolution. For the sake of sim-
plicity, the mean semi-major axis does not present any long-term variation whereas
the osculating semi-major axis present daily oscillations related to the direct radi-
ation pressure (the implicit underlying model is radiation pressure only). It is clear
that even if the osculating initial conditions aosc

1 and aosc
2 are identical, the corre-

sponding mean initial conditions amean
1 and amean

2 can be significantly different due
to different initial mean longitudes (similarly different initial resonant angle values).

Moreover, it is also clear that the usual double pendulum-like phase space
shows a tendency to be distorted with a apparent displacement of the unsta-
ble equilibrium points whereas the stable equilibrium points remain almost
fixed. This last result is however quite awkward insofar as there is no physical
interpretation to this phenomenon. Indeed, the direct radiation pressure does
not depend explicitly on the resonant angle with respect to the long-term in-
vestigations and therefore can not induce a displacement of the equilibrium
points in the phase space. Actually, an ingenious explanation can be found re-
garding the way the sampling is considered in the elaboration of the graphics.
More specifically, it is worth noting that, at first, the sampling is carried out
with respect to osculating initial conditions. Second, within the framework
of mean-motion theory, it is well-known that, due to the short-period oscil-
lations, the mean and the osculating initial conditions can not be considered
to be equal. In other words, when considering an horizontal line in the initial
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axes sampling which crosses the libration region and finally, the third sampling is
taken below this region.

conditions sampling, even though it corresponds to a fixed value of the initial
osculating semi-major axis, it is actually related to a various set of mean ini-
tial semi-major axis as explained with Figure 7. Actually, the different initial
mean longitudes induce a phase difference in the corresponding evolution of
the semi-major axis, leading to different mean initial semi-major axes. Let us
remark that the maximum difference between both the mean semi-major axes
is directly related to the order of magnitude of the short-period variations,
and as a consequence, also directly related to the area-to-mas ratio.

More rigorously, the difference between osculating and mean initial conditions
is a well-defined transformation, depending on the generating function used
within the averaging process allowing to change from mean to osculating dy-
namics. For further details concerning this explicit transformation, we refer
to the Lie algorithm discussed in Deprit (1969) and Henrard (1970). However
because we bound our analysis mainly to numerical simulations, we cannot
access to such generating function; we can nevertheless overcome this problem
by numerically compute, for each semi-major axis osculating initial condition,
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Fig. 9. The MEGNO computed as a function of initial mean longitudes λ0 and initial
mean semi-major axis a0. The model is the same as in Figure 6. The area-to-mass
ratio is, A/m = 5, 10 m2/kg for the left and for the right graph, respectively.

the related mean initial semi-major axis by considering the average over a
short time span of 10 days. As an illustration, in Figure 8, we give the re-
lation between the mean semi-major axis and the resonant angle for various
values of the osculating semi-major axis (A/m = 10 m2/kg). The first dif-
ference is related to a semi-major axis sampling taken above the libration
region, the second is related to a semi-major axis sampling which crosses the
libration region and finally, the third sampling is taken below this region. In
conclusion, we clearly see that the order of magnitude of the differences is,
as previously mentioned, the order of the amplitudes of the daily variations
observed in the semi-major axis dynamics. Let us note that in the latter case,
i.e. A/m = 10 m2/kg, the differences reach at most 27 km which corresponds
exactly to the difference between the stable and unstable equilibrium points
as shown in Figure 6 (bottom, left).

We can thus numerically apply the transformation as a post-treatment process,
that is considering the MEGNO values, not in the osculating initial conditions
phase space, but in the mean initial conditions phase space. For the sake of
comparison with Figure 6, we show the results once such a transformation has
been applied (Figure 9), it is clear that now the vertical gaps between both
the stable and unstable equilibrium points, are almost completely eliminated,
hence these points have almost the same mean semi-major axis, getting rid of
the what we called the “short-period artefact”.

Let us also remark, that from now on, all the results will be shown in the
mean initial conditions phase space.
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5.3 Initial time at epoch and importance of the mean eccentricity

One should also recall that the solar radiation pressure leads to a theoretical
equilibrium defined both in eccentricity e0 and longitude of perigee ̟0. The
conditions leading to such an equilibrium can be written as















e0 =
3

2
Cr Pr

A

m

1

n an⊙

cos2 ǫ

2
≃ 0.01Cr

A

m
,

̟0 = λ⊙(0) .

where n and n⊙ are the angular motion of both the space debris and the Sun
respectively, ǫ is the obliquity of the Earth with respect to the ecliptic and
λ⊙(0) the initial ecliptic longitude of the Sun. If these conditions are fulfilled,
it has been shown, Chao (2006) and later Valk et al. (2008), that the eccen-
tricity vector (e cos̟, e sin̟) remains constant leading to fixed value of both
the eccentricity and longitude of perigee. As an illustration, Figure 10 shows
the mid-term variations of the eccentricity for a fixed value of the area-to-mas
ratio (A/m = 10 m2/kg) and fixed initial conditions, namely, a0 = 42164 km,
e0 = 0.1, i0 = 0 rad, Ω0 = ω0 = λ0 = 0. It is clear that, apart from a phase
difference, the amplitudes of variations of the eccentricities are qualitatively
the same, except when adopting an initial time at epoch equal to 21 March.
In this latter case, the eccentricity remains almost constant, as expected by
the theory. Figure 11 shows the phase space in mean semi-major axis and
longitude for a fixed value of the area-to-mass ratio A/m = 10 m2/kg and
fixed values of initial conditions, namely e0 = 0.1, i0 = 0.004, Ω0 = ω0 = 0.
The differences between the two graphs only depends on the initial time at
epoch parameter t0. We could actually expect that different initial times at
epoch, namely, different initial ecliptic longitudes of the Sun λ⊙(0), will reveal
a quite rich collection of behaviors depending on the different states with re-
spect to the before-mentioned eccentricity equilibrium. Actually, assuming an
initial time at epoch of 21 December 2001, we see clearly that the phase space
is filled by a large number of chaotic orbits (Figure 11, left). On the contrary
starting with an initial time at epoch of 21 March 2000, that is adopting a
Sun pointing longitude of perigee (λ⊙(0) = 0 rad), the values reached by the
MEGNO tend to be smaller associated with significantly narrower chaotic region
always located close to the separatrices (Figure 11, right). In the latter case,
the eccentricity presents only small yearly variations due to the proximity
of the theoretical equilibrium. Therefore, these results seem to suggest that
high-amplitude variations of the eccentricity increase considerably the order
of magnitude of chaotic region close to the separatrices and conversely, small
eccentricity variations seem to considerably minimize the extent of chaotic
regions. To justify this assumption, we performed a dedicated numerical sim-
ulation with the same set of parameters used in the one reported in Figure 11
but considering higher values of the initial eccentricity. Results are reported in
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Fig. 10. Eccentricity equilibrium. Mid-term variations (yearly oscillations) of the
eccentricity for a fixed initial conditions a0 = 42164 km, e0 = 0.1, i0 = 0 rad,
Ω0 = ω0 = λ0 = 0 rad and a fixed area-to-mass A/m = 10 m2/kg. Various initial
time at epoch t0, namely different initial ecliptic longitude of the Sun λ⊙(0) were
used for the numerical propagations.

Figure 12, the chosen time at epoch is 21 December 2000 and the initial eccen-
tricities are, e0 = 0.2 (left panel) and e0 = 0.4 (right panel). In the latter case,
the huge variations of the perigee altitude, induced by the large variations of
the eccentricity as well as by the variations of the semi-major axis, leads to
even more complicated dynamics. These results confirm thus the importance
of the initial eccentricity in the appearance of chaos.

6 Secondary resonances

It is worth noting that inspecting Figures 9, 11 and 12, we clearly note the
presence of some additional patterns located on both sides of the separatrices
in the phase space. These never seen before regions, unexplained so far, are
actually characterized by significant very low MEGNO values. Indeed, this obser-
vation underlines the fact that the dynamics of high area-to-mass ratios space
debris is even more intricate than expected. In the following two paragraphs
we will provide some numerical results and a analytical theory based on a
simplified model, to better understand such zones.
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Fig. 11. The MEGNO computed as a function of initial mean longitudes λ0 and semi–
major axis a0. The equations of motion include the central body attraction, the
second degree and order harmonics J2, C22 and S22, the luni-solar interaction as
well as the perturbing effects of the solar radiation pressure. The mean longitude
grid is 1◦ and the semi-major axis grid is 1 km spanning the 42164 ± 35 km range.
The initial conditions are e0 = 0.1, i0 = 0.004,Ω0 = ω0 = 0 with an area-to-mass
ratio A/m = 10 m2/kg. The patterns have been obtained using two different initial
times at epoch, namely, 21 December 2000 (left), 21 March 2000 (right), respectively.
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Fig. 12. The MEGNO computed as a function of initial mean longitudes λ0 and semi–
major axis a0. The equations of motion include the central body attraction, the
second degree and order harmonics J2, C22 and S22, the luni-solar interaction as
well as the perturbing effects of the solar radiation pressure. The mean longitude
grid is 1◦ and the semi-major axis grid is 1 km spanning the 42164 ± 35 km range.
The initial conditions are i0 = 0.004, Ω0 = ω0 = 0 with an area-to-mass ratio
A/m = 10 m2/kg. Time at epoch is 21 December 2000. The patterns have been
obtained using two initial eccentricities, e0 = 0.2 (left) and e0 = 0.4 (right).

6.1 Numerical investigations

We followed a large set of near-geosynchronous space debris, related to ex-
tremely large set of initial conditions taken on both sides of the pendulum-
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like pattern, and for each one of the 72 000 orbits we computed the related
MEGNO indicator. The initial conditions have been fixed by a mean longitude
grid of 1◦, spanning 360◦ and a semi-major axis grid of 1 km spanning the
42 164 ± 100 km range, while the remaining ones and time at epoch are the
same as in Figure 6. Moreover, as in the previous extended analyses, the model
of forces also includes the central body attraction, the second degree and order
harmonics J2, C22 and S22 as well as the combined attractions of the Sun and
the Moon. The perturbing effects of the direct solar radiation pressure are also
taken into account for a high area-to-mass ratio fixed to A/m = 10 m2/kg.
Results are reported in Figure 13 which is nothing but an extensive enlarge-
ment of the phase space presented in Figure 6 (bottom, left). This phase space
widening clearly underlines the before-mentioned additional structures located
at ± 40 km on each side of the resonant area. Furthermore, besides these pat-
terns, what is of special interest is that this Figure also brings to the light
supplementary structures located at approximately 80 km on both sides of
the main resonance, suggesting that the phase space is actually foliated by a
larger set of secondary structures. Moreover, the order of magnitude of these
additional patterns seems to be directly related to the inverse of the distance
with respect to the resonant area.

In addition, we also performed a set of similar numerical investigations, in or-
der to distinguish qualitatively the relative relevance of some parameters such
as the initial mean eccentricity and the value of the area-to-mass ratio. As well
as the importance of the 1:1 resonance and of the third-body perturbations in
the occurrence of such secondary structures. Even though these results are not
presented here in detail, we can draw the following preliminary conclusions:
the second order harmonic J2 as well as the third-body perturbations do not
seem to be really relevant and crucial in the appearance of these additional
patterns. In other words, the unexpected patterns occur only when taking into
account the combined effects of both the second order and degree harmonic
and the direct radiation pressure. As a matter of fact, the extended numerical
investigations performed in Figure 6 (top, left) or similarly those performed in
Breiter et al. (2005) also present these structures even though they are difficult
to perceive. Actually, the order of magnitude of the secondary patterns seems
to be directly proportional to the area-to-mass ratio value or equivalently di-
rectly proportional to the mean value of the eccentricity.

To get even more concluding results, we considered a blow-up of the phase
space (dashed line rectangle in Figure 13) with really high-resolution sampling
(approximately 150 meters w.r.t. the semi-major a axis and 0.3◦ w.r.t. the
resonant angle σ). Figure 14 (top) shows this phase space widening wherein
we defined a so-called resonant angle section (horizontal black solid line),
that is the subset of orbits having the same initial resonant angle value. This
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Fig. 13. The MEGNO computed as a function of initial mean longitudes λ0 and semi–
major axis a0. The equations of motion include the central body attraction, the
second degree and order harmonics J2, C22 and S22 as well as the luni-solar per-
turbations. The mean longitude grid is 1◦ and the semi-major axis grid is 1 km,
spanning the 42164±100 km range. The initial conditions are e0 = 0.002, i0 = 0.004,
Ω0 = ω0 = 0. The area-to-mass ratio is A/m = 10 m2/kg. Time at epoch is 25 Jan-
uary 1991.

resonant angle section span the complete range in semi-major axis and passes
next to the stable equilibrium point. For each orbit defined on this section, we
computed the MEGNO indicator and in Figure 14 (middle) we report this value
at the end of the simulation as a function of the semi-major axis.

To double check our results, we performed a frequency analysis investigation
(see Laskar 1990, 1995 and Noyelles et al. 2008) aimed to study the behaviour
of the proper frequency of the resonant angle σ, whose results are reported in
Figure 14 (bottom). Here one can clearly remark the distinctive characteris-
tics regarding the well-know 1:1 resonance between the mean longitude and
the sidereal time. Indeed, both the MEGNO and the fundamental period show
distinctively a minimum close to the stable equilibrium point. In this case,
as previously mentioned in Section 4, the MEGNO should slowly converge to
Y (t) = 2 everywhere except at the equilibrium point where the limit value is
Y (t) = 0, that’s why, using a finite integration time, we obtain such V-shaped
curve, close to 0 in the center of the resonance and to 2 on the borders. It is
also worth noting that the fundamental period of σ is reported to be close to
2.25 years, which is in good agreement with the well-known 818 days libration
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Fig. 14. Blow-up of the phase space with the specification of a resonant angle section

(horizontal black solid line), that is the set of orbits having the same (osculating) ini-
tial resonant angle value, near the first stable equilibrium, namely σsection

0 = 81.67◦

(top panel). Evolution of the MEGNO with respect to the initial semi-major axis a0

for the specified section (middle panel). The fundamental period of σ with respect
to the initial semi-major axis a0, computed by means of frequency analysis for the
specified section (bottom panel). The estimation of the periods are made over a
20 years period of time.

period of a typical uncontrolled near-geosynchronous object. Near the separa-
trices, the MEGNO clearly presents some obvious high values which confirms the
presence of chaotic orbits. Here, the fundamental period reaches significant
values and is as a matter of fact not well determined, once again supporting
the result of the existence of a chaotic zone.
Moreover the use of frequency analysis allows us to strongly support the hy-
pothesis that the additional patterns are actually related to secondary res-

onances . Indeed, if we look at the evolution of the fundamental period with
respect to the semi-major axis, it is clear that the so-called secondary reso-
nances are associated, regarding the angle σ, with periods which are commen-
surate with 1 year. More precisely, the major secondary resonance located at
approximately 40 km on both sides of the pendulum-like pattern are related
to a 2 years fundamental period of σ. Concerning the farther patterns located
at ±80 km, the fundamental period of σ turns out to be very close to 1 year.
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(a)

a
0
 = 42 188 km a

0
 = 42 204 km a

0
 = 42 212 km

Fig. 15. Time evolution of the angles σ, 2σ+λ⊙ and 2σ−λ⊙ (in radians) for several
semi-major axes. In the lower major secondary resonance, a0 = 42122 km. In the
eye of the principal resonance, a0 = 42188 km. Between the primary resonance
and the upper secondary resonance, a0 = 42204 km. Inside the upper major sec-
ondary resonance, a0 = 42212 km. Outside the upper major secondary resonance,
a0 = 42230 km.

As a consequence, we can presumably assume that these before-mentioned
secondary resonances are actually related to a commensurability between σ
and the 1 year period angle λ⊙, that is the ecliptic longitude of the Sun.

To justify this assumption, we focused our attention to the major secondary
resonances located at ±40 km on both sides of the pendulum-like pattern,
considering the time-evolution of various linear combinations between σ and
λ⊙. For this purpose, we considered various initial semi-major axes in the
phase space. The results are shown in Figure 15. At first glance, it is apparent
that three propagations stand apart from others. In the first row of Figure 15,
that is regarding the evolution of the resonant angle σ, we clearly identify the
well-know characteristics related to the primary resonance. In particular, in
Figure 15a, that is when considering an initial semi-major axis inside the pri-
mary resonant (a0 =42 188 km), σ shows a well-known long-periodic libration
(2.25 years) whereas σ circulates outside this region. Furthermore, what is of
special interest is the time evolution of both 2σ + λ⊙ and 2σ − λ⊙ shown in
the second and third row, respectively. It is clear that most of the time, these
angles show a significant circulation regime. However, when considering an
initial semi-major axis inside the major lower secondary resonance for 2σ−λ⊙
or similarly inside the major upper secondary resonance for 2σ + λ⊙, both
these angles show a significant long-term evolution (Figure 15b,c).
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6.2 Analytical investigation – simplified model

The presence and the location of these secondary resonances can be studied
using an appropriate simplified model. Hence we model the averaged geosta-
tionary motion by a pendulum-like system, given by its Hamiltonian formu-
lation (Valk et al., submitted for publication) up to order e2 in the series
expansion

H = − µ2

2L2
− θ̇L+ 3

µ4

L6
R2

e

(

1 − 5

2
e2
)

S2200(Ω, ω,M, θ) ,

where

L =
√
µa and S2200(Ω, ω,M, θ) = C22 cos 2σ + S22 sin 2σ .

In this context of direct solar radiation pressure, we can introduce the factor
Z proportional to A/m through the eccentricity e (for further details, we refer
to the averaged simplified analytical model developed in Valk et al. (2008).
In first approximation, the time evolution of both the eccentricity e and the
longitude of perigee ̟ were found to be (neglecting the obliquity of the Earth
with respect to the ecliptic)

e cos̟ =
Z
Ln⊙

cos λ⊙ + α0 ,

e sin̟ =
Z
Ln⊙

sin λ⊙ − β0 ,

which introduces λ⊙ in the Hamiltonian. The quantity n⊙ is the mean motion
of the Sun and both α0 and β0 are related to initial conditions with respect
to the eccentricity and the longitude of perigee). The resulting Hamiltonian
takes the generic form

H = − µ2

2L2
− θ̇L+

F

L6
cos (2σ − 2σ0) −

G

L6
2 cos (2σ − 2σ0) cos (λ⊙ + δ) ,

where δ, F , G, σ0 are constants. A suitable transformation is then necessary to
introduce action-angle variables (ψ, J) in the libration and in the circulation
region of the double pendulum, in such a way any trajectory of the double
pendulum is characterized by a constant action J and a corresponding constant
frequency ψ̇. Rewriting the perturbed system (because of λ⊙ terms) by means
of these new variables and then using the expansions in Bessel functions, we
could isolate any resonance of the type kψ ± λ⊙, in the circulation region,
for any |k| and in the libration region, for |k| ≥ 3 which corresponds to our
frequency analysis. This analysis is surely promising, but it exceeds from the
goals of this paper, that’s way further investigations will be detailed in a
forthcoming publication.
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7 Conclusions

The predictability of high area-to-mass ratio space debris located near the
geosynchronous region was investigated by means of a recent variational chaos
indicator called the MEGNO. Thanks to this technique, we clearly identified the
regular (stable) and irregular (chaotic) orbits. This efficient method allowed
us to obtain a clear picture of the phase space, hence showing that chaotic
regions can be particularly relevant, especially for very high area-to-mass ratios
objects. Moreover, we discussed the importance of both the initial eccentricity
and time at epoch in the appearance of chaos.

Finally, we brought to the fore a relevant class of additional unexpected pat-
terns which were identified as secondary resonances, that were numerically
studied by means of both the MEGNO criterion and frequency map analysis,
to eventually conclude that they involve commensurabilities between the pri-
mary resonant angle and the ecliptic longitude of the Sun. We also presented
an analytical scheme that could explain their existence, that will be discussed
in full details elsewhere.
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Goździewski, K., Breiter, S., Borczyk, W., The long-term stability of extrasolar
system hd37154. numerical study of resonance effects. Monthly Notices of
the RAS 383, 989–999, 2008.

Henrard, J., On a perturbation theory using lie transforms. Celestial Mechan-
ics 3, 107–120, 1970.

Laskar, J., The chaotic motion of the solar system. a numerical estimate of
the size of the chaotic zones. Icarus 88, 266–291, 1990.

Laskar, J., Introduction to frequency map analysis. In: Proceedings of
3DHAM95 NATO Advanced Institute. Vol. 533. S’Agaro, pp. 134–150, June
1995.

Lemoine, F. G., Kenyon, S. C., Factor, J. K., Trimmer, R., Pavlis, N. K.,
Chinn, D. S., Cox, C. M., Klosko, S. M., Luthcke, S. B., Torrence, M. H.,
Wang, Y. M., Williamson, R. G., Pavlis, E. C., Rapp, R. H., Olson, T. R.,
The development of the joint nasa gsfc and nima geopotential model egm96.
Tech. rep., NASA, TP-1998-206861, 1987.

Liou, J.-C., Weaver, J. K., Orbital evolution of geo debris with very high area-
to-mass ratios. The Orbital Quarterly News 8 issue 3, The NASA Orbital
Debris Program Office, 2004.

Liou, J.-C., Weaver, J. K., Orbital dynamics of high area-to-mass ratio debris
and their distribution in the geosynchronous region. In: Danesy, D. (Ed.),
Proceedings of the Fourth European Conference on Space Debris (ESA SP-
589). ESA Publications Division, Noordwijk, The Netherlands, pp. 285–290,
2005.

31
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