
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Security Obstacle Detection and Response for Secure Information Systems

Dehousse, Stéphane; Faulkner, Stephane; Jureta, Ivan; Mouratidis, Haramblos; Giorgini,
Paolo

Publication date:
2008

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Dehousse, S, Faulkner, S, Jureta, I, Mouratidis, H & Giorgini, P 2008, Security Obstacle Detection and
Response for Secure Information Systems..

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/326260054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/security-obstacle-detection-and-response-for-secure-information-systems(70ecac4c-caff-4bf1-a5a8-ddb2fc191e74).html

Security Obstacle Detection and Response
for Secure Information Systems

S. Dehousse1, S. Faulkner1, I. J. Jureta1, H. Mouratidis2, P. Giorgini3

1 PReCISE Research Center - University of Namur, Belgium
2 School of Computing and Technology, University of East London, UK

3 Department of Information and Communication Technology, University of Trento
stephane.dehousse@fundp.ac.be, stephane.faulkner@fundp.ac.be,

iju@info.fundp.ac.be, H.Mouratidis@uel.ac.uk, paolo.giorgini@unitn.it

Abstract. Securing an information system (IS) involves continual de-
tection and response to security obstacles at all stages of the system’s
lifecycle. During early requirements engineering, one way to facilitate
these tasks is to use secure actor and goal models that represent desired
IS behaviour, including responses to security obstacles. We propose the
Security Obstacle Detection and Response (SODR) method for detecting
and responding to security obstacles during the construction of secure
actor and goal models in early RE. SODR relies on a justification pro-
cess, in which arguments about potential security obstacles related to
IS assets are made explicit, submitted to justification, leading either to
the identification of justified responses to the given security obstacles or
the rejection of these obstacles. SODR thereby ensures that the argu-
ments behind the identified security obstacles and chosen responses are
explicit, so that they can be constructed, openly questioned, and revised
in a structured and rigorous manner. The proposed method is supported
by the SODR-Tool.

1 Introduction

Securing an information system (IS) involves taking action to continually achieve
and maintain security goals, such as confidentiality, integrity, and availability of
various assets of the IS. An obstacle is a dual notion to goal [1]: while a goal
captures desired conditions, an obstacle captures undesirable, yet possible ones.
Security obstacles (SOs) obstruct the achievement of security goals. Securing an
IS therefore involves continual detection and response to all SOs that may allow
unintended use of services offered by, and resources made available to the IS. In-
sufficiently secure IS are prone to compromise by malicious users or third parties,
leading usually to uncontrolled distribution of sensitive information, waste of al-
ready limited resources, and overall damaging consequences. It is evident that
insufficiently secure IS can only be considered as low quality systems, therefore
unacceptable in the present context of incresing reliance on IS. It is widely recog-
nized that security must be accounted for during the very first, early stages of IS
development, when early IS requirements are elicited, structured, and analyzed,
then over all subsequent development stages, deployment, entire IS runtime, un-
til the system becomes obsolete and is replaced. It is also accepted that, the
longer an SO remains undetected during the IS lifecycle, the higher the cost of

its subsequent detection and resolution. It has, however been recently observed
[2] that efforts in security modeling and enforcement of security policies (e.g.,
[3]) have been largely independent of work invested at the early stages of IS
development, when requirements are being engineered for the future IS. Never-
theless, current research [4] indicates that modern IS require a unified treatment
of security and other requirements and attention to their relationships.
Problem. This paper focuses exclusively on security assurance during early re-
quirements engineering (RE). It is necessary at that earliest stage to secure the
IS by detecting SOs and finding responses thereto, if we are to reduce the overall
cost of the IS throughout its lifecycle. Dealing with security considerations at
early RE is not only critical, but also particularly difficult: qualitative and infor-
mal information abounds, while some quantitative information may be available
(e.g., failure statistics from similar systems), yet all of that information must
be accounted for and systematically analyzed in order to appropriately detect
and resolve SOs. Several security-oriented approaches to early RE have been
proposed in the last couple of years (See, §5) — they all feature modeling primi-
tives, such as goals, dependencies, tasks, and actors, augmented with primitives
for the representation of security constraints, security goals to be achieved and
security tasks to be executed in order to satisfy security constraints. However,
they fail on the following accounts:

– There is no apparent systematic way to use both qualitative and quantitative
information expressed informally or formally when drawing conclusions on
how and what SOs to address.

– Applying the available approaches leads to the definition of a “secure (actor
and goal) model”. From the perspective of the IS stakeholders (i.e., owners,
users, etc.), there is nothing in the secure actor and goal model to assure
them that a rigorous, structured approach has been applied to identify SOs
and then define appropriate responses thereto. In absence of any such justifi-
cation, stakeholders cannot know whether to perceive as appropriate the set
of identified SOs and responses. Given the recurrent and widely publicised
security problems (e.g., [5]), the IS engineers’ reputation alone is no longer
a sufficient guarantee.

– For systems that have a long lifespan (e.g., governing the operation of nu-
clear power plants or space shuttles), secure actor and goal models will be
read and revised by various parties at different times. If it remains unknown
why some response is defined for some SO, then it also remains unknown
whether a response that worked until some point remains relevant after new
events occur. If we have explicit arguments in favor of a response, we can
confront information about new events with the available arguments to de-
cide whether a revision of the response is needed. There are no explicit
arguments in secure actor and goal models, and available approaches do not
suggest that such arguments be recorded.

– The ideas, arguments, and assumptions underlying the identification of some
SO and/or response remain implicit and/or are lost over time. Alternative
ideas and confronting views that could lead to finding additional, possibly

more critical SOs are lost as well. Both can lead to a poor understanding of
the SOs in the given IS and potential responses thereto.

Addressing these problems during early RE requires us to externalize and
record arguments that led the modeling participants to identify and maintain
some SOs and disregard others, and define responses in some particular way.
That is, by recording arguments, we can confront them and evaluate decisions
as either justified or not. In doing so, we must accommodate the fact that early
RE involves mostly the treatment of informal and qualitative information, for
which structured and rigorous approaches are missing.
Contributions. In response, we introduce the Security Obstacle Detection and
Response (SODR) method to guide SO detection and definition of responses
during the construction of secure actor and goal models in early RE. Draw-
ing on AI argumentation models [6], SODR integrates a justification process,
in which arguments for potential SOs of IS assets are made explicit, submitted
to justification, leading either to the identification of justified responses to the
given SOs or the rejection of SOs. SODR thereby ensures that the arguments
behind identified SOs and chosen resolutions are explicit, so that they can be
constructed, openly questioned, and revised in a structured and systematic man-
ner. The use of arguments and justification allows us to integrate all relevant
early information, be it expressed informally in natural language or in a math-
ematical notation, and regardless of it being quantitative or qualitative. SODR
is not designed to replace available secure actor and goal modeling approaches,
but to complement them where they are weak - it is then up to the IS engineer
to choose the early goal-oriented RE modeling approach to security, while using
SODR to systematically detect and resolve SOs. In this paper, SODR is applied
within the context of the Tropos and Secure Tropos methodologies [7]. We have
opted for such approach since Tropos employs a set of concepts that are common
in early RE while Secure Tropos complements these concepts with a number of
security related ones. A real-life case study on a health and social care IS serves
for illustration.
Organization. We start our analysis by considering the relationships between
the different actors in our case study environment using Tropos actor models
(§2). SODR is then applied, and the steps of the method explained and illustrated
to identify SOs and responses thereto (§3). We discuss SODR and present the
toolset developed to support the users of SODR (§4). After related efforts are
reviewed (§5), we close the paper with conclusions, limitations, and pointers to
future work (§6).

2 Pre-SODR Tropos Modeling for the Case Study

During early RE, the IS engineer (i) represents the (organizational) environment
in which the IS will be introduced, and (ii) studies the probable impact of the
future IS on this environment, that is, identifies the purpose of the IS, its desired
behavior, and the system’s main interactions and interdependencies with its
environment and stakeholders. Goal-oriented security-sensitive models employed
at early RE feature modeling primitives, such as goals, dependencies, tasks, and

Hos p.
Adm.

Insurance
C ompany

P atient

C linician

Labs

B e paid
[C ons ultancy

B ill]

Arrange
[C ons ultancy]

B e provided
[C onsultancy

B ill]

B e provided
[C ons ultancy

B ill]

B e refunded
[C ons ultancy

B ill]

B e provided
[P atient P ers onal

Data]

B e provided
[Medical

Instruction]

B e paid
[Lab F ee]

B e provided
[S ample]

B e provided
[S ample Data]

B e provided
[Lab F ee]

B e provided
[C ons ultancy]

B e provided
[Medical
R ecord]

B e provided
[Lab F ee]

Update
[Medical R ecord]

D

D

D

D

D

D

D

D
D

D

D

D

D

D

D

D

D
D

D
D

D

D

D

D

D

DD

D

D

D

Fig. 1. A partial Tropos actor and goal model of the Hospital Health Care System.

actors, augmented with primitives for the representation of security constraints,
security goals to be achieved and security tasks to be executed in order to satisfy
security constraints. Secure Tropos [7] is an RE methodology that extends the
Tropos [8] RE methodology with notions needed for the definition of constraints
on the desired behavior of the future IS. The aim of these constraints is to secure
the future IS by restricting its behavior so that SOs are avoided and/or responses
to unavoidable SOs activate when needed.

For the case study, we consider the health and social care domain in which IS
facilitate the provision of health and social care services. Integrated health and
social care IS are being increasingly considered as a means for providing more
effective health care to the elderly. In the UK, the electronic Single Assessment
Process (eSAP) system [9] is one such effort. Overall, the IS aims to automate
care processes, including, e.g., assessment procedures, collection and manage-
ment of information about the elderly, the scheduling of appointments, and so
on. An important related system is the The Hospital Health Care IS, which aims
to help maintain good patient (in this case, an elderly person) health by ensuring
that the patient receives good care from the clinician. An actor and goal model
for such a system is represented using Tropos in Figure 1. It models actors,
such as Patient and Clinician, and their interdependencies in the achievement
of goals. E.g., the Patient expects the Clinician to provide the Medical Instruc-
tions appropriate with regards to the Patient’s condition. The Clinician cannot
provide advice to the Patient if the patient’s personal data is missing, so that
the Clinician depends on the Patient for providing the personal data. Goals,
such as Be provided [Medical Record] are represented with rounded rectangles.
In the form shown in Figure 1, the model is not concerned with SOs or re-
sponses. Therefore, we emply SODR to identify and justify the relevant SOs and
responses. With SODR, we are able to identify potential SOs from the initial

Tropos actor and goal models, analyze them and identify justified responses,
leading us to construct a Secure Tropos actor and goal models in which SOs and
responses are explicit.

3 Security Obstacle Detection and Response

Overview of SODR. SODR proceeds in four steps:

1. The first step of SODR (§3.1) is the identification of assets using the model
provided by the goal-oriented RE framework (here, we use Tropos) chosen
by the IS engineer. Assets are decomposed and classified. Depending on the
classification, the body of knowledge available in security-related standards
is used to determine potential SOs that may arise in relation to each asset.

2. In the second step (§3.2), the engineer considers each potential SO, sets it as
the root of an argumentation tree, then search for arguments to support the
occurrence of that SO. Each favorable argument indicates a reason to believe
that the SO will indeed occur. The search for arguments is a step-by-step
process, in which one first seeks arguments about how the actions of actors,
who can access the asset, might lead the SO to occur. The engineer then
look for motives for these actors to indeed act in the aim of realizing the
identified SOs. Knowing the potential damaging motivations, circumstances
are sought in which these motives may appear.

3. Once the circumstances are known, the engineer identifies at the third step
(§3.3) the responses which will adjust the future system’s behavior so that the
circumstances can be avoided. Each response defines a new argumentation
tree, is set as the root of that tree, and the engineer proceeds to justify the
relevance of the response with regards to the relevant SO. In other words,
arguments are sought that support or counterargue the proposed response.
In this way, the engineer can justify the choices of responses.

4. At the last step (§3.4), the engineer uses a goal-oriented security-sensitive
RE framework (here, we use Secure Tropos) to build the secure actor and
goal models. The secure actor and goal models ensure that the IS responds
to the SOs through the justified responses.

Each step is detailed below. First, however, we provide conceptual background
needed to understand our models of arguments and the justification process,
both extensively used in SODR. Our definitions are formal when possible, to
ensure that SODR relies on solid and precise conceptual foundations.
Argumentation and Justification. An argumentation model is a static rep-
resentation of an argumentation process, which can be seen as a search for argu-
ments, where an argument consists of a set of rules chained to reach a conclu-
sion. Each rule can be rebutted by another rule based on new information. To
formalize such defeasible reasoning, elaborate syntax and semantics have been
developed (e.g., [6, 10]) commonly involving a logic to formally represent the
argumentation process and reason about argument interactions. Note that the
definitions below provide formal syntax and informal but precise semantics for
argumentation trees used in the justification process, and thereby for the graphical
representation of argumentation trees used in Figures 3, 4, and 5.
Definition 1. An argument is defined recursively as follows:

1. Any expression of the form 〈P, c〉 is an argument, where c is called “conclu-
sion” and is a speech act of any type (i.e., assertive, directive, commissive,
expressive, or declarative) and P is a set of assertive propositions suggested
to support the conclusion (such a proposition is called “premise”).

2. If for A and B such that A = 〈PA, cA〉 and B = 〈PB, cB〉, PA ⊆ PB then A
is a subargument of B.

3. An argument cannot have its conclusion as a premise for its conclusion: if
A = 〈PA, cA〉 and cA ∈ PA then A is not an argument.

4. There can be no inconsistent propositions in P .
5. Nothing is an argument unless it obeys the rules above.

The suggested definition is common in philosophy (see, e.g., [11] for a discussion)
and AI (for an overview, see [6]). It bans inconsistent information as support for
a conclusion, allows complex arguments, in which a premise can be a conclusion
of another argument, and bans cyclical argumentation.
Definition 2. A justification 〈P, c〉 is an argument that remains undefeated
after the justification process.4

Definition 3. The justification process [10] consists of recursively defining
and labeling a dialectical tree T 〈P, c〉 as follows:
1. A single node containing the argument 〈P, c〉 with no defeaters is by itself a
dialectical tree for 〈P, c〉. This node is also the root of the tree.
2. Suppose that 〈P1, c1〉 , . . . , 〈Pn, cn〉 each defeats5 〈P, c〉. Then the dialectical
tree T 〈P, c〉 for 〈P, c〉 is built by placing 〈P, c〉 at the root of the tree and by
making this node the parent node of roots of dialectical trees rooted respectively
in 〈P1, c1〉 , . . . , 〈Pn, cn〉.
3. When the tree has been constructed to a satisfactory extent by recursive ap-
plication of steps 1 and 2 above, label the leaves of the tree undefeated (U). For
any inner node, label it undefeated if and only if every child of that node is a
defeated (D) node. An inner node will be a defeated node if and only if it has at
least one U node as a child. Do step 4 below after the entire dial. tree is labeled.
4. 〈P, c〉 is a justification (or, P justifies c) iff the node 〈P, c〉 is labelled U .
We focus in this paper only on arguments with informal content. We thus use
the argument trees along the above definitions but do not exploit here, for lack

4
Some background [10]: Let A a set of agents (e.g., stakeholders) and the first-order language L
defined as usual. Each agent a ∈ A is associated to a set of first-order formulae Ka which represent
knowledge taken at face value about the universe of discourse, and ∆a which contains defeasible
rules to represent knowledge which can be revised. Let K ≡

⋃
a∈AKa, and ∆ ≡

⋃
a∈A∆a.

“|∼” is called the defeasible consequence and is defined as follows. Define Φ = {φ1, . . . , φn}
such that for any φi ∈ Φ, φi ∈ K ∪ ∆↓. A formula φ is a defeasible consequence of Φ (i.e.,
Φ |∼ φ) if and only if there exists a sequence B1, . . . , Bm such that φ = Bm, and, for each
Bi ∈ {B1, . . . , Bm}, either Bi is an axiom of L, or Bi is in Φ, or Bi is a direct consequence
of the preceding members of the sequence using modus ponens or instantiation of a universally
quantified sentence. An argument 〈P, c〉 is a set of consistent premises P supporting a conclusion
c. The language in which the premises and the conclusion are written is enriched with the binary
relation ↪→. The relation ↪→ between formulae α and β is understood to express that “reasons
to believe in the antecedent α provide reasons to believe in the consequent β”. In short, α ↪→ β
reads “α is reason for β” (see, [10] for details). Formally then, P is an argument for c, denoted
〈P, c〉, iff: (1) K ∪ P |∼ c (K and P derive c); (2) K ∪ P 6` ⊥ (K and P are consistent); and (3)
6 ∃P ′ ⊂ P,K ∪ P ′ |∼ c (P is minimal for K).

5
Roughly (for a precise definition, see [10]) the argument 〈P1, c1〉 defeats at c an argument 〈P2, c2〉
if the conclusion of a subargument 〈P, c〉 of 〈P2, c2〉 contradicts 〈P1, c1〉 and 〈P1, c1〉 is more
specific (roughly, contains more information) than the subargument of 〈P2, c2〉.

Quality of
care

Quality
Health C are
be delivered

B e provided
[C onsultancy]

Manage
[C ons ultancy]

Manage
[Medical R ecord]

Update
[Medical R ecord]

Hosp.
Adm.

C linician

P rovide
[consultancy]

B e managed
[consultancy]

B e managed
[Medical R ecord]

Udpate
[Medical R ecord]

C ollect
[P atient

P ersonal Data]

De�ne
[Medical

Instruction]

R ecord
[S ample Data]

T ake
[S ample]

G et
[S ample Data]

B e provided
[S ample]

B e provided
[S ample Data]

Lab

B e provided
[Medical Instruction]

B e provided
[P atient

P ers onal Data]

P atient

D D

D

D

D

D

D

D

D

D

D
D D

D

D

D

Fig. 2. A partial Tropos actor and goal model for Clinician with Assets in brackets

of space, the possibility for, e.g., automated detection of argument conflict. The
informal approach below is especially relevant at the early RE stage, when it
often proves too early in practice to proceed to formalization. A separate paper
will evaluate the feasibility and cost of formalizing arguments at early RE and
address automated reasoning on argument trees.
3.1 Step 1: Analyzing Assets
Is Patient Personal Data (PPD) important for the system? How does Patient
Personal Data relates to Medical Record? To be able to properly answer those
questions, engineers must learn to identify assets and trace their dependencies in
the IS and its environment. An asset is anything of value in the IS [12]. We rely
on the available body of knowledge for asset identification and classification. The
set of assets comprises information objects stored in or accesed by the system,
tangible objects such as computers themselves [13], etc. The British BS7799
standard [14] suggests to differentiate between information assets, documents,
software assets, physical assets, personnel assets, image and reputation, and
service (utilities). According to the type of asset, the Common Criteria Project
(involving, e.g., NIST, NSA, and others) [12] identifies different categories of
security goals for any information asset the C.I.A. triad:
– Confidentiality is the assurance of data privacy, e.g. ensure that an asset is

visible only to actors authorized to see it.
– Integrity is assurance that an asset can only be modified in appropriate

ways by specific actors. It generally integrates the assurance of the ability to
restore to a trustworthy state with minimum lost after damage or incorrect
alteration.

– Availability is the assurance that an asset is readily accesssible to actors
when needed.

Clinician puts PPD
into secondary use

Clinician discloses
PPD to other clinician

Make illegal Profit
with PPD

Get more expertise
on PPD

Third party values
identifiable PPD

Clinician accesses
PPD Lack of expertise

Non Confidentiality
Patient Personal Data

Adverse actions

Motives

Circumstances

Fig. 3. Argumentation tree for Non-Confidentiality of Patient Personal Data (PPD)

In the Tropos methodology, the actor and goal model gives the analysists a
graphical way to elicit assets and their relationships. The model emphasizes
assets’ related inter-actor relationships through dependencies, and the necessary
intra-actor information can be represented to trace assets interdependencies. The
model in Figure 1 shows a dependency between the Clinician and the Patient
about Medical Instruction and a dependency from the Hospital Adm with the
Clinician about Medical Record. Medical Instruction and Medical Record, being
information objects, are assets. The analysis of the model in Figure 2 for the
Clinician reveals a relationship between the Medical Instruction and the Medical
Record. The exact meaning of the relationships is given by the stakeholders. In
this case, an is-part-of relationship exists between the Medical Instruction and
the Medical Record. Same reasoning applied to the other assets reveals that the
Medical Record has a is-part-of relationships with Medical Instruction, Patient
Personal Data and Sample Data assets.
3.2 Step 2: Analyzing Security Obstacles
During this step the engineer builds individual argumentation trees by searching
for arguments that support root conclusion elicited in Step 1. This process is
facilitated by seeking three main types of arguments. These types are: arguments
about adverse actions of actors; arguments about motives leading to the adverse
actions; and circumstances in which motives can appear and lead to adverse
actions.
Adverse actions. Which actions lead to the violation of the security goal for
the asset? Considering any one of the actors as a potential attacker, the engineer
identifies adverse actions like committing insurance fraud, hidding malpractice
evidence, and putting patient identifiable information into secondary use. An
adverse action can also be accidental, e.g. by omittig to update patient data.
Motives. What motives push to actions that create SOs? Actors have reasons
for taking adverse actions, and the aim here is to make assumptions about such
motives. In the case study, these include, e.g. making illegal profit, or getting a
second opinion.
Circumstances. Motives are reinforced in some circumstances (i.e., circum-
stances can motivate actions). We consider that circumstances encompass ac-
tor’s capabilities, particular states of the system and/or of the environment. For
example, the motive to make illegal profit with PPD by putting PPD into sec-
ondary use can be favored by clinician’s capabiliy to access PPD and by third

U

D

Cl. collects
PPD from Patient

Cl. provides Patient
consultancy

Cl. accesses PPD
from Patient

Cl. provides
Med. Instr.

Patient provides
PPD to Cl.

Cl. accesses
PPD in MR

...

Cl. updates
PDD in MR

Cl. accesses
PPD

Cl. accesses PPD
from Patient

Cl. accesses PPD
from MR

Patient provides
PPD to Cl.

...

X

X

Legend: Relation for defeasible rules

Relation for necessary knowledge

Fig. 4. A dialectical tree for a defeated response

party in the environment that values PPD. Accordingly non-malicous motives
like get second opinion can be driven by circumstances of a particular situation,
e.g. ambiguous sample data.

3.3 Step 3: Analyzing Responses
Argumentation trees constructed in Step 2 give reasons to believe that SO will
occur in relation to specific security concerns, and for identified assets when
the identified circumstances are present. The next step is to define responses
to block actions, and/or motives, and/or circumstances so as to avoid SOs. Re-
sponses are formulated using the modeling framework of choice: here, we use
instances of Secure Tropos concepts to facilitate the modeling at the fourth
step below. Namely, a security constraint enables the engineer to represent a
constraint that limits the behavior of the system and/or stakeholders to that
which will not give rise to one or more SOs. We use it therefore to model con-
straints that will block actions, and/or motives, and/or circumstances. Secure
Tropos also introduces the notion of a secure dependency, in which a goal or
a task is given, whereby the achievement of the goal or the execution of the
task ensures that some SO is avoided. With SODR, achieving a goal or ex-
ecuting a task in a secure dependency ensures that insecure actions, and/or
motives, and/or circumstances are blocked. Only a justified response is accept-
able; that is, a response must remain undefeated after the justification process.
For the security constraint confidentiality of patient personal data, the engineer
define two potential responses as security goals: Prevent Clinician access PPD
and Prevent Clinician export PPD. The argumentation process leads to differ-
ent arguments that support each responses. For illustration, Figure 4 shows
the dialectical tree for Prevent Clinician access PPD. The justification process
showed that the alternative is unjustified and therefore cannot be accepted.
Argument trees for ¬Clinician accesses PPD and Clinician provides consul-
tancy are shown. The argument 〈{. . .}, Clinician provides consultancy〉 defeats
〈{. . .}, Clinician accesses PPD〉 at Clinician access PPD from Patient. Building
dialectical trees for response justification can be faciliated if the engineer looks
for three types of arguments. These are arguments of early requirements, late

UControl Access
PPD

Control Cl. Access
PPD from Patient

Control Cl. Access
PPD in MR

Check
information

flow

Obtain Patient
Consent

Cl. Provides
consultancy

Client/Server

E L

E

E

L

D

T1

Fig. 5. A dialectical tree for a non-defeated response with typed arguments

requirements and architectural design. Early requirements arguments are secu-
rity constraints imposed on the actors and their related security dependencies.
Late requirements arguments introduce system’s security goals and tasks. Finaly,
design arguments identify constraints on the architecture of the system with re-
spect to its security requirements. For illustration, Figure 4 shows the dialectical
tree for Control Clinician access to PPD. The justification process shows that
argument Control Clinician accesses PPD from Patient and sub-arguments are
security constraints imposed to the actors at early requirements. In contrast,
argument Control Clinician accesses PPD from MR implies new system’s secu-
rity goal and underlying task of check information flow to be taken into account
at late requirements phase. Finaly, a constraint on design to favor client/server
architecture is introduced to accomplish information flow checking. We use sim-
ple labelling (square labels) of arguments to highlight which is of early or late
requirements, or concerns architectural design. The labels shown as circles serve
for tracebility between models, and are used at Step 4 of SODR.

3.4 Step 4: Response Modeling
Given the analysis of Step 3, Step 4 amounts to the modeling of the identified
responses in the modeling language of choice, which features security primitives.
During Step 3, the engineer made decisions on how to protect system’s assets
from potential SOs. The results of these decisions are at this last step repre-
sented in the Secure Tropos actor and goal model, which is a revised and, so to
speak “secure” version of the initial Tropos actor and goal model used during
Step 1. For illustration, we only show a partial Secure Tropos actor and goal
model in Figure 6. It shows how we model the security constraint of patient
personal data confidentiality which restricts clinician goal to collect patient per-
sonal data. This is derived directly from the content of Figure 5, i.e., from the
“Obtain patient consent” argument. Circular labels are used to relate elements
from the argumentation tree that gave rise to the various instances of Secure
Tropos modeling primitives. The circular labels thus give us simple traces be-
tween models used at Steps 3 and 4: the circular label “T1” in Figures 5 and 6
relates the element of the argumentation tree that led the engineer to introduce
a particular element in the Secure Tropos actor and goal model. The engineer

Quality of
care

Quality
Health Care
be delivered

Clinician

Provide
[consultancy]

Udpate
[Medical Record]

Collect
[Patient

Personal Data]

Be provided
[Patient

Personal Data]

Patient

D

D

(S) Obtain
Patient ConsentD

(S) Confidentiality
PPD

restricts

+
...

......

T1

Fig. 6. Revised Goal Diagram for the Clinician

relies on own domain knowledge and knowledge of Secure Tropos to determine
how to convert fragments of argumentation trees into fragments of the Secure
Tropos model (in our example: to represent the “Obtain patient consent” as a
goal in the Secure Tropos model).

4 Evaluation and Tool Support

Our evaluation of the proposed SODR method has raised a number of issues. As
already observed in design rationale research (e.g., [15]), recording the rationale
of decisions requires additional effort from the engineer and the stakeholders in-
volved. SODR responds by using a simple and intuitive justification process, in
which few constraints are placed on how the arguments are written down. The
content of arguments, however, should be as precise as possible and checks for
rigour in this respect fall on the engineer. Applying argumentation and justi-
fication is not trivial, and dialectical reasoning is in general difficult, requiring
considerable rigour in thinking. It therefore usually requires some traning for the
SODR users. Effort can be limited through automated assistants that suggest
which arguments to attack during the justification process.

In response to the practical difficulties we have observed in the use of SODR,
we have developed a tool to support the recording of initial Tropos actor and goal
models, the argument trees, and the final Secure Tropos actor and goal models.
The so-called SODR-Tool (screenshots shown in Figure 7) supports the engineer
in all steps of SODR. The tool involves the graphical and data layer. The graph-
ical layer provides various modeling primitives used in SODR. The data layer

Fig. 7. The SODR-Tool

maintains the collection of data objects separated from graphical layer to enable
reuse of common concepts across projects in which SODR is used. The engineer
can search through textual information in all models and trees. Elements of the
models can be labeled and the same labels applied across several models: we use
the labels to indicate (i) that an asset in the Tropos actor and goal model is
referenced in an argumentation tree, and (ii) that a fragment of an argumenta-
tion tree gives rise to a particular security constraint in the Secure Tropos goal
model. That way, we keep traces between models and trees used at various steps
of SODR. The argument visualization module supports argumentation at Steps
2 and 3 by procuding “box and arrow” diagrams in which premises and con-
clusions are formulated as statements. These are represented by nodes that can
be joined by lines to display inferences. This module also incorporates a math-
ematical toolkit that allows the detection of relationships between arguments
(i.e., subargument, disagreement, counterargumentation, and defeat, according
to definitions from Simari and Loui [10]) in the argument base, provided that
the arguments are written in a predicate logic.

5 Related Work

SODR focuses on the recording of the arguments and the justification behind
the detection of SOs and the definition of responses thereto. SODR is compatible
with and complementary to existing frameworks for security requirements [13,
16, 17], system requirements [8, 7, 18] and risk analysis [19]. Moreover, the con-
cepts and definitions used in SODR follow the terminology proposed by security
standars like British BS7799 standard [14], ISO/IEC 2382 [20] and Common
Criteria for information technology security evaluation [12].

We now consider efforts comparable to SODR. A number of approaches to
securing IS during modeling with the Unified Modeling Language (UML) have
been proposed. Jurjens [21] extends UML to enable the analysis of UML di-
agrams for security issues and responses thereto. Lodderstedt and colleagues
[22] provide a modeling language for security to facilitate the specification of
access control information and the automatic generation of the necessary in-

frastructure. McDermott and Fox [23] add the so-called abuse case model to
complement UML use case modeling. Actors realizing abuse cases are malicious
users, whose actions result in security problems. Sindre and Opdahl [24] also de-
ploy a variant of use cases to represent interactions in which security problems
occur. De Landtsheer and colleagues [18] extend the KAOS RE framework for
late RE with concepts of anti-models and anti-goals. Anti-models are generated
cocurrently with actor and goal models to point out goals that malicious users
may have, along with measures countering the anti goals. Haley and colleagues’
[13] approach derives security goals from assets. They use argumentation for the
verification of systems ability to satisfy security requirements. Oladimeji and
colleagues [25] represent security issues as negative softgoals of malicious users.
Negative contribution is introduced to highlight that a softgoal negatively af-
fects another goal. They suggest a four step process in which they elicit threats,
analyze them, and evaluate counter-measures. Liu and colleagues [17] suggest a
methodology for dealing with security and privacy requirements within Tropos.
The approach consists of performing security analysis of an actor and goal model
in which some actors may be interested in attacking the system and in which any
dependency may be a source of security issues. Given attackers’ intentions and
capabilities, it is possible to identify potential issues both within and outside
dependencies. Counter-measures are then defined. Mouratidis and colleagues’
[26] extend Tropos with modeling primitives relevant for security. At early RE,
a security actor and goal model is first built. Security constraints are imposed
to actors to render the dependencies secure, and this by restricting actors’ in-
dividual goals. This approach has also been integrated with UMLSec to ensure
that security constraints identified at the early RE level have correspondent no-
tions at late RE and detailed design, when UML is used by the engineer [27].
Security has also been addressed by introducing notions of trust and delegation
[28], where trust among actors is studied in order to facilitate the distribution
of responsibilities and thereby redefine dependencies. Attack trees have been
defined by Schneier in [29] as a formal, methodological way of describing the
security of systems, based on varying attacks scenarios. The tree structure is
formed by an attack goal (root) and its nodes representing a sequence of attack
steps (AND-decomposition) or alternatives ways (OR-decomposition). Such ap-
proach is particularly suited for security analysis of existing systems or systems
in design stage.

Our work is original in that none of the above approaches considers the
recording and analysis of the arguments and the justification process behind the
detection of SOs and the definition of responses thereto. Without SODR, argu-
ments behind decisions remain implicit, and lost over time. More importantly,
SODR provides a process that is systematic and rigorous, while allowing the
treatment of qualitative and quantitative information represented in an infor-
mal or formal notation. We have shown throughout the paper the relevance of
argumentation and justification for improving the security of IS.

6 Conclusions

Representing and reasoning about security obstacles (SOs) as early in the de-
velopment process as at the early RE stage, is critical: the cost of responding
to SOs missed at early RE only increase as SOs cascade to later development
stages. It is also difficult, as early requirements have no predefined format: they
can be informally or formally stated, qualitative or quantitative.

We argue that, while there is modeling support for the representation of SOs
and responses thereto at early RE, reasoning support can be improved. In re-
sponse, we propose the SO Detection and Response (SODR) method to guide
the detection of SO and the definition of responses during the construction of
secure models in early RE. SODR relies on a justification process, in which argu-
ments for potential SO of IS assets are made explicit, submitted to justification,
leading either to the identification of justified responses to the given SOs or the
rejection of SOs. SODR thereby ensures that the arguments behind the iden-
tified SOs and chosen responses are explicit, so that they can be constructed,
openly questioned, and revised in a structured and rigorous manner.

Future work focuses on the following concerns. Definitions that we use for
argument trees and the justification process can be used for basis of automated
analysis of argument trees (e.g., automated detection of argument conflicts). This
requires, however, that the content of arguments is written in a mathematical
logic. We need to evaluate in practice the costs and benefits of doing so, and then,
if appropriate work on automated reasoning over arguments by reusing results in
applied AI. While useful, the SODR-Tool can be improved to enable preliminary
automated checking of argument conflicts by suggesting potentially conflicting
arguments by text parsing and subsequent similarity measurement between the
textual content. This is expected to facilitate the use of SODR in large projects.
A further important concern is the ordering of arguments — namely, we have
observed in practice that not all arguments are considered of equal quality and
importance by the stakeholders. We are investigating methods for improving the
quality of argument content, and we intend to use preference relationships to
order arguments and use this information in the justification process. Moreover,
we are interested in relating SODR to risk management frameworks.

References

1. van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements
engineering. IEEE Trans. Software Eng. 26(10) (2000) 978–1005

2. Devanbu, P.T., Stubblebine, S.G.: Software engineering for security: a roadmap.
In: ICSE - Future of SE Track. (2000) 227–239

3. Minsky, N., Ungureanu, V.: Unified support for heterogeneous security policies in
distributed systems. In: Proc. Security Conf. (USENIX). (1998)

4. Mouratidis, H., Giorgini, P., eds.: Integrating Security and Software Engineering:
Advances and Future Vision. Idea Group, IGI Publishing Group (2006)

5. CERT: Vulnerability remediation statistics. Technical report, Carnegie Mellon
University (2007)

6. Chesevar, C.I., Maguitman, A.G., Loui, R.P.: Logical models of argument. ACM
Comput. Surv. 32(4) (2000) 337–383

7. Mouratidis, H., Giorgini, P., Manson, G.A.: When security meets software engi-
neering: a case of modelling secure information systems. Inf. Syst. 30(8) (2005)

8. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information
systems engineering: the tropos project. Inf. Syst. 27(6) (2002) 365–389

9. Mouratidis, H., Philp, I., Manson, G.: Analysis and design of esap: an integrated
health and social care information system. In: Proceedings of the International
Symposium on Health Information Management Research. (2002)

10. Simari, G.R., Loui, R.P.: A mathematical treatment of defeasible reasoning and
its implementation. Artif. Intell. 53(2-3) (1992) 125–157

11. Hitchcock, D.: The concept of argument, and informal logic. In: Philosophy of
Logic, Handbook of the Philosophy of Science 5. Elsevier (2006)

12. Criteria, C.: Common criteria for information technology security evaluation ver-
sion 3.1 rev.1. Technical report, Common Criteria (2006)

13. Haley, C.B., Moffett, J.D., Laney, R., Nuseibeh, B.: A framework for security
requirements engineering. In: Proc. SESS ’06. (2006)

14. Institute, B.S.: Code of Practice for Information Security Management. BSI (1999)
15. Louridas, P., Loucopoulos, P.: A generic model for reflective design. ACM Trans.

Softw. Eng. Methodol. 9(2) (2000) 199–237
16. T.P., K.: Arguing Safety - A Systematic Approach to Safety Case Management.

PhD thesis, University of York (1999)
17. Liu, L., Yu, E., Mylopoulos, J.: Security and privacy requirements analysis within

a social setting. In: Proc. RE ’03. (2003)
18. van Lamsweerde, A., Brohez, S., Landtsheer, R.D., Janssens, D.: From system goals

to intruder anti-goals: Attack generation and resolution for security requirements
engineering. In: RHAS’03 Worksh. (2003) 49–56

19. Alberts, C.J., Behrens, S.G., Pethia, R.D., Wilson, W.R.: Operationally critical
threat, asset, and vulnerability evaluation (octave) framework, version 1.0. Tech-
nical report, Carnegie Mellon University (1999)

20. ISO: ISO/IEC 2382-8: Information technology – Vocabulary – Part 8: Security.
International Organization for Standardization (1998)

21. Jurjens, J.: Umlsec: Extending uml for secure systems development. In: Proc.
UML ’02, London, UK, Springer-Verlag (2002) 412–425

22. Lodderstedt, T., Basin, D., Doser, J.: Secureuml: A uml-based modeling language
for model-driven security. In: UML’02. (2002)

23. Mcdermott, J., Fox, C.: Using abuse case models for security requirements analysis.
In: Proc. ACSAC ’99. (1999)

24. Sindre, G., Opdahl, L.: Eliciting security requirements with misuse cases. Require-
ments Engineering 10(1) (2005) 34–44

25. Oladimeji, E., Supakkul, S., Chung, L.: Security threat modeling and analysis: A
goal-oriented approach. In: Proc. IASTED. (2006)

26. Mouratidis, H., Giorgini, P., Manson, G.: Modelling secure multiagent systems.
In: Proc. AAMAS, New York, NY, USA, ACM Press (2003) 859–866

27. Mouratidis, H., Jurjens, J., Fox, J.: Towards a comprehensive framework for secure
systems development. (2006) 48–62

28. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Requirements engineering
meets trust management: Model, methodology, and reasoning. In: iTrust. (2004)

29. Schneier, B.: Attack trees. Dr. Dobb’s Journal (1999)

