
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Problem-Oriented Feature Interaction Detection in Software Product Lines

Classen, Andreas

Published in:
Proceedings of the 9th International Conference on Feature Interactions in Software and Communication
Systems (ICFI'07), Grenoble

Publication date:
2007

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Classen, A 2007, Problem-Oriented Feature Interaction Detection in Software Product Lines: Short paper
presented at the Doctoral Symposium. in L du & B Jean-Luc (eds), Proceedings of the 9th International
Conference on Feature Interactions in Software and Communication Systems (ICFI'07), Grenoble: Doctoral
Symposium. IOS Press, Amsterdam, pp. 217-220.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/326259421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/problemoriented-feature-interaction-detection-in-software-product-lines(3790adbb-fc2d-44b0-91ab-c1eb8d8d3e8f).html

Problem-Oriented Feature Interaction
Detection in Software Product Lines

Andreas CLASSEN a

a acs@info.fundp.ac.be
Computer Science Department, University of Namur

5000 Namur, Belgium

In Proceedings of the 9th International Conference on Feature Interactions in Software and Communication Systems (ICFI’07), Grenoble, France, September 2007, pp.
217–220. Short paper presented at the Doctoral Symposium.

Abstract.
Feature interaction detection in the context of systems that are highly integrated

into their environment, such as embedded or software-intensive systems, is differ-
ent from classical feature interaction detection. The physical environment may be
“the source of additional interactions” as interactions may be caused by, and occur
in, the system’s physical environment.

We thus propose an approach for automated detection of feature interactions in
the environment which is based on feature diagrams capturing variability, problem
diagrams describing the system in its context and event calculus formulae allowing
for automated reasoning. Feasibility of the approach is demonstrated through a
proof-of-concept tool implementation and an in-depth illustration.

Keywords. Formal Verification, Feature Interactions, Software Product Lines,
Requirements Engineering

1. Introduction

Systems that are highly integrated into their environment are a focus of feature interac-
tion detection research [5]. As Metzger points out, feature interaction detection in this
context is different from classical feature interaction detection, because the physical envi-
ronment may be “the source of additional interactions” [5]. This was already illustrated
by Calder et al. [1] on a control system for automobiles. Another interesting example
is the case of smart home control systems [4,5]. Interactions can actually pass through
shared environment variables. The heating service of such a system, for instance, can
start a fan, causing false alarms in the security service [4]. These features (or services)
are often developed independently, either by different service providers or by different
teams in a company offering a large product line [7] to their customers.

Eventually, this means that feature interaction detection in this context has to take
into account two different perspectives. On the one hand, the software product lines
perspective is needed in order to determine the actual systems that have to be verified.
The system description perspective, on the other hand, has to be considered because
it provides the descriptions against which interaction-related properties will eventually
be checked. In the context of our approach, we further structure this last perspective
by adopting the Zave and Jackson requirements engineering reference model [9] which

divides system descriptions into three categories: requirements (R), domain assump-
tions (W) and specifications (S).

2. Feature Interaction Detection

Feature interactions in embedded and environment-integrated systems can generally be
seen as causal chains initiated by one service that interfere with other services, causing
undesirable behaviour of the system. Depending on the system’s purpose and on its envi-
ronment, these causal chains can be very complex, and it would probably be impossible
to verify them by hand. We thus suggest an automatable approach based on formal verifi-
cation. Basically, we mostly follow current off-line approaches by doing model-checking
on feature descriptions in order to detect interactions.

Figure 1. An illustration of the feature interaction detection procedure, scetching the detection of the interac-
tion between security and heating service in a smart home.

The basic idea of our approach is to verify each product of a product line, based on
the first proof obligation of the Zave and Jackson framework [9], equation 1, which serves
as correctness proof for a system (including systems consisting of a single feature):

S, W ` R (1)

This proof obligation expresses the fact that the requirements have to be satisfied if both,
the specification and the assumptions about the world, are satisfied. Now given a set of
features p = f1..fn, expressed as Si, Wi, Ri for i = 1..n and n ≥ 2, we say that features
f1..fn interact if the following holds:

• they satisfy their individual requirements in isolation,

∀fi ∈ p . Si, Wi ` Ri (2)

• they do not satisfy the conjunction of these requirements when put together,
n∧

i=1

Si,

n∧
i=1

Wi 6`
n∧

i=1

Ri (3)

• and removing any feature from p results in a set of features that do not interact.

∀fk ∈ p .
∧

i∈{1..k−1,k+1..n}

Si,
∧

i∈{1..k−1,k+1..n}

Wi `
n∧

i∈{1..k−1,k+1..n}

Ri (4)

A feature interaction in a system s = {f1..fq} is then any set p ⊆ s such that its fea-
tures interact.1 In addition to equation 1, there are other proof obligations that need to
be verified, namely to make sure that equation 1 is not trivially verified. The approach
can then be described by four different algorithms covering the various verifications, the
detail of which is presented in [2]. Fig. 1 illustrates this by showing how the previously
mentioned interaction between security and heating service in a smart home is detected.
Both features are first verified in isolation, and then in combination. The first verifica-
tion is assumed to pass, the second assumed to fail. This indicates that an interaction is
present, which will then probably lead to changes in the feature diagram or in the system
descriptions in order to avoid or correct the interaction.

The algorithms defining our approach build on the two perspectives introduced in
Section 1. Feature diagrams are used to model and describe the variability, and eventually
to determine the different systems belonging to the product line, i.e. the valid configura-
tions of the feature diagram [8]. In turn, each feature of this feature diagram is mapped
to a problem diagram [3] providing its three constituent descriptions: R,W and S.

Figure 2. FIFramework screenshot and workflow.

3. Automation

The procedure sketched above can be largely automated, provided an automatable for-
malism for expressing the R,W and S descriptions is chosen. In our approach we chose
the event calculus, which is based on first-order predicate logic, and allows intuitive ex-
pression of causal relations in the real world [6]. Furthermore, the event calculus comes
with several implementations of which we chose Mueller’s discrete event calculus rea-

1Note that in classical logic, the satisfaction relation would be monotonic and systems satisfying this def-
inition impossible. Depending on the formalism used, however, the relation may be not monotonic, hence its
interest.

soner (Decreasoner) [6], which basically transforms a set of event calculus formulae into
a SAT problem, passes it to a SAT-solver and interprets the results.

On top of Decreasoner we built an Eclipse-plugin, FIFramework,2 which is effec-
tively a proof-of-concept implementation of the suggested approach. Fig. 2 gives a high
level overview of the workflow and of what the tool does. Essentially, the user specifies
his product line in terms of features, each feature being represented by a file containing
event calculus formulae. These files as well as the list of products serve as an input for
FIFramework, which composes the descriptions relevant to the proof, sends them to De-
creasoner and interprets the result. The tool thus automates all verification steps of the
approach.

4. Conclusion

The high degree of integration in the environment, as in the case of embedded control
devices or software-intensive systems, leads to feature interactions that are not restricted
to the software, but may be caused by, and occur in, the physical environment of the
system. We thus propose an approach for automated detection of feature interactions
in the environment which is based on feature diagrams capturing variability, problem
diagrams describing the system in its context and event calculus formulae allowing for
automated reasoning. A proof-of-concept tool implementation for the Eclispe platform
demonstrates its feasibility. Furthermore, an in-depth illustration, based on the smart
home example case, is provided in [2].

Benefits of this approach to feature interaction detection are (i) its foundations in a
well accepted requirements engineering reference model, which allows the approach to
be very general; (ii) the ability to detect interactions exterior to the machine and (iii) an
approach that not only focuses on single-system development, but also covers the case
of product line engineering.

References

[1] Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Feature interaction: a critical review and
considered forecast. Computer Networks 41(1) (2003) 115–141

[2] Classen, A.: Problem-oriented modelling and verification of software product lines. Master’s thesis,
University of Namur, Belgium (June 2007)

[3] Jackson, M.A.: Problem frames: analyzing and structuring software development problems. Addison-
Wesley Longman Publishing, Boston, MA, USA (2001)

[4] Kolberg, M., Magill, E.H., Wilson, M.: Compatibility issues between services supporting networked
appliances. IEEE Comm. Magazine 41(11) (2003) 136–147

[5] Metzger, A.: Feature interactions in embedded control systems. Computer Networks 45 (2004) 625–644
[6] Mueller, E.T.: Commonsense Reasoning. Morgan Kaufmann (2006)
[7] Pohl, K., Bockle, G., van der Linden, F.: Software Product Line Engineering: Foundations, Principles

and Techniques. Springer (July 2005)
[8] Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Feature Diagrams: A Survey and A For-

mal Semantics. In: Proceedings of the 14th IEEE International Requirements Engineering Conference
(RE’06), Minneapolis, Minnesota, USA (September 2006) 139–148

[9] Zave, P., Jackson, M.A.: Four dark corners of requirements engineering. ACM Transactions on Software
Engineering and Methodology 6(1) (1997) 1–30

2Available online at www.classen.be/references/mscthesis.

