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Role of Wood anomalies in optical properties of thin metallic films with a
bidimensional array of subwavelength holes
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Recents works deal with the optical transmission on arrays
of subwavelength holes in a metallic layer deposited on a di-
electric substrate. Making the system as realistic as possible,
we perform simulations to enlighten the experimental data.
This paper proposes an investigation of the optical proper-
ties related to the transmission of such devices. Numerical
simulations give theoretical results in good agreement with
experiment and we observe that the transmission and reflec-
tion behaviour correspond to Fano’s profile correlated with
resonant response of the eigen modes coupled with nonhomo-
geneous diffraction orders. We thus conclude that the trans-
mission properties observed could conceivably be explained as
resulting from resonant Wood’s anomalies.

I. INTRODUCTION

Recent papers deal with optical experiments and sim-
ulations with various metallic gratings constituted of a
thin metallic layer deposited on a dielectric substrate [1-
18]. Such materials are typically one- or two-dimensional
photonic crystals with a finite spatial extension in the di-
rection perpendicular to the plane where the permittivity
is periodic.

One-dimensional gratings have been widelely studied
in particular on account of interesting effects knows as
Wood’s anomalies [19-30]. As shown by A. Hessel and
A.A. Oliner [19] this effect take two distinct forms. One
occurs in diffraction gratings at Rayleigh’s wavelengths
if a diffracted order becomes tangent to the plane of the
grating. The diffracted beam intensity increases just be-
fore the diffracted order vanishes. The other is related
to a resonance effect [19]. Such resonances come from
coupling between the non-homogeneous diffraction orders
and the eigenmodes of the grating. Both types of anoma-
lies may occur separately and independently, or appear
together. M. Neviere and D. Maystre [20,21] presented
a wide study of the causes of Wood’s anomalies. In ad-
dition to the Rayleigh’s wavelengths they discovered two
another possible origins of such anomalies. One, called
”plasmons anomalies”, occurs when the surface plasmons
of a metallic grating are excited. The other appears when
a dielectric coating is deposited on a metallic grating and

corresponds to guided modes resonances in the dielectric
layer. In fact, both anomalies correspond to differents
cases of the resonance effect report by A. Hessel and
A.A. Oliner [19]. As shown by A. Hessel and A.A. Oliner
[19], depending on the type of periodic structure the two
kind of anomalies (i.e. Rayleigh’s anomalies or resonant
anomalies) may occur separately or are almost superim-
posed. At last, we note that these concepts have been
first suggested by V. U Fano [22].

In this paper we perform simulations to examine the
behaviour of the optical properties of a device which
consists of arrays of subwavelength cylindrical holes in
a chromium layer deposited on a quartz substrate (Fig.
1). The values of permittivity being those obtained from
experiments [31]. We present the key role of Rayleigh’s
wavelength and eigenmodes resonances in the behaviour
of the zeroth order reflexion and the transmission.

Our numerical study rests on the following method.
Taking into account the periodicity of the device, the
permittivity is first described by a Fourier series. Then,
the electromagnetic field is described by Bloch’s waves
which can too be described by a Fourier series. In this
context, Maxwell’s equations take the form of a matri-
cial first order differential equation along to the z axis
perpendicular to the x and y axis where the permittiv-
ity is periodic [32,33]. The heart of the method is to
solve this equation. One approach deals with the prop-
agation of the solution step by step by using the scat-
tering matrix formalism. More explicitly, we numerically
divide the grating along to the z axis into many thick
layers for which we calculate the scattering matrix. The
whole scattering matrix of the system is obtain by using
a special combination law applied step by step to each
S matrices along to the z axis. Indeed, it is well know
that S matrices and their combinations are much better
conditionned than transfert matrices [33]. Note that our
algorithm has been compared with accuracy with others
method such as FDTD or KKR [34]. In the present work
the convergence is obtain from two harmonics only, i.e.
for 25 vectors of the reciprocal lattice. Further more, here
there is no convergence problem associated with discon-
tinuities such that we need to use Li’s method [35,36].

In the following, for a square grating of parameter a,
note that, ¢ = 2% (i€, + j€,), such that the couple
of integers (i, j) denotes the corresponding vector of the
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reciprocal lattice, i.e. diffraction order.

Reflected and transmitted amplitudes are linked to
the incident field by the use of the S scattering matrix
which is calculated by solving Maxwell’s equation using
a Fourier series [32]. Let us define Fs.q: as the scattered
field, and Fj, as the incident field, such that

Ny Ny

Fscat = Eli ) Fln = Ez (1)
N'u Nd
X, X,

where A is a vector containing all the component A—.

The subscipts v and d are written for ”vacuum” and ”di-
electric substrate” respectively, and the superscripts +
and — denote the positive and negative direction along
the z axis for the field propagation. For each vector g
of the reciprocal lattice, N;? and X;? are the s and p
amplitudes of the reflected field, respectively, and N;?)
and X +_> , that of the transmitted field in the device.
On the same way, N, and X', define the s and p po-

larizations amphtudes of the incident field, respectively.
Then, Fi.qt is connected to F;;, via the scattering matrix
such as:

S()\)En()\) = Fscat()‘) (2)

Then, the flux J of the Poynting vector through a unit
cell area o, for a incident homogeneous plane wave is
given by:

g =% e x el 3
v 2uow w0z { UH’ + Uﬁ)}] 3)
+__09 +
T _2u0w;kd?Z_N_" +’X ” (4)
g
w2 — _}2
X@(Ed(w)c—2 - k//-i- g‘ )

o 2 2
J- = — k ‘N‘ ‘ ‘X‘ ‘ 5
v 2M0w Z v?z |: U?’ + v? ( )

<oz ~[Fy+7])

where the electromagnetic field has been written as a
Fourier series [32]. ©(x) is the Heaviside function which
gives 0 for x < 0 and +1 for x > 0. ?// and w are
the wave vector component parallel to the surface, and
the pulsation of an incident plane wave on the system,
respectively. We also define

W2
= (eu( c)

kg, k) + gG1*)'/? (6)

where €, represents either the permittivity of the vac-
uum (g,), or of the dielectric substrate (g4). We note
that if k, 5. becomes imaginary then diffraction orders

becomes non-homogeneous. The wavelength (A = 2I¢)
values such that k, 7. = 0 are called Rayleigh’s wave-
length.

We define the zeroth order transmission and reflection
as,

2
g + +
Tio) = 2MOWJ+ d() UN + ’Xd,ﬁ ] (7)
and
g
Ry = e k5. ‘ —>‘ + ‘X ‘ (8)

Moreover, numerical computation of the poles of S(\)
is important in order to study the eigenmodes of the
structure. Let us write eq.8 as

Sil(/\)Fscat(/\) = Fm(/\) (9)

In this way, the eingenmodes of the structure are solution
of eq. 9 in the case Fj,(A\) =0, i.e.

STHN) Facat(\) = 0 (10)

This is a typical homogeneous problem, well know in the
theory of gratings [20,21,36,37]. Complex wavelengths
Ay = /\ff—i—i)\f,, for which eq.(10) has non-trivial solutions,
are the poles of det(S(\)) as we have

") =0 (11)

In this way, if we extract the singular part of S corre-
sponding to the eigenmodes of the structure, we can write
S on a analytical form as [20,21,37,38]

R
N=2 /\—n/\,,
n

This is a generalized Laurent series, where R,, are the
residues associated which each poles A;. Sp(A) is the
holomorphic part of S which corresponds to purely non-
resonant processes.

Thus, assuming that f()) is the m' component of
Ficart(N), we have, for the expression of f()\) in the neigh-
boorhood of one pole A, [20,21,37,38]

det(S™

+ Sh(N) (12)

th

_ ™
where r, = [R, F,],, and s(\) = [Sp(N) Fin),,-
II. RESULTS

The calculated transmission against the wavelength of
the incident wave on the surface is shown in Fig. 2 for the



zeroth diffraction order, for light incidence normal to the
surface and electric field polarized parallel to x axis. The
diameter of holes (d = 500nm) and the thickness of the
film (h = 100nm) have been chosen according to the ex-
perimental conditions [1,2]. The solid, and dashed lines
represent the transmission for a square grating of param-
eter a = 1 and 1.2pm, respectively, whereas the dotted
line corresponds to the transmission for a similar system
without holes. In Fig. 2, it is shown that the transmission
increases with the wavelength, and that it is character-
ized by sudden changes in the transmission marked 1 to
4 on the figure. If wavelength 1,2 and 4 correspond to
minima, the wavelength 3 is nevertheless not explicitely
a minimum, as we will explain it later. These values are
shifted toward larger wavelengths when the grating size
increases, and the minima disappear when considering
a system without hole. Note that these results qualita-
tively agree with the experimental data of Ebbesen et al.
[1,2]. Values of wavelength marked 1 to 4 are given in
the first column of table 1. In the second column we give
the values of the positions of maxima marked A to C on
the figure.

In Fig. 3 we give the calculated reflection as a function
of the wavelength of the incident wave on the surface for
the zeroth diffraction order, for both gratings and for the
system without holes. The reflection curves are charac-
terized by maxima (numbered 1 to 4) which correspond
to the minima calculated in the transmission curves. On
the same way, the location of these maxima are shifted to-
wards larger wavelengths when the grating size increases,
and they disappear when the surface is uniform. Then,
it appears that the sudden decreases in transmission is
correlated to an increased reflection. Moreover, the posi-
tions of the correlated maxima and minima are calculated
at wavelengths which seems to correspond to Rayleigh’s
wavelengths as shown in the first column of Table 2. We
have reported the positions of the maxima of transmis-
sion, marked A to C, on the Fig. 3. We note that the
maxima in transmission are not correlated with specifics
values of reflection.

In Fig. 4 we give the calculated absorption against
the wavelength of the incident wave on the surface, for
the zeroth diffraction order. The solid line denotes the
absorption for the square grating of parameter a = 1um,
the dashed line denotes the absorption for the square
grating of parameter a = 1,2um, and the dotted line
denotes the absorption of a similar system without holes.
We have reported the positions of minima in Fig. 2,
numbered 1 to 4, and the positions of points A to C which
denote the maxima. These peaks are found at longer
wavelengths when the grating size increases, and they
disappear when the surface is uniform. Thus it appears
that the sudden decrease in reflectance is caused by a
combination of increased reflectance and increased loss
due to surface roughness.

Previous work [1-18] have identified the convex regions
in transmittance, i.e., those regions between the local
minima, as regions where plasmons exist. If this were

indeed the case, then we would expect to observe local
maxima in the loss of energy. However, if we compare
figure 2 with figure 4, we see that the convex regions in
figure 2 are not matched by increased loss in figure 4, nev-
ertheless the maxima of absorption seems to correspond
to the minima of transmission.

On the basis of these results, we investigate the role
of Wood’s anomalies in the physical interpretation of our
simulations. In this way, we emphazise the existence of
eigenmodes and their role via resonant coupling with the
electromagnetic field.

First, we are stuying poles and resonances of the grat-
ing. As explained in the introduction the existence of
eigenmodes is linked to the existence of poles of the scat-
tering matrix. If we make the assumption that the role of
purely non-resonant process is negligible, i.e. s(A) ~ 0,
then eq. (13) can be approximated by the following ex-
pression [20,21,37,38] in the vicinity of one pole A+ i)}

Frear(V)] ~ I (14)

YO+

which gives a typical resonance curve where the wave-
length of resonance A is equal to /\ , and where the

width I' at f | Fscat(Ar)] is equal to 2/\717. Before search-

ing for typical resonance in the behaviour of diffraction
orders we check the existence of poles of the S matrix.

In the third column in Table 2, we give the poles
Ay = /\717% + i/\f7 of the S matrix computed numerically.
We keep only the values whose real part is close to the
values (1) to (4) in Fig. 2 and Fig. 3. This result sug-
gests the possibility of resonant processes. In order to
investigate such assumption, we have studied the behav-
ior of the intensity of some specific diffraction orders on
the vacuum/metal and substrate/metal interfaces. More
precisely, we have considered the diffraction orders cor-
responding to the Rayleigh’s wavelengths connected to
the positions of the minima obtained in the transmission
curves. We compare the results with the transmission
and reflection curves.

In Fig. 5, curve (a) shows the modulus of the
electromagnetic field of the orders (+1,0) at the sub-
strate/metal interface, as a function of the wavelength.
The same is true for the curve (b) but the interface is
now vacuum,/metal. Curve (c) shows the reflected (0, 0)
order. One notices the presence of localized peaks in
curves (a) and (b). Simulations allow one to check that
orders (+1,0) have only p polarization. These peaks co-
incide with the minima of the curve of transmission of
Fig. 2. Since these peaks correspond to orders with p
polarization, they are probably resonances of the struc-
ture. To confirm this, we evaluate the poles by measur-
ing the wavelength of resonance Ar (which is equal to
AK), and the width T at \/— |Fscat(Ar)| (which is equal

to 2/\717). We obtain results given in the fourth column
in Table 2. One can easilly compare these results with
those of the third column in table 2. This confirms the



resonant characteristic of the diffraction orders (+1,0)
at the metal/vacuum and metal/substrate interfaces (A.
Hessel and A.A. Oliner has called such diffraction orders
"resonant diffraction orders” [19]). Note that the orders
(£1,0) at the vacuum/metal interface and (+1,=+1) at
the substrate/metal interface has poles with closer real
part. This means that both modes are almost degener-
ated with the consequence that both modes effects can’t
be clearly distinguished particularly for the transmission.
So, the wavelength (3) does not seem to provide a mini-
mum as clearly as the wavelength (2).

Fig. 6 shows the behavior of the amplitude modulus
of the diffraction orders (0,+1) for the vacuum/metal
(curve (a)) and for the substrate/metal (curve (b)) in-
terfaces, respectively, as a function of the wavelength.
Curve (c) corresponds to the order (0,0) in transmis-
sion. All these orders exist only with a polarization s.
One notices that the minima of these curves are corre-
lated with the peaks of resonances. On the other hand,
we know that orders with s polarization cannot present
resonances. From this point of view, the minima of the
curve of transmission of the Fig. 2 are correlated with
the resonances, while the behavior of the convex parts of
the curves of transmission can be interpreted according
to the profile of the orders of polarization p.

Let us now turn to Wood’s anomalies. We consider the
case where purely non-resonant process can’t be totaly
neglected such that we suppose s(A) ~ sg. Thus, it is
easy to show that eq.(13) can be written as [19,22]

(A= AB)? 4 AL 2

|Fscat(A)|2 = 2 |SO|2 (15)
(/\ — /\,If) + )\{7 2
with
R _ \R R I _ I I
A=A, —v and A, =\, —v (16)
where
v= - (17)

Coefficient v shows the significance of resonant effect
compared with purely non-resonant effects. \, = A\ +
i\l corresponds to the zero of eq. (13) and (15). Eq. (15)
corresponds to the profiles of Fig. 7. This last expression
takes into account the interferences between resonant and
purely non-resonant processes. In this way, the profiles
which correspond to the eq. (14), i.e. a purely reso-
nant process, tend to become asymmetric. As shown in
Fig. 7, dashed curve shows a typically resonant process
like those described by eq.(14). On the other hand, solid
and dash-dotted curves show a typical behaviour where
a minimum is followed by a maximum, and vice versa as-
suming the values of v. These profiles tend to |so|2 when
A tends to +00. We note that these properties, which re-
sult from the interference of resonant and non-resonant
processes, are similare to those described by A.A. Hessel,
A. Oliner [19] and V.U. Fano [22]. For this reason the

profiles like those described on Fig. 7 are often called
”Fano’s profiles”.

In order to refine the interpretation of our results, we
represent on Fig. 8 the three curves (transmission, re-
flection and resonant diffraction order) on a more re-
stricted domain of wavelength in the range 1300 — 1900
nm. In this range, since Rayleigh’s wavelength is as-
sociated to the resonant diffraction order (1,0) for the
metal/substrate interface, we represent the amplitude of
this order only. The solid line denotes the transmission,
the dashed line denotes the reflection and the dash-dotted
line denotes the amplitude of the resonant diffraction or-
der. We also indicate the position of the corresponding
Rayleigh wavelength, as well as that of the maximum
of resonance (vertical dotted lines). One labels (a) the
maximum of the transmission, (b) the minimum of the
reflection and (¢) the maximum of the transmission.

One notices that the maximum of resonance does not
strictly coincide with the maximum of reflection and the
minimum of transmission. Also, one notices that the
maximum of reflection does not coincides with the min-
imum of transmission. On the other hand Rayleigh’s
wavelength seems well to correspond with the minimum
of transmission. We notice that the diffraction order
is homogeneous for wavelengths lower than Rayleigh’s
wavelength. For this reason, the resonance peak cannot
be observed for wavelengths lower than Rayleigh’s wave-
lengths. So, if one intends to take away the position of
resonance of the value of Rayleigh’s wavelength, one can
make it a priori only in the direction of increasing wave-
lengths. Should the opposite occur, the position of the
resonance peak tends towards Rayleigh’s value.

As in Fig. 8, we represent on Fig. 9 the three curves
(transmission, reflection and resonant diffraction order)
for the same physical parameters. However, whereas in
the previous case the value of the permittivity of the
metal film was that of chromium [31], we use now the
value equal to —25 + 71 which does not depend of the
wavelength. Such value of the permittivity does not cor-
respond to an existing material. We just choose this per-
mittivity value for the metal such that we select a peak of
resonance farther from Rayleigh’s wavelength than in the
previous case. The choice of this value only comes from
the research of the compromise between the position from
the peak of resonance and its width so as to illustrate our
matter clearly. As in Fig. 8, (a) is the maximum of the
transmission, (b) the minimum of the reflection and (c)
the maximum of the transmission. One names (d) the
minimum of the transmission.

This time, one notices in a clear way the absence of
coincidence between the peak of resonance and the min-
ima (respectively the maxima) of reflection (respectively
of transmission). Contrary to what is generally assumed
[1-16], one sees that the nonresonant Wood’s anomalies
connected to Rayleigh’s wavelengths are not the cause of
the minima of transmission. They simply correspond to
a discontinuity of each of the three curves. It is partic-
ularly important to note that the profiles of the trans-



mission and the reflection correspond to Fano’s profiles
as discussed below. Omne can interpret the behavior of
these spectra in term of resonant Wood’s anomalies in
the sense described by V. U. Fano [22] and by A. Hessel
and A.A. Oliner [19].

III. DISCUSSION

In order to understand the physical mechanisms re-
sponsible for the behavior observed on Fig. 8 and Fig.
9, we have represented in Fig. 10 the corresponding in-
volved processes. On Fig. 10, circles A and B represent
diffracting elements (e.g. holes). So, an incident homo-
geneous wave (i) diffracts in A and generates a nonhomo-
geneous resonant diffraction order (e) (e.g. (1,0)). Such
order is coupled with a eigenmode which is characterized
by a complex wavelength A,. It becomes possible to ex-
cite this eigenmode which leads to a feedback reaction
on the order (e). This process is related to the resonant
term.

The diffraction order (e) diffracts in B and generates
a contribution to the homogenous zero diffraction order
(0,0). Thus, one can ideally expect to observe a reso-
nant profile, i.e. lorentzian like, for the homogenous zero
diffraction order (0, 0) which appears in B. Nevertheless,
it is necessary to account for nonresonant diffraction pro-
cesses related to the holomorphic term. So, incident wave
(i), here represented in B, generates a homogeneous zero
order. Then, one takes into account the interference of
two rates, resonant and non resonant contribution to zero
order. The resulting lineshapes are typically the Fano’s
profiles which correspond to resonant process where one
takes into account nonresonant effects. One notes that a
maximum in transmission does not necessary correspond
to the maximum of resonance of a diffraction order. It
is exactly the process observed on Fig. 9 where the res-
onance is associated with the diffraction order (1,0). So,
the Fano’s profiles of the reflection and the transmission,
result from the superimposing of resonant and nonreso-
nant contribution to the zero diffraction order.

If one refers to Fig. 8, the concrete case of the
chromium, the resonance is closer to Rayleigh’s wave-
length than in the case of the Fig. 9. In another hand
the positions of the maximum and the minimum of a
Fano’s profile are determined by the resonance position.
More precisely, if the resonance is shifted in a given direc-
tion, the maximum and the minimum of the Fano’s pro-
file tends to be shifted in the same way. Consequently,
in the present case, the maximum and the minimum of
the asymmetric Fano’s profile is shifted toward Rayleigh’s
wavelength in the same way as the resonant response. In
Fig. 8, in the case of the transmission, minimum (d) is
not of the same kind of the minimum (d) in Fig. 9. This
is not a true minima of the Fano’s profile. All occurs
like if the minimum of the Fano’s profile disappears be-
hind the Rayleigh’s wavelength towards low wavelength.

In other words, the minimum (d) in Fig. 8 comes from
the cut off and the discontinuity introduce between the
minimum and the maximum of the Fano’s profile at the
Rayleigh’s wavelength. On the other hand, note that
maximum (a) of the transmission and maximum (c) of
the reflection just localized rests after Rayleigh’s wave-
length. For the reflection, minima (b) tends to be shifted
towards low wavelength.

Previous works [1-16] have identified the convex re-
gions in transmission, i.e., the regions between the min-
ima, as regions where plasmons exist. The present study
tends to qualify this hypothesis, since it shows that the
experimental results can be described in terms of Wood’s
anomalies. Indeed, as shown by V.U. Fano [22], A. Hes-
sel and A.A. Oliner [19], for one dimensionnal gratings,
Wood’s anomalies can be treated in terms of eigenmodes
grating excitation. In this context, these authors demon-
strated the asymmetric behavior of the intensities of the
homogeneous diffraction orders according to the wave-
length. One can conclude that the results of T.W. Ebbe-
sen’s experiments correspond to the observation of reso-
nant Wood’s anomalies.

Here, as we use metal in our device, it seems natural to
assume that these resonances are surface plasmons res-
onances. Nevertheless, it is important to note that our
analysis don’t make any hypothesis on the origin of the
eigenmodes. This involve that it could be possible to ob-
tain transmission curves similar to those for metals, by
substituted the surface plasmons by polaritons or guided
modes. This work is in progress.

IV. CONCLUSION

Using a system similar to that used in recent papers
[1,2], we have shown that numerical simulations give the-
oretical results in good qualitative agreement with exper-
iments. Previous authors have suggested that the results
are due to the presence of the metallic layer, such that the
surface plasmons could give rise to transmission curves
of these characteristics. We have performed simulations
using the same geometry, and we have observed that
the transmission and reflection behaviour correspond to
Fano’s profiles correlated with resonant response of the
eigenmodes coupled with nonhomogeneous diffraction or-
ders. We thus conclude that the transmission properties
observed could conceivably be explained as resulting from
resonant Wood’s anomalies.
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V. CAPTIONS

FIG. 1 Diagrammatic view of the system under study.
Transmission and reflection are calculated for the zeroth
order and at normal incidence as in experiments.

FIG. 2 Percentage transmission of the incident wave
against its wavelength on the surface, for the zeroth
diffraction order. The solid line denotes the transmis-
sion for the square grating of parameter a = 1um, the
dashed line denotes the transmission for the square grat-
ing of parameter a = 1.2um, and the dotted line denotes
the transmission of a similar system without holes. The
points numbered 1 to 4 denote sudden changes in the
transmission whereas the points A to C denote the max-
ima.

FIG. 3 Reflection against the wavelength of the inci-
dent wave on the surface, for the zeroth diffraction order.
The solid line denotes the reflection for the square grat-
ing of parameter a = 1um, the dashed line denotes the
reflection for the square grating of parameter a = 1, 2um,
and the dotted line denotes the reflection of a similar sys-
tem without holes. We note that the minima in Fig. 2
are matched by peaks in the reflection (see the previous
figure), numbered 1 to 4. We have reported the points A
to C which denote the positions of maxima of the trans-
mission.

FIG. 4 Absorption against the wavelength of the in-
cident wave on the surface, for the zeroth diffraction
order. The solid line denotes the absorption for the
square grating of parameter a = 1um, the dashed line de-
notes the absorption for the square grating of parameter
a = 1,2um, and the dotted line denotes the absorption
of a similar system without holes. We have reported the
positions of minima in Fig. 2, numbered 1 to 4, and the
positions of points A to C which denote the maxima.

FIG. 5 Curve (a) shows the modulus of the electromag-
netic field of the orders (+1,0) at the substrate/metal
interface, as a function of the wavelength. Idem for the
curve (b) but for the vacuum/metal interface. Curve (c)
shows the reflected (0, 0) order. One notices the presence
of localized peaks in curves (a) and (b). The amplitude
of the incident field is equal to 1 V.m™!.



FIG. 6 Behavior of the amplitude modulus of the
diffraction orders (0,+1) respectively for the interface
vacuum/metal (curve (a)) and for the interface sub-
strate/metal (curve (b)) as a function of the wavelength.
Curve (c¢) corresponds to the order (0,0) in transmission.
All these orders exist only with a polarization s. The
amplitude of the incident field is equal to 1 V.m ™.

FIG. 7 Some examples of typical Fano’s profiles.

FIG. 8 The set of three curves (transmission, reflec-
tion and resonant diffraction order) on a more restricted
domain of wavelength included between 1300 nm and
on 1900 nm. In this domain Rayleigh’s wavelength is
associated to diffraction order (1,0) for the interface
metal/substrate. We also indicate the position of the
wavelength of corresponding Rayleigh as well as that of
the maximum of resonance. One names (a) the maximum
of the transmission, (b) the minimum of the reflection and
(¢) the maximum of the reflection. Solid line : transmis-
sion, dashed line : reflection, dash-dotted line : resonant
diffraction order. The amplitude of the incident field is
equal to 1 V.m~™1.

FIG. 9 Similar system than in Fig. 7 except for the
value of the permittivity of the metal film here equal to
—2541il. Asin Fig. 7, (a) is the maximum of the trans-
mission, (b) the minimum of the reflection and (c) the
maximum of the reflection. One names (d) the minimum
of the transmission. The amplitude of the incident field
is equal to 1 V.m™1!.

FIG. 10 Diagrammatic representation of the processes
responsible of the behaviour of the transmission proper-
ties.

TABLE 1 : Positions of minima and maxima of trans-
mission.

TABLE 2 : Comparison between Rayleigh’s wave-
lengths (second column) of some diffraction orders (first
column) with the poles of the scattering matrix computed
numerically (third column) and evaluated by measuring
the wavelength of resonance A, and the width I' of some
resonance curves (fourth column). (v/m) and (s/m) de-
note vacuum/metal interface and substrate/metal inter-
face respectively.
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Diffraction Rayleigh's Poles (nm) Extrapolated
Order Wavelength (nm) Poles (nm)
(1,1) vim 707.1 717.75 +i20 711.86 +1i19.21
(1,0) vim 1000 1010 +i27 1013.26 +i25.12
(1,1) s/m 1025.37 1010.25 +i59 1042.81 +i56.14
(1,0) s/m 1445.29 1438.75 + i54 1462.41 +i71
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Minima (nm) Maxima (nm)
(1) 708.90 (A) 951.21
(2) 1001.44 (B) 1320.57
(4) 1447.64 (C) 1678.12




