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Emulation of a Downlink Spreading Factor
Allocation Strategy for Rel’99 UMTS

Van Peteghem H. and Schumacher L.
Pôle “Réseaux et Sécurité”

FUNDP - The University of Namur
Namur, Belgium

{hvp,lsc}@info.fundp.ac.be

Abstract— Based on the end-to-end delay experienced by the
user, this paper derives a spreading factor allocation map for
the four UMTS traffic classes and for four user profiles with the
help of a computer testbed emulating the UTRAN. Using this
allocation map, the performance of the UTRAN is measured in
terms of cell throughput and blocking rate in different scenarios.

I. INTRODUCTION

With the huge improvement of bandwidth and strong
support of Quality of Service (QoS) in the Universal
Mobile Telecommunications System (UMTS) core network,
the UMTS Terrestrial Radio Access Network (UTRAN),
especially its air interface, is now the bottleneck for the
delivery of value added services. Indeed, compared to wired
links, wireless links have a smaller bandwidth and are then
not fitted to effectively support QoS as we consider it over
a wired network. Therefore, an adaptation has to be made
to take into account the lower bandwidth of such links. To
overcome this problem, the air interface resources have to be
carefully managed according to the traffic to be sent over the
wireless interface.

The rest of this paper is organised as follows. Section
II exposes the link existing between the Spreading Factor
(SF) and the data rate available. Section III presents our SF
allocation scheme based on the four UMTS traffic classes
and four user profiles. Section IV evaluates the resulting
SF allocation map to the operator requirements such as cell
throughput and blocking rate. Section V explains our next
steps in this research. Finally conclusions are drawn in Section
VI.

II. SPREADING FACTORS AND DATA RATES

Since the UMTS uses Wideband Code Division Multiple
Access (WCDMA) as air interface, it has to respect the
spreading/despreading concept [1]. Transmissions from a sin-
gle source are separated by channelisation codes. The spread-
ing/channelisation codes of UTRAN are based on the Orthogo-
nal Variable Spreading Factor (OVSF) technique. These codes
are picked from a code tree related to one sector and managed
at the Radio Network Controller (RNC).

The spreading code allocated to a flow and the bandwidth
it will receive are tightly linked: the SF defines how many

chips are used to code one user data symbol. As a result,
the longer the spreading code, the lower the data rate. As
WCDMA supports a maximal chip rate of 3.84 Mcps and the
available downlink SFs range from 4 to 512, Table I (excerpt
from [2]) gives the available downlink data rates in Rel’99
UMTS.

TABLE I

AVAILABLE DOWNLINK DATA RATES IN REL’99 UMTS

Spreading Factor Maximum User Data Rate
(½ rate coding)

512 3 kbps

256 7.5 kbps

128 15 kbps

64 30 kbps

32 60 kbps

16 120 kbps

8 240 kbps

4 480 kbps

From our point of view, the SF allocation scheme is based
on two main properties: the requirements of the data flow itself
(traffic class) and the expectation of the user equipment (UE)
receiving the data flow (user profile).

A. Traffic Classes

In [3], the 3rd Generation Partnership Project (3GPP) has
defined four traffic classes that need to be supported in UMTS.
In order to characterise them, it might be useful to focus on
four representative applications (Table II).

TABLE II

TRAFFIC CLASSES AND APPLICATIONS

3GPP Traffic Classes Representative Applications
Conversational VoIP
Interactive Web browsing
Streaming Video streaming
Background E-mail

According to which traffic class a given flow belongs to, its
QoS requirements in terms of delay, packet loss and bandwidth
will vary. An important aspect to take into account during the
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SF allocation is that the Conversational and Streaming classes
are considered as real-time flows, which means their end-to-
end delay has to be upper-bounded by a few hundred ms.
On the other hand, the non real-time traffic sets less stringent
delay requirements. However, the Interactive class involves
human participation and then requires a delay respecting this
responsive behaviour (< 1 s). Finally, the packet delay is not
that much important for the Background traffic. Nevertheless
delays higher than 10 s should be avoided.

In accordance with [4], we will assume the following
traffic classes distribution: 27% Conversational sessions, 48%
Interactive, 10% Streaming and 15% Background.

B. User Profiles

We have define four different user profiles which seems to
be easily mapped on a real cellular network:

• Platinum: Business Contracts. These users will get the
best treatment and the larger bandwidth possible accord-
ing to the network state.

• Gold: Postpaid Contracts. These are expensive contracts
which allow the user to easily access the different appli-
cations.

• Silver: Postpaid Contracts. These are the classical con-
tracts for an ordinary use of a mobile terminal.

• Bronze: Prepaid Contract. The less expensive contracts
designed for a minimal use of a mobile terminal. These
users’ data will mainly be scheduled as best-effort traffic.

In our emulations, we will assume a 5% Platinum, 10%
Gold, 15% Silver and 70% Bronze distribution inferred from
postpaid-prepaid ratios recently published by Belgian cellular
network operators.

III. SPREADING FACTOR ALLOCATION SCHEME

A. Emulation Assumptions

Our work is based on a computer testbed emulating the
UTRAN [5]. As shown on Fig. 1, it consists of 9 PCs
respectively standing for the RNC, 4 NodeBs and 4 sets of
UEs. We emulate 4 macrocell trisectorial NodeBs, each of
them managing a population of UEs over a 27 km2 world
surface.

Synthetic traffic whose distribution complies with the char-
acteristics of the 4 traffic classes is generated from (to) the
RNC to (from) the PC emulating a given UE in the downlink
(uplink). These data flows are mapped to Dedicated CHannels
(DCHs) which suffer from DCH allocation delay and queueing
delay at the NodeB.

Our UEs are mobile and evolve in an urban area. They are
mapped on four specific UE speeds: 3 km/h representing a
pedestrian walk, 30 and 70 km/h which represents a UE on
board of a vehicle inside a city and 120 km/h which repre-
sents a UE embarked on a train or on a car on the speedway.
The UE speed is fixed at the beginning of the emulation and it
remains constant until the end of the emulation. In the urban
area scenario, the UE speed distribution is the following: 30%
at 3 km/h, 40% at 30 km/h, 20% at 70 km/h and 10% at
120 km/h.

We finally assume a perfect Radio Link Control (RLC) layer
such that there is no retransmission delay and we allocate a
quarter of the OVSF tree to signalisation and data transfer over
common channels.

Fig. 1. UTRAN testbed representation.

With all these hypotheses, we have emulate several scenar-
ios testing different SF allocations for all traffic classes. We
were looking for the range of SFs that would enable to meet
the mean delay requirements of the 4 traffic classes (Section
II-A). Emulation was performed with a single UE, to avoid
any code starvation or blocking at this stage of the study. The
different kinds of traffic were generated with an inter-session
arrival mean of 300 s. The emulation length has been fixed to
5, 000 s.

B. Results

Figs. 2-3 represent the mean packet delay. This delay is
computed by post-processing the log files of the synthetic traf-
fic generator program [6]. It corresponds to a user experienced
delay since it is calculated at the application layer. Note that
the mean packet delay only refers to delaying in the UTRAN.
Core network delays should be added to get the full end-to-end
delay.
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Fig. 2. Real-time traffic mean packet delay vs. allocated SF.

Fig. 2 depicts the results obtained for the real-time flows
which have a stringent delay requirement. The edge delay is
upper-bounded by 100 ms so as to leave some time budget
margin for delays in the core network.

The Conversational class is based on a 12.2 kbps AMR
vocoder. The network data flow hence never exceeds 20 kbps.
In these circumstances, it would be a waste of network
resources to allocate a SF < 64, whatever the user profile.

The Streaming flows are divided in two categories: high
and low quality. This traffic class is the most bandwidth
demanding, so it will require the smallest SF. We can see in
Fig. 2 that the high quality undergoes unacceptable packet
delay using SF > 4. The same conclusion can be drawn
for the low quality streaming with SF > 8. Therefore we
decided to give the possibility to use a SF = 4 (high quality
streaming) only to the Platinum users. Should the OVSF tree
not accept their request, Platinum users would enjoy a lower
quality streaming session with SF = 8, the only SF available
for the other user profiles.
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Fig. 3. Non real-time traffic mean packet delay vs. allocated SF.

The non real-time traffic mean packet delay is shown on
Fig. 3. We notice that the Interactive traffic class suffers from
a moderate delay regardless of the received SF. This can be
explained by the nature of the traffic. Web browsing consists
of multiple little downloads (successive pages) separated with
page reading times. The bandwidth required for this traffic

class is rather small. The SF allocation logic here is to allocate
a 16-chip spreading code to the Platinum users allowing them
to downgrade their request to a SF = 512 if the OVSF tree
has not enough room to accept their previous request. In a
similar way, the Gold users begin with a SF = 32, the Silver
ones with SF = 64 and the Bronze users with SF = 128. All
of them have also the opportunity to downgrade to 512.

Finally the Background traffic represents massive down-
loads and thus, even if it does not require a small mean packet
delay, it has to receive some bandwidth. That is why we choose
to allocate a SF = 8 to Platinum users which can degrade to
16 or even 32. Gold users have the ability to access a SF
= 16 or 32 and the only spreading code length available for
the other users is 32.

We choose not to allocate smaller SFs to non real-time
traffic since the very substantial delay gain that would result
would be obtained at the risk of code starvation. Table III
summarises our SF allocation map.

TABLE III

SF ALLOCATION MAP

Platinum Gold Silver Bronze
Conversational [64] [64] [64] [64]

Interactive [16 − 512] [32 − 512] [64 − 512] [128 − 512]

Streaming (H) [4] n.a. n.a. n.a.

Streaming (L) [8] [8] [8] [8]

Background [8 − 32] [16 − 32] [32] [32]

IV. BLOCKING RATE AND CELL THROUGHPUT

In the previous Section, the SF allocation scheme has
not taken into account the operator’s point of view, i.e. the
blocking rate and the cell throughput levels. We have then
injected this SF allocation map into new emulations in order
to evaluate its impact in three different scenarios:

• the operator’s worst case (OWC), where all the UEs get
the smallest possible SF or are blocked,

• the user’s worst case (UWC), where all of them receive
their maximal SF, and

• the OWC where downgrading is enabled in order to avoid
blocking as much as possible (OWC+).

Note that when a UE receives a SF at the beginning of
a session, be it minimal, maximal or degraded, it keeps it
until the end of its currently opened session. To optimise the
code placement and replacement of successive SF requests
and to avoid the fragmentation of the OVSF tree, we have
implemented the crowded-first algorithm proposed in [7].

We decided to load each sector with 8 UEs (total of 96
UEs in the emulated 4-cell world) generating the different
kinds of traffic which will definitely lead to blocked calls.
The emulation length has been fixed at 5, 400 s.

The different blocking rates are presented on Fig. 4. As we
could expect, the number of accepted SF queries in the UWC
is greater than in the OWC. Indeed, in the UWC scenario the
OVSF tree fills up more slowly since all the UEs requests their
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maximal SF. That leads to less resource consumption and less
blocked SF queries.

We can also see that the OWC+ gives approximately the
same number of accepted queries as in the OWC. But, thanks
to the downgrading, the number of blocked queries is lower.

The cell throughputs obtained in the different cases are
depicted on Fig. 5. In the UWC, it appears clearly that even
if the UEs are not able to use as much as bandwidth as they
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Fig. 5. Cdf of cell throughputs.

would need, more UEs are able to transfer data which leads
to a better cell throughput. In the OWC, the UEs are able to
use all the bandwidth they need but, due to the OVSF tree
structure, all of them waste a little bit of resource leading to
a smaller cell throughput.

The OWC+ scenario gives approximately the same cell
throughput as the OWC due to the small number of degraded
queries (about 1%).
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(a) Conversational.
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(b) Interactive.
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(c) Streaming.
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Fig. 6. Cdfs of mean packet delay.



TABLE IV

TRAFFIC CLASSES MEAN PACKET DELAY

Traffic Classes OWC UWC OWC+ Limit

Conversational 23 ms 21 ms 20 ms < 100 ms

Interactive 97 ms 392 ms 87 ms < 1, 000 ms

Streaming 3 ms 3 ms 3 ms < 100 ms

Background 2, 119 ms 2, 375 ms 2, 017 ms < 10, 000 ms

We can finally compare the packet delay in the different
case. Table IV summarises these values for the different traffic
classes where Fig. 6 depicts their cdfs, and equivalently the
ratio of satisfied users.

We can see that the ratio of satisfied users (whose mean
packet delay is lower than traffic class requirement) are
identical for Conversational and Streaming traffic classes.
This is obvious since a single SF is available regardless of
the scenario. Only Interactive and Background traffic could
be impacted by downgrading the SF allocated to a session.
Indeed, in the UWC this ratio is slightly lower than in the
OWC and OWC+ scenarios.

The mean packet delay is also higher in the UWC,
although still below its relevant upper bound. This difference
is extremely noticeable in the Interactive case where the
SF allocated to a session can be as high as 512, where in
Background it can not be greater than 32.

It is to be said that the difference between the OWC
and the OWC+ scenarios is rather small here due to the
small number of degraded sessions. The OWC+ scenario
would certainly give better results by allowing downgrading
to ongoing sessions.

V. FUTURE WORKS

Disregarding the Dedicated Shared CHannel (DSCH), user’s
data may use two different Rel’99 UMTS transport channels
to transit over wireless interface:

• DCH: it carries a single user data with a fixed bit rate
depending on the spreading factor allocated by the RNC,
and

• Forward Access CHannel (FACH): it carries small
amounts of different user data using time multiplexing.
Its bandwidth is rather small since it is not supposed to
support large data transfers.

Based on the 3GPP standardisation [1], the transport channel
used depends on the traffic class (Table V) according to a
decision of the RNC.

In this paper we have directly allocated a DCH to each user
session to identify the optimal SF allocation map. The idea
now will be to allow the Interactive and Background sessions
to use the FACH and to implement the following channel
switching policy: a connection uses the common channel

(FACH) until we get an indication that the current burst might
be long (the queue length exceeds a fixed threshold), then the
RNC shall try to allocate a DCH to that connection. In the

opposite way, when no more packets are sent using the DCH,
a timer is initialised and the connection remains on the DCH
during this period. If there are no new arrivals within this
timeout period, the connection is switched back to FACH.

TABLE V

TRAFFIC CLASSES AND CHANNELS MAPPING

3GPP Traffic Classes Authorised Transport Channel(s)

Conversational DCH

Interactive FACH or DCH

Streaming DCH

Background FACH or DCH

These two parameters are respectively known as upswitch
threshold (from DCH to FACH) and downswitch timer (from
FACH to DCH) [8] and have to be optimally set up.

VI. CONCLUSION

We have presented the first results obtained in terms of QoS
management using our computer testbed. We have established
a SF allocation map giving the best possible treatment to a
data flow depending on its traffic class and the user profile
of the UE receiving the flow. We have then evaluated this
allocation scheme with respect to the operators requirements
(cell throughput and blocked rate) in different scenarios.
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