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EXPONENTIALLY LONG TIME STABILITY FORNON{LINEARIZABLE ANALYTIC GERMS OF (C n; 0).TIMOTEO CARLETTIAbstra
t. We study the Siegel{S
hr�oder 
enter problem on the lineariza-tion of analyti
 germs of di�eomorphisms in several 
omplex variables, in theGevrey{s, s > 0 
ategory. We introdu
e a new arithmeti
al 
ondition ofBruno type on the linear part of the given germ, whi
h ensures the existen
eof a Gevrey{s formal linearization. We use this fa
t to prove the e�e
tivestability, i.e. stability for �nite but long time, of neighborhoods of the originfor the analyti
 germ. 1. Introdu
tionIn this paper we 
onsider the Siegel{S
hr�oder 
enter problem [He, CM, Ca℄ insome 
lass of ultradi�erentiable germs of (C n; 0), n � 1; let us 
onsider two 
lassesof formal power series A1 � A2 � C n [[z1; : : : ; zn℄℄, 
losed w.r.t. to derivationand 
omposition, let F 2 A1 and 
all DF (0) = A 2 GL(n; C ), we say that Fis linearizable in A2 if there exists H 2 A2, normalized with DH(0) = I, whi
hsolves 1:(1.1) F ÆH(z) = H ÆRA(z) ;where RA(z) = Az. In the following we will assume A to be diagonal with eigen-values of unit modulus �1; : : : ; �n, thus A = diag(�1 ; : : : ; �n ).If both A1 and A2 
oin
ide with the ring of formal power series then generi
allythe formal linearization holds if and only if A is non{resonant, namely for all � 2 Nnsu
h that j�j =P1�i�n �i � 2, and for all j 2 f1; : : : ; ng then �� � �j 6= 0 (wherewe used the standard notation �� = ��11 : : : ��nn ).When F is a germ of analyti
 di�eomorphisms de�ned in a neighborhood ofthe origin and we want to solve (1.1) in the same 
lass of analyti
 germs, we haveto 
onsider several 
ases. If A is the Poin
ar�e domain, namely sup1�j�n j�j j < 1or sup1�j�n j��1j j < 1, then Koenigs [Ko℄ and Poin
ar�e [Po℄ proved that everyanalyti
 germ F 2 Diff(C n; 0) su
h that F (0) = 0 and DF (0) = A, is analyti
allylinearizable. When A is not in the Poin
ar�e domain, we say that it is in the Siegeldomain; the question is harder and some additional arithmeti
al 
onditions on (�j)jare needed (see [He℄ x17 page 158).Date: July 20, 2004.Key words and phrases. Siegel 
enter problem, Gevrey 
lass, Bruno 
ondition, e�e
tive stabil-ity, Nekoroshev like estimates.1Here F ÆH means the 
omposition of F and H; in the following we will denote the 
ompositionof F n-times with itself, by Fn instead of F Æn. 1



2 TIMOTEO CARLETTILet p 2 N , p � 2 and let us de�ne for non{resonant �1; : : : ; �n:(1.2) 
(p) = min1�j�n inf�2Nn0<j�j<p j�� � �j j ;we say that A veri�es a Diophantine 
ondition of type (
; �) if there exist 
 > 0and � � n� 1 su
h that for all � 2 Nn nf0g we have 
(j�j) � 
j�j�� . Siegel [Si℄ in1942 for the n = 1 
ase and then Sternberg [St℄ and Gray [Gr℄ in the general 
aseproved that if A veri�es a Diophantine 
ondition then the linearization problem hasan analyti
 solution. Bruno [Br℄ weakened the arithmeti
al 
ondition by asking the
onvergen
e of the series Pk log 
�1(2k+1)2k . We remark that in the one dimensional
ase the Bruno 
ondition 2 is optimal, as proved by Yo

oz [Yo℄.In [CM℄ authors studied the Siegel{S
hr�oder 
enter problem in the 
ase of generalalgebras of ultradi�erentiable germs of (C ; 0), in
luding the Gevrey 
ase. In [Ca℄ themultidimensional 
ase is 
onsidered: if A1 = A2 and A veri�es a Bruno 
ondition,then every F 2 A1 with F (0) = 0 and DF (0) = A is linearizable in A2, whereas ifA1 is properly 
ontained in A2 new 
onditions weaker than Bruno are suÆ
ient toensure linearizability in A2.In this paper we 
onsider in detail the 
ase where A1 is the ring of germs ofanalyti
 di�eomorphisms at the origin of n � 1 
omplex variables, and A2 is thealgebra of Gevrey{s, s > 0, formal power series: the Gevrey{s linearization ofanalyti
 germs.Let F̂ =P f�z�, (f�)�2Nn � C n be a formal power series, then we say that itis Gevrey{s [Ba, Ra℄, s > 0, if there exist two positive 
onstants C1; C2 su
h that:(1.3) jf�j � C1C�sj�j2 (j�j!)s 8� 2 Nn :We denote the 
lass of all formal ve
tor valued power series Gevrey{s by Cs. It is
losed w.r.t. derivation and 
omposition.In the Gevrey{s 
ase the arithmeti
al 
ondition introdu
ed in [CM, Ca℄ will be
alled Bruno{s 
ondition, s > 0: for short A 2 Bs if there exists a stri
tly in
reasingsequen
e of positive integer (pk)k su
h that:(1.4) lim supj�j!+10�2 �(�)Xm=0 log
�1(pm+1)pm � s log j�j1A < +1 ;where �(�) is de�ned by p�(�) � j�j < p�(�)+1.Remark 1.1. This de�nition re
all the 
lassi
al one of Bruno [Br℄, where �rstone suppose the existen
e of a stri
tly in
reasing sequen
e of positive integer su
hthat (1.4) holds, then one 
an prove (see [Br℄ xIV page 222) that one 
an take anexponentially growing sequen
e, e.g. pk = 2k. This holds also in our 
ase, in fa
twe 
an prove that (1.4) is equivalent to:lim supN!+1  NXl=0 log
�1(2l+1)2l � sN2 log 2! < +1 :2In this 
ase let ! 2 (0; 1) n Q su
h that � = e2�i! and let (qn)n be the denominators of the
onvergents [HW℄ to !, then the Bruno 
ondition is equivalent to the 
onvergen
e of the seriesPk�0 log qk+1qk .



NEKHOROSHEV{LIKE ESTIMATE FOR NON{LINEARIZABLE ANALYTIC GERMS. 3Let us give a sket
h of the proof of this 
laim. Take a sequen
e (pk) for whi
h (1.4)holds, then we 
an �nd sequen
es of positive integer (mk)k and (lk)k su
h that:m0 = 0, lk � 1, mk+1 = mk + lk and2mk � pk < 2mk+1 < � � � < 2mk+lk � pk+1 < 2mk+lk+1 :The fun
tion 
�1(p) is in
reasing, hen
e: 
�1(2q+1) < 
�1(pk+1) for all q =mk; : : : ;mk + lk � 1, and so:(1.5) mk+lk�1Xq=mk log 
�1(2q+1)2q < 4 log
�1(pk+1)pk :Take any j�j > 1, the 
orresponding �(�) and �x N(�) = m�(�) + l�(�) � 2. Then,dividing the sum of (1.4) into pie
es from mh to mh + lh � 1, for h = 0; : : : ; �(�),and using estimate (1.5) for ea
h pie
e, we get:20�2 �(�)Xm=0 log
�1(pm+1)pm � s log j�j1A > N(�)Xl=0 log
�1(2l+1)2l � 2s log j�j :Now the 
laim follows remarking that �2s log j�j � �sN(�)2 log 2 + 
.For real number, the Bruno{s 
ondition 
an be slightly weakened (see [CM℄); let! 2 (0; 1) n Q , then the Bruno{s, s > 0, 
ondition reads:(1.6) lim supk!+1 0� kXj=0 log qj+1qj � s log qk1A < +1 ;where (qk)k are the denominators of the 
onvergents to !. We remark that in both
ases the new 
onditions are weaker than Bruno 
ondition, whi
h is re
overed whens = 0. In dimension one we prove that the set Ss Bs is PSL(2;Z){invariant (seeremark 3.1). The main result of [Ca℄ in the 
ase of Gevrey{s 
lasses reads:Theorem 1.2 (Gevrey{s linearization). Let �1; : : : ; �n be 
omplex numbers of unitmodulus and A = diag(�1 ; : : : ; �n ); let D1 = fz 2 C n : jzij < 1 ; 1 � i � ng be theisotropi
 polydisk of radius 1 and let F : D1 ! C n be an analyti
 fun
tion, su
hthat F (z) = Az+f(z), with f(0) = Df(0) = 0. If A is non{resonant and veri�es aBruno{s, s > 0, 
ondition (1.4) (or (1.6) when n = 1), then there exists a formalGevrey{s linearization Ĥ whi
h solves (1.1).The aim of this paper is to show that the Gevrey 
hara
ter of the formal lin-earization 
an give information 
on
erning the dynami
s of the analyti
 germ. LetF (z) = Az + f(z) be a germ of analyti
 di�eomorphism verifying the hypothesisof Theorem 1.2, assume moreover F not to be analyti
ally linearizable. We willshow that even if there is not Siegel disk, where the dynami
s of F is 
onjugate tothe dynami
s of its linear part, we have an open neighborhood of the origin whi
h\behaves as a Siegel disk" under the iterates of F for �nite but long time, whi
hresults exponentially long: the e�e
tive stability [GDFGS℄ of the �xed point.In the 
ase of analyti
 linearization, jH�1i (z)j, i = 1; : : : ; n, (whi
h is well de�nedsuÆ
iently 
lose to the origin be
ause H is tangent to the identity) is 
onstantalong the orbits, namely it is a �rst integral and jFm(z0)j is bounded for all m andsuÆ
iently small jz0j.We will prove that any non{zero z0 belonging to a polydisk of suÆ
iently smallradius r > 0, 
an be iterate a number of times K = O(expfr�1=sg), being s > 0



4 TIMOTEO CARLETTIthe Gevrey exponent of the formal linearization, and we 
an �nd an almost �rstintegral: a fun
tion whi
h varies by a quantity of order r under m � K iterations,whi
h implies that Fm(z0) is well de�ned and bounded for m � K. More pre
iselywe prove the followingTheorem 1.3. Let �1; : : : ; �n be 
omplex numbers of unit modulus and A = diag(�1 ; : : : ; �n );let F : D1 ! C n be an analyti
 and univalent fun
tion, su
h that F (z) = Az+f(z),with f(0) = Df(0) = 0. If A is non{resonant and veri�es a Bruno{s, s > 0, 
on-dition (1.4) (or (1.6) when n = 1), then for all suÆ
iently small 0 < r�� < 1, thereexist positive 
onstants A��; B��; C�� su
h that for all 0 < jz0j < r��=2, the m{thiterate of z0 by F is well de�ned and veri�es jzmj = jFm(z0)j � C��r��, for allm � K� = jA�1�� expnB�� (r��=jz0j)1=s ok.The hypothesis on the domain for F is a natural normalization 
ondition beingthe whole problem invariant by homothety.In se
tion 3 we 
ompare our stability result with the stronger results whi
h 
anbe proved using Yo

oz's renormalization method [PM2℄ in the 
ase n = 1. More-over we dis
uss the relation between our Bruno{s 
ondition and the arithmeti
al
ondition of P�erez{Mar
o [PM1, PM2℄ ensuring that in the non{linearizable 
asethe �xed point is a

umulate by periodi
 orbits.A
knwoledgements. I am grateful to D. Sauzin for a very stimulating dis
ussion
on
erning Gevrey 
lasses and asymptoti
 analysis.2. Proof of the main TheoremIn this part we will prove our main result, Theorem 1.3. The proof will be di-vided into three steps: �rst we use the Gevrey{s 
hara
ter of the formal lineariza-tion Ĥ , given by Theorem 1.2, to �nd an approximate solution of the 
onjuga
yequation (1.1) up to a (exponentially) small 
orre
tion (paragraph 2.1); then weprove an iterative Lemma allowing us to 
ontrol how the small error introdu
ed inthe solution propagates (paragraph 2.2). Finally we 
olle
t all the informations to
on
lude the proof (paragraph 2.3).2.1. Determination of an approximate solution. We apply Theorem 1.2: theformal power series solution Ĥ belongs to Cs, as well as its inverse Ĥ�1 whi
h solves(formally):(2.1) Ĥ�1 Æ F (z) = RA Æ Ĥ�1(z) :Sin
e Ĥ�1 =Ph�z� 2 Cs, there exist positive 
onstants A1 and B1 su
h that(2.2) jh�j � A1B�sj�j1 (j�j!)s 8 j�j � 1 :For any positive integer N we 
onsider the ve
torial polynomial, sum of homoge-neous ve
tor monomials of degree 1 � l � N , de�ned by: HN (z) =PNl=1Pj�j=l h�z�and the Remainder Fun
tion:(2.3) RN (z) = HN Æ F (z)�RA Æ HN (z) :The following Proposition 
olle
ts some useful properties of the remainder fun
tion.Proposition 2.1. Let RN (z) be the remainder fun
tion de�ned in (2.3) and let� 2 Nn, then:1) ��zRN (0) = 0 if j�j � N .



NEKHOROSHEV{LIKE ESTIMATE FOR NON{LINEARIZABLE ANALYTIC GERMS. 52) For all 0 < r < 1 there exists a positive 
onstants A2 and B2 su
h that ifj�j � N + 1, then:��� 1�!��zRN (0)��� � A2r�j�jB�sN2 (N !)s :3) For all 0 < r < 1 and jzj < r=2 there exist positive 
onstants A3; B3 su
hthat:(2.4) jRN (z)j � A3B�sN3 (N !)s � jzjr �N+1 :Where we used the 
ompa
t notation 1�!��z = 1�1!:::�n! �j�j��1z1 :::��nzn .Proof. Statement 1) is an immediate 
onsequen
e of the de�nition of RN .To prove 2) we observe that RN (z) is an analyti
 fun
tion on D1, then one getsby Cau
hy's estimates for all 0 < r < 1 and for all j�j � N + 1:(2.5) ��� 1�!��zRN (0)��� � 1(2�)n 1rj�j+1 maxjzj=r jHN Æ F (z)j :Re
alling the Gevrey estimate (2.2) for HN and the analyti
ity of F we obtain:(2.6) ��� 1�!��zRN (0)��� � A2B�sN2 (N !)sr�j�j ;for some positive 
onstants A2 and B2 depending on the previous 
onstants, on thedimension n and on F .To prove 3) let us write the Taylor series RN (z) = Pj�j�N+1 1�!��zRN (0)z�,then the bound on derivatives (2.6) implies the estimate (2.4) for all jzj < r=2 andfor some positive 
onstants A3 and B3. �The bound (2.4) on RN (z) depends on the positive integer N , so we 
an deter-mine the value of N for whi
h the right hand side of (2.4) attains its minimum,that's Poin
ar�e's idea of summation at the smallest term.Lemma 2.2 (Summation at the smallest term). Let RN (z) de�ned as before and let0 < r� < 1=2 then there exist positive 
onstants A4; B4 su
h that for all 0 < jzj < r�we have:(2.7) jR �N (z)j � A4 expn�B4� r�jzj�1=s o ;where �N = bB4 (r�=jzj)1=s
 and bx
 denotes the integer part of x 2 R.Proof. Let us �x 0 < r� < 1=2, then for 0 < jzj < r� by Stirling formula we obtain:(2.8) jRN (z)j � A4 �NB�13 (jzj=r�)1=s�Ns e�sN ;for some positive 
onstant A4. The right hand side of (2.8) attains its minimumat �N = B3 (r�=jzj)1=s, evaluating the value of this minimum we get (2.7) withB4 = B3. �



6 TIMOTEO CARLETTI2.2. Control of the \errors". Let us de�ne H(z) = H �N (z) and R(z) = R �N (z),being �N the \optimal value" obtained in Lemma 2.2. We remark that H(z) doesn'tsolve (2.1) but the \error", R(z), is very small: exponentially small. We will provethat for initial 
onditions in a suÆ
iently small disk, one 
an iterate an exponentiallylarge number of times without leaving a disk, say, of double size.Lemma 2.3 (Iteration lemma). Let a; b; � and R be positive real numbers. Let us
onsider the sequen
e of positive number (�j)j�0 de�ned by:�0 = R and �j+1 = �j + a expf�b=��j g :Let K = bRa�1 expfb=(2R)�g
, then �j � 2R for all j � K.Proof. Let us prove by indu
tion on j that for all 0 � j � K we have(2.9) �j � R+ ja expf�b=(2R)�g ;then the 
laim will follow from (2.9) and the de�nition of K, in fa
t for all j � K:�j � R+ ja expf�b=(2R)�g � R +Ra�1 expfb=(2R)�ga expf�b=(2R)�g � 2R :The basis of indu
tion is easily veri�ed; assume (2.9) for all j � K � 1, we willprove it for j = K. By de�nition of (�j)j and the indu
tion hypothesis we have:�K = �K�1 + a expf�b=��K�1g �� R+ (K � 1)a expf�b=(2R)�g+ a expf�b=��K�1g ;we remark that from (2.9) with j = K � 1, using K � 1 < Ra�1 expfb=(2R)�g, weget �K�1 � 2R and expf�b=��K�1g � expf�b=(2R)�g. Then we 
on
lude:�K � R+ (K � 1)a expf�b=(2R)�g+ a expf�b=(2R)�g ;whi
h ends the indu
tion. �Let r� as in Lemma 2.2, de�ne �(z) = jH(z)j for all 0 < jzj < r�, then Lemma 2.2admits the following Corollary, whi
h allows us to 
ontrol the fun
tion �(z) on
onse
utive points of an orbit of F (z).Corollary 2.4. Let 0 < r� < 1=2, let r1 be the radius of the maximal polydisk whereH(z) is invertible and let r�� = min(r�; r1). Then there exist positive 
onstantsA�; B� su
h that for all 0 < jzj < r�� we have:(2.10) ����(F (z))� �(z)��� � A� expn�B�� r��(z)�1=s o :Proof. By de�nition �(F (z)) = jH Æ F (z)j and �(z) = jRA Æ H(z)j, sin
e j�j j = 1for 1 � j � n, and A = diag(�1 ; : : : ; �n), therefore:����(F (z))� �(z)��� � ���H Æ F (z)�RA Æ H(z)��� = jR(z)j ;and from Lemma 2.2 we get:(2.11) ����(F (z))� �(z)��� � A4 expn�B4� r�jzj�1=s o :We want to express this 
ondition in terms of �(z) instead of jzj, to do this we haveto 
onsider the distortion properties of H(z) and of its inverse. Let J(z) = �zH(z)be the Ja
obian of H(z) and let J1 = maxjzj�r1 jJ(z)j, where r1 has been de�nedpreviously. Let 0 < jzj < r1 and let us 
all z0 = H(z), 
learly jz0j � J1r1 = r2. Let



NEKHOROSHEV{LIKE ESTIMATE FOR NON{LINEARIZABLE ANALYTIC GERMS. 7us 
all J2 = maxjz0j<r2 j�z0H�1(z0)j, then for any 0 < jz0j < r2 there exists only onez su
h that z = H�1(z0), whi
h satis�es jzj � J2jz0j = J2jH(z)j.Let r�� = min(r�; r1) then from (2.11) for any 0 < jzj < r�� we get:����(F (z))� �(z)��� � A� expn�B�� r��(z)�1=s o ;where A� = A4 and B� = B4J�1=s2 . �2.3. End of the proof. We are now able to 
on
lude the proof of the main Theo-rem 1.3. Take any 0 < jz0j < r��=2 and let us de�ne �0 = jz0j, �m = �(Fm(z0)) forall positive integer m for whi
h Fm(z0) is well de�ned, by Corollary 2.4 we have:(2.12) �m � �m�1 +A� expn�B� (r�=�m�1)1=s o :Let us 
all R = jz0j, a = A�, b = B�r1=s� and � = 1=s, then we 
an apply Lemma 2.3,being �m � �m, to 
on
lude that:(2.13) �m � r�� 8m � K� = jjz0jA�1� expnB�� r�2jz0j�1=s ok :This implies thatH(zm) is well de�ned in this range of values ofm, it is not 
onstantand it evolves only by ���jH(zm)j � jH(z0)j��� � r��. Re
alling that zm = Fm(z0) wealso have jFm(z0)j � J2r�� and ���jzmj � jz0j��� � J2r�� for all 0 < jz0j < r��=2 and allm � K�.This 
on
lude the proof by setting A�� = 2A�r�1�� , B�� = B� (r�=(2r��))1=s andC�� = J2. 3. One dimensional 
aseIn this paper we proved that any analyti
 germs of di�eomorphisms of (C n; 0)with diagonal, non{resonant linear part has an e�e
tive stability domain, i.e. stableup to �nite but \long times", 
lose to the �xed point, provided the linear partveri�es a new arithmeti
al Bruno{like 
ondition (1.4) depending on a parameters > 0.Remark 3.1 (Invarian
e of Ss>0 Bs, n = 1 under the a
tion of PSL(2;Z)). The
ontinued fra
tion development [HW, MMY℄ of an irrational number ! gives us thesequen
es: (ak)k�0 and (!k)k�0. Then we introdu
e (�k)k��1 de�ned by ��1 = 1and for all integer k � 0: �k = Qkj=0 !k, whi
h veri�es : 1=2 < �kqk+1 < 1 andqn�n�1 + qn�1�n = 1, where qk's are the denominators of the 
ontinued fra
tiondevelopment of !. We 
laim that 
ondition Bruno{s (1.6) is equivalent to thefollowing one:(3.1) lim supk!+1 0� kXj=0 �j�1 log!�1j + s log�k�11A < +1 :This 
an be proved by using the relations between �l and ql, to obtain the bound,for all integer k > 0:��� kXl=0 ��l�1 log!l + log ql+1ql � ��� � kXl=0 ����l�1 log�lql+1���+����l�1 log�l�1���+���ql�1ql �l log ql+1��� � 18 ;



8 TIMOTEO CARLETTIwhere we used the 
onvergen
e of series P q�1l and P q�1l log ql (see [MMY℄ page272).To prove the invarian
e of Ss Bs under the a
tion of PSL(2;Z), is enough to
onsider its generators: T! = ! + 1 and S! = 1=!. For any irrational !, T a
tstrivially being �k(T!) = �k(!) for all k, whereas for S we have �k(!) = !�k�1(S!)for all k � 1. Let ! be an irrational and let !0 = !�1, let us also denote with a 0quantities given by the 
ontinued fra
tion algorithm applied to !0, then using (3.1)one 
an prove:!00� kXj=0 �0j�1 log!0j�1 + s!�10 log�0k�11A = C(!; s) + k+1Xj=0 �j�1 log!�1j + s log�k ;where C(!; s) = !0 �log!�11 � s log!0�+P1l=0 �l�1 log!�1l , from whi
h the 
laimfollows.Let us 
onsider a slightly stronger version of the Bruno{s 
ondition: ! 2 R nQbelongs to ~Bs if:(3.2) limk!+1 kXl=0 log ql+1ql � s log qk! < +1 ;where (qn)n are the 
onvergents to !.Remark 3.2. This new 
ondition is stronger than Bruno{s, be
ause the existen
eof the limit is required. One 
an 
onstru
t numbers ! whi
h verify Bs but not ~Bs,as follows.Let us 
all for short sk =Pkl=0 log ql+1ql � s log qk. Fix � > � > 0, Æ > 0 and tosimplify take s > (2+Æ)= log 2. We 
laim that one 
an 
hoose large enough positiveintegers k1 and a1; : : : ; ak1+1 su
h that:sk � sk�1 � Æ and sk1 2 (�; 2�) ;for instan
e take k1 > (��log q1)Æ�1 and indu
tively al+1 � �eÆql � ql�1ql�2 �2ql � ql�1� q�1l ,for all l = 1; : : : ; k1. Then one 
an take suÆ
iently many al's equal to one,ak1+1+l = 1 for l = 1; : : : ; 2k2 + 1, and verify that:sk1+1+2j � sk1+1+2j�2 < �Æ ;8j = 0; : : : ; k2 and sk1+1+2k2 < � :Then one iterate taking a suÆ
iently large blo
k of large enough ak's, followed bya suÆ
iently large blo
k of ak = 1. The real number whose 
ontinued fra
tiondevelopment is given by x = [0; a1; : : : ; an; : : : ℄, veri�es by 
onstru
tion Bruno{s,with s > (2 + Æ)= log 2, being (sk)k bounded by 2�, but it doesn't verify ~Bs, in fa
t(sk)k os
illates from values larger than � to values smaller than �, without rea
hingany limit.Let us introdu
e two other arithmeti
al 
onditions. Let us denote by B0s the setof irrational numbers whose 
onvergents verify:(3.3) limk!+1 log qk+1qk log qk = s :And a se
ond 
ondition as follows, let (
m)m�1 and (sm)m�1 be two positive se-quen
es of real numbers su
h that: P+11 
m = 
 < +1 andP+11 sm = � < +1,
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ondition B
;� by:(3.4) log qm+1qm � sm log qm + 
m 8m � 1 :Proposition 3.3. Let ! 2 (0; 1) n Q and let s > 0 then we have the followingin
lusions:1) let ! 2 ~Bs, if ! is not a Bruno number then ! 2 B0s, otherwise ! 2 B00.2) Let � � s and ! 2 B
;� then ! 2 ~Bs;Proof. To prove the �rst statement let us write the following identity:(3.5) kXl=0 log ql+1ql � s log qk = C + kXl=2 � log ql+1ql � s (log ql � log ql�1)� ;where C = (1 � s) log q1 + log q2q1 . By 
ondition ~Bs, this series 
onverges and thenits generi
 term goes to zero, from whi
h we get:(3.6) limk!+1 log qk+1qk log qk = s�1� limk!+1 log qk�1log qk � :Let us denote by s0 be value of the right hand side of (3.6), then 
learly s0 2 [0; s℄.Let us suppose s0 > 0, but then we have for all suÆ
iently large k:C1qk � log qklog qk+1 � C2qk ;for some positive 
onstants C1; C2, from whi
h we get log qklog qk+1 ! 0, and from (3.6)we 
on
lude that s0 = s.If s0 = 0, namely log qklog qk+1 ! 1, then it is easy to 
he
k that ! is a Bruno number.Let us prove the se
ond statement. For any positive integer k, using the de�nitionof B
;� we 
an write:(3.7) kXl=0 log ql+1ql � s log qk � kXl=0 sl log ql + kXl=0 
l � s log qk ;for all 0 � l � k we have log ql � log qk then the right hand side of (3.7) is boundedby: � log qk �s�Pkl=0 sl� +Pkl=0 
l. By hypothesis Pkl=0 sl � s, for all k, thenusing � log qk � � log q1 we obtain:kXl=0 log ql+1ql � s log qk � � log q1 s� kXl=0 sl!+ kXl=0 
l ;then passing to the limit on k we have:limk!+1 kXl=0 log ql+1ql � s log qk � � log q1 (s� �) + 
 < +1 : �Remark 3.4. These new arithmeti
al 
onditions are weaker than the Bruno one,for instan
e 
ondition B0s is veri�ed by numbers ! whose denominators (qk)k satisfya growth 
ondition like qk+1 � (qk!)s. Condition B
;� implies 
onvergen
e of theseries: Pk�0 log qk+1qk log qk .



10 TIMOTEO CARLETTILet us 
on
lude re
alling a stability result of P�erez{Mar
o [PM1, PM2℄ and
ompare it with our result. In [PM2℄ author proved (Theorem V.2.1 Annexe 2 xf )using a geometri
 renormalization s
heme "�a la Yo

oz" valid in the one dimensional
ase, a stability result that 
an be stated as follows:Theorem 3.5 (P�erez{Mar
o, Contrôle de la di�usion). Let ! 2 (0; 1) n Q and let(qk)k be the denominators of its 
onvergents. Let F be an analyti
 and univalentfun
tion de�ned in the unit disk fz 2 C : jzj < 1g su
h that F (z) = �z +O(jzj2),where � = e2�i!. There exist two positive 
onstants C1; C2 su
h that if:(3.8) jzj � C1e�Pk�1j=0 log qj+1qj ;then for all integer 0 � m � qk we have:(3.9) jFm(z)j � C2e�Pk�1j=0 log qj+1qj :The meaning of the Theorem is 
lear: if we start inside a disk of radius r =C1e�Pk�1j=0 log qj+1qj then we 
an apply F , up to qk times, without leaving a disk ofradius rC2=C1. To 
ompare this result with our e�e
tive stability result we haveto make expli
it the relation between r and qk, whi
h give the time of "stability".Using our Bruno{s 
ondition (3.2) we 
an say that C � rqsk�1 � C 0 for somepositive 
onstants C;C 0. But from (3.3) we get log qk � C3qk�1 log qk�1 for somepositive 
onstant C3, namely there exist positive 
onstants C 03; C4 su
h that:qk � expn C 03r1=s log C4r1=so :We 
an then restate Theorem 3.5 as follows: if jzj � r, then jFm(z)j � rC2=C1 forall integer 0 � m � expf C03r1=s log C4r1=s g, obtaining a better estimate on the time ofe�e
tive stability.This improvement has been obtained thanks to a good understanding of thegeometry of the dynami
s, if one would like to obtain these better estimates also forgerms in higher dimensions, one should extend the P�erez{Mar
o ideas to understandthe geometry of dynami
s of germs in higher dimension. This 
ould be very diÆ
ultwhereas our results are easy to adapt to any dimension.We end with a last remark related again to the work of P�erez{Mar
o.Remark 3.6. P�erez{Mar
o proved in [PM1, PM2℄ that any non{analyti
ally lin-earizable analyti
 germ, univalent in the unit disk, whose multiplier at the �xedpoint, veri�es the following arithmeti
al 
ondition:(3.10) Xk�0 log log qk+1qk < +1 ;has a sequen
e of periodi
 orbits a

umulating the �xed point, whose periods, (qnk )k,make the Bruno series diverging.Our Bruno{s 
ondition implies (3.10), in fa
t from (3.2) we get:NXk=0 log log qk+1qk � NXk=0� logC3qk + log qkqk + log log qkqk � ;we 
an let N grow and using standard number theory results 
on
erning the 
onver-gents, we obtain the P�erez{Mar
o 
ondition. Then we 
an suppose these periodi
orbits a

umulating the �xed point to \produ
e the e�e
tive stability: preventing the
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ape", a situation similar to the one holding in the Neko-roshev Theorem for Hamiltonian systems [Ne℄, where the resonant web 
on�nes the
ow for exponentially long times. It would be very interesting to know whether asimilar phenomenon takes pla
e in higher dimension.We 
on
lude by pointing out that our method gives us a stability exponent de-pending on the Gevrey exponent and independent of the dimension: the bigger isthe exponent, longer is the time interval of stability, we 
an always take s smallenough to have a very long time of stability.Referen
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