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EXPONENTIALLY LONG TIME STABILITY FOR
NON-LINEARIZABLE ANALYTIC GERMS OF (C",0).

TIMOTEO CARLETTI

ABSTRACT. We study the Siegel-Schroder center problem on the lineariza-
tion of analytic germs of diffeomorphisms in several complex variables, in the
Gevrey—s, s > 0 category. We introduce a new arithmetical condition of
Bruno type on the linear part of the given germ, which ensures the existence
of a Gevrey—s formal linearization. We use this fact to prove the effective
stability, i.e. stability for finite but long time, of neighborhoods of the origin
for the analytic germ.

1. INTRODUCTION

In this paper we consider the Siegel-Schréder center problem [He, CM, Ca] in
some class of ultradifferentiable germs of (C",0), n > 1; let us consider two classes
of formal power series A; C Ay C C"[[21,...,2n]], closed w.r.t. to derivation
and composition, let F' € A; and call DF(0) = A € GL(n,C), we say that F'

is linearizable in As if there exists H € As, normalized with DH(0) = I, which
solves ':

(1.1) FoH(z)=HoRu(z),

where R4(z) = Az. In the following we will assume A to be diagonal with eigen-
values of unit modulus Ay, ..., A,, thus A = diag(A;,..., An).

If both A; and As coincide with the ring of formal power series then generically
the formal linearization holds if and only if A is non—resonant, namely for all @ € N”
such that o] =Y, ;.,, @ > 2, and for all j € {1,...,n} then A* — X; # 0 (where
we used the standard notation A® = A{* ... \2").

When F' is a germ of analytic diffeomorphisms defined in a neighborhood of
the origin and we want to solve (1.1) in the same class of analytic germs, we have
to consider several cases. If A is the Poincaré domain, namely sup;<;<, [Aj| <1
or SUpj<j<p \)\;1| < 1, then Koenigs [Ko] and Poincaré [Po] proved that every
analytic germ F' € Diff(C™,0) such that F(0) = 0 and DF(0) = A, is analytically
linearizable. When A is not in the Poincaré domain, we say that it is in the Siegel
domain; the question is harder and some additional arithmetical conditions on (A;);
are needed (see [He] §17 page 158).

Date: July 20, 2004.
Key words and phrases. Siegel center problem, Gevrey class, Bruno condition, effective stabil-
ity, Nekoroshev like estimates.
1Here Fo H means the composition of F' and H; in the following we will denote the composition
of F n-times with itself, by F™ instead of F°".
1



2 TIMOTEO CARLETTI

Let p € N, p > 2 and let us define for non-resonant A\,..., A\,:

(1.2) Qp) = min = inf A" =Xl
0<|al<p

we say that A verifies a Diophantine condition of type (v, 7) if there exist v > 0
and 7 > n — 1 such that for all 3 € N" \{0} we have Q(|3|) > v|6|~". Siegel [Si] in
1942 for the n = 1 case and then Sternberg [St] and Gray [Gr] in the general case
proved that if A verifies a Diophantine condition then the linearization problem has
an analytic solution. Bruno [Br] weakened the arithmetical condition by asking the
convergence of the series ), %. We remark that in the one dimensional
case the Bruno condition ? is optimal, as proved by Yoccoz [Yo.

In [CM] authors studied the Siegel-Schréder center problem in the case of general
algebras of ultradifferentiable germs of (C, 0), including the Gevrey case. In [Ca] the
multidimensional case is considered: if A; = Ay and A verifies a Bruno condition,
then every F' € A; with F(0) =0 and DF(0) = A is linearizable in A;, whereas if
Aj is properly contained in A; new conditions weaker than Bruno are sufficient to
ensure linearizability in A,.

In this paper we consider in detail the case where A; is the ring of germs of
analytic diffeomorphisms at the origin of n > 1 complex variables, and A, is the
algebra of Gevrey—s, s > 0, formal power series: the Gevrey—s linearization of
analytic germs.

Let F' =3 faz®, (fa)aen» C C" be a formal power series, then we say that it
is Gevrey—s [Ba, Ra], s > 0, if there exist two positive constants C, Cs such that:

Y

(1.3) fal < C1C7°1° N (Jal)* Va e N,

We denote the class of all formal vector valued power series Gevrey—s by Cs. It is
closed w.r.t. derivation and composition.

In the Gevrey—s case the arithmetical condition introduced in [CM, Ca] will be
called Bruno—s condition, s > 0: for short A € B if there exists a strictly increasing
sequence of positive integer (pg)r such that:

W 10g Q" (1)
(1.4) limsup | 2 Z —————— —slogla| | < 4+oc,
|a| =400 m—0 m

where x(a) is defined by py(a) < |a| < Pr(a)t1-

Remark 1.1. This definition recall the classical one of Bruno [Br], where first
one suppose the existence of a strictly increasing sequence of positive integer such
that (1.4) holds, then one can prove (see [Br] §IV page 222) that one can take an
exponentially growing sequence, e.g. pr = 2F. This holds also in our case, in fact
we can prove that (1.4) is equivalent to:

N Jog Q-1 (2l
(lz 0g Q! (21

lim sup o

— sN210g2> < 4o00.
N—+o0

=0

2In this case let w € (0,1) \ Q such that A = €27 and let (gn)n be the denominators of the
convergents [HW] to w, then the Bruno condition is equivalent to the convergence of the series

» log qp41
k>0 T qp
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Let us give a sketch of the proof of this claim. Take a sequence (py) for which (1.4)
holds, then we can find sequences of positive integer (mp)r and () such that:
mog=0, 1l > 1, mpy1 = myg + 1 and

omr pe < 2mk+1 << 2mk+lk < prg1 < 2mk+lk+1 )

The function Q1(p) is increasing, hence: Q2 1(2971) < Q71 (pry1) for all ¢ =
Mpy ...,y + 1 — 1, and so:

mytle—1 -1 1 -1

log Q=1 (27) _ 1og 2~ (prs)

1.5 4 .
(1.5) q:Emk 5 < ”

Take any |a| > 1, the corresponding k() and fix N(a) = my(q) + lo(a) — 2. Then,
dividing the sum of (1.4) into pieces from my to my + 1y — 1, for h=10,... k(«),
and using estimate (1.5) for each piece, we get:

K (a) 1 N(o) —1(ol+1
log Q log Q=" (2
2 (2% C%p—mn+1>_810g|a| 9 ngiw_gslog\a\_
m=0 m =0

Now the claim follows remarking that —2slog|a| > —sN(a)2log2 + c.

For real number, the Bruno—s condition can be slightly weakened (see [CM]); let
w € (0,1)\ Q, then the Bruno-s, s > 0, condition reads:

k
log
(1.6) lim sup ZM—SIOng < 400,

k—+oc =0 q;

where (g ) are the denominators of the convergents to w. We remark that in both
cases the new conditions are weaker than Bruno condition, which is recovered when
s = 0. In dimension one we prove that the set |J, B, is PSL(2,7Z)-invariant (see
remark 3.1). The main result of [Ca] in the case of Gevrey—s classes reads:

Theorem 1.2 (Gevrey—s linearization). Let A1, ..., \, be complex numbers of unit
modulus and A = diag(Ay,...,\p); let D1 ={z € C": |z;] < 1,1 <i < n} be the
isotropic polydisk of radius 1 and let F' : D1 — C™ be an analytic function, such
that F(z) = Az + f(2), with f(0) = Df(0) = 0. If A is non—resonant and verifies a
Bruno-s, s > 0, condition (1.4) (or (1.6) when n = 1), then there exists a formal
Geurey—s linearization H which solves (1.1).

The aim of this paper is to show that the Gevrey character of the formal lin-
earization can give information concerning the dynamics of the analytic germ. Let
F(z) = Az + f(z) be a germ of analytic diffeomorphism verifying the hypothesis
of Theorem 1.2, assume moreover F' not to be analytically linearizable. We will
show that even if there is not Siegel disk, where the dynamics of F' is conjugate to
the dynamics of its linear part, we have an open neighborhood of the origin which
“behaves as a Siegel disk” under the iterates of F' for finite but long time, which
results exponentially long: the effective stability [GDFGS] of the fixed point.

In the case of analytic linearization, |Hl._1 (2),i=1,...,n, (which is well defined
sufficiently close to the origin because H is tangent to the identity) is constant
along the orbits, namely it is a first integral and |F™(zo)| is bounded for all m and
sufficiently small |zg].

We will prove that any non—zero 2y belonging to a polydisk of sufficiently small
radius 7 > 0, can be iterate a number of times K = O(exp{r—'/*}), being s > 0
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the Gevrey exponent of the formal linearization, and we can find an almost first
integral: a function which varies by a quantity of order r under m < K iterations,
which implies that F™(zq) is well defined and bounded for m < K. More precisely
we prove the following

Theorem 1.3. Let Ay, ..., A, be complex numbers of unit modulus and A = diag(\y, . ..

let F: D; — C" be an analytic and univalent function, such that F(z) = Az+ f(2),
with f(0) = Df(0) = 0. If A is non—resonant and verifies a Bruno-s, s > 0, con-
dition (1.4) (or (1.6) when n = 1), then for all sufficiently small 0 < r.. <1, there
exist positive constants Ay, Bix, Cix such that for all 0 < |zo| < r4x/2, the m—th
iterate of 2o by F is well defined and verifies |zm| = |F™(20)| < CusTux, for all

m< K, = {A;} exp{B** (r**/\z(]\)l/s }J

The hypothesis on the domain for F' is a natural normalization condition being
the whole problem invariant by homothety.

In section 3 we compare our stability result with the stronger results which can
be proved using Yoccoz’s renormalization method [PM2] in the case n = 1. More-
over we discuss the relation between our Bruno—s condition and the arithmetical
condition of Pérez—Marco [PM1, PM2] ensuring that in the non-linearizable case
the fixed point is accumulate by periodic orbits.

Acknwoledgements. 1 am grateful to D. Sauzin for a very stimulating discussion
concerning Gevrey classes and asymptotic analysis.

2. PROOF OF THE MAIN THEOREM

In this part we will prove our main result, Theorem 1.3. The proof will be di-
vided into three steps: first we use the Gevrey—s character of the formal lineariza-
tion fI, given by Theorem 1.2, to find an approximate solution of the conjugacy
equation (1.1) up to a (exponentially) small correction (paragraph 2.1); then we
prove an iterative Lemma allowing us to control how the small error introduced in
the solution propagates (paragraph 2.2). Finally we collect all the informations to
conclude the proof (paragraph 2.3).

2.1. Determination of an approximate solution. We apply Theorem 1.2: the
formal power series solution H belongs to Cy, as well as its inverse H ~! which solves
(formally):

(2.1) H 'oF(z) =Rao H '(2).
Since H~1 = > haz® € Cs, there exist positive constants A; and B; such that
(2.2) |hal < 41B;°*(Ja]))* Vo > 1.

For any positive integer N we consider the vectorial polynomial, sum of homoge-
neous vector monomials of degree 1 < I < N, defined by: Hy(z) = Y v, > laj=t Maz®
and the Remainder Function:
(2.3) Rn(z) =HnoF(z) —RgoHn(z).
The following Proposition collects some useful properties of the remainder function.
Proposition 2.1. Let Ry(z) be the remainder function defined in (2.3) and let
a € N”, then:

1) 92Rx(0) = 0 if la < N
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2) For all 0 < r < 1 there exists a positive constants A and Bs such that if
la| > N + 1, then:

1 —la| p—s s
‘aagRN(O)\ < Ayr=lel BIsN (N1)s

3) For all 0 < r <1 and |z| < r/2 there exist positive constants As, Bs such
that:

‘Z‘ N+1
(2.4) RN (2)| < A3B;*N(N!)® (7> :

. 1 aa _ 1 glel
Where we used the compact notation ;03 = FiTanl 7T BT

-0z,

Proof. Statement 1) is an immediate consequence of the definition of R y.
To prove 2) we observe that Ry (z) is an analytic function on Dy, then one gets
by Cauchy’s estimates for all 0 < r < 1 and for all |a| > N + 1:

1
(2.5) ‘aagnN(O)\ < max [Hy o F(2)|.

(271')” rlal+l |z]=r

Recalling the Gevrey estimate (2.2) for Hy and the analyticity of F' we obtain:
1 o4 —sN 1\s,.—laf
(2.6) baz RN(O)‘ < A, By*N(N1)splel

for some positive constants A, and By depending on the previous constants, on the
dimension n and on F.

To prove 3) let us write the Taylor series Rn(2) = > 45841 LO2RN(0)27,
then the bound on derivatives (2.6) implies the estimate (2.4) for all |z| < r/2 and
for some positive constants A3 and Bs. O

The bound (2.4) on Ry(z) depends on the positive integer N, so we can deter-
mine the value of N for which the right hand side of (2.4) attains its minimum,
that’s Poincaré’s idea of summation at the smallest term.

Lemma 2.2 (Summation at the smallest term). Let Ry (z) defined as before and let
0 < r« < 1/2 then there exist positive constants Ay, By such that for all 0 < |z| < r,
we have:

(2.7 Ri(2) < Aseap{ ~ B, (—)/ 3

where N = | By (r*/|z|)1/sj and |z| denotes the integer part of x € R.

Proof. Let us fix 0 < r, < 1/2, then for 0 < |z| < r, by Stirling formula we obtain:
Ns

(2.8) R (2)] < As (NB3! (J21/r)"/) e,

for some positive constant A4. The right hand side of (2.8) attains its minimum

at N = Bj (r*/|z|)1/s, evaluating the value of this minimum we get (2.7) with
B, = Bs. a
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2.2. Control of the “errors”. Let us define H(z) = Hy(z) and R(z) = Ry (2),
being N the “optimal value” obtained in Lemma 2.2. We remark that H(z) doesn’t
solve (2.1) but the “error”, R(z), is very small: exponentially small. We will prove
that for initial conditions in a sufficiently small disk, one can iterate an exponentially
large number of times without leaving a disk, say, of double size.

Lemma 2.3 (Iteration lemma). Let a,b,a and R be positive real numbers. Let us
consider the sequence of positive number (p1;);>o0 defined by:

po =R and pji1 = pj+aerp{-b/uj}.
Let K = |[Ra™"exp{b/(2R)*}], then p; < 2R for all j < K.
Proof. Let us prove by induction on j that for all 0 < 7 < K we have
(2.9) ii < R+ jaerp{—b/(2R)"),
then the claim will follow from (2.9) and the definition of K, in fact for all j < K:
p; < R+ jaerp{—b/(2R)*} < R+ Ra ' exp{b/(2R)*}aexp{-b/(2R)*} < 2R.

The basis of induction is easily verified; assume (2.9) for all j < K — 1, we will
prove it for j = K. By definition of (y;); and the induction hypothesis we have:

Ur = pr-1+aexp{-=b/ux_i} <
< R+ (K - Daecap{-b/(2R)"} + acap{-b/ug_,}
we remark that from (2.9) with j = K — 1, using K — 1 < Ra~' exp{b/(2R)*}, we
get urx—1 < 2R and exp{-b/u%_,} < exp{-b/(2R)*}. Then we conclude:
ik < R+ (K - Daeap{—b/(2R)"} + aeap{~b/(2R)"}
which ends the induction. O
Let r, as in Lemma 2.2, define p(z) = |#H(z)| for all 0 < |z| < r,, then Lemma 2.2

admits the following Corollary, which allows us to control the function p(z) on
consecutive points of an orbit of F(z).

Corollary 2.4. Let 0 < r, < 1/2, let ry be the radius of the mazimal polydisk where
H(z) is invertible and let r.. = min(r.,r1). Then there exist positive constants
A, B, such that for all 0 < |z| < r.. we have:

. 1/s
(2.10) pF @) = )] < deean - B ()}
Proof. By definition p(F(z)) = |H o F(z)| and p(z) = |Ra o H(z)|, since |A\;| =1
for 1 <j <mn,and A = diag(\;,...,\n), therefore:
PF(2) = p(z) < [HoF(z) = RaoH()| = [R(:)]

and from Lemma 2.2 we get:

(2.11) ()~ p(2)] < Aserp{ ~ B, (—)/ .

We want to express this condition in terms of p(z) instead of |z|, to do this we have
to consider the distortion properties of H(z) and of its inverse. Let J(z) = 0,H(2)
be the Jacobian of H(z) and let J; = max|,|<,, |J(2)|, where r; has been defined
previously. Let 0 < |z| < ry and let us call 2’ = H(z), clearly |2'| < Jiry = rqy. Let
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us call Jy = max./|<,, |8 H " (z)], then for any 0 < |2’| < ry there exists only one
z such that z = H~1(2'), which satisfies [2| < Ja|2'| = Jo|H(2)].
Let 7., = min(r., 1) then from (2.11) for any 0 < |2| < 7. we get:

r 1/s
F — < A, — B, —* ,
p(F(2) = p(2)]| < A, eap (p(z)) ,
where A, = A4 and B, = ByJ, /% O

2.3. End of the proof. We are now able to conclude the proof of the main Theo-
rem 1.3. Take any 0 < |zo| < r../2 and let us define pg = |20, pm = p(F™(20)) for
all positive integer m for which F™(zg) is well defined, by Corollary 2.4 we have:

(2.12) pm < pmt + Aveap{ = Bu (re/om1)" }.

Letuscall R = |zg|,a = As, b= B.rt® and a = 1/s, then we can apply Lemma 2.3,
being fm, > pm, to conclude that:

(2.13) pm < T VYMm <K, = UZO\A*_l ea:p{B* <2r;0>1/5 }J .

This implies that H(z,) is well defined in this range of values of m, it is not constant
and it evolves only by ‘\’H(zm)\ - \’H(zo)\‘ < 7. Recalling that z, = F™(z) we

also have |F"™ (zp)| < Jar.. and ‘|zm\ - \zo\‘ < Jory for all 0 < |2zp] < 744/2 and all
m < K,.

This conclude the proof by setting A,, = 24,77}, B,, = B, (r./(2r..))"* and
C** = JQ.

3. ONE DIMENSIONAL CASE

In this paper we proved that any analytic germs of diffeomorphisms of (C",0)
with diagonal, non—resonant linear part has an effective stability domain, i.e. stable
up to finite but “long times”, close to the fixed point, provided the linear part
verifies a new arithmetical Bruno-like condition (1.4) depending on a parameter
s> 0.

Remark 3.1 (Invariance of |J ., Bs, » = 1 under the action of PSL(2,7)). The
continued fraction development [HW, MMY] of an irrational number w gives us the
sequences: (ag)r>0 and (wi)k>o0. Then we introduce (Bi)r>—1 defined by f_1 =1
and for all integer k > 0: By, = szo wk, which verifies : 1/2 < Brqrs1 < 1 and
GnfBn—1 + Gn—18n = 1, where qi’s are the denominators of the continued fraction
development of w. We claim that condition Bruno—s (1.6) is equivalent to the
following one:

k
(3.1) lim sup Zﬂj,l logwj_1 +slogfr_1 | < +o0.
k—+o0 =0

This can be proved by using the relations between [B; and q;, to obtain the bound,
for all integer k > 0:

k k
log q Q-
‘ E (Bzﬂogan + 7gqll+1> ‘ < E ‘BH 10g61q1+1‘+‘5l71logﬂl—1‘+‘—l{1llﬂl loggiy1] <18,
=0 1=0
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where we used the convergence of series S.q; ' and Y. q; *logq (see [MMY] page
272).

To prove the invariance of |J, Bs under the action of PSL(2,7), is enough to
consider its generators: Tw = w + 1 and Sw = 1/w. For any irrational w, T acts
trivially being By (Tw) = Bi(w) for all k, whereas for S we have Bi(w) = whi_1(Sw)
for all k > 1. Let w be an irrational and let w' = w™', let us also denote with a /
quantities given by the continued fraction algorithm applied to ', then using (3.1)
one can prove:

k k+1
wo Z Biy 10go.;}-71 + swy log Bh_y | = C(w,s) + Zﬂj,l logwj_1 + slog B,
j=0 j=0

where C(w, s) = wp (logw; ' — slogwg) + 211:0 Bi—1logw, !, from which the claim
follows.

Let us consider a slightly stronger version of the Bruno—s condition: w € R\ Q
belongs to B if:

k
. log qi4+1
3.2 1 — T 5l < )
) i (Z TR A

where (¢, ) are the convergents to w.

Remark 3.2. This new condition is stronger than Bruno—s, because the existence
of the limit is required. One can construct numbers w which verify Bs but not By,
as follows.

Let us call for short sy = sz:o logq% —slogqy. Fiza>p3>0,6 >0 and to
simplify take s > (24 9)/log2. We claim that one can choose large enough positive
integers k1 and ai,...,ag,+1 such that:

Sk —8k—1>08 and s, € (a,2a),

2q;
for instance take ky > (a—logq1)d ! and inductively aj; > [e‘s‘” (Zi%;) - (1l1] qfl,
for all 1 = 1,... k. Then one can take sufficiently many a;’s equal to one,

ap, 4141 =1 for 1 =1,...,2ky + 1, and verify that:
Ski4+1425 — Ski+1+25j—2 < —0,Vi=0,....ka and Sp 11400, <pB.

Then one iterate taking a sufficiently large block of large enough ay;’s, followed by
a sufficiently large block of ap = 1. The real number whose continued fraction
development is given by x = [0,a1,...,ay,...], verifies by construction Bruno-s,
with s > (2 + 0)/log2, being (si)r bounded by 2a, but it doesn’t verify Bs, in fact
(sk)x oscillates from values larger than « to values smaller than (8, without reaching
any limit.

Let us introduce two other arithmetical conditions. Let us denote by B the set
of irrational numbers whose convergents verify:

1
(3.3) lim 289k+1 _
k—+oo qr log qg

And a second condition as follows, let (v;)m>1 and (sm)m>1 be two positive se-
quences of real numbers such that: 37y, =y < 400 and 3 s,, = 0 < +00,
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then we define condition B, , by:
10g gm

(3.4) 08 dm+1
dm

Proposition 3.3. Let w € (0,1) \ Q and let s > 0 then we have the following
inclusions:

< smloggm +vm Vm >1.

1) let w € By, if w is not a Bruno number then w € B, otherwise w € Bj.
2) Let 0 < s and w € B, then w € By;

Proof. To prove the first statement let us write the following identity:
k

k
lo lo
(35) Y —slogg=C+y. [ﬂ — s (log —log(hl)} ,
=0 ! =2 L
where C' = (1 — s)logq: + lﬁglq—Q. By condition Bj, this series converges and then
its generic term goes to zero, from which we get:
log qx, 1 -
(3.6) lim —2%+L (g oy 81
k——+oo gy log g k—+oc loOgqp
Let us denote by s’ be value of the right hand side of (3.6), then clearly s’ € [0, s].
Let us suppose s’ > 0, but then we have for all sufficiently large k:
ﬁ < bgiqk < %}
ar ~ log gy T
for some positive constants Cy, Co, from which we get ﬁqgﬁ — 0, and from (3.6)

we conclude that s’ = s.

If s’ = 0, namely ﬁggTZil — 1, then it is easy to check that w is a Bruno number.

Let us prove the second statement. For any positive integer k, using the definition
of B, , we can write:

k k

k
lo
(3.7) ) Lilﬂ —slogqr < > _silogq+ Y v — slogg,
=0 =0 =0

for all 0 < I < k we have log ¢; < log g then the right hand side of (3.7) is bounded
by: —logqs (3 — Zf:o sl) + sz:o ~. By hypothesis Zf:o s; < s, for all k, then
using —log g, < —loggq; we obtain:

k k k
1
3B sloggr < —logas (S_Zsl> +3 w,

=0 L =0 =0
then passing to the limit on k& we have:

k—+o0

k
1
lim Z%_Sbqu <-logqi (s—0)+7< +0.

O

Remark 3.4. These new arithmetical conditions are weaker than the Bruno one,
for instance condition B, is verified by numbers w whose denominators (qx)r satisfy
a growth condition like qr+1 ~ (q!)®. Condition By , implies convergence of the

b log qr 41
SETies: Y 150 grlog oy -
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Let us conclude recalling a stability result of Pérez—Marco [PM1, PM2] and
compare it with our result. In [PM2] author proved (Theorem V.2.1 Annexe 2 §f )
using a geometric renormalization scheme ”ala Yoccoz” valid in the one dimensional
case, a stability result that can be stated as follows:

Theorem 3.5 (Pérez—Marco, Controle de la diffusion). Let w € (0,1) \ Q and let
(qr)r be the denominators of its convergents. Let F' be an analytic and univalent
function defined in the unit disk {z € C : |z| < 1} such that F(z) = Xz + O(|z|?),
where A = e>™“ . There exist two positive constants Cy,Cy such that if:

k-1 logajy
(3.8) 2] < Cre” =0 T
then for all integer 0 < m < qp we have:

k—1 logaj41

(3.9) F™(2)| < Coe =970

The mezlming of the Theorem is clear: if we start inside a disk of radius r =
— og ay

Cie % q;“ then we can apply F, up to g times, without leaving a disk of
radius rCy/Cy. To compare this result with our effective stability result we have
to make explicit the relation between r and g, which give the time of ”stability”.
Using our Bruno-s condition (3.2) we can say that C < rqj ; < C' for some
positive constants C,C’'. But from (3.3) we get logqr < Csqr_1loggqr—1 for some
positive constant C5, namely there exist positive constants C§, Cy such that:

Cs Cy
ar < €$p{m10g m} .
We can then restate Theorem 3.5 as follows: if |z| < r, then [F™(z)| < rCy/Cy for

all integer 0 < m < emp{% log f—/“}, obtaining a better estimate on the time of
effective stability.

This improvement has been obtained thanks to a good understanding of the
geometry of the dynamics, if one would like to obtain these better estimates also for
germs in higher dimensions, one should extend the Pérez-Marco ideas to understand
the geometry of dynamics of germs in higher dimension. This could be very difficult
whereas our results are easy to adapt to any dimension.

We end with a last remark related again to the work of Pérez—Marco.

Remark 3.6. Pérez—Marco proved in [PM1, PM2] that any non—analytically lin-
earizable analytic germ, univalent in the unit disk, whose multiplier at the fized
point, verifies the following arithmetical condition:

logl
(3.10) Z 10808 Gk+1 | ’
k>0 gk

has a sequence of periodic orbits accumulating the fized point, whose periods, (qn, )k,
make the Bruno series diverging.
Our Bruno-s condition implies (3.10), in fact from (3.2) we get:

N N
log 1 | 1 log 1
Z oglog qr+1 §Z<Og03 4 loggr  log 0qu> ,
—= g =\ an an

we can let N grow and using standard number theory results concerning the conver-
gents, we obtain the Pérez—Marco condition. Then we can suppose these periodic
orbits accumulating the fized point to “produce the effective stability: preventing the
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orbits from a too fast escape”, a situation similar to the one holding in the Neko-
roshev Theorem for Hamiltonian systems [Ne], where the resonant web confines the
flow for exponentially long times. It would be very interesting to know whether a
similar phenomenon takes place in higher dimension.

We conclude by pointing out that our method gives us a stability exponent de-
pending on the Gevrey exponent and independent of the dimension: the bigger is
the exponent, longer is the time interval of stability, we can always take s small
enough to have a very long time of stability.
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