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EXPONENTIALLY LONG TIME STABILITY FORNON{LINEARIZABLE ANALYTIC GERMS OF (C n; 0).TIMOTEO CARLETTIAbstrat. We study the Siegel{Shr�oder enter problem on the lineariza-tion of analyti germs of di�eomorphisms in several omplex variables, in theGevrey{s, s > 0 ategory. We introdue a new arithmetial ondition ofBruno type on the linear part of the given germ, whih ensures the existeneof a Gevrey{s formal linearization. We use this fat to prove the e�etivestability, i.e. stability for �nite but long time, of neighborhoods of the originfor the analyti germ. 1. IntrodutionIn this paper we onsider the Siegel{Shr�oder enter problem [He, CM, Ca℄ insome lass of ultradi�erentiable germs of (C n; 0), n � 1; let us onsider two lassesof formal power series A1 � A2 � C n [[z1; : : : ; zn℄℄, losed w.r.t. to derivationand omposition, let F 2 A1 and all DF (0) = A 2 GL(n; C ), we say that Fis linearizable in A2 if there exists H 2 A2, normalized with DH(0) = I, whihsolves 1:(1.1) F ÆH(z) = H ÆRA(z) ;where RA(z) = Az. In the following we will assume A to be diagonal with eigen-values of unit modulus �1; : : : ; �n, thus A = diag(�1 ; : : : ; �n ).If both A1 and A2 oinide with the ring of formal power series then generiallythe formal linearization holds if and only if A is non{resonant, namely for all � 2 Nnsuh that j�j =P1�i�n �i � 2, and for all j 2 f1; : : : ; ng then �� � �j 6= 0 (wherewe used the standard notation �� = ��11 : : : ��nn ).When F is a germ of analyti di�eomorphisms de�ned in a neighborhood ofthe origin and we want to solve (1.1) in the same lass of analyti germs, we haveto onsider several ases. If A is the Poinar�e domain, namely sup1�j�n j�j j < 1or sup1�j�n j��1j j < 1, then Koenigs [Ko℄ and Poinar�e [Po℄ proved that everyanalyti germ F 2 Diff(C n; 0) suh that F (0) = 0 and DF (0) = A, is analytiallylinearizable. When A is not in the Poinar�e domain, we say that it is in the Siegeldomain; the question is harder and some additional arithmetial onditions on (�j)jare needed (see [He℄ x17 page 158).Date: July 20, 2004.Key words and phrases. Siegel enter problem, Gevrey lass, Bruno ondition, e�etive stabil-ity, Nekoroshev like estimates.1Here F ÆH means the omposition of F and H; in the following we will denote the ompositionof F n-times with itself, by Fn instead of F Æn. 1



2 TIMOTEO CARLETTILet p 2 N , p � 2 and let us de�ne for non{resonant �1; : : : ; �n:(1.2) 
(p) = min1�j�n inf�2Nn0<j�j<p j�� � �j j ;we say that A veri�es a Diophantine ondition of type (; �) if there exist  > 0and � � n� 1 suh that for all � 2 Nn nf0g we have 
(j�j) � j�j�� . Siegel [Si℄ in1942 for the n = 1 ase and then Sternberg [St℄ and Gray [Gr℄ in the general aseproved that if A veri�es a Diophantine ondition then the linearization problem hasan analyti solution. Bruno [Br℄ weakened the arithmetial ondition by asking theonvergene of the series Pk log 
�1(2k+1)2k . We remark that in the one dimensionalase the Bruno ondition 2 is optimal, as proved by Yooz [Yo℄.In [CM℄ authors studied the Siegel{Shr�oder enter problem in the ase of generalalgebras of ultradi�erentiable germs of (C ; 0), inluding the Gevrey ase. In [Ca℄ themultidimensional ase is onsidered: if A1 = A2 and A veri�es a Bruno ondition,then every F 2 A1 with F (0) = 0 and DF (0) = A is linearizable in A2, whereas ifA1 is properly ontained in A2 new onditions weaker than Bruno are suÆient toensure linearizability in A2.In this paper we onsider in detail the ase where A1 is the ring of germs ofanalyti di�eomorphisms at the origin of n � 1 omplex variables, and A2 is thealgebra of Gevrey{s, s > 0, formal power series: the Gevrey{s linearization ofanalyti germs.Let F̂ =P f�z�, (f�)�2Nn � C n be a formal power series, then we say that itis Gevrey{s [Ba, Ra℄, s > 0, if there exist two positive onstants C1; C2 suh that:(1.3) jf�j � C1C�sj�j2 (j�j!)s 8� 2 Nn :We denote the lass of all formal vetor valued power series Gevrey{s by Cs. It islosed w.r.t. derivation and omposition.In the Gevrey{s ase the arithmetial ondition introdued in [CM, Ca℄ will bealled Bruno{s ondition, s > 0: for short A 2 Bs if there exists a stritly inreasingsequene of positive integer (pk)k suh that:(1.4) lim supj�j!+10�2 �(�)Xm=0 log
�1(pm+1)pm � s log j�j1A < +1 ;where �(�) is de�ned by p�(�) � j�j < p�(�)+1.Remark 1.1. This de�nition reall the lassial one of Bruno [Br℄, where �rstone suppose the existene of a stritly inreasing sequene of positive integer suhthat (1.4) holds, then one an prove (see [Br℄ xIV page 222) that one an take anexponentially growing sequene, e.g. pk = 2k. This holds also in our ase, in fatwe an prove that (1.4) is equivalent to:lim supN!+1  NXl=0 log
�1(2l+1)2l � sN2 log 2! < +1 :2In this ase let ! 2 (0; 1) n Q suh that � = e2�i! and let (qn)n be the denominators of theonvergents [HW℄ to !, then the Bruno ondition is equivalent to the onvergene of the seriesPk�0 log qk+1qk .



NEKHOROSHEV{LIKE ESTIMATE FOR NON{LINEARIZABLE ANALYTIC GERMS. 3Let us give a sketh of the proof of this laim. Take a sequene (pk) for whih (1.4)holds, then we an �nd sequenes of positive integer (mk)k and (lk)k suh that:m0 = 0, lk � 1, mk+1 = mk + lk and2mk � pk < 2mk+1 < � � � < 2mk+lk � pk+1 < 2mk+lk+1 :The funtion 
�1(p) is inreasing, hene: 
�1(2q+1) < 
�1(pk+1) for all q =mk; : : : ;mk + lk � 1, and so:(1.5) mk+lk�1Xq=mk log 
�1(2q+1)2q < 4 log
�1(pk+1)pk :Take any j�j > 1, the orresponding �(�) and �x N(�) = m�(�) + l�(�) � 2. Then,dividing the sum of (1.4) into piees from mh to mh + lh � 1, for h = 0; : : : ; �(�),and using estimate (1.5) for eah piee, we get:20�2 �(�)Xm=0 log
�1(pm+1)pm � s log j�j1A > N(�)Xl=0 log
�1(2l+1)2l � 2s log j�j :Now the laim follows remarking that �2s log j�j � �sN(�)2 log 2 + .For real number, the Bruno{s ondition an be slightly weakened (see [CM℄); let! 2 (0; 1) n Q , then the Bruno{s, s > 0, ondition reads:(1.6) lim supk!+1 0� kXj=0 log qj+1qj � s log qk1A < +1 ;where (qk)k are the denominators of the onvergents to !. We remark that in bothases the new onditions are weaker than Bruno ondition, whih is reovered whens = 0. In dimension one we prove that the set Ss Bs is PSL(2;Z){invariant (seeremark 3.1). The main result of [Ca℄ in the ase of Gevrey{s lasses reads:Theorem 1.2 (Gevrey{s linearization). Let �1; : : : ; �n be omplex numbers of unitmodulus and A = diag(�1 ; : : : ; �n ); let D1 = fz 2 C n : jzij < 1 ; 1 � i � ng be theisotropi polydisk of radius 1 and let F : D1 ! C n be an analyti funtion, suhthat F (z) = Az+f(z), with f(0) = Df(0) = 0. If A is non{resonant and veri�es aBruno{s, s > 0, ondition (1.4) (or (1.6) when n = 1), then there exists a formalGevrey{s linearization Ĥ whih solves (1.1).The aim of this paper is to show that the Gevrey harater of the formal lin-earization an give information onerning the dynamis of the analyti germ. LetF (z) = Az + f(z) be a germ of analyti di�eomorphism verifying the hypothesisof Theorem 1.2, assume moreover F not to be analytially linearizable. We willshow that even if there is not Siegel disk, where the dynamis of F is onjugate tothe dynamis of its linear part, we have an open neighborhood of the origin whih\behaves as a Siegel disk" under the iterates of F for �nite but long time, whihresults exponentially long: the e�etive stability [GDFGS℄ of the �xed point.In the ase of analyti linearization, jH�1i (z)j, i = 1; : : : ; n, (whih is well de�nedsuÆiently lose to the origin beause H is tangent to the identity) is onstantalong the orbits, namely it is a �rst integral and jFm(z0)j is bounded for all m andsuÆiently small jz0j.We will prove that any non{zero z0 belonging to a polydisk of suÆiently smallradius r > 0, an be iterate a number of times K = O(expfr�1=sg), being s > 0



4 TIMOTEO CARLETTIthe Gevrey exponent of the formal linearization, and we an �nd an almost �rstintegral: a funtion whih varies by a quantity of order r under m � K iterations,whih implies that Fm(z0) is well de�ned and bounded for m � K. More preiselywe prove the followingTheorem 1.3. Let �1; : : : ; �n be omplex numbers of unit modulus and A = diag(�1 ; : : : ; �n );let F : D1 ! C n be an analyti and univalent funtion, suh that F (z) = Az+f(z),with f(0) = Df(0) = 0. If A is non{resonant and veri�es a Bruno{s, s > 0, on-dition (1.4) (or (1.6) when n = 1), then for all suÆiently small 0 < r�� < 1, thereexist positive onstants A��; B��; C�� suh that for all 0 < jz0j < r��=2, the m{thiterate of z0 by F is well de�ned and veri�es jzmj = jFm(z0)j � C��r��, for allm � K� = jA�1�� expnB�� (r��=jz0j)1=s ok.The hypothesis on the domain for F is a natural normalization ondition beingthe whole problem invariant by homothety.In setion 3 we ompare our stability result with the stronger results whih anbe proved using Yooz's renormalization method [PM2℄ in the ase n = 1. More-over we disuss the relation between our Bruno{s ondition and the arithmetialondition of P�erez{Maro [PM1, PM2℄ ensuring that in the non{linearizable asethe �xed point is aumulate by periodi orbits.Aknwoledgements. I am grateful to D. Sauzin for a very stimulating disussiononerning Gevrey lasses and asymptoti analysis.2. Proof of the main TheoremIn this part we will prove our main result, Theorem 1.3. The proof will be di-vided into three steps: �rst we use the Gevrey{s harater of the formal lineariza-tion Ĥ , given by Theorem 1.2, to �nd an approximate solution of the onjugayequation (1.1) up to a (exponentially) small orretion (paragraph 2.1); then weprove an iterative Lemma allowing us to ontrol how the small error introdued inthe solution propagates (paragraph 2.2). Finally we ollet all the informations toonlude the proof (paragraph 2.3).2.1. Determination of an approximate solution. We apply Theorem 1.2: theformal power series solution Ĥ belongs to Cs, as well as its inverse Ĥ�1 whih solves(formally):(2.1) Ĥ�1 Æ F (z) = RA Æ Ĥ�1(z) :Sine Ĥ�1 =Ph�z� 2 Cs, there exist positive onstants A1 and B1 suh that(2.2) jh�j � A1B�sj�j1 (j�j!)s 8 j�j � 1 :For any positive integer N we onsider the vetorial polynomial, sum of homoge-neous vetor monomials of degree 1 � l � N , de�ned by: HN (z) =PNl=1Pj�j=l h�z�and the Remainder Funtion:(2.3) RN (z) = HN Æ F (z)�RA Æ HN (z) :The following Proposition ollets some useful properties of the remainder funtion.Proposition 2.1. Let RN (z) be the remainder funtion de�ned in (2.3) and let� 2 Nn, then:1) ��zRN (0) = 0 if j�j � N .



NEKHOROSHEV{LIKE ESTIMATE FOR NON{LINEARIZABLE ANALYTIC GERMS. 52) For all 0 < r < 1 there exists a positive onstants A2 and B2 suh that ifj�j � N + 1, then:��� 1�!��zRN (0)��� � A2r�j�jB�sN2 (N !)s :3) For all 0 < r < 1 and jzj < r=2 there exist positive onstants A3; B3 suhthat:(2.4) jRN (z)j � A3B�sN3 (N !)s � jzjr �N+1 :Where we used the ompat notation 1�!��z = 1�1!:::�n! �j�j��1z1 :::��nzn .Proof. Statement 1) is an immediate onsequene of the de�nition of RN .To prove 2) we observe that RN (z) is an analyti funtion on D1, then one getsby Cauhy's estimates for all 0 < r < 1 and for all j�j � N + 1:(2.5) ��� 1�!��zRN (0)��� � 1(2�)n 1rj�j+1 maxjzj=r jHN Æ F (z)j :Realling the Gevrey estimate (2.2) for HN and the analytiity of F we obtain:(2.6) ��� 1�!��zRN (0)��� � A2B�sN2 (N !)sr�j�j ;for some positive onstants A2 and B2 depending on the previous onstants, on thedimension n and on F .To prove 3) let us write the Taylor series RN (z) = Pj�j�N+1 1�!��zRN (0)z�,then the bound on derivatives (2.6) implies the estimate (2.4) for all jzj < r=2 andfor some positive onstants A3 and B3. �The bound (2.4) on RN (z) depends on the positive integer N , so we an deter-mine the value of N for whih the right hand side of (2.4) attains its minimum,that's Poinar�e's idea of summation at the smallest term.Lemma 2.2 (Summation at the smallest term). Let RN (z) de�ned as before and let0 < r� < 1=2 then there exist positive onstants A4; B4 suh that for all 0 < jzj < r�we have:(2.7) jR �N (z)j � A4 expn�B4� r�jzj�1=s o ;where �N = bB4 (r�=jzj)1=s and bx denotes the integer part of x 2 R.Proof. Let us �x 0 < r� < 1=2, then for 0 < jzj < r� by Stirling formula we obtain:(2.8) jRN (z)j � A4 �NB�13 (jzj=r�)1=s�Ns e�sN ;for some positive onstant A4. The right hand side of (2.8) attains its minimumat �N = B3 (r�=jzj)1=s, evaluating the value of this minimum we get (2.7) withB4 = B3. �



6 TIMOTEO CARLETTI2.2. Control of the \errors". Let us de�ne H(z) = H �N (z) and R(z) = R �N (z),being �N the \optimal value" obtained in Lemma 2.2. We remark that H(z) doesn'tsolve (2.1) but the \error", R(z), is very small: exponentially small. We will provethat for initial onditions in a suÆiently small disk, one an iterate an exponentiallylarge number of times without leaving a disk, say, of double size.Lemma 2.3 (Iteration lemma). Let a; b; � and R be positive real numbers. Let usonsider the sequene of positive number (�j)j�0 de�ned by:�0 = R and �j+1 = �j + a expf�b=��j g :Let K = bRa�1 expfb=(2R)�g, then �j � 2R for all j � K.Proof. Let us prove by indution on j that for all 0 � j � K we have(2.9) �j � R+ ja expf�b=(2R)�g ;then the laim will follow from (2.9) and the de�nition of K, in fat for all j � K:�j � R+ ja expf�b=(2R)�g � R +Ra�1 expfb=(2R)�ga expf�b=(2R)�g � 2R :The basis of indution is easily veri�ed; assume (2.9) for all j � K � 1, we willprove it for j = K. By de�nition of (�j)j and the indution hypothesis we have:�K = �K�1 + a expf�b=��K�1g �� R+ (K � 1)a expf�b=(2R)�g+ a expf�b=��K�1g ;we remark that from (2.9) with j = K � 1, using K � 1 < Ra�1 expfb=(2R)�g, weget �K�1 � 2R and expf�b=��K�1g � expf�b=(2R)�g. Then we onlude:�K � R+ (K � 1)a expf�b=(2R)�g+ a expf�b=(2R)�g ;whih ends the indution. �Let r� as in Lemma 2.2, de�ne �(z) = jH(z)j for all 0 < jzj < r�, then Lemma 2.2admits the following Corollary, whih allows us to ontrol the funtion �(z) ononseutive points of an orbit of F (z).Corollary 2.4. Let 0 < r� < 1=2, let r1 be the radius of the maximal polydisk whereH(z) is invertible and let r�� = min(r�; r1). Then there exist positive onstantsA�; B� suh that for all 0 < jzj < r�� we have:(2.10) ����(F (z))� �(z)��� � A� expn�B�� r��(z)�1=s o :Proof. By de�nition �(F (z)) = jH Æ F (z)j and �(z) = jRA Æ H(z)j, sine j�j j = 1for 1 � j � n, and A = diag(�1 ; : : : ; �n), therefore:����(F (z))� �(z)��� � ���H Æ F (z)�RA Æ H(z)��� = jR(z)j ;and from Lemma 2.2 we get:(2.11) ����(F (z))� �(z)��� � A4 expn�B4� r�jzj�1=s o :We want to express this ondition in terms of �(z) instead of jzj, to do this we haveto onsider the distortion properties of H(z) and of its inverse. Let J(z) = �zH(z)be the Jaobian of H(z) and let J1 = maxjzj�r1 jJ(z)j, where r1 has been de�nedpreviously. Let 0 < jzj < r1 and let us all z0 = H(z), learly jz0j � J1r1 = r2. Let



NEKHOROSHEV{LIKE ESTIMATE FOR NON{LINEARIZABLE ANALYTIC GERMS. 7us all J2 = maxjz0j<r2 j�z0H�1(z0)j, then for any 0 < jz0j < r2 there exists only onez suh that z = H�1(z0), whih satis�es jzj � J2jz0j = J2jH(z)j.Let r�� = min(r�; r1) then from (2.11) for any 0 < jzj < r�� we get:����(F (z))� �(z)��� � A� expn�B�� r��(z)�1=s o ;where A� = A4 and B� = B4J�1=s2 . �2.3. End of the proof. We are now able to onlude the proof of the main Theo-rem 1.3. Take any 0 < jz0j < r��=2 and let us de�ne �0 = jz0j, �m = �(Fm(z0)) forall positive integer m for whih Fm(z0) is well de�ned, by Corollary 2.4 we have:(2.12) �m � �m�1 +A� expn�B� (r�=�m�1)1=s o :Let us all R = jz0j, a = A�, b = B�r1=s� and � = 1=s, then we an apply Lemma 2.3,being �m � �m, to onlude that:(2.13) �m � r�� 8m � K� = jjz0jA�1� expnB�� r�2jz0j�1=s ok :This implies thatH(zm) is well de�ned in this range of values ofm, it is not onstantand it evolves only by ���jH(zm)j � jH(z0)j��� � r��. Realling that zm = Fm(z0) wealso have jFm(z0)j � J2r�� and ���jzmj � jz0j��� � J2r�� for all 0 < jz0j < r��=2 and allm � K�.This onlude the proof by setting A�� = 2A�r�1�� , B�� = B� (r�=(2r��))1=s andC�� = J2. 3. One dimensional aseIn this paper we proved that any analyti germs of di�eomorphisms of (C n; 0)with diagonal, non{resonant linear part has an e�etive stability domain, i.e. stableup to �nite but \long times", lose to the �xed point, provided the linear partveri�es a new arithmetial Bruno{like ondition (1.4) depending on a parameters > 0.Remark 3.1 (Invariane of Ss>0 Bs, n = 1 under the ation of PSL(2;Z)). Theontinued fration development [HW, MMY℄ of an irrational number ! gives us thesequenes: (ak)k�0 and (!k)k�0. Then we introdue (�k)k��1 de�ned by ��1 = 1and for all integer k � 0: �k = Qkj=0 !k, whih veri�es : 1=2 < �kqk+1 < 1 andqn�n�1 + qn�1�n = 1, where qk's are the denominators of the ontinued frationdevelopment of !. We laim that ondition Bruno{s (1.6) is equivalent to thefollowing one:(3.1) lim supk!+1 0� kXj=0 �j�1 log!�1j + s log�k�11A < +1 :This an be proved by using the relations between �l and ql, to obtain the bound,for all integer k > 0:��� kXl=0 ��l�1 log!l + log ql+1ql � ��� � kXl=0 ����l�1 log�lql+1���+����l�1 log�l�1���+���ql�1ql �l log ql+1��� � 18 ;



8 TIMOTEO CARLETTIwhere we used the onvergene of series P q�1l and P q�1l log ql (see [MMY℄ page272).To prove the invariane of Ss Bs under the ation of PSL(2;Z), is enough toonsider its generators: T! = ! + 1 and S! = 1=!. For any irrational !, T atstrivially being �k(T!) = �k(!) for all k, whereas for S we have �k(!) = !�k�1(S!)for all k � 1. Let ! be an irrational and let !0 = !�1, let us also denote with a 0quantities given by the ontinued fration algorithm applied to !0, then using (3.1)one an prove:!00� kXj=0 �0j�1 log!0j�1 + s!�10 log�0k�11A = C(!; s) + k+1Xj=0 �j�1 log!�1j + s log�k ;where C(!; s) = !0 �log!�11 � s log!0�+P1l=0 �l�1 log!�1l , from whih the laimfollows.Let us onsider a slightly stronger version of the Bruno{s ondition: ! 2 R nQbelongs to ~Bs if:(3.2) limk!+1 kXl=0 log ql+1ql � s log qk! < +1 ;where (qn)n are the onvergents to !.Remark 3.2. This new ondition is stronger than Bruno{s, beause the existeneof the limit is required. One an onstrut numbers ! whih verify Bs but not ~Bs,as follows.Let us all for short sk =Pkl=0 log ql+1ql � s log qk. Fix � > � > 0, Æ > 0 and tosimplify take s > (2+Æ)= log 2. We laim that one an hoose large enough positiveintegers k1 and a1; : : : ; ak1+1 suh that:sk � sk�1 � Æ and sk1 2 (�; 2�) ;for instane take k1 > (��log q1)Æ�1 and indutively al+1 � �eÆql � ql�1ql�2 �2ql � ql�1� q�1l ,for all l = 1; : : : ; k1. Then one an take suÆiently many al's equal to one,ak1+1+l = 1 for l = 1; : : : ; 2k2 + 1, and verify that:sk1+1+2j � sk1+1+2j�2 < �Æ ;8j = 0; : : : ; k2 and sk1+1+2k2 < � :Then one iterate taking a suÆiently large blok of large enough ak's, followed bya suÆiently large blok of ak = 1. The real number whose ontinued frationdevelopment is given by x = [0; a1; : : : ; an; : : : ℄, veri�es by onstrution Bruno{s,with s > (2 + Æ)= log 2, being (sk)k bounded by 2�, but it doesn't verify ~Bs, in fat(sk)k osillates from values larger than � to values smaller than �, without reahingany limit.Let us introdue two other arithmetial onditions. Let us denote by B0s the setof irrational numbers whose onvergents verify:(3.3) limk!+1 log qk+1qk log qk = s :And a seond ondition as follows, let (m)m�1 and (sm)m�1 be two positive se-quenes of real numbers suh that: P+11 m =  < +1 andP+11 sm = � < +1,



NEKHOROSHEV{LIKE ESTIMATE FOR NON{LINEARIZABLE ANALYTIC GERMS. 9then we de�ne ondition B;� by:(3.4) log qm+1qm � sm log qm + m 8m � 1 :Proposition 3.3. Let ! 2 (0; 1) n Q and let s > 0 then we have the followinginlusions:1) let ! 2 ~Bs, if ! is not a Bruno number then ! 2 B0s, otherwise ! 2 B00.2) Let � � s and ! 2 B;� then ! 2 ~Bs;Proof. To prove the �rst statement let us write the following identity:(3.5) kXl=0 log ql+1ql � s log qk = C + kXl=2 � log ql+1ql � s (log ql � log ql�1)� ;where C = (1 � s) log q1 + log q2q1 . By ondition ~Bs, this series onverges and thenits generi term goes to zero, from whih we get:(3.6) limk!+1 log qk+1qk log qk = s�1� limk!+1 log qk�1log qk � :Let us denote by s0 be value of the right hand side of (3.6), then learly s0 2 [0; s℄.Let us suppose s0 > 0, but then we have for all suÆiently large k:C1qk � log qklog qk+1 � C2qk ;for some positive onstants C1; C2, from whih we get log qklog qk+1 ! 0, and from (3.6)we onlude that s0 = s.If s0 = 0, namely log qklog qk+1 ! 1, then it is easy to hek that ! is a Bruno number.Let us prove the seond statement. For any positive integer k, using the de�nitionof B;� we an write:(3.7) kXl=0 log ql+1ql � s log qk � kXl=0 sl log ql + kXl=0 l � s log qk ;for all 0 � l � k we have log ql � log qk then the right hand side of (3.7) is boundedby: � log qk �s�Pkl=0 sl� +Pkl=0 l. By hypothesis Pkl=0 sl � s, for all k, thenusing � log qk � � log q1 we obtain:kXl=0 log ql+1ql � s log qk � � log q1 s� kXl=0 sl!+ kXl=0 l ;then passing to the limit on k we have:limk!+1 kXl=0 log ql+1ql � s log qk � � log q1 (s� �) +  < +1 : �Remark 3.4. These new arithmetial onditions are weaker than the Bruno one,for instane ondition B0s is veri�ed by numbers ! whose denominators (qk)k satisfya growth ondition like qk+1 � (qk!)s. Condition B;� implies onvergene of theseries: Pk�0 log qk+1qk log qk .



10 TIMOTEO CARLETTILet us onlude realling a stability result of P�erez{Maro [PM1, PM2℄ andompare it with our result. In [PM2℄ author proved (Theorem V.2.1 Annexe 2 xf )using a geometri renormalization sheme "�a la Yooz" valid in the one dimensionalase, a stability result that an be stated as follows:Theorem 3.5 (P�erez{Maro, Contrôle de la di�usion). Let ! 2 (0; 1) n Q and let(qk)k be the denominators of its onvergents. Let F be an analyti and univalentfuntion de�ned in the unit disk fz 2 C : jzj < 1g suh that F (z) = �z +O(jzj2),where � = e2�i!. There exist two positive onstants C1; C2 suh that if:(3.8) jzj � C1e�Pk�1j=0 log qj+1qj ;then for all integer 0 � m � qk we have:(3.9) jFm(z)j � C2e�Pk�1j=0 log qj+1qj :The meaning of the Theorem is lear: if we start inside a disk of radius r =C1e�Pk�1j=0 log qj+1qj then we an apply F , up to qk times, without leaving a disk ofradius rC2=C1. To ompare this result with our e�etive stability result we haveto make expliit the relation between r and qk, whih give the time of "stability".Using our Bruno{s ondition (3.2) we an say that C � rqsk�1 � C 0 for somepositive onstants C;C 0. But from (3.3) we get log qk � C3qk�1 log qk�1 for somepositive onstant C3, namely there exist positive onstants C 03; C4 suh that:qk � expn C 03r1=s log C4r1=so :We an then restate Theorem 3.5 as follows: if jzj � r, then jFm(z)j � rC2=C1 forall integer 0 � m � expf C03r1=s log C4r1=s g, obtaining a better estimate on the time ofe�etive stability.This improvement has been obtained thanks to a good understanding of thegeometry of the dynamis, if one would like to obtain these better estimates also forgerms in higher dimensions, one should extend the P�erez{Maro ideas to understandthe geometry of dynamis of germs in higher dimension. This ould be very diÆultwhereas our results are easy to adapt to any dimension.We end with a last remark related again to the work of P�erez{Maro.Remark 3.6. P�erez{Maro proved in [PM1, PM2℄ that any non{analytially lin-earizable analyti germ, univalent in the unit disk, whose multiplier at the �xedpoint, veri�es the following arithmetial ondition:(3.10) Xk�0 log log qk+1qk < +1 ;has a sequene of periodi orbits aumulating the �xed point, whose periods, (qnk )k,make the Bruno series diverging.Our Bruno{s ondition implies (3.10), in fat from (3.2) we get:NXk=0 log log qk+1qk � NXk=0� logC3qk + log qkqk + log log qkqk � ;we an let N grow and using standard number theory results onerning the onver-gents, we obtain the P�erez{Maro ondition. Then we an suppose these periodiorbits aumulating the �xed point to \produe the e�etive stability: preventing the
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