
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Spectral factorization by symmetric extraction for distributed parameter systems

Winkin, Joseph; Callier, Frank; Jacob, Birgit; Partington, Jonathan

Published in:
SIAM Journal on Control and Optimization

Publication date:
2005

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Winkin, J, Callier, F, Jacob, B & Partington, J 2005, 'Spectral factorization by symmetric extraction for distributed
parameter systems', SIAM Journal on Control and Optimization, vol. 43, no. 4, pp. 1435-1466.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/326255586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/spectral-factorization-by-symmetric-extraction-for-distributed-parameter-systems(81aa12fe-0547-43a6-a338-b00a9dc26eaf).html


SPECTRAL FACTORIZATION BY SYMMETRIC EXTRACTION
FOR DISTRIBUTED PARAMETER SYSTEMS∗

J. J. WINKIN† , F. M. CALLIER† , B. JACOB‡ , AND J. R. PARTINGTON§

SIAM J. CONTROL OPTIM. c© 2005 Society for Industrial and Applied Mathematics
Vol. 43, No. 4, pp. 1435–1466

Abstract. The spectral factorization problem of a scalar coercive spectral density is considered
in the framework of the Callier–Desoer algebra of distributed parameter system transfer functions.
Criteria are given for the infinite product representation of a meromorphic coercive spectral density
of finite order and for the convergence of infinite product representations of spectral factors, i.e., for
the convergence of the symmetric extraction method for solving the spectral factorization problem of
such spectral density. These convergence criteria are applied to the solution of the linear-quadratic
optimal control problem by spectral factorization for a specific class of semigroup Hilbert state-space
systems with a Riesz-spectral generator. The speed of convergence of the symmetric extraction
method is also considered. As an example a damped vibrating string model is handled.

Key words. distributed parameter systems, spectral factorization, coercivity, meromorphic
function, entire function, finite order, infinite product, symmetric extraction, convergence analysis
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1. Introduction. The spectral factorization problem plays a central role in the
framework of the fractional representation approach (which is also known in the lit-
erature as the “factorization approach”) for feedback control system design; see, e.g.,
[8], [35]. In addition, spectral factorization constitutes an essential step in the so-
lution of the linear-quadratic (LQ) optimal control problem for infinite-dimensional
state-space systems; see, e.g., [9], [10], [18], [33], [36] and the references therein. The
spectral factorization problem is also used as a main tool for solving linear operator
inequalities (Lur’e equations); see, e.g., [16], [19]. As far as the LQ-optimal con-
trol problem is concerned, it is shown in [9] and [10] that the latter is solvable by
spectral factorization for C0-semigroup Hilbert state-space systems with bounded ob-
servation and control operators and with finite-dimensional output and input spaces.
The philosophy developed in those papers has been extended, e.g., in [33] and [36]
to C0-semigroup Hilbert state-space systems with unbounded observation and control
operators. In those references, the authors analyze spectral factorization problems of
operator-valued Popov functions, giving an H∞ spectral factor and showing notably
the existence of solutions to related operator Riccati equations. However, they do not
develop any method to perform the spectral factorization iteratively, which is done
here similarly as on the heat diffusion model dealt with in [10].

Fundamental questions concerning the spectral factorization problem have been
studied in the literature: in particular the existence and multiplicity of spectral factors
and the continuity of the spectral factorization mapping have been analyzed; see,
e.g., [12], [23], [22] and the references therein. As far as computational questions are
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concerned, several methods have been developed and analyzed for the approximate
computation of spectral factors or solutions of related operator Riccati equations
for distributed parameter systems; see, e.g., the references cited in [9], [10], and
[36]. The LQ-control based normalized coprime fraction spectral factorization problem
considered in [10] was solved by an ad hoc iterative symmetric extraction method for a
one-dimensional heat diffusion model, involving only elementary rational factors with
real poles and zeros (first order case). The symmetric extraction method of spectral
factorization was also studied in detail for multivariable finite-dimensional state-space
systems in [4].

The major aim of this paper is to extend this method to a class of single-variable
distributed parameter (i.e., in particular infinite-dimensional state-space) systems, in-
cluding standard models like heat diffusion or wave propagation, and thereby involving
the symmetric extraction of elementary rational factors with complex conjugate poles
and zeros (second order case) as well. More specifically, this paper is devoted to the
description and the convergence analysis of the symmetric extraction method for the
spectral factorization of a scalar coercive spectral density, which is assumed to be a
meromorphic function of finite order (see, e.g., [27]), in the framework of the Callier–
Desoer algebra of distributed parameter system transfer functions (see, e.g., [5], [6],
[11], [17]). Criteria for the infinite product representation of a meromorphic coercive
spectral density of finite order and for the convergence of the symmetric extraction
method of spectral factorization are developed, which extend some previous partial
results (see [8], [10]). These criteria are mainly based on the knowledge of the com-
parative asymptotic behavior of the spectral density poles and zeros. Some comments
concerning the speed of convergence of such a method are also given. Moreover, the
symmetric extraction method is shown to work for the spectral factorization of a
coprime fraction (coercive) spectral density. The analysis is performed in the frame-
work of C0-semigroup Hilbert state-space systems, whose infinitesimal generator is a
Riesz-spectral operator, with eigenvalues satisfying some asymptotic conditions, and
with transfer function in the Callier–Desoer algebra. The results are illustrated by an
example, namely, the LQ-control based normalized coprime fraction spectral factor-
ization problem for a vibrating string model. Some of these results were reported in
[13], [14].

The methodology for the convergence analysis of the symmetric extraction method
of spectral factorization which is used here is based on entire function theory; see, e.g.,
[37], [3], [26]. In particular, Hadamard’s theorem on the infinite product representa-
tion of entire functions of finite order plays a central role here. Basically the analysis
developed in this paper uses the material which is contained in [37] and which is
paramount for the proof of a related important result, viz., Akhiezer’s theorem, con-
cerning the spectral factorization of entire functions of exponential type; see, e.g., [25,
p. 567], [3, Theorem 7.5.1, p. 125].

Related results dealing with matrix-valued functions can also be found, e.g., in
[29] and [30, Theorem 2.1]. These contributions do not deal with the symmetric case,
whereas the present paper does. In addition, e.g., in [29], the starting point of the
analysis is the function to be factorized (requiring a realization step in the analysis).
Here the starting point of the analysis is basically a system transfer function, the
main objective being to apply the methodology in a system theoretic framework.

The paper is organized as follows. Some preliminaries concerning the frequency
domain framework, and properties of coercive spectral densities and invertible spectral
factors are given in section 2. Fundamental results concerning the representation
of a meromorphic coercive spectral density of finite order as an infinite product of



SPECTRAL FACTORIZATION BY SYMMETRIC EXTRACTION 1437

elementary rational spectral densities are developed in section 3. These results are
used in section 4 in order to establish spectral criteria for the convergence of the
symmetric extraction method for the computation of a spectral factor. Section 5
is devoted to the implementation of this method for solving the LQ-optimal control
based spectral factorization problem for a vibrating string model. Finally, section 6
contains some concluding remarks and perspectives.

2. Preliminary concepts and results. The analysis of the symmetric extrac-
tion method of spectral factorization is performed in the framework of the Callier–
Desoer transfer function algebra (see, e.g., [5], [6], [11], [17, section 7.1]). The latter
is briefly described below.

Let σ ≤ 0. An impulse response f is said to be in A(σ) if for t < 0, f(t) = 0,
and for t ≥ 0, f(t) = fa(t) + fsa(t), where the regular functional part fa ∈ L1

σ, i.e.,
exp(−σ·) fa(·) is in L1(0,∞), and the singular atomic part fsa :=

∑∞
i=0 fiδ(. − ti),

where t0 = 0, ti > 0 for i = 1, 2, . . . , and fi ∈ C for i = 0, 1, . . . with
∑∞

i=0 |fi| exp(−σti) <
∞. The norm of a distribution f in A(σ) is defined by

||f ||A(σ) :=

∫ ∞

0

|fa(t)| e−σt dt +

∞∑
i=0

|fi| e−σti .

The Laplace transform of a distribution f is denoted by f̂ , and the class of Laplace
transforms of elements in A(σ) is denoted by Â(σ). The norm of f̂ in Â(σ) is defined
by

||f̂ ||Â(σ) := ||f ||A(σ) .

An impulse response f is said to be in A−(σ) if f ∈ A(σ1) for some σ1 < σ. We
write A− for A−(0). A(σ) and A− are convolution algebras. By Â−(σ) and Â− we
denote the classes of Laplace transforms of elements in A−(σ) and A−, respectively.
Then Â− is our selected class of distributed proper-stable transfer functions. It con-
tains the multiplicative subset Â∞

− of transfer functions that are bounded away from

zero at infinity in C+, i.e., that are biproper-stable. The Callier–Desoer algebra B̂
of possibly unstable transfer functions consists of those f̂ such that f̂ = n̂d̂−1 with
n̂ ∈ Â− and d̂ ∈ Â∞

− . A transfer function is in B̂ if and only if it is the sum of a
completely unstable strictly proper rational function and a stable transfer function in
Â−; hence d̂ above can always be chosen biproper-stable rational; see [11], [17].

Definition 2.1. A complex–valued function f is said to be (1) parahermitian
if f(s) ≡ f∗(s) := f(−s), (2) real if f(s) ≡ f(s), and (3) real parahermitian if
f(s) ≡ f(s) and f(s) ≡ f∗(s).

A function F̂ is said to be a (real) spectral density if F̂ is (real) parahermi-
tian such that F̂ = F̂∗ = Ĝ∗ + Ĝ, where Ĝ is in Â−, and F̂ is nonnegative on
the imaginary axis, i.e., F̂ (jω) ≥ 0 for all ω ∈ R. A spectral density F̂ is said
to be coercive if there exists η > 0 such that F̂ (jω) ≥ η for all ω ∈ R. A
transfer function R̂ in Â− is said to be a spectral factor of a spectral density F̂
if F̂ (jω) = R̂∗(jω)R̂(jω) for all ω ∈ R. A spectral factor R̂ is said to be invertible if
R̂−1 is in Â−.

A spectral density is also called a Popov function in the literature; see, e.g., [36]
and the references therein. It is known that a spectral density has an invertible
spectral factor if and only if it is coercive, and that spectral factors are unique up
to multiplication by a constant of modulus one (see, e.g., [8], [9], [12]); furthermore,
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to coercive real spectral densities correspond real spectral factors unique up to the ±
sign. Moreover, a coercive spectral density F̂ such that F̂ (∞) = 1, i.e., F̂ = Ĝ∗ + Ĝ
with Ĝ = G0 + Ĝa ∈ Â− and Re G0 = 2−1, has a unique invertible standard spectral
factor R̂ = 1 + R̂a ∈ Â−, i.e., such that R̂(∞) = 1. The following properties will be
needed for the analysis of the following sections, especially in the proof of Theorem 3.4.
The proof of the following lemma can be found in [8].

Lemma 2.2 (algebraic properties of coercive spectral densities).
(a) If F̂ is a coercive (real) spectral density, then so is its inverse F̂−1.
(b) If F̂ and Ĝ are coercive (real) spectral densities, then so is their product F̂ ·Ĝ.
Remark 2.1. All impulse responses f considered below have no delayed impulses

(delays); i.e., their singular atomic part is of the form fsa = f0δ(·).
In this paper we are essentially interested in meromorphic spectral densities. Re-

call that a function f is said to be meromorphic (in C) if there exists a countable
set S ⊂ C such that S has no limit point, f is holomorphic in Sc, and f has a pole
at each point of S; see, e.g., [31, p. 241]. In particular a meromorphic coercive real
spectral density F̂ with a meromorphic inverse has a countable set of zeros Z ⊂ C

and a countable set of poles P ⊂ C such that Z and P have no limit points, there
exists a vertical strip Sδ, δ > 0, such that Z ∩ Sδ = ∅ and P ∩ Sδ = ∅, and for any
z ∈ Z and any p ∈ P, −z, z, −z are in Z and −p, p, −p are in P.

In addition, the order of a meromorphic function is defined as follows (see, e.g.,
[27, Chapters VI and VIII]): For a meromorphic function f , with no poles at s = 0,
define the counting function N(r, f) and the proximity function m(r, f), where r ≥ 0,
respectively, by

N(r, f) :=

∫ r

0

n(t, f)

t
dt,

where n(t, f) denotes the number of poles of f (counting their multiplicities) in the
closed disk {s ∈ C : |s| ≤ t}, and

m(r, f) :=
1

2π

∫ 2π

0

log+ |f(rejθ)| dθ,

where log+ x := max{0, log x} and f is assumed to have no poles on the circle
{s ∈ C : |s| = r}. The function T which is given by

T (r) := T (r, f) := m(r, f) + N(r, f)

is called the characteristic function of f . Observe that T is positive and monotonically
increasing for r > 0. The order of f is defined to be the order of its characteristic
function T , viz.,

ρ := lim sup
r→∞

log T (r)

log r
.

In particular, for an entire function f , let M(r) be its maximum modulus defined by

M(r) := max{|f(s)| : |s| = r};

then the functions T and log M are of the same order, viz.,

ρ = lim sup
r→∞

log log M(r)

log r
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(see, e.g., [27, p. 216] and [37]). Thus an entire function f is of finite order if and
only if there exists a constant k > 0 such that max{|f(s)| : |s| = r} ≤ exp(rk)
for r large (see, e.g., [37]). Moreover, the sum, the product, and the quotient of two
meromorphic functions of finite order are meromorphic functions of finite order as
well; see, e.g., [27, p. 216]. The following concept will be very useful for the analysis
of meromorphic spectral densities of finite order.

Definition 2.3. A paraconjugate symmetric (ps-)family M with countably
many defining parameters µn ∈ M is a countable family of complex numbers (ρl),
containing (µn) as a subfamily, such that (a) M is paraconjugate symmetric, i.e., the
ρl’s are either real such that ρl = µn and −µn ∈ R, with µn < 0, or complex nonreal
such that ρl = µn, µn,−µn and −µn ∈ C, with Re µn < 0, Im µn > 0, n ∈ N,
(b) the defining parameters may be finitely repeated in M, i.e., (µn) (or, equivalently,
(ρl)) does not contain any constant subfamily, and (c) all the points ρl of M are lo-
cated outside a vertical strip containing the imaginary axis in its interior, i.e., there
exists some κ > 0 such that, for all n, |Re µn| ≥ κ.

It turns out that there is a strong connection between meromorphic real spectral
densities and real parahermitian entire functions; see Lemma 2.5 below. This result
is based on the following additional lemma concerning the infinite product represen-
tation of real parahermitian entire functions, which also will be needed in the proof
of Theorem 3.4.

Lemma 2.4 (infinite product representation of real parahermitian entire func-
tions).

(1) Consider a ps-family M with defining parameters µn. Assume that

∞∑
n=1

1

|µn|2
< ∞.(2.1)

Then there exists an entire function P of finite order such that P has a zero at each
point of M and no other zero in C, and such that (a) P has a product factorization
of the form

P (s) =
∞∏

n=1

Pn(s),(2.2)

where

Pn(s) = 1 −
(

s

µn

)2

, with µn ∈ R such that µn < 0,(2.3)

and

Pn(s) =

(
1 −

(
s

µn

)2
) (

1 −
(

s

µn

)2
)
, with µn ∈ C\R such that Re µn < 0,

(2.4)

whence, for all ω ∈ R, P (jω) ≥ 0. Moreover, the convergence of the infinite product
in (2.2) is uniform and absolute on closed discs D(r) := {s ∈ C : |s| ≤ r}, and
(b) P is real parahermitian, whence for all s ∈ C, P (s) = P (−s), and there exists
δ > 0 such that, for all s ∈ Sδ, P (s) 	= 0.
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(2) Let f be a real parahermitian entire function having zeros in C as described
in part (1); then f(s) has the product representation

f(s) = eg(s) P (s),(2.5)

where P (s) is as in part (1) and g(s) is a real parahermitian entire function. If in
addition f is of finite order ρ, then g(s) is a polynomial of degree δ[g] ≤ ρ.

Proof. See, e.g., [37, pp. 54–57] for more detail.
Assume that M =: (ρl)

∞
l=1 . Let p be the least nonnegative integer such that∑∞

l=1
1

|ρl|p+1 < ∞. It follows from (2.1) that p is 0 or 1. Then

P (s) :=
∞∏
l=1

E

(
s

ρl
, p

)
,(2.6)

where

E

(
s

ρl
, p

)
=

(
1 − s

ρl

)
e

ps
ρl for p = 0, 1

is the canonical product of genus p associated with the sequence (ρl)
∞
l=1. By the

reasoning of [37, pp. 55–56] it is an entire function, which has a zero at each point ρl
and no other zeros in C. Moreover, the convergence of its infinite product is uniform
and absolute on closed discs D(r), whence it can be reordered arbitrarily. Now as the
factors E( s

ρl
, p) can be grouped to form factors of the form (2.3) or (2.4) that have

real coefficients and are invariant when s is exchanged for −s, there holds that in
either case (i.e., p = 0 or p = 1), P (s) is real parahermitian and can be rewritten as

P (s) =

∞∏
n=1

Pn(s) = P (−s),(2.7)

where the Pn’s are the polynomial functions given by (2.3)–(2.4). In addition, the

entire function P is of finite order ρ ≤ 2 (i.e., |P (s)| ≤ e|s|
ρ+ε

for |s| large [37, pp. 63–
64], for any ε > 0). Indeed by [37, pp. 65–66], the exponent of convergence of the
zeros ρl of the canonical product in (2.2)–(2.4) is the greatest lower bound of the
nonnegative numbers α such that

∑∞
l=1 |ρl|−α < ∞. By (2.1) it is less than or equal

to 2. Then, by [37, Theorem 6, p. 69], the entire function P is of order ρ ≤ 2. Finally,
the function P (s) satisfies all conclusions of part (1) of the lemma.

Part (2) follows by the reasoning around Weierstrass’s factorization theorem [37,
pp. 55–57] and the reasoning of the proof of part (1). The last statement concerning
an entire function f of finite order follows by Hadamard’s theorem; see, e.g., [37,
Theorem 9, p. 74].

Remark 2.2. Let f be a real parahermitian entire function of finite order ρ < 2
with zeros as in part (1) of Lemma 2.4, whence for some δ > 0, for all s ∈ Sδ,
f(s) 	= 0, and for all ω ∈ R, f(jω) ≥ 0. Then f has a product factorization of the
form

f(s) = kP (s),(2.8)

where k is a positive constant and P (s) is of the form (2.2)–(2.4).
Indeed, f has the product factorization (2.5), where the entire function g is a

polynomial of degree δ[g] ≤ ρ < 2. Since g is a real coefficient polynomial function of
(−s2), it should be a constant c, such that (2.8) holds with k = ec.
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It follows from the lemma above that a coercive real spectral density that is a
meromorphic function of finite order can be written as a ratio of two real parahermitian
entire functions of finite order, provided that its poles tend to infinity sufficiently fast:
see the following lemma.

Lemma 2.5. Consider a coercive real spectral density F̂ given by F̂ = F̂∗ =
Ĝ∗ + Ĝ, where Ĝ ∈ Â− is such that Gsa = G0δ(·) for some G0 ∈ C, whence F̂ is
holomorphic in some open vertical strip containing the imaginary axis Sδ := {s ∈ C :
Re s ∈ (−δ, δ)}, where δ > 0. Assume that F̂ is a meromorphic function of finite
order. Let the poles of F̂ form a ps-family P with defining parameters pn and let

∞∑
n=1

1

|pn|2
< ∞.

Then F̂ can be written as a fraction

F̂ (s) =
N(s)

D(s)
,

where the denominator D and numerator N are real parahermitian entire functions
of finite order, such that D(s) = D(−s), N(s) = N(−s), and the zeros and poles of
F̂ are those of N and D, respectively.

Proof. Let the ps-family P be given by P =: (πl). By Lemma 2.4 part (1),
there exists a real parahermitian entire function D of finite order such that D has
a zero at each pole πl of F̂ and no other zeros in C. Now, as in the proof of [31,
Theorem 15.12, p. 327], consider the function N := F̂ D, which is obviously real
parahermitian and such that F̂ = N D−1. Moreover, the singularities of N at the
points πl are removable, whence N can be extended such that it is holomorphic in C,
i.e., entire, and N and D have no common zeros in C. Finally, N = F̂ D is of finite
order, since so are F̂ and D.

Remark 2.3. (α) The converse of Lemma 2.5 obviously holds: any coercive real
spectral density whose poles satisfy the condition above and which can be written as
a fraction as in the statement of Lemma 2.5 is a meromorphic function of finite order.

(β) The proof above contains the essential arguments of the proofs of [31, The-
orems 15.11 and 15.12, pp. 326–327]). Lemma 2.5 will be used in the proof of
Lemma 4.7.

(γ) Related results concerning the canonical representation of any meromorphic
function of finite order are given in [27, pp. 218–221].

Later on, after having transformed the spectral density under study, we shall also
need the following auxiliary technical result.

Lemma 2.6 (entire coercive real spectral density of finite order without zeros).
Let F̂ be a coercive real spectral density given by F̂ = F̂∗ = Ĝ∗ + Ĝ, where Ĝ ∈ Â− is
such that Gsa = G0δ(·) for some G0 ∈ C. Assume that

F̂ is an entire function of finite order without zeros.(2.9)

In addition, assume that the limit of F̂ at infinity exists on the imaginary axis such
that

F̂ (±j∞) := lim
|ω|→∞

F̂ (jω) = 1,(2.10)
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(or, equivalently, Re G0 = 2−1). Then F̂ is a constant function, i.e., F̂ (s) = 1,
for all s ∈ C.

Proof. By Hadamard’s theorem [37, Theorem 9, p. 74], F̂ has the form

F̂ (s) = eg(s),(2.11)

where g(s) is a polynomial, i.e., g(s) =
∑n

k=0 gks
k. One has F̂ (0) = eg(0) = eg0 is real

and positive. Hence g0 = log(F̂ (0)) is real. Moreover, as F̂ is real, i.e., F̂ (s) = F̂ (s),
there holds by (2.11) and the continuity of g(s) that there exists a unique integer l

such that g(s) = g(s) + jl2π, which for s = 0 reads Im(g0) = lπ, whence l = 0 as

g0 is real. Thus g(s) = g(s), i.e., g is a real polynomial or, equivalently, g has real
coefficients.

In addition there holds that F̂ is real parahermitian, whence F̂ (s) = F̂ (−s). A
similar reasoning using (2.11) shows then that g is a real polynomial in s2, whence it
can be rewritten as a real polynomial h in −s2, i.e.,

g(s) =
m∑

k=0

g2ks
2k =

m∑
k=0

h2k(−s2)k =: h(−s2) ∈ R[−s2] with h2k = (−1)kg2k.

Observe now that, by the structure of F̂ , its coercivity, and (2.10), F̂ (jω) is a real
positive uniformly continuous function on ω ∈ R (i.e., the extended real line) and
bounded as well as bounded away from zero on R. Hence log(F̂ (jω)) is a real uniformly
continuous function on ω ∈ R and bounded above and below on R; moreover, by
(2.10), lim|ω|→∞ log(F̂ (jω)) = 0. Furthermore, there holds that log(F̂ (jω)) = h(ω2)
for all ω ∈ R, whence lim|ω|→∞ h(ω2) = 0 with h(ω2) ∈ R[ω2]. As a consequence,

the polynomial h(ω2) is identical to log(F̂ (jω)) on ω ∈ R, bounded there above and
below, and zero at infinity. Hence h(ω2) must reduce to a constant polynomial which
is identically zero, i.e., g(s) ≡ 0. Thus F̂ (s) ≡ 1.

Remark 2.4. (α) Often (2.11) reads F̂ (s) = keg(s), where k is a positive constant.
Then with k = ec, where c ∈ R, one gets F̂ (s) = eg(s)+c, where g(s)+c is a polynomial.
Hence (2.11) holds without loss of generality.

(β) Assumption (2.9) is realized for a meromorphic coercive real spectral density
of finite order for which, “after the removal of the poles and zeros,” there remains an
entire function of finite order without zeros, or, equivalently, “after the removal of the
poles” there remains an entire function of finite order (see Lemmas 2.5 and 2.4 (part
2)).

(γ) In Lemma 2.6, the assumption that the order of the spectral density F̂ (as an
entire function) is finite cannot be omitted. This fact is illustrated by the following
simple example. Consider the function F̂ given by

F̂ (s) := exp

(
2 · sinh s

s

)
.

Observe that F̂ is a coercive real spectral density of the form F̂ = Ĝ∗ + Ĝ, where
Ĝ = G0 + Ĝa ∈ Â− and Re G0 = 2−1. Indeed, let R̂ be the function defined by

R̂(s) := exp (ĝ(s)) , where ĝ(s) :=
1 − e−s

s
.

Then ĝ belongs to Â− as the Laplace transform of the function of finite support
g := χ

[0,1]
; i.e., g(t) = 1 if 0 ≤ t ≤ 1 and g(t) = 0 elsewhere. Moreover, ĝ is strictly
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proper, i.e., ĝ(∞) = 0, where ĝ(∞) should be interpreted as the limit of ĝ(s) as
|s| → ∞ in any right half-plane strictly containing the closed right half-plane. Hence
R̂ is in Â− together with its inverse R̂−1 = exp (−ĝ(s)), since they are exponentials of
elements of a Banach algebra, viz., Â(σ) ⊂ Â−, σ < 0; moreover, R̂(±j∞) = 1. Since
F̂ (s) = R̂(−s)·R̂(s), it follows that F̂ is a coercive real spectral density with invertible
standard real spectral factor R̂ . In addition, ĝ is an entire function, whence R̂ is an
entire function without zeros, and so is F̂ . However, F̂ is not a constant function.
Observe that there is no contradiction with Lemma 2.6, since F̂ is of infinite order.
Indeed, the function 2 · sinh s

s is an entire function which is not a polynomial. Hence,

in view of Hadamard’s theorem (see, e.g., [37, p. 74]), F̂ cannot be of finite order.

3. Meromorphic spectral densities of finite order. The main objective of
this section is to show that, under certain conditions, a coercive real spectral density
that is a meromorphic function of finite order can be written as an infinite product of
coercive real rational spectral densities. First it is shown that, under certain technical
conditions, such an infinite product is necessarily a coercive real spectral density.

3.1. Product of rational spectral densities.

Theorem 3.1 (infinite product of coercive rational spectral densities). Consider
a function F̂ given, for all s in some vertical strip symmetric with respect to the
imaginary axis, by an infinite product of pole-zero pairs of the form

F̂ (s) =

∞∏
n=1

F̂n(s),(3.1)

where the elementary factors F̂n are coercive real rational spectral densities, which are
given either by

F̂n(s) =
z2
n − s2

p2
n − s2

,(3.2)

where zn and pn ∈ R, with zn and pn < 0, or by

F̂n(s) =
(z2

n − s2)(z2
n − s2)

(p2
n − s2)(p2

n − s2)
,(3.3)

where zn and pn ∈ C\R, with Re zn and Re pn < 0. Consider the standard invertible
(real) spectral factors R̂n of the spectral densities F̂n, which are such that R̂n(∞) = 1
and which are given by

R̂n(s) =
zn − s

pn − s
(3.4)

(first order factor) when F̂n is defined by (3.2) and by

R̂n(s) =
(zn − s)(zn − s)

(pn − s)(pn − s)
(3.5)

(second order factor) when F̂n is defined by (3.3), respectively. Assume that there
exists a constant σ < 0 such that R̂n and R̂−1

n are in Â(σ), for all n, with

∞∑
n=1

||(Rn)a||A(σ) < ∞(3.6)
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and

∞∑
i=1

||(R−1
n )a||A(σ) < ∞.(3.7)

Then the following assertions hold:
(a) The infinite product in (3.1) converges to F̂ in the Banach algebra

L̂∆(σ) := {f̂ = f̂− + f̂+ : (f−)∗ and f+ ∈ A(σ)}

equipped with the norm

||f̂ ||σ := ||f ||σ := ||(f−)∗||A(σ) + ||f+||A(σ);

(b) The function F̂ is a coercive real spectral density such that F̂ = F̂∗ = Ĝ∗ + Ĝ,
where Ĝ is in Â(σ) ⊂ Â−.

Proof. (a) The proof goes along the lines of [10, proof of Theorem 5].
(b) It follows from assertion (a) and from the fact that every elementary factor

F̂n is real parahermitian and positive semidefinite on the imaginary axis, that F̂ is a
real spectral density of the form F̂ = Ĝ∗ + Ĝ for some Ĝ in Â(σ). Finally observe
that, by the fact that there exists a constant σ < 0 such that R̂n and R̂−1

n are in Â(σ)
for all n, every elementary factor spectral density F̂n is coercive such that, for some
η > 0,

∏N
n=1 F̂n(jω) ≥ η for all ω ∈ R and for all N ≥ 1. Hence the spectral density

F̂ is coercive.
Remark 3.1. Convergence in the L̂∆(σ)-norm implies convergence in the sup-

norm on a vertical strip without singularities containing the jω-axis in its interior.
This result leads to a criterion for the convergence of an infinite product of coercive

rational spectral densities, which is based on the knowledge of the spectrum, i.e., more
precisely, on the knowledge of the comparative asymptotic behavior of the spectral
density poles and zeros, pn and zn, as n tends to infinity; see Corollary 3.3 below.
The proof of this spectral criterion is based on the following preliminary result.

Lemma 3.2 (estimates of ||(Rn)a||A(σ) and ||(R−1
n )a||A(σ)). Consider the rational

elementary factors R̂n, n = 1, 2, . . . , given by (3.4)–(3.5), and assume that there exists
a constant σ < 0 such that 2 · |σ| ≤ min(|Re pn|, |Re zn|) for all n. Then R̂n and R̂−1

n

are in Â(σ) for all n and the following inequalities hold for all n: when R̂n is given
by (3.4), then

||(Rn)a||A(σ) ≤ 2
|zn − pn|

|pn|
,

and

||(R−1
n )a||A(σ) ≤ 2

|zn − pn|
|zn|

,

and when R̂n is given by (3.5), then

||(Rn)a||A(σ) ≤ 4
|zn − pn|
|Re pn|

(
1 +

|zn − pn|
|Re pn|

)
,

and

||(R−1
n )a||A(σ) ≤ 4

|zn − pn|
|Re zn|

(
1 +

|zn − pn|
|Re zn|

)
.
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Proof. For the case of a first order factor, see [10, Fact 1]. Concerning the case
of a second order factor, we derive only the inequality for (Rn)a. The other one can
be proved similarly. Now, for all t ≥ 0,

(Rn)a(t) = (pn − zn) · epnt + (pn − zn) · epnt +
|pn − zn|2
(pn − pn)

· (epnt − epnt),

whence, upon noting that |pn − pn| = 2|Im pn| and |epnt − epnt| = 2 · eRe pnt ·
| sin (Im pnt)|, one obtains

|(Rn)a(t)| ≤ 2 |zn − pn| · eRe pnt + |zn − pn|2 · t · eRe pnt.

By using the assumption that |Re pn| ≥ 2 · |σ|, one gets

||eRe pnt||A(σ) =

∫ ∞

0

e(Re pn−σ)tdt = |Re pn − σ|−1 ≤ 2

|Re pn|
,

and

||t · eRe pnt||A(σ) =

∫ ∞

0

t · e(Re pn−σ)tdt = |Re pn − σ|−2 ≤ 4

|Re pn|2
.

As a result one gets

||(Rn)a||A(σ) ≤ 4
|zn − pn|
|Re pn|

(
1 +

|zn − pn|
|Re pn|

)
.

Corollary 3.3 (spectral criterion for the convergence of an infinite product of
coercive rational spectral densities). Consider a function F̂ given by (3.1)–(3.3) for

all s in some vertical strip symmetric with respect to the imaginary axis. Let R̂n,
n = 1, 2, . . . , be the rational elementary factors defined by (3.4)–(3.5), with 2 · |σ| ≤
min(|Re pn|, |Re zn|), for all n, for some σ < 0. Now assume that

∞∑
n=1

|zn − pn|
|Re pn|

< ∞,(3.8)

and

∞∑
n=1

|zn − pn|
|Re zn|

< ∞.(3.9)

Then the conclusions of Theorem 3.1 hold.
Proof. Consider the series

∞∑
n=1

|zn − pn|
|Re pn|

(
1 +

|zn − pn|
|Re pn|

)
.

By (3.8) the sequence (
|zn − pn|
|Re pn|

)∞

n=1
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is in l1, hence also in l∞, and thus also in l2. Therefore the series above converges,
and in view of Lemma 3.2, (3.6) holds. Moreover, by similar arguments (3.7) holds.
Hence the conclusion follows by Theorem 3.1.

Remark 3.2. The conclusions of Corollary 3.3 still hold if conditions (3.8) and
(3.9) are replaced, respectively, by

|zn − pn|
|Re pn|

= O

(
1

nα

)
(3.10)

and

|zn − pn|
|Re zn|

= O

(
1

nα

)
(3.11)

for some exponent α > 1.

3.2. Product representation of meromorphic spectral densities. The fact
that a coercive real spectral density F̂ has an infinite product representation of the
form (3.1)–(3.3) is not automatically satisfied in applications. Typically one should
check this by using the Weierstrass factorization theorem for entire functions and
related results; see, e.g., [37, Chapter 2, part 1], [26, section 7.1, p. 343], and the
references therein. This was done in [10, p. 765] for a heat diffusion example. In
the following theorem, conditions on the poles and zeros of a meromorphic spectral
density of finite order are derived, under which this methodology can be used.

Theorem 3.4 (criterion for the infinite product representation of a meromorphic
coercive spectral density of finite order). Let F̂ be a coercive real spectral density given
by F̂ = F̂∗ = Ĝ∗ + Ĝ, where Ĝ ∈ Â− is such that Gsa = G0δ(·) for some G0 ∈ C;
whence F̂ is holomorphic in some open vertical strip containing the imaginary axis,
namely, Sδ, where δ > 0. Assume that the limit of F̂ at infinity exists in this vertical
strip such that

F̂ (∞) := lim
|s|→∞; s∈Sδ

F̂ (s) = lim
|ω|→∞; −δ<σ<δ

F̂ (σ + jω) = 1,(3.12)

(or, equivalently, Re G0 = 2−1). In addition, assume that F̂ is a meromorphic
function of finite order such that

(1) the poles of F̂ form a ps-family P with defining parameters pn,
(2) the zeros of F̂ form a ps-family Z with defining parameters zn, and
(3)

∞∑
n=1

1

|pn|2
< ∞ and

∞∑
n=1

1

|zn|2
< ∞.(3.13)

Assume that the set of zeros (poles, respectively) of F̂ consists of countably many
real zeros (poles, respectively) and countably many complex zeros (poles, respectively)
such that its zeros and poles can be associated by a one-to-one relationship, leading to
elementary factors of the form (3.17)–(3.18). Finally, assume that conditions (3.8)–
(3.9) hold.

Then (a) F̂ can be written as a fraction

F̂ (s) =
N(s)

D(s)
,(3.14)
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where the denominator D and numerator N are real parahermitian entire functions
of finite order such that D(s) = D(−s) and N(s) = N(−s) and the zeros and poles
of F̂ are those of N and D, respectively;

(b) the spectral density F̂ admits an infinite product representation of pole-zero
pairs that is of the form

F̂ (s) =

∞∏
n=1

F̂n(s),(3.15)

and the inverse spectral density F̂−1 admits the infinite product representation

F̂ (s)−1 =

∞∏
n=1

F̂n(s)−1,(3.16)

where the elementary factors F̂n are coercive real rational spectral densities that are
given either by

F̂n(s) =
z2
n − s2

p2
n − s2

(3.17)

if zn and pn ∈ R, with zn and pn < 0, or by

F̂n(s) =
(z2

n − s2)(z2
n − s2)

(p2
n − s2)(p2

n − s2)
(3.18)

if zn and pn ∈ C\R, with Re zn and Re pn < 0.
Remark 3.3. (α) Conditions (3.13) are not the most general ones encountered in

the theory of infinite product representation of entire functions; see, e.g., [26, p. 358]
and [37, Theorem 1, pp. 55–56]. However, according to [26], these conditions are ap-
plicable to many problems. In addition these assumptions together with the fact that
a spectral density is parahermitian lead to a simpler structure for the corresponding
infinite product elementary factors.

(β) Concerning the definitions of the elementary factors (3.17)–(3.18), it is natural
and usual to take the upper half-plane zeros and poles in increasing order of real part.
This is done in this way in the application dealt with in this paper; see section 5.

Proof of Theorem 3.4. (a) follows from Lemma 2.5.
(b) Step 1. D and N have the infinite product representations

D(s) = eGD(s) ·
∞∏

n=1

Dn(s),(3.19)

and

N(s) = eGN (s) ·
∞∏

n=1

Nn(s),(3.20)

respectively, where GD and GN are polynomial functions and where Dn and Nn are
the polynomial functions given by

Dn(s) =

{
1 − ( s

pn
)2 if pn ∈ R with pn < 0,

(1 − ( s
pn

)2) · (1 − ( s
pn

)2) if pn ∈ C with Re pn < 0
(3.21)
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and by

Nn(s) =

{
1 − ( s

zn
)2 if zn ∈ R with zn < 0,

(1 − ( s
zn

)2) · (1 − ( s
zn

)2) if zn ∈ C with Re zn < 0,
(3.22)

respectively. Moreover, the convergence of the infinite products is uniform and abso-
lute on any closed disc D(r).

Indeed this follows from the data concerning D and N , where in particular (3.13)
holds, and from Lemma 2.4, part (2).

Step 2. On closed discs D(r) where small neighborhoods of the poles are omitted,
the spectral density F̂ has the infinite product representations

F̂ (s) = eH(s) ·
∞∏

n=1

Nn(s)

Dn(s)
= eH(s) ·

∞∏
n=1

φn ·
∞∏

n=1

F̂n(s),(3.23)

where H := GN −GD is a polynomial function, the F̂n(s) are given by (3.17)–(3.18),
and where the constants φn are given by

φn =

⎧⎪⎪⎨⎪⎪⎩
∣∣∣pn

zn

∣∣∣2 if pn, zn ∈ R with pn and zn < 0,

∣∣∣pn

zn

∣∣∣4 if pn, zn ∈ C\R with Re pn and Re zn < 0.

(3.24)

Moreover, the convergence of the s-dependent products is uniform and absolute
on the aforementioned punctured discs.

Indeed this follows from identity (3.14), from (3.19)–(3.22), and from assumptions
(3.8)–(3.9). First it can be shown that for n sufficiently large, for the case that
pn, zn ∈ R with pn and zn < 0,∣∣∣F̂n(s) − 1

∣∣∣ = O

{∣∣∣∣∣1 −
(
zn
pn

)2
∣∣∣∣∣
}
,

and for the case that pn, zn ∈ C with Re pn and Re zn < 0,∣∣∣F̂n(s) − 1
∣∣∣ = O

{∣∣∣∣∣1 −
∣∣∣∣znpn

∣∣∣∣4
∣∣∣∣∣ + 2

∣∣∣∣∣1 −
(
zn
pn

)2
∣∣∣∣∣
}
.

In addition, observe that F̂ (∞) = 2 ·Re G0; whence, by assumption (3.12), Re G0 =
2−1. Moreover, it follows from (3.13) that |pn| → ∞ and |zn| → ∞ as n → ∞. Finally
by assumptions (3.8)–(3.9) and the inequalities∣∣∣∣1 −

(
zn
pn

)∣∣∣∣ ≤ |zn − pn|
|Re pn|

and ∣∣∣∣1 −
(
pn
zn

)∣∣∣∣ ≤ |zn − pn|
|Re zn|

,

there holds that the spectral density poles and zeros will be asymptotically close (as
n → ∞), i.e.,

lim
n→∞

(
zn
pn

)
= 1 and lim

n→∞

(
pn
zn

)
= 1.
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It then follows easily that

∞∑
n=1

∣∣∣∣∣1 −
(
zn
pn

)2
∣∣∣∣∣ < ∞ and

∞∑
n=1

∣∣∣∣∣1 −
(
pn
zn

)2
∣∣∣∣∣ < ∞.(3.25)

Hence by (3.25), the infinite product
∏∞

n=1 F̂n(s) converges uniformly and absolutely
in any closed disk D(r) where small neighborhoods of the poles are omitted. Next by
(3.25) it can also be shown that the infinite product

∏∞
n=1 φn is well defined. Now,

on closed discs D(r) where small neighborhoods of the poles are omitted, there holds
for any M ∈ N ∏M

n=1 Nn∏M
n=1 Dn

=

M∏
n=1

φn ·
M∏
n=1

Fn.

Hence, as the limits exist for M → ∞ uniformly and absolutely on such discs, Step 2
follows.

Step 3. There holds that

eH(s) ·
∞∏

n=1

φn ≡ 1,(3.26)

whence, in view of (3.23), (3.15) and (3.17)–(3.18) hold.
Indeed observe that the infinite product

∏∞
n=1 F̂n(s) converges uniformly and

absolutely in any closed disk not containing any of its poles and that
∏∞

n=1 F̂n(∞) =

1, such that
∏∞

n=1 F̂n(s) exists at infinity and converges uniformly in the vertical
strip Sδ by Corollary 3.3 and (3.8)–(3.9). Thus

∞∏
n=1

F̂n(s) → 1 as |s| → ∞ in Sδ.(3.27)

Since, by assumption, F̂ (∞) = 1, it follows from (3.23) and (3.27) that

eH(∞) ·
∞∏

n=1

φn := lim
|s|→∞; s∈Sδ

eH(s) ·
∞∏

n=1

φn = 1.(3.28)

Observe that, by Corollary 3.3, the function
∏∞

n=1 F̂n is a coercive real spectral den-
sity; whence, in view of Lemma 2.2, so is the function

eH(s) ·
∞∏

n=1

φn = F̂ (s) ·
( ∞∏

n=1

F̂n(s)

)−1

,

which in addition, as H is a polynomial, is an entire function of finite order without
zeros. Hence, by Lemma 2.6 (see also Remark 2.4 (α)), it follows from (3.28) that
Step 3 holds.

Step 4. Observe that F̂−1 is a meromorphic function of finite order and mutatis
mutandis satisfies the same conditions as F̂ . Hence, by reasoning similar to that
above, (3.16) and (3.17)–(3.18) hold.
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4. Spectral factorization by symmetric extraction.

4.1. Main results. By the proof of [10, Theorem 5], the following result holds.
Theorem 4.1 (criterion for infinite product representation of invertible spectral

factors). Consider a coercive real spectral density F̂ given by (3.1)–(3.3) for all s in

some vertical strip symmetric with respect to the imaginary axis. Let R̂n, n = 1, 2, . . . ,
be the rational elementary factors defined by (3.4)–(3.5). Assume that there exists a
constant σ < 0 such that R̂n and R̂−1

n are in Â(σ), for all n, with

∞∑
n=1

||(Rn)a||A(σ) < ∞(4.1)

and
∞∑
i=1

||(R−1
n )a||A(σ) < ∞.(4.2)

Then the invertible standard spectral factor R̂ in Â− of F̂ is given by the infinite
product representation

R̂(s) =

∞∏
n=1

R̂n(s) = lim
N→∞

N∏
n=1

R̂n(s),(4.3)

where the limit is taken in the framework of the topology induced by the norm || · ||Â(σ)

on the Banach algebra Â(σ).
We are now ready to get a spectral criterion for the convergence of the symmet-

ric extraction method of spectral factorization: it is based on the knowledge of the
comparative asymptotic behavior of the spectral density poles and zeros.

Theorem 4.2 (spectral criterion for the convergence of the symmetric extrac-
tion method). Consider a coercive real spectral density F̂ given by (3.1)–(3.3) for
all s in some vertical strip symmetric with respect to the imaginary axis. Let R̂n,
n = 1, 2, . . . , be the rational elementary factors defined by (3.4)–(3.5), with 2 · |σ| ≤
min(|Re pn|, |Re zn|), for all n, for some σ < 0. Now assume that R̂n is a first order
factor given by (3.4) or a second order factor given by (3.5) satisfying (3.8) and (3.9).
Then (a) the conclusions of Theorem 4.1 hold. In particular, the sequence(

N∏
n=1

R̂n

)
N≥1

(4.4)

of invertible approximate (rational) spectral factors converges to the invertible standard
spectral factor R̂ ∈ Â− of F̂ in the Â(σ) norm, and the sequence(

N∏
n=1

R̂−1
n

)
N≥1

(4.5)

converges to the corresponding inverse spectral factor R̂−1 ∈ Â− ;

(b) with ŴN ∈ L̂∆
+
(σ) ⊂ Â− denoting the approximate spectral factor defined

by

WN :=

N∏
i=1

Ri,
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the spectral factor, inverse spectral factor, and spectral factorization relative errors
can be estimated for all N = 1, 2, . . . , respectively, by the following inequalities:

‖(WN −R) ∗R−1‖σ ≤ expSN+1 − 1 ≤ 2SN+1,(4.6)

where the last inequality holds if

SN+1 := 4

∞∑
i=N+1

|zn − pn|
|Re zn|

(
1 +

|zn − pn|
|Re zn|

)
≤ 1;

‖(W−1
N −R−1) ∗R‖σ ≤ expTN+1 − 1 ≤ 2TN+1,(4.7)

where the last inequality holds if

TN+1 := 4

∞∑
i=N+1

|zn − pn|
|Re pn|

(
1 +

|zn − pn|
|Re pn|

)
≤ 1;

and finally

‖((WN )∗ ·WN − F ) ∗ F−1‖σ ≤ exp(2SN+1) − 1 ≤ 4SN+1,(4.8)

where the last inequality holds if SN+1 ≤ 2−1.
Proof. (a) The conclusion follows directly from Theorem 4.1, by the proof of

Corollary 3.3.
(b) The relative error estimates (4.6)–(4.8) can be derived by following the lines

of the proof of [10, Theorem 5, pp. 766–767] and by using Lemma 3.2.
Remark 4.1. (α) The conclusions of Theorem 4.2 still hold if conditions (3.8) and

(3.9) are replaced by conditions (3.10) and (3.11). Note that this remark is also ap-
plicable to any other result that holds here under these conditions, e.g., Theorem 3.4.

(β) Typically, in applications, e.g., LQ-optimal control or spectral factorization
of a normalized coprime fraction spectral density (see, e.g., [9], [10]) for an infinite-
dimensional (without loss of generality) stable system, the pn’s and pn’s are the poles
of the open-loop transfer function, and the zn’s and zn’s are the poles of the closed-
loop transfer function.

(γ) The symmetric extraction method works very well for the heat diffusion equa-
tion; see [10], [7]. Indeed, in that case, the spectral density zeros and poles are all real,
and the corresponding relative spectral errors |zn−pn|·|pn|−1 and |zn−pn|·|zn|−1 tend
to zero exponentially fast as n tends to infinity, whence (3.10) and (3.11) obviously
hold for α = ∞, i.e., for any α > 1.

(δ) The speed of convergence of the sequences (4.4) and (4.5) towards an invertible
spectral factor R̂ and its inverse R̂−1, respectively, is dictated by the magnitude of
the parameter α of conditions (3.10) and (3.11). The larger it is, the better is the
speed of convergence of the symmetric extraction method. However, this speed of
convergence might not be as good as in the heat equation example mentioned above;
see Example 4.1.

(ε) It is possible to compute absolute and relative error estimates, in the Â(σ)-
norm, for the spectral factor as well as for its inverse, especially when ||(Rn)a||A(σ)

and ||(R−1
n )a||A(σ) are of the order of the general term of a converging power series;

see [10].
Example 4.1. Consider the following coercive spectral density F̂ (s) given by

(3.1) with a countable number of elementary factors of the form (3.3) with complex
conjugate poles and zeros such that
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(1) for some σ < 0

2 · |σ| ≤ min(|Re pn|, |Re zn|), n = 1, 2, . . . ,

(2) for some constants a > 0 and b > 0

pn = −a + j · b · n, n = 1, 2, . . . ,

(3) for n sufficiently large,

|zn − pn| = O(
1

n2
).

Then by Theorem 4.2 any invertible spectral factor of the spectral density F̂ can
be approximated arbitrarily precisely in the Â(σ)-norm, by an invertible approximate
(rational) spectral factor of the form (4.4). Here convergence is achieved but at a much
slower speed (α = 2) than in the heat equation example mentioned above (α = ∞).
Note that, in section 5, a physical example (vibrating string) is chosen to illustrate
the possibility of slow convergence.

Corollary 4.3. Let F̂ be a coercive real spectral density satisfying the assump-
tions of Theorem 3.4. Then F̂ admits an infinite product representation of pole-zero
pairs that is of the form (3.1)–(3.3) for all s in some vertical strip symmetric with
respect to the imaginary axis. Let R̂n, n = 1, 2, . . . , be the rational elementary factors
defined by (3.4)–(3.5), with 2 · |σ| ≤ min(|Re pn|, |Re zn|), for all n, for some σ < 0.

Then the sequence (
N∏

n=1

R̂n

)
N≥1

(4.9)

of invertible approximate (rational) spectral factors converges to the invertible standard
spectral factor R̂ ∈ Â− of F̂ in the Â(σ)-norm, and the sequence(

N∏
n=1

R̂−1
n

)
N≥1

(4.10)

converges to the corresponding inverse spectral factor R̂−1 ∈ Â−.
Proof. The conclusion follows from Theorems 3.4 and 4.2.
We conclude this subsection by yet another spectral criterion for the convergence

of the symmetric extraction spectral factorization method. Its sufficient conditions
are stronger than those established in the previous results. However, they fit specific
classes of systems quite well, as shown in the next subsection.

Theorem 4.4 (spectral criterion for the convergence of the symmetric extraction
method). Let F̂ be a coercive real spectral density given by F̂ = F̂∗ = Ĝ∗ + Ĝ, where
Ĝ ∈ Â− is such that Gsa = G0δ(·) for some G0 ∈ C; whence F̂ is holomorphic
in some open vertical strip containing the imaginary axis, namely, Sδ := {s ∈ C :
Re s ∈ (−δ, δ)}, where δ > 0. Assume that the limit of F̂ at infinity exists in this
vertical strip such that

F̂ (∞) := lim
|s|→∞; s∈Sδ

F̂ (s) = lim
|ω|→∞; −δ<σ<δ

F̂ (σ + jω) = 1,(4.11)
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(or, equivalently, Re G0 = 2−1). In addition, assume that F̂ is a meromorphic
function of finite order and is given by the fraction

F̂ (s) =
N(s)

D(s)
,(4.12)

where the denominator D and numerator N are real parahermitian entire functions
of finite order such that D(s) = D(−s) and N(s) = N(−s).

Moreover, (1) the zeros of D form a ps-family P with defining parameters pn,
(2) the zeros of N form a ps-family Z with defining parameters zn,
(3) one assumes that

∞∑
n=1

1

|pn|2
< ∞,(4.13)

and
(4) the pole-zero absolute error sequence is absolutely summable; i.e.,

∞∑
n=1

|zn − pn| < ∞.(4.14)

Then (a) F̂ admits the infinite product representation of pole-zero pairs (3.1)–(3.3).
(b) In addition, let R̂n, n = 1, 2, . . . , be the rational elementary factors defined by

(3.4)–(3.5), with 2·|σ| ≤ min(|Re pn|, |Re zn|), for all n, for some σ < 0. Then the se-

quence (
∏N

n=1 R̂n)N≥1 of invertible approximate (rational) spectral factors converges

to the exact invertible standard spectral factor R̂ ∈ Â− of F̂ in the Â(σ)-norm, and

the sequence (
∏N

n=1 R̂−1
n )N≥1 converges to the corresponding inverse spectral factor

R̂−1 ∈ Â−.
Proof. In view of Corollary 4.3, it suffices to check that the assumptions of

Theorem 3.4 hold. Since the spectral density F̂ is coercive, there exists some γ > 0
such that, for all n ≥ 1,

|Re zn| ≥ γ.

Therefore by condition (4.14) there holds

∞∑
n=1

|zn − pn|
|Re zn|

< ∞;

i.e., assumption (3.9) holds.
Now observe that

∞∑
n=1

∣∣∣∣ 1

zn
− 1

pn

∣∣∣∣ < ∞.(4.15)

Indeed, for all n ≥ 1 , ∣∣∣∣ 1

zn
− 1

pn

∣∣∣∣ ≤ γ−1 · |zn − pn| · |pn|−1,

where, by (4.13) and (4.14), the sequences (|zn−pn|) and (|pn|−1) are, respectively,
in l1 and in l∞. Whence (4.15) holds. It follows by (4.15) and (4.13) that (3.13)
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holds. Finally observe that, by the holomorphicity of F in the strip Sδ, one has for
all n ≥ 1

|Re pn| ≥ δ.

This together with (4.14) implies

∞∑
n=1

|zn − pn|
|Re pn|

< ∞,

i.e., assumption (3.8) holds. Hence all assumptions of Theorem 3.4 are valid and we
are done.

Remark 4.2. It can be shown that Theorem 4.4 can be applied to the heat
diffusion model studied in [10], [7] (see Remark 4.1 (γ)). Actually this result is
applicable to an important class of semigroup state-space systems in the framework
of the LQ-optimal control problem for such systems. This question is addressed in
the following subsection.

4.2. Semigroup state-space systems. Consider a single-input C0-semigroup
state-space system with bounded control and observation operators (see, e.g., [17],
[28]), viz.,

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, y(t) = Cx(t), t ≥ 0,(4.16)

where x(t) ∈ H, with H a separable Hilbert state-space with inner product 〈· , ·〉,
u(t) ∈ R, y(t) ∈ R

p, and
(1) A : D(A) ⊂ H → H is the generator of a C0-semigroup (eAt)t≥0 ⊂ L(H),
(2) B ∈ L(R,H) is a bounded linear control operator given by

Bu = bu for all u ∈ R , b ∈ H,

(3) C ∈ L(H,Rp) is a bounded linear observation operator.
Furthermore assume that A is a Riesz-spectral operator [17] with discrete spectrum

σ(A) = σp(A) = {λn : n ∈ N} ⊂ C(4.17)

consisting of simple eigenvalues such that

δ := inf { |λn − λm| : n,m ∈ N , n 	= m} > 0(4.18)

and

µ := sup

⎧⎪⎨⎪⎩
∞∑
l=1

l �=n

1

|λl − λn|2
: n ∈ N

⎫⎪⎬⎪⎭ < ∞.(4.19)

Remark 4.3. Since the operator A is the (infinitesimal) generator of a C0-
semigroup of bounded linear operators (eAt)t≥0 on H, it holds (see [17]) that
sup {Re λn : n ∈ N} < ∞.

Finally assume that

(A,B) is exponentially stabilizable and (C,A) is exponentially detectable.(4.20)
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Observe that, by (4.20), there exists some σ < 0 such that the spectrum of A can
be decomposed according to

σ(A) = (σ(A) ∩
o

Cσ−)
·
∪ (σ(A) ∩ C+),(4.21)

where
o

Cσ− denotes the open left half-plane {s ∈ C : Re s < σ} and C+ denotes
the closed right half-plane {s ∈ C : Re s ≥ 0}. The two sets on the right-hand side
of identity (4.21) are disjoint and the unstable spectrum σ(A) ∩ C+ is a finite point
set. Moreover, the following holds.

Lemma 4.5. The nonzero eigenvalues λn, n ∈ N, of A satisfy

∞∑
n=1,λn �=0

1

|λn|2
< ∞.(4.22)

Proof. This follows immediately from (4.19).
Now for system (4.16)–(4.20) consider the LQ-optimal control problem: for any

initial state x0 ∈ H, find a square-integrable control u0 ∈ L2(0,∞; R) which minimizes
the cost functional

J(x0, u) :=

∫ ∞

0

(‖Cx(t)‖2 + ‖u(t)‖2) dt.

It is well known (see, e.g., [17] and the references cited therein) that the optimal
control u0(t) is given by

u0(t) = K0 x0(t), x0(t) = e(A+BK0)tx0,

where the optimal feedback operator K0 ∈ L(H,R) is given by

K0 = −B∗ Q0,

where the operator Q0 ∈ L(H) is the unique nonnegative self-adjoint solution of the
operator Riccati equation on the domain of the operator A:

A∗Q0 + Q0A + C∗C −Q0BB∗Q0 = 0 on D(A),

where Q0(D(A)) ⊂ D(A∗). Moreover, the optimal feedback K0 is stabilizing; i.e.,
the feedback semigroup (e(A+BK0)t)t≥0 is exponentially stable, and K0 ∈ L(H,R) is
also given by

K0 x = 〈k0 , x〉 for all x ∈ H, k0 ∈ H.(4.23)

We have then the following.
Lemma 4.6. Consider the C0-semigroup state-space system given by (4.16)–

(4.20). Let (φn)n∈N be a Riesz basis of eigenvectors of A (corresponding to the
eigenvalues λn) and let (ψn)n∈N be the corresponding biorthogonal dual Riesz basis
of eigenvectors of the adjoint operator A∗. Consider the LQ-optimal feedback opera-
tor K0 ∈ L(H,R) given by (4.23). Then the feedback semigroup generator

Ac := A + BK0 = A + b 〈k0 , ·〉(4.24)
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has a discrete spectrum of eigenvalues λcn, n ∈ N, with

σ(Ac) = σp(Ac) = {λcn : n ∈ N},(4.25)

and corresponding eigenvectors forming a Riesz basis of H. Moreover,

|λcn − λn| = O ( |〈k0, φn〉 · 〈b, ψn〉| ) for n sufficiently large,(4.26)

whence

∞∑
n=1

|λcn − λn| < ∞.(4.27)

Proof. Results (4.25)–(4.26), where {λcn : n ∈ N} is replaced by its closure,
follow by (4.17)–(4.19), [34, Theorem 2.1], and [15, Appendix B, p. 66]. Now in
(4.26) the sequences (〈k0, φn〉) and (〈b, ψn〉) are in l2, whence the product sequence
(〈k0, φn〉 · 〈b, ψn〉) is in l1. Hence (4.27) holds. Furthermore, by Lemma 4.5, (4.22)
holds.

Now as (e(A+BK0)t)t≥0 is exponentially stable and σ(A) is as in (4.21), there
exists some η > 0 and M ∈ N such that for all n ≥ M , min(|Reλn|, |Reλcn|) ≥ η.
This together with (4.27) and (4.22) and arguments similar to those in the proof of
Theorem 4.4, gives

∞∑
n=M

∣∣∣∣ 1

λn
− 1

λcn

∣∣∣∣ < ∞.

Consequently

∞∑
n=1

1

|λcn|2
< ∞.

Hence σp(Ac) cannot have limit points in C, and the last equality of (4.25)
holds.

Remark 4.4. In view of [24, Corollary 4.6], the feedback semigroup generator
Ac given by (4.24) is a Riesz-spectral operator [17, p. 41], whenever its eigenvalues
λcn, n ∈ N are simple. This will be tacitly assumed in what follows.

It is also known (see [9], [10]) that the LQ-optimal control problem can be solved
by the spectral factorization of a specific spectral density, whose spectral factor gives
the state-feedback operator Ko via a Diophantine equation. In the sequel we shall con-
centrate upon that spectral factorization problem. More precisely, assuming that the
operator pair (A,B) is exponentially stabilizable, there exists a stabilizing feedback
operator K ∈ L(H,R), i.e., such that the C0-semigroup (e(A+BK)t)t≥0 is exponen-
tially stable. Moreover, with the spectrum of A as in (4.21), the feedback K = [0 K2]
(K2 = vector) can be chosen such that

σ(A + BK) = (σ(A) ∩
o

Cσ−)
·
∪ Σ,(4.28)

where Σ ⊂
o

Cσ− is a finite set having the same number of elements as σ(A) ∩ C+.
Under these conditions the pair (N̂ , D̂) ∈ Âp×1

− × Â− defined by

(N̂ (s), D̂(s)) := (C(sI −A−BK)−1B, 1 + K(sI −A−BK)−1B)(4.29)
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generates a right fraction of the semigroup state-space system transfer function Ĝ(s) =
C(sI − A)−1B ∈ B̂p×1 with no common zeros in C+, where D̂ is a biproper stable
rational function whose zeros are in σ(A) ∩ C+ and whose poles are in Σ. Moreover,
D̂ equals 1 at infinity.

Now consider the function F̂ (s) defined by

F̂ := N̂∗ N̂ + D̂∗ D̂ = D̂∗ (1 + Ĝ∗ Ĝ) D̂.(4.30)

It is shown in [9, Theorem 3, pp. 70–71] and [10, Theorem 3, pp. 761–762] that F̂ is
a coercive spectral density whose spectral factorization is the main step towards the
solution of the LQ-optimal control problem, i.e., for the computation of the feedback
operator K0. Moreover for the specific case at hand one has the following.

Lemma 4.7. Under the assumptions of Lemma 4.6, let Ĝ(s) = C(sI −A)−1B be
the transfer function of the C0-semigroup state-space system (4.16)–(4.20). Consider
the real function F̂ given by (4.30), where (N̂ , D̂) is the right fraction (4.29) with no
common zeros in C+ of Ĝ(s), where K ∈ L(H,R) is a stabilizing feedback operator
such that (4.28) holds.

Then F̂ is a coercive real spectral density such that F̂ is holomorphic in a vertical
strip Sδ for some δ > 0 and such that F̂ (∞) = 1, i.e., (4.11) holds. Moreover, F̂
is a meromorphic function of finite order ρ ≤ 2 and can be described as a fraction of
real parahermitian entire functions, i.e.,

F̂ (s) =
N(s)

D(s)
,(4.31)

where the functions D = D∗ and N = N∗ are entire functions with countable zero
sets Z[D] and Z[N ], respectively, such that, with P[F̂ ] denoting the set of poles of F̂
and σ < 0 chosen such that (4.21) holds,

Z[D] = P[F̂ ] ⊂ {p,−p : p ∈ (σ(A) ∩
o

Cσ−)
·
∪ Σ},(4.32)

and

Z[N ] = Z[F̂ ] ⊂ {z,−z : z ∈ σ(Ac) = σ(A + BK0)}.(4.33)

Remark 4.5. (α) When the C0-semigroup (eAt)t≥0 is exponentially stable, one

can choose the feedback K to be zero. In this case, the right fraction (N̂ , D̂) defined
by (4.29) is given by (N̂ , D̂) = (Ĝ , 1), and the spectral density reads

F̂ = 1 + Ĝ∗ Ĝ.(4.34)

Furthermore, the denominator entire function D in (4.31) is such that

Z[D] = P[F̂ ] ⊂ {p,−p : p ∈ σ(A)}.(4.35)

(β) In general the inclusions in (4.32) and (4.33) are not equalities. This is
due to the fact that the system is not necessarily approximately controllable and/or
observable, whence the numerator and denominator can be simplified by common zero
cancellations.

In standard examples, like the heat diffusion (see [10]) and the vibrating string
(see below), the spectral density above is obtained (by applying the Laplace transform
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to the PDE describing the system) as a fraction of entire functions where an infinite
number of common zero cancellations may occur.

Proof of Lemma 4.7. Property (4.11) follows directly from (4.30) and (4.29),
which ensure that Ĝ(s) is zero at infinity in Cσ+ and that D̂ equals 1 at infinity. By
[17, Lemma 4.3.10, p. 183], the transfer function Ĝ(s) is given by

Ĝ(s) =

∞∑
n=1

(Cφn) 〈b, ψn〉 (s− λn)−1,(4.36)

which is holomorphic in the resolvent set ρ(A), whose complement σ(A) is a pure
point spectrum of isolated points by (4.18). It follows, using [31, Definition 10.41,
p. 241]), that Ĝ(s) is meromorphic in C with poles contained in σ(A). Thus, upon
noting that in (4.30) D̂ is a biproper rational function, there holds that the spectral
density F̂ given by (4.30) is real parahermitian meromorphic in C, with poles given by
the inclusion in (4.32). Consequently, by Lemma 2.5, F̂ = N/D, where N and D are
real parahermitian entire functions with no common zeros in C; i.e., (4.31) holds with
Z[D] = P[F̂ ] and Z[N ] = Z[F̂ ]. Hence (4.32) follows and we have to show that the
inclusion of (4.33) holds. Now, by [9, Theorem 2, p. 67], the inverse spectral density
F̂−1 can be written as

F̂−1 = Ŵ Ŵ∗,

where

Ŵ (s) = D̂(s)−1 [1 + K0(sI −A−BK0)
−1B] ∈ Â−.

Therefore the zero set of F̂ , i.e., the pole set of F̂−1, satisfies

Z[F̂ ] = P[F̂−1] ⊂ {z,−z : z ∈ σ(A + BK0)},

and the inclusion in (4.33) holds. Finally F̂ is holomorphic in a vertical strip Sδ for
some δ > 0 by its pole structure and because it is coercive.

It remains to be proved that the transfer function Ĝ(s) = C(sI − A)−1B is a
meromorphic function of finite order, whence so will be the spectral density F̂ given
by (4.30). Since C and B are bounded linear operators of finite-rank, and (φn) and
(ψn) are Riesz bases, the sequences ((Cφn)) and (〈b, ψn〉) are in l2. It follows by
(4.36) that

Ĝ(s) =

∞∑
n=1

dn(s− λn)−1,

where the product sequence (dn) := ((Cφn))·〈b, ψn〉) is in l1, i.e., absolutely summable,
and convergence is pointwise. It follows that

|Ĝ(s)| ≤ K

d(s, σ(A))
,(4.37)

for some constant K, where d(s, σ(A)) denotes the distance between s and σ(A),
which is given by

d(s, σ(A)) := inf {|s− λ| : λ ∈ σ(A)}.
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In view of Lemma 4.5, |λn| −→ ∞ as n → ∞. Hence, for any positive real number
R, there exists a nonnegative integer n(R) such that

|λn| > R for all n > n(R).

Because of assumption (4.18), the maximum number of poles of the function Ĝ
in a disc {s ∈ C : |s| ≤ R} of arbitrarily large radius R, namely, n(R), is such that

n(R) = O(R2).(4.38)

Moreover, in the annulus defined by the circles centered at the origin with radii
R and R + 1, respectively, the number of poles of Ĝ is O(R), i.e., is equal to κR for
some constant κ. These poles can be arranged in increasing order of modulus, say,

R0 := R ≤ R1 ≤ · · · ≤ RκR ≤ RκR+1 := R + 1.

This set is formed of at most κR + 2 numbers which are contained in an interval
of length one. So the maximum gap between two consecutive numbers among them
is at least (κR + 1)−1. Now if a point s ∈ C is such that |s| lies in the middle of this
gap, then the distance from s to the nearest pole of Ĝ is at least (2(κR + 1))−1, i.e.,
O(R−1). Hence

d(s, σ(A)) = O

(
1

R

)
on a circle C(0, rR) := {s ∈ C : |s| = rR}, where R < rR < R + 1.

Thus, by inequality (4.37),

|Ĝ(s)| = O(R) on the circle C(0, rR).(4.39)

It follows from (4.38) and (4.39) that the counting and proximity functions of Ĝ
satisfy, respectively,

N(rn, Ĝ) = O(r2
n) and m(rn, Ĝ) = O(log rn) as n → ∞,

where the sequence of points (rn) is such that, for all n, n < rn < n + 1; whence

T (rn) = O
(
r2
n

)
as n → ∞.

Since the characteristic function T (r) := T (r, Ĝ) of Ĝ is a monotonically increas-
ing function of r > 0, it follows that

T (r) = O(r2) as r → ∞.(4.40)

Observe that the order ρ of the meromorphic function Ĝ is the lower bound of all
positive numbers k such that T (r) = O(rk) as r → ∞. Hence, in view of (4.40), the
function Ĝ is of finite order ρ ≤ 2.

We are now ready to show that the symmetric extraction method of spectral
factorization works for such systems.

Theorem 4.8. Let the assumptions of Lemma 4.6 hold. Consider the coercive
real spectral density F̂ given by (4.30), where (N̂ , D̂) is the right-coprime fraction
of the transfer function Ĝ(s) = C(sI − A)−1B, which is given by (4.29) for some
stabilizing feedback operator K ∈ L(H,R) such that (4.28) holds. Then the symmetric



1460 WINKIN, CALLIER, JACOB, AND PARTINGTON

extraction method of spectral factorization of the spectral density F̂ is convergent, i.e.,
the conclusions (a) and (b) of Theorem 4.4 hold.

Proof. From the initial stabilization procedure described above, it is clear that
one may assume without loss of generality that the open-loop C0-semigroup (eAt)t≥0

is exponentially stable. Hence without loss of generality, poles and zeros of F̂ are a
subset of, respectively, the λn and the λcn mentioned above. The conclusions then
follow directly from Lemmas 4.5–4.7, by using Theorem 4.4.

5. Example: Vibrating string with low damping. The main result of the
last section, viz., Theorem 4.8, is now used in order to apply the symmetric extraction
method to a lowly damped vibrating string model, with the purpose of illustrating a
case of slow convergence.

In what follows z(t, x) denotes the vertical position of a damped vibrating string
at the place x ∈ [0, 1] and time t ≥ 0 that is described by the PDE

ztt(t, x) = zxx(t, x) − 2βzt(t, x) + b(x)u(t),(5.1)

where the damping parameter β ∈ (0, π) (low damping) and for all t ≥ 0, z(t, 0) =
z(t, 1) = 0; moreover, u(t) ∈ R is a scalar input, and b(x) is a window function given
for νi > 0 small and [xi − νi, xi + νi] ⊂ [0, 1] by

b(x) := (2νi)
−1χ[xi−νi,xi+νi](x), x ∈ [0, 1].(5.2)

The scalar output y(t) ∈ R is given by

y(t) :=

∫ 1

0

c(x)z(t, x)dx,(5.3)

where c(x) is a window function which for νo > 0 small and [xo − νo, xo + νo] ⊂ [0, 1]
reads

c(x) := (2νo)
−1χ[xo−νo,xo+νo](x), x ∈ [0, 1].(5.4)

It is moreover assumed that

xi − νi > 0, xo − νo > xi + νi, and xo + νo < 1.(5.5)

In order to show that the theory of subsection 4.2 applies to this example, we first
derive a semigroup state-space model of the form (4.16) for this system. The reader
is referred to [17, Examples 2.2.5 and 2.3.8] and [1, Example 3.5.3] for more detail.
Consider the Hilbert space H = L2(0, 1) with standard scalar product 〈·, ·〉2, which is
antilinear in its second argument. Let A : (D(A) ⊂ H) → H be the generator of a
C0-semigroup (eAt)t≥0 on H given by

Az = z′′, D(A) = {z ∈ H2(0, 1) : z(1) = 0, z(0) = 0} = H2(0, 1) ∩ H1
0(0, 1).

(5.6)

Since A = A∗ < 0, A generates on H an analytic semigroup that is exponentially
stable. Moreover, D[(−A)

1
2 ] equipped with the graph norm of (−A)

1
2 is a Hilbert

space that can be identified with H1
0(0, 1) equipped with the norm ||z′||2 for any

z ∈ H1
0(0, 1) [1, Example 3.5.3]. In this sense it is possible to consider the Hilbert

space

H := D[(−A)
1
2 ] ⊕ H = H1

0(0, 1) ⊕ H,(5.7)
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with scalar product

〈ζ, η〉H := 〈ζ ′1, η′1〉2 + 〈ζ2, η2〉2 ∀ ζ =

[
ζ1

ζ2

]
, η =

[
η1

η2

]
∈ H.(5.8)

Recall now b(·) and c(·) given by (5.2) and (5.4), and define B ∈ L(R,H) and C ∈
L(H,R) by, respectively,

Bu := b(·)u ∀ u ∈ R and Cz := 〈c(·), z(·)〉2 =

∫ 1

0

c(x)z(x)dx ∀ z ∈ H.(5.9)

Consider now A : (D(A) ⊂ H) → H given by

A :=

[
0 I

A −2βI

]
, D(A) = D(A) ⊕ H1

0(0, 1),(5.10)

and B ∈ L(R,H) and C ∈ L(H,R) defined by

Bu :=

[
0

Bu

]
∀ u ∈ R and Cζ :=

[
C 0

] [ ζ1

ζ2

]
∀ ζ ∈ H.(5.11)

Observe that C ∈ L(H,R) because 〈c(·), z(·)〉2 = 〈−
∫ ·
0
c(ξ)dξ, z′(·)〉2 for any z ∈

H1
0(0, 1). It turns out that A is the generator of an exponentially stable C0-semigroup

(eAt)t≥0 of contraction on H [17, Example 2.2.5] and A is a Riesz-spectral operator
[17, Definition 2.3.4, Example 2.3.8]. More precisely, A is a Riesz-spectral operator
that has for k ∈ Z0 countably many complex eigenvalues λk given by

λk = −β + j sign(k)
√

(kπ)2 − β2,(5.12)

with primal Riesz basis of eigenvectors

φk(x) =

[
φk1(x)

φk2(x)

]
=

[
1

λk

]
sign(k) sin(kπx)

λk
x ∈ [0, 1] ∀k ∈ Z0,(5.13)

and dual Riesz basis of eigenvectors

ψk(x) =

[
ψk1(x)

ψk2(x)

]
=

[
1

−λk

]
sign(k) sin(kπx)

j Im(λk)
x ∈ [0, 1] ∀k ∈ Z0,(5.14)

such that

||φk||2H = 1 and ||ψk||2H =
(kπ)2

(kπ)2 − β2
.

Hence by [17, Theorem 2.3.5] the spectrum of A satisfies

σ(A) = {λk : k ∈ Z0},

where the eigenvalues λk are given by (5.12) and the growth constant of the semigroup
(eAt)t≥0 generated by A is given by

ω0 := inf
t>0

(
1

t
log ||eAt||

)
= sup

k∈Z0

Re λk = −β.
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Thus, for σ ∈ (−β, 0], ||eAt|| ≤ M exp(σt) for all t ≥ 0, and for such σ, (eAt)t≥0 is
σ-exponentially stable [17, Definition 5.1.1].

Upon identifying ζ1(t)(·) := z(t, ·) and ζ2(t)(·) := zt(t, ·), the PDE model de-
scribed by (5.1)–(5.5) can be given an infinite-dimensional state-space description of
the form (4.16) on the state-space ζ = [ζ1, ζ2]

T ∈ H given by

ζ̇ = Aζ + Bu(t) and y(t) = Cζ(t),(5.15)

where one uses the mild solution of the state differential equation, viz.,

ζ(t) = eAtζ(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ, t ≥ 0, ζ(0) ∈ H,(5.16)

and where A is a Riesz-spectral operator satisfying condition (4.17).
In addition, it follows from the fact that the semigroup (eAt)t≥0 is exponentially

stable that (4.20) holds. Thus it remains to be proved that (4.18) and (4.19) hold.
Now observe that, for all k, l ∈ Z0 such that k 	= l, there holds

|λk − λl| ≥
√
π2 − β2;

whence (4.18) holds with

δ = inf { |λk − λl| : k, l ∈ Z0 , k 	= l} ≥
√
π2 − β2 > 0.

Finally, for all k, l in Z0 such that k 	= l, there holds

|λl − λk|2 > (lπ)2 − β2 > 0,

when sign(k) 	= sign(l), and

|λl − λk|2 =

(
π2 (k2 − l2)√

(kπ)2 − β2 +
√

(lπ)2 − β2

)2

> π2 (k − l)2 > 0,

when sign(k) = sign(l). It follows that, for all k in Z0,∑
l ∈ Z0
l �=k

1

|λl − λk|2
≤

∑
l ∈ N

1

(lπ)2 − β2
+

1

π2
·
∑
l ∈ Z

l �=k

1

(l − k)2
.

Hence condition (4.19) is satisfied with

µ = sup

⎧⎪⎪⎨⎪⎪⎩
∑
l ∈ Z0
l �=k

1

|λl − λk|2
: k ∈ Z0

⎫⎪⎪⎬⎪⎪⎭ ≤
∑
l ∈ N

1

(lπ)2 − β2
+

1

π2
·
∑
l ∈ Z0

1

l2
< ∞.

In view of Remark 4.5 (α), it follows from the exponential stability of the semi-
group (eAt)t≥0 that the corresponding LQ-optimal control based (coercive) spectral

density F̂ to be factorized can without loss of generality be chosen to be

F̂ = 1 + ĝ∗ ĝ,(5.17)
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where ĝ ∈ Â− is the vibrating string model transfer function, which is given by

ĝ(s) =
sin(

√
ρs(1 − xo))

sin(
√
ρs)

·
sin(

√
ρsνo)√

ρsνo
·
sin(

√
ρsxi)√
ρs

·
sin(

√
ρsνi)√

ρsνi
(5.18)

or, equivalently,

ĝ(s) =
sinh(

√
rs(1 − xo))

sinh(
√
rs)

· sinh(
√
rsνo)√

rsνo
· sinh(

√
rsxi)√
rs

· sinh(
√
rsνi)√

rsνi
,(5.19)

where ρs := −s(2β + s) and rs := −ρs.
Remark 5.1. As the semigroup (eAt)t≥0 generated by A is σ-exponentially stable

for σ ∈ (−β, 0], and B ∈ L(R,H) and C ∈ L(H,R), there holds by [17, Lemma 7.3.1]
that the transfer function given above belongs to the class Â−(σ) and to the class
Â(σ) for σ ∈ (−β, 0]. As the corresponding impulse response g(t) has no impulses,
one has exp(−σ·)g(·) ∈ L1(0,∞), sup Re s≥σ |ĝ(s)| < ∞, and ĝ(s) is zero at infinity in
Cσ+ := {s ∈ C : Re s ≥ σ}.

Now observe that the spectral density F̂ can be written as

F̂ =
N

D
,(5.20)

where N and D are the real parahermitian entire functions given, respectively, by

N(s) := n(−s) · n(s) + d(−s) · d(s) and D(s) := d(−s) · d(s),(5.21)

where d and n are, respectively, the denominator and numerator of the transfer func-
tion ĝ, which are the entire functions given, respectively, by

d(s) :=
sin(

√
ρs)√

ρs
=

sinh(
√
rs)√

rs
,(5.22)

and

n(s) := ĝ(s) d(s),(5.23)

where the zeros of d are exactly the open-loop eigenvalues λk, given by (5.12). Observe
that the numerator N and denominator D of the spectral density F̂ above may have
infinitely many common zeros (see Remark 4.5 (β)). In addition observe that, in
view of (5.21)–(5.22), the entire functions N and D are of finite order (see, e.g., [37,
Example 1, p. 76]).

It follows from the analysis above that, by Theorem 4.8, the spectral factorization
by symmetric extraction of the spectral density F̂ given by (5.20)–(5.22) is convergent;
i.e., the conclusions (a) and (b) of Theorem 4.4 hold.

Numerical results are presented in Table 5.1. These results were obtained for the
following parameter values: β = 2, xi = 0.02, xo = 1− xi = 0.98, and νi = νo = 0.01.
It is found that the closed-loop eigenvalues λcn have numerically a constant real part
equal to −2 and hence are vertically distant from the open-loop ones by |λn − λcn|.
One can observe that the convergence is slow. Moreover, the absolute and relative
errors are overall decreasing in an oscillatory manner. Further numerical evidence
leads us to conjecture that |λn − λcn| is of order n−α, where α is slightly larger than
one.
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Table 5.1

Eigenvalues, eigenvalue errors δn := |λn − λcn| (versus the sequences (1/n) and (1/n2)).

n λn δn n · δn n2 · δn
1 -2+2.42j 1.55e-7 1.55e-7 1.55e-7
2 -2+5.96j 3.26e-7 6.52e-7 1.30e-6
3 -2+9.21j 6.05e-7 1.81e-6 5.44e-6
4 -2+12.41j 9.79e-7 3.92e-6 1.57e-5
5 -2+15.58j 1.43e-6 7.16e-6 3.58e-5
16 -2+50.23j 6.28e-6 1.01e-4 1.62e-3
17 -2+53.37j 6.31e-6 1.07e-4 1.82e-3
18 -2+56.51j 6.25e-6 1.12e-4 2.02e-3
19 -2+59.66j 6.10e-6 1.16e-4 2.22e-3
20 -2+62.80j 5.86e-6 1.17e-4 2.34e-3
21 -2+65.94j 5.56e-6 1.17e-4 2.46e-3
22 -2+69.09j 5.21e-6 1.15e-4 2.53e-3
23 -2+72.23j 4.81e-6 1.11e-4 2.55e-3
24 -2+75.37j 4.38e-6 1.05e-4 2.52e-3
25 -2+78.51j 3.93e-6 9.83e-5 2.46e-3
36 -2+113.08j 4.19e-7 1.51e-5 5.44e-4
37 -2+116.22j 3.01e-7 1.12e-5 4.14e-4
38 -2+119.36j 2.11e-7 8.01e-6 3.04e-4
39 -2+122.51j 1.42e-7 5.56e-6 2.17e-4
40 -2+125.65j 9.26e-8 3.71e-6 1.48e-4

This is theoretically confirmed by the facts that (1) by Lemma 4.6, (5.11), and
(5.14), |λn−λcn| = O(xn

n ), where (xn) is a square-summable sequence, whence α > 1,
and (2) the linearized, i.e., Newton–Raphson, estimate of |λn−λcn| is O( 1

n2 ). Thus as
nonlinear perturbations do not improve the speed of convergence, one has α ∈ (1, 2]:
the situation is comparable with that of Example 4.1.

Notice further that the tail-sums used in (4.6)–(4.8) are here of order 1
nα−1 . Hence

the error analysis of Theorem 4.2 reveals that approximate spectral factorization will
be achieved very slowly, the main reason being the asymptotically linear distribution
of the spectra along a vertical line in the open left half-plane. A better situation is to
be expected when this is not the case, i.e., acceleration by the fact that the real parts
of the closed-loop eigenvalues Re λcn tend to −∞.

6. Conclusion. As we have seen, the symmetric extraction method may be
applied to a wide class of distributed parameter systems, for which its convergence
has been established theoretically.

Another example for which the symmetric extraction method is appropriate is the
beam equation with structural damping (see, e.g., [32, pp. 131–133]), and in this case
one would expect the convergence to be faster, since the real parts of the eigenvalues
tend to −∞. More generally, one would expect the convergence to be faster when
the semigroup is analytic, since in that case the spectrum lies in a sector contained
in some left half-plane; see, e.g., [2].

Other possible techniques for approaching the spectral factorization problem for
distributed parameter systems include a direct approximation of the spectral density
function, but this needs to be treated with caution, since the mapping from spectral
density to spectral factor is discontinuous in the uniform norm (see, e.g., [22]). It
would also be of interest to extend the present methods to multivariable systems (the
finite-dimensional case was analyzed in [4]), but this introduces additional function-
theoretic difficulties.

As a referee has observed, there may be connections between the factorization
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approach taken here and the invariant subspace approach. This could be an interesting
topic for further research, in particular for the special class of Riesz-spectral systems;
see [24].
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