
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.be

Proceedings of the Workshop on the Wrapper Techniques for Legacy Systems

Thiran, Philippe; van den Heuvel, Willem-Jan

Publication date:
2004

Link to publication
Citation for pulished version (HARVARD):
Thiran, P & van den Heuvel, W-J 2004, Proceedings of the Workshop on the Wrapper Techniques for Legacy
Systems. Computer Science Reports, Technische Universiteit Eindhoven, Eindhoven.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/326255569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/proceedings-of-the-workshop-on-the-wrapper-techniques-for-legacy-systems(e23e7a9d-3a3b-4c34-a684-fb13e368ab5d).html

Technische Universiteit Eindhoven
 Department of Mathematics and Computer Science

WRAP 2004 - First International Workshop on Wrapper Techniques for Legacy Systems

In connection with the 11th Working Conference on Reverse Engineering

Workshop Proceedings

Editors:

Philippe Thiran and Willem-Jan van den Heuvel

 04/34

ISSN 0926-4515

All rights reserved
editors: prof.dr. P.M.E. De Bra

 prof.dr.ir. J.J. van Wijk

Reports are available at:
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Author&level=1 and
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Year&Level=1

Computer Science Reports 04/34
Eindhoven, November 2004

Preface

Welcome to WRAP 2004, the first international workshop on Wrapper Techniques
for Legacy Systems. This workshop concentrates on challenging research topics
regarding the development of wrappers for legacy systems.

 Research and development in this field are of paramount importance as legacy
systems hold services that remain useful beyond the means of the technology in
which they were originally implemented. Legacy wrappers are used to facilitate reuse
of key portions of the legacy systems for their integration into novel business
processes and applications, e.g., for enacting virtual supply chains. Wrappers provide
a clean way for systems to interact with one another as they allow the encapsulation
of legacy systems into cohesive and reusable black-box components with self-
describing interfaces.

 Up till now, many approaches for constructing legacy wrappers solely focus on
legacy systems, whereas new business processes remain largely neglected. Also, the
maintenance of wrappers has not gained much attention; this is strange, as wrappers
must be designed in such a way that they allow graceful adaptation to accommodate
new business requirements that may emerge over time. At the same time, new
initiatives and technologies, such as OMG Model Driven Architecture, open up new
possibilities for constructing wrappers.

 WRAP 2004 is intended to bring together researchers and practitioners interested in
various issues regarding the design, development and maintenance of wrappers for
legacy systems in the context of modern business processes. In particular, it aims at
assessing and exploring current and novel techniques and methodologies for
wrapping legacy systems, and identifying important future research directions.

We received a substantial number of submissions from ten countries. After a

review process including reviews and recommendations by at least two members of
the program committee for each paper, four papers were selected for publication.

We wish to thank the program committee and all the authors who submitted papers
for the workshop. We would like to thank the Department of Mathematics and
Computer Science at the Technische Universiteit Eindhoven, The Netherlands, for its
support of the Workshop. Finally, we would like to thank the WCRE 2004 organizing
committee for their effort and support in making this workshop possible.

Philippe Thiran and Willem-Jan van den Heuvel

WRAP 2004 Workshop Chairs

I

Workshop Organizers

Philippe Thiran, Eindhoven University of Technology, The Netherlands
Willem-Jan van den Heuvel, University of Tilburg, The Netherlands

Program Committee

Djamal Benslimane, University of Lyon I, France
Henning Christiansen, Roskilde University, Denmark
Vincent Englebert, University of Namur, Belgium
Chirine Ghedira, University of Lyon I, France
Jean Henrard, ReveR - IS Reengineering, Belgium
Geert-Jan Houben, Eindhoven University of Technology, The Netherlands
Zakaria Maamar, Zayed University, United Arab Emirates
Heiner Stuckenschmidt, Free University of Amsterdam, The Netherlands
Philippe Thiran, Eindhoven University of Technology, The Netherlands
Willem-Jan van den Heuvel, University of Tilburg, The Netherlands

II

Contents

Preface ... I

Heterogeneous Data Extraction in XML ...1
Jorge Vila and Carmen Costilla

Processing Queries over RDF Views of Wrapped Relational Databases16
Johan Petrini and Tore Risch

Inverse Wrappers for Legacy Information Systems Migration30
Jean Henrard, Anthony Cleve and Jean-Luc Hainaut

Developing Robust Wrapper-Systems with Content Based Recognition....................44
Christoph Göldner, Thomas Kabisch and Jörn Guy Süβ

III

Heterogeneous Data Extraction in XML

Jorge Vila1 and Carmen Costilla2

1 Researcher at the Information Systems and Databases (SINBAD) Research Group
jvila@sinbad.dit.upm.es, http://sinbad.dit.upm.es

2 Titular Professor, Main Researcher of SINBAD Research Group

Dept. Ingeniería de Sistemas Telemáticos (DIT), Technical University of Madrid (UPM),
costilla@dit.upm.es, http://www.dit.upm.es,

http://sinbad.dit.upm.es

Abstract. A huge amount of heterogeneous information is daily published on
the web, mainly based on three technologies: static HTML web pages, dynamic
SQL/ XML web sites and, recently, the OWL semantic web. The data extrac-
tion is the task of recognizing and extracting specific data fragments from a col-
lection of documents presented as a query result. This work proposes a Data
Extractor Model inside a virtual and dynamic web integrated architecture for
multiple heterogeneous Digital Archives data sources. Belonging to this model,
we describe in depth the Data Extraction i, a main component in charge of
hiding any particular syntactic heterogeneity (format and content structure)
coming from any digital archive. In fact, the Data Extraction i deals with
HTML web pages and databases (O-RDB and XML-DB) web sites. Through a
XML Descriptor for each Digital Archive, it is specified how to invoke particu-
lar local queries. In this way, the Data Extraction i component provides a first
uniform layer to the upper ones. The paper discusses some key issues involved
in extracting and translating heterogeneous data (the bottom abstraction level)
into a syntactically homogeneous XML information and models each Data Ex-
traction i.

1 Introduction

A huge amount of heterogeneous information is daily published on the web. Its con-
tent is mainly based on three kinds of technologies: a) static HTML web pages, at the
beginning; b) dynamic web sites -generated from databases and XML- with increas-
ing popularity; and c) the semantic web -RDF/DAML+ OIL/OWL coded- a current
important research topic.

Digital Archive (here after, DA) is a valuable application within the Web Informa-
tion Systems for accessing digitized documentary data. They belong to the documen-
tary world (libraries, archives and museums) and contain a paramount documentary
information about human activity (cultural heritage, institutions, business, etc).

Unfortunately, most web DA are offered as static HTML handmade pages. In [8],
we have described valuable web DA proposals: the OAI (Open Archive Initiative)

1

[25] and the Fedora [15] projects. Both specify remote web access protocols to a
concise DA.

In this context, our research [6,7,8] is focused on a virtual and dynamic web inte-
grated architecture related to multiple heterogeneous DA data sources, as figure 1
represents. We are investigating a generic solution for the (semi-) automatic integra-
tion of multiple web DA, allowing queries against several DA independently of their
location and content (as a unique DA).

Our starting point was the Parliamentary Integrated Management System (SIAP),
we have built and is successfully running at the Asamblea de Madrid since 1999.
SIAP contains a DA Management System whose main screen in figure 1 is called
‘Data Source Asamblea de Madrid, Digital Archive N’ (www.crcit.es/SIAP) [5]. Thanks to
SIAP the Asamblea of Madrid has totally digitized its documentary fonds, since the
beginning of our democracy, stored in an object-relational database.

Immersed in this architecture, this paper describes the Data Extractor Model, the
layer in charge of the information extraction from heterogeneous data sources. This
layer is composed of two main components: the Data Extraction i (here after, DE)
related to a particular DA -that is the main topic of this paper- and the Wrapper. The
DE is in charge of showing the underlying data sources in an uniform syntactic way
to its respective Wrapper, as figure 2 represents.

Each DE, as an interface to the Wrapper, makes possible to access any participant
DA in a particular integration. In this sense, we propose a data extraction tool, show-
ing the sources in a XML generic way.

The remainder of this paper is organized as follows. Section 2 describes the web
integrated architecture highlighting its Data Extractor Model. Section 3 deals in-
depth with the Data Extraction component, DE. Section 4 describes the extraction
process adapted to each type of data source. Section 5 gives an overview about how a
DE is running. Finally, the conclusions are summarized in Section 6.

2 Architecture

Achieving heterogeneous web DA integration is an important research topic at the
SINBAD-UPM group. As well as other aspects, we need to provide an architecture
that allows the web user to access several heterogeneous DA transparently. The final
idea is the architecture implementation through web services organized in levels, as
described in [11], and compliant with J2EE platform. However, web services archi-
tecture does not solve the semantic integration problem: we think that the problem is
the lack of a global ontology. We have modelled the DA in UML [26] and the defini-
tion of the virtual web DA integrated architecture is given in [8].

As figure 1 summarizes, this architecture is based on a Mediator layer (composed
of ontologies, mappings and data repositories) and a Wrappers layer (saving the data
sources heterogeneity using XML). Besides, figure 2 shows the Unified Ontological
Model and Data Extractor Model layers, corresponding to the Mediator and Wrap-
pers layers. The data sources remain as localities without changing their own struc-
tures.

2

The goal of the Unified Ontological Model upper layer, is getting the semantic in-
tegration of information whose characteristics have been discussed in [6]. It is com-
posed of two levels: the Specific DA Ontologies (First Semantic Description Level)
and the Global Ontological Kernel (High-Integrated Semantic Description Level).

At the first semantic description level, the ontologies stay in the pre-existent form.
Only, mappings are established among them between concepts from one to another
increasing the semantic scope.

The Global Ontological Kernel implementation will be carried out based on the
mappings between ontologies. It merges these ontologies operating as a kernel in
which current specialized ontologies could be semantically connected, as figure 2
represents. Thus, this ontological kernel is in charge of providing a common under-
standing for fundamental DA concepts.

This paper deals with the Data Extractor Model bottom layer, close to the back-
end data sources, describing its lowest component, called Data Extraction i. The
Wrapper will be discussed in detail in future works.

2.1 Data Extractor Model

The data extraction is the task of identifying and extracting specific data fragments
from a collection of documents presented as a query result [29, 32]. XML is the data
exchange standard language, making possible interoperability and sharing data [28].

As figure 2 represents, the Data Extractor Model is the layer in charge of the in-
formation extraction from heterogeneous data sources. It is composed of two compo-
nents: the Data Extraction i (DE) and the Wrapper.

The DE overcomes the structural and format heterogeneity due to a particular data
source content. In this way, one DE is integrated with one specific Wrapper tailored
to one specific DA ontology. To reach this kind of integration, the DE translates
(adapting and hiding syntactic heterogeneity) the information between one Data
Source and the corresponding Wrapper.

Figure 1. Web Digital Archive Integrated Architecture.

Wrapper 1
(XML translator)

Data Source
Digital Archive 1

Mediator:

Global and
Dynamic
Integration

Virtual Integrated
Metadata

Ontologies

Mappings

URL +
Query

Request
Query

Web
Server

HTML Form
(Results)

Web
Browser

Wrapper N
(XML translator)

Data Source (Asamblea of Madrid)
Digital Archive N

3

The Wrapper is univocally associated to one specific ontology at the Mediator and
overcomes the lexical heterogeneity of the XML terms coming from the DE. It makes
mappings (logic links) between the ontological concepts and the syntactic terms com-
ing from the DE [6]. Through these mappings it translates the queries and their re-
sults, transparently to the users.

Summarizing, the Data Extractor Model (DE+Wrappers) is in charge of linking
the semantics among Data Sources and the Mediator. Because of this, the integration
goal becomes possible: invoking distributed queries against several data sources
as if they were only one.

3 Data Extractor Component (DE)

The DE component, above the DA sources, provides the Wrappers an uniform layer
in order to invoke local data source queries. Through a XML Schema, Wrappers and
data sources agree the common terms shared to exchange information [28]. In this
way, the data heterogeneity is overcome at the format and structure of the content
levels.

Each particular DE imports from the associated data source its structures and
specifies its own integration capabilities. These capabilities are defined in a XML
Descriptor document holding the following metadata:
- Structure and format of the source contents.
- Query capabilities: data range restrictions, enabled query terms, etc.
- XML Schema: as a local data source view.
- Specific Ontology, which the data source wants to be integrated to.

Figure 2. The Proposed Virtual Integration Model

Global Ontological Kernel
(High-Integrated Semantic
Description Level, GOK)

Specific DA Ontologies
(First Semantic Description

Level, SDO)

Universal DA
Repository

Repository of SIAP
Specific DA Ontology

Inter-ontological Mappings

SIAP-OISAD-O

Interface b
Data Extractor Model

(Adapting & Hiding
Heterogeneity Level)

Digital Archives
(Data Sources Level)

PS
C File

HTML DB

Data Extraction i

Wrapper n Mappings Wrapper i Mappings

Data Extraction n

Interface c

Unified DA
Ontological

Model

Global Ontological Kernel
Unified global semantic Integration

XML Descriptor XML Descriptor

Interface a

4

So, each particular DE establishes its role as a participant for each concise integra-
tion. Thus, the data sources impose their own restrictions in each kind of integration.

Using this XML Schema view, the DE component receives queries from the
Wrapper and pre-processes them to invoke the local source queries. Additionally, two
or more sources can integrate their XML schemata from several XML Descriptors and
present them to the Wrapper as if they were only one. The Wrapper would define the
query over the new integrated schema, which contains the restrictions imposed by the
original schemata [22].

The DE component makes also possible to implement web services associated to
the data sources and publish their data on the web as XML documents, avoiding the
user’s straight interaction with the data sources. For this reason, the DE can be run-
ning stand-alone as a web site with remote accesses to web data sources [20].

3.1 Data Extraction Architecture

Basically, as it is shown in figures 2 and 3, each DE carries out two main functions,
corresponding to its two interfaces, described as follows:

Interface a, with the Data Sources. Its purpose is requesting local queries to the
underlying data sources and extracting the results in XML format. This action is car-
ried out in two steps:

1. Translating the XML Schema query, received from the Wrapper, to the
source’s query language (SQL/ XML, XQuery + XPath, etc). We use
XQuery language for XML (defined by the W3C) as an intermediate step
for querying the source.

2. Requesting the local source query, collecting the result and formatting it in
XML. This XML is compliant with the schema received from the Wrap-
per. The way the DE gets the data result depends on the type of the under-
lying data source (from object-relational or XML databases to file servers
with static HTML files, PDF files, etc).

Figure 3. Data Extraction component architecture.

Wrapper

Query
(XML Schema) Result (XML) (b)

 DE-ORDB DE-HTML

 Data Extraction (DE)

XQuery
DE-XQuery

XQuery

XML XML

(a)

O-RDBMS HTML XML-DB

XML
XQuery SQL

Collections
HTTP

HTML

5

Due to this data sources’ diversity, this paper considers three scenarios:
- Relational and object-relational databases. In this case, it is necessary to translate

the query into the language used by the O-RDBMS (SQL, SQL/XML, etc). The O-
RDBMS returns the result as collections (objects) or sets (relations). As we know,
this kind of results could be straightforward translated into XML.

- XML-DB. These kind of DBMS manage collections of XML documents (xIndice,
http://XML.apache.org/xindice; eXist, http://exist-db.org; LegoDB, [2]). They can execute
XQuery and XPath queries, so they do not need any additional pre-processing.

- HTML Web servers. There are lots of web sites with HTML static web pages. In
order to integrate this kind of data sources it is mandatory to translate their HTML
documents into XML.
In any other scenario, where the source does not match these three previous ones,

the corresponding DE must conform to the particular source in order to extract the
data as XML documents.

Interface b, with the Wrapper. The aim of this interface is to provide an uniform
layer to query the data sources. This interface is specific for every Wrapper. It is in
charge of hiding the structure and format sources content heterogeneity to the Wrap-
per. The DE presents a generic interface for returning XML results. It specifies the
views of the sources through XML schemata. The Wrapper submits queries applying
the user query restrictions to the related view XML schema.

3.2 Data Extraction Organization

In fact, the DE runs within each source at three stages:
1. Data Source Integration. For each source view, the integration is made by cre-

ating a XML Descriptor in its related DE. The XML Descriptor is a XML file contain-
ing information about: source type, integration capabilities of each view and data
extraction rules [10]. All this information is stored in the following XML Descriptor
items:
- References (URIs). They specify how to allow the navigation within the source:

user, pass, grants, etc.
- Local View (XML Schema). It specifies the structure and content format (metadata)

in a XML Schema, as a source view. Through this schema, the Wrappers can im-
pose restrictions and create the query definitions. The schema holds information
about the data structures (for example, the RDB tables) and defines each element by
its data type, regular expression and possible restrictions (range, format, etc).

- Style (XSLT, XSLT-FO). This item includes the transformations applied to each
element in the schema for the returning result in a visual form: HTML, PDF...

- Mappings. This item contains the mappings among the data source elements and the
XML schema view elements. For each element, the mappings collect information
about its name, location, etc.

- Extraction Rules. This item keeps the rules specifying how the query is invoked at
the data source. These rules are adapted to any target particular source and can be
defined as XSLT, SQL or XQuery, etc.

6

<xs:element name=”fecha” type=…
 <xs:restriction …
 <xs:minInclusive value=”1998”/>
[…]

XSLT
for $a in /
where $a/fecha >= 1998
return $a

Figure 4. Simple example of the XML Schema into XQuery translation.

2. Query Translation. The wrapper sends the query to the DE as a XML schema.
As an intermediate step, the DE translates this query into XQuery language. Finally,
the DE invokes the query to the local data source. Currently, our developed tool per-
forms this translation through a transformation provided by a style sheet in XSLT
(figure 4). Once translated, it is possible to query XML databases through XQuery
language.

3. Invoking Local Queries. Finally, the query is executed at the local data source.
Each kind of source imposes its own query execution way. So, the DE has to be
adapted to each specific query processing. In Section 4, we describe the DE method
applied to carry out local queries in HTML Web Servers, O-RDB and others. How-
ever, in the XML-DB sources, the DE invokes the query in the XQuery language and
gets the result in XML. Anyway, the result, already in XML, will be returned to the
related Wrapper.

4 DE adapted to a particular Data Source

Due to data sources’ heterogeneity, each source requires different characteristics of
its related DE. From the three possible scenarios here considered, this section deals
with only two of them, because the XML-DB case does not need any additional query
pre-processing inside the DE. Therefore, this section mainly describes the two other
scenarios: HTML and O-RDB sources.

4.1 Extraction from HTML into XML

There is an important research activity about automatic and semi-automatic applica-
tions designed to perform the HTML extraction, as it is well discussed in [23]. Ac-
cording to [21], extracting structured data from HTML requires to solve five prob-
lems:
- Navigation: finding the HTML web pages through the hyperlinks, javascript, forms,

etc.
- Extraction: identifying and extracting the relevant data in these HTML pages.
- Structural: providing the extracted data an output structure with a XML schema

(content structure and data type).
- Element Alignment: ensuring the homogeneity of the data related to the output

schema.
- Data Integration: merging the data obtained from different HTML pages in one

unique XML document.

7

There are several kinds of applications dedicated to the HTML information extrac-
tion. Ones are based on trainings through examples as [19], or use heuristics as [31].
Others are based on patterns like Omini, Xwrap [3, 18], Lixto [17], Xtros [29]; or on
extracting the data from HTML tables or lists as [12, 16].

According to its performance, you can distinguish among applications based on
searching text information between marks (LR, string wrappers) or based on analys-
ing the tree structure proper of the XHTML documents (tree wrappers). Taking into
account all these valuable approaches, we propose here a data extraction procedure
from the HTML, as represented in figure 5. First, we parse the HTML through its tree
structure. After, we get the information of the content in each node of the tree as text.
All the rules necessary for extracting the relevant data from the HTML will be stored
in one XML Descriptor. To create a XML Descriptor, our methodology applies five
steps in order to solve the five problems just said:

1. Tree parsing. First of all, we get the references of the web pages to parse (by
using a crawler) and store them (URIs) in the corresponding item in the XML De-
scriptor. This solves the navigation problem. Secondly, we transform the HTML files
into well-formed XHTML (by means of W3C Tidy Utility, http://www.w3.org/Peo-
ple/Raggett/tidy) and convert it into a tag tree representation, based on the nested struc-
ture of start and end tags.

Most web pages are designed for human browsing. Inside their HTML, there are
specific branches dedicated to the style design for browsers (such as advertisements,
menus, etc) and others that hold the content information. We move apart this content
information sub-tree through algorithms like those described in XWrap [18]: Highest
Fanout algorithm, compares the number of children for each sub-tree. Largest Tag
Count, compares the number of tags in each sub-tree. Greatest Size Increase, com-
pares the increase of the content between sub-trees. The sub-tree with larger fanout,
tag count or/and greatest size, is the more likely to be the parent of the relevant data.
(See the two trees on the right side in fig. 5)

Once identified the relevant sub-tree, we have to separate the children data objects
inside it as smaller sub-trees. These child sub-trees are usually structured with a simi-
lar pattern and separated by the same tag. For each object sub-tree, the info nodes are
included among HTML mark-ups (such as font tags) that do not carry any meaningful

Figure 5. Proposed Workflow for the XML Descriptor creation

8

information. These HTML mark-ups are collected in XSL format in the Descriptor
for each node of information. This process is made recursive until the tree contains
only nodes with relevant information. This solves the extraction problem. Once
cleaned, all nodes are XML tags including relevant content. The information tree
structure gets mirrored into the XML schema that represents the output structure of
the HTML content. This partially solves the structural problem.

Every transformation applied to the HTML tree keeps stored as XSLT transforma-
tions in the Extraction Rules of the XML Descriptor. Also, we keep the HTML tree
path for each element of the schema in the mappings item. By using this path, you can
establish correspondences between the information in the HTML tags and the XML
schema elements. These rules allow a direct information extraction from HTML
pages by applying these transformations.

2. Text processing. Till now, we have obtained the output tree from the data con-
tent structure. However, the format of each element’s content is unknown. So, the
info nodes in this tree are processed as strings, and their XML tags are renamed into
stringX. These nodes tagged stringX carry information including patterns or data
types as substrings. By means of regular expressions or heuristics, you can find the
information elements in those substrings. For example, we can find patterns for dates,
money, ISBN, etc. Taking the stringX nodes, we split them into new stringXY nodes
holding all new elements found. Meanwhile, the nodes without any substring remain
unchanged. In this way, this tree structure expands its leaves. (See the bottom two
trees in fig. 5). The found patterns and data types keep held into the XML Schema as
the type attribute for each new element described. So, all the transformations here
described are also stored inside the XML Descriptor.

3. Tagging. At this step, we have to name each element stringXY in the schema, so
that the tag name matches the content it represents. For example, a stringXY node
containing a given date needs to be tagged as date. In order to automatically name
one element (as right as possible), the elements have to be analysed in format and
content. Obviously, in case of HTML tables with titles row (<TH>), these titles consti-
tute the names assigned to the table elements. But in case of plain text it is more diffi-
cult, for instance: finding out that a word is the name and the following ones are the
middle name and the surname. Our tool applies some algorithms to guess, whenever
possible, the name of the elements (Output Tagging in [18]). These algorithms try to
infer the tags from the element contents by comparing them against a repository,
matching regular expressions (for example, dates, ISBN) and the appearance order
(for example, money usually gets followed by €, $, etc). In case of it is not possible to
find out proper names for the tags, the user has to do it manually, through some other
semi-automatic application.

Once found and tagged all information nodes in the tree extracted structure, the
XML Schema is complete. It contains the content structure, and the data format. The
XML Schema contains the output structure from the web pages data and could be used
as a source’s content local view. Now, the structural problem is solved. The source’s
administrator can re-define these views applying other constraints on these XML
schemata.

9

4. Alignment. The objects found in each HTML page can contain less elements
than those identified in the output XML schema. In order to assure the right assign-
ment of the information nodes matching with the schema, we compare the format and
data type among nodes and elements before creating the resulting XML document.
This solves the alignment problem.

5. Integration. The data integration of many web pages (compliant with the same
output schema) takes place at the local query processing time. The elements extracted
from each web page are aligned with its schema. The result is an unique returned
XML document including the data obtained from all the source pages. This solves the
HTML integration problem.

All necessary HTML extraction rules keep stored inside the XML Descriptor. With
these rules, you can create the XML document containing all the source’s view re-
lated information. The XML Descriptor holds information of each element about its
XSL style, tree position (path), content and format.

As the HTML can change, it does not seem useful to generate the XML document
with all the information and store it in a static context. However, by using the extrac-
tion rules (stored in the XML Descriptor) you can do the data extraction on-the-fly
when the query is submitted. Thus, data always remain at the source and they are not
replicated in other XML documents. This technique is usually known as virtual inte-
gration (non materialized). So, data consistency between DE and the sources is al-
ways guaranteed.

As a consequence of the described methodology, and considering that the extrac-
tion rules are stored in the XML Descriptor (as XSLT transformations) and that the
query is defined in XQuery language at the DE; we think that an interesting future
work could be the direct application of these transformations to the query instead of
HTML pages. In this way, the query could be executed directly by the DE’s XQuery
processor over the XHTML web pages.

4.2 Extraction From Object Relational Databases to XML

It is well known that current SQL-99 (XSQL, SQL/XML, etc) extracts data from any
O-RDB. In the last decade, many O-RDBMS have appeared merging both XML and
SQL query languages (Oracle8i and successors, DB2-XML, etc).

In our proposed architecture, the DE receives (from the wrapper) the query de-
fined by XML schema restrictions and translates it into XQuery. So, we need to trans-
late this query into SQL.

The task of translating XQuery into SQL depends on the affinity between XML
and SQL in the source’s query processing. The most difficult situation is when the
source query language follows SQL-92 (and ancestors). For this hard situation, sev-
eral works have carried this topic out: Xperanto [27], SilkRoute [24], Xtables
[1,9,14]. In order to materialize the translation we need considering two main issues:
the election of the XML schema representing the relational structure of the data [13,
27] and the query translation itself.

Concerning to the first issue, the XML Schema represents the view of the rela-
tional schema from the XML model point of view. Following a GAV (Global As

10

View) approach [4], the DE holds the XML Schema into the XML Descriptor, created
at the integration moment. It represents the source view, now over the O-RDB tables.

For the second issue, the DE makes a direct translation from the XML schema
query into SQL, avoiding the XQuery translation. The mappings item in the XML
Descriptor stores the correspondences among the XML schema elements and the
RDB tables’ columns. Also, they store the relationships among those table columns
(to make easy the translation of joins, keys, etc). Additionally, the use of annotations
in the schema is also considered (as in SQL Server) or taking profit of the SQL/XML
capabilities.

Figure 6 shows an example of the mappings creation and the query translation into
SQL. In it, the arrow numbers indicate the extraction and translation steps.

In (1) the mappings are created and stored into the XML Descriptor. After, when a
query is received from the wrapper, the XML schema specifies the query by restric-
tions that have to be translated into SQL. In (2), the DE translates the query into SQL
and makes use of the mappings to match each schema element with the equivalent
RDB column. In (3), the SQL query is executed, returning the results as table sets.
Finally, in (4), using the mappings again, the XML document is created as the final
local results.

4.3 Data Extraction From Other Sources

Current web information adopts several formats. Each DA and each possible format
needs a particular DE. This section considers that, in the future, the DE will need a
wider scope than the one just described. So, other kinds of sources, as PDF and Mi-
crosoft Office files, can be also included for querying.

PDF format is widely extended for the document diffusion in the web. PDF pre-
serves the font-style, graphics and layout of source documents during electronic dis-

Figure 6. Example of extraction from RDB.

<xs:element name=”a” type=”…
 <xs:restriction…
 <xs:enumeration value=”a1”/>
 […]
<xs:element name=”b” type=”…
<xs:element name=”c” type=”…

2

<fila>
 <a>a1
 b1
 <c>c1</c>
</fila> …

<a>
 <table name=”T1” column=”a”/>
 <table name=”T2” column=”a”/>

 <table name=”T1” column=”b”/>

<c>
 <table name=”T2” column=”c”/>
</c>

Result (XML):

Mappings XML Descriptor:

SELECT T1.a, T1.b, T2.c
FROM T1, T2
WHERE T1.a=T2.a
 and T1.a = ‘a1’

 T2
 a c

 a b c
 a1 b1 c1
 a2 b2 c2
 ...

 T1
 a b

3

4

1

DE BDR

Query (XML Schema):

11

tribution and prevents subsequent editing by recipients. PDF is one of the ‘de facto’
standards for sharing information between people. Unlike other document formats,
PDF content is very difficult to parse and, hence, is extremely difficult to automate
content extraction from a PDF document and convert it into XML. To extract PDF
files, there are some proposals [30] and tools like Apache-FOP (http://XML.apache.
org/fop), CambridgeDocs PDF XML (http://www.cambridgedocs.com) and ADOBE XMP.

Also, Microsoft Office format documents are having widespread acceptance
nowadays. There are some projects trying to parse this kind of documents and extract
its content into any other format: Jakarta POI (http://jakarta.apache.org/poi/, a Java API to
Access MS Format Files) and CambridgeDocs, among others.

We are thinking, as future works, about the development of the DE additional spe-
cific modules adapting each kind of source documents.

5 DE General Overview

This section gives a general overview about the operating DE. As figure 7 represents,
firstly the Wrapper requests the view schema to the DE. This schema is included in
the XML Descriptor. The Wrapper defines the restrictions imposed by the user and
submits the XML Schema query to the DE. The DE receives the query and translates
it into XQuery in order to invoke its underlying source execution. As we have told,
the DE is in charge of invoking the local query and collecting the returning results.
The Wrapper receives them as a XML document. If the source were a XML-DB, then
the DE simply executes the query through XQuery language.

In case that the source were an O-RDB, the query is translated into SQL using the
mappings of the XML Descriptor. The DE invokes the local SQL query and collects
the results as a table. Using the mappings again, the DE creates the final result as a
XML document, which is returned to the Wrapper.

Figure 7. DE operating architecture.

12

If the source were composed of HTML web pages, the DE uses the item references
to navigate through the collection of documents. Later, applying the extraction rules,
the DE extracts the HTML information and creates the XML document according to
the output schema. Then, the DE executes the query (in XQuery) and returns the
results formatted with the style defined in the XML Descriptor.

In brief, all the semi-automatic procedure requires minimal user interaction in the
data source integration. The user only has to specify the unknown tags in the output
schema for HTML data sources. Additionally, the user can modify or restrict the
views over the source by updating the XML Schema present in the Descriptor.

6 Conclusions and Future Work

This paper has introduced the Data Extractor Model inside a virtual and dynamic
web integrated architecture for multiple heterogeneous Digital Archives data sources.

Belonging to this model, we have described in depth the Data Extraction (DE), a
main component in charge of hiding any particular syntactic heterogeneity (format
and content structure) coming from any digital archive. This DE is close to the back-
end data sources and provides, at the bottom abstraction level, a first syntactic uni-
form layer to the upper ones.

As key issues involved in extracting and translating heterogeneous data, the paper
has discussed how the DE interacts depending on its related source nature. This DE
includes the different modules for extracting HTML web pages, XML-DB and Ob-
ject-Relational Database web sites, as the most widely used in the current web.

The research and development are now focused on concluding the construction of
the DE tool. Some future research lines are also focused on the extraction of informa-
tion from other source formats, such as PDF or MS-Office, and their development as
DE modules.

Acknowledgements

This work is partially granted by Spanish Ministry of Science and Technology
(MCYT-TIC2002-04050-C02-02, DAWIS-UPM project), by Community of Madrid
(07T/0056/2003/3, EDAD-UPM project) and by Spanish NoE Databases, RedBD
(MCYT-TIC2000-3250-E).

References

1. Almarimi A, Querying Heterogeneous Distributed XML Data, in Sixth International
Baltic Conference on Data Bases and Information Systems, Riga, pp. 177-191. 2004

2. Bohannon P, Freire J, Haritsa J, Ramanath M, Roy P, Simeon J, Bridging the XML-
Relational Divide with LegoDB: A Demonstration, Proc. of the 19th International Con-
ference on Data Engineering (ICDE’03), 2003

13

3. Buttler D, Liu L Pu C, A fully Automated Object Extraction System for the World Wide
Web, in The IEEE 21st International Conference on Distributed Computing Systems,
Phoenix (Mesa), Arizona, 2001.

4. Chawathe S, García-Molina H, Hammer J, Ireland K, Papakonstantinou Y, Ullman J and
Widom J, The TSIMMIS project: Integration of heterogeneous information sources,
Proc. tenth IPSJ Conference, Tokio, October 1994.

5. Costilla C., Calleja A. and Cremades J, SIAP: Sistema de Información para Ayuntamien-
tos y Parlamentos, Revista Círculo de Usuarios de Oracle, CUORE, Sección ‘Vivat
Academia’, Oct. 2003.

6. Costilla C, Palacios JP, Rodríguez MJ, Cremades J, Calleja A, Fernández R and Vila J,
Semantic Web Digital Archive Integration, in Proc. Int. Workshop on Web Semantics
(WebS 2004), 14th Int. Conf. on Database and Expert Systems Applications,
DEXA2004, ISBN: 0-7695-2195-9, pp. 179-185, Zaragoza, Spain, Sept. 2004.

7. Costilla C, Palacios JP, Rodríguez MJ, Fernández R, Cremades J and Calleja A, Web
Digital Archives Integrated Architecture, in the 5th International Conference on Internet
Computing (IC 2004), The 2004 International MultiConference in Computer Science &
Computer Engineering, Las Vegas, 2004.

8. Costilla C, Rodríguez MJ, Palacios JP, Cremades J, Calleja A and Fernández R, A Con-
tribution to Web Digital Archive Integration from the Parliamentary Management Sys-
tem ‘SIAP’, Proc. of Sixth Int. Baltic Conf. on Data Bases and Information Systems
(DB&IS'2004), Barzdins J (ed.), ISBN:9984-770-11-7, pp. 481-496, Riga, Latvia, June,
2004, http://www.riti.lv/dbis2004.

9. DeHaan D, Toman D, Consens M, Ozsu M.T, A Comprehensive XQuery to SQL Trans-
lation using Dynamic Interval Encoding, in ACM Sigmod-Record, 31(2), June 2003.

10. Ek M, Hakkarainen H, Kilpeläinen P, Kuikka E, Penttinen T, Describing XML Wrap-
pers for Information Integration, in XML Finland 2001 Conference "Surviving the
XML (R)evolution", November 14-15, Tampere, pp. 38-51, 2001.

11. Eibe S, Costilla C, Menasalvas E y Acuña C, DAWIS: Una Arquitectura de Integración
Web para el Acceso Integrado a Archivos Digitales, VIII Jornadas de Ing. del Software
y Bases de Datos, pp. 583-591, Alicante, Spain, 2003.

12. Embley D, Tao C, Liddle S, Automatically Extracting Ontologically Specified Data
from HTML Tables of Unknown Structure, in The Entity-Relationship Approach (ER
2002), pp. 322-337, 2002.

13. Elmasri R, Wu Y, Hojabri B, Li C and Fu J, Conceptual Modelling for Customized XML
Schemas, in The Entity-Relationship Approach (ER 2002), pp. 429-443, 2002.

14. Fan C, Funderburk J, Lam H, Kiernan J, Shekita E, Shanmugasundaram J, XTABLES:
Bridging Relational Technology and XML, IBM Systems Journal Volume 41, Issue 4
 (October 2002), pp. 616 – 641, 2002

15. The Mellon Fedora Project: Digital Library Architecture Meets XML and Web Services,
IV European Conf. on Research and Advanced Technology for Digital Libraries, Rome,
Sept. 2002.

16. Gao X, Sterling L, AutoWrapper: automatic Wrapper generation for multiple online
services, in Asia Pacific Web Conference, Hong Kong (1999).

17. Gottlob G, Koch C, Baumgartner R, Herzog M and Flesca S, The Lixto Data Extraction
Project: Back and Forth between Theory and Practice, in PODS'04, Paris, June, 2004.

18. Han W, Buttler D, Pu C, Wrapping Web Data into XML, in ACM SIGMOD Record,
30(3), 33-38, September 2001

19. Ikeda D, Yamada Y, Hirokawa S, Expressive Power of Tree and String Based Wrap-
pers, in WS on Information Integration on the Web (IIWeb-03)

20. Iturrioz J, Díaz O, Anzuola S, Facing document-provider heterogeneity in Knowledge
Portals, 16th Int. CAISE, pp. 384-397, Riga, Latvia, June 2004.

14

21. Myllymaki J., Effective Web Data Extraction with Standard XML Technologies, Pro-
ceedings of the tenth International Conference on World Wide Web International, 2001,
Hong Kong, pp. 689 - 696 ISBN:1-58113-348-0

22. Lee M, Yang L, Hsu W, Yong X, Xclust: Clustering XML Schemas for Effective Inte-
gration, in Conference on Information and Knowledge Management (CIKM’02), p. 292
November, McLean, Virginia, USA, 2002.

23. Laender A, Ribeiro-Neto B, da Silva A and Teixeira J, A Brief Survey of Web Data
Extraction Tools, in ACM Sigmod Record, 31(2) pp.84-93, June 2002.

24. Fernandez M, Wang-Chiew Tan, and Suciu D,. Silkroute: Trading between relations
and XML, Proc. Ninth Int. WWW Conf., 2000, Amsterdam

25. Open Archives Initiative, Implementation Guidelines for the Open Archives Initiative
Protocol for Metadata Harvesting Protocol, Version 2.0 of 2002-06-14 Document Vers.
2002/06/13T19:43:00Z, 2002.

26. Sáenz J, Costilla C, Marcos E y Cavero J, Una Representación en UML del Metamodelo
Estándar ISAD(G) e ISAAR(CPF) para la Descripción de Archivos Digitales, VIII
Jornadas de Ing. del Software y Bases de Datos, JISBD’03, pp. 519-528, Alicante, 2003.

27. Shanmugasundaram J, Kierman J, Shekita E, Fan C, Funderburk J, Querying XML
Views of Relational Data, in Proceedings of the 27th VLDB Conference, pp. 261-270,
Rome, Italy, 2001

28. Vianu V, A web Odyssey: from Codd to XML, in ACM SIGMOD Record 32(2), pp. 1-
15, June 2003.

29. Yang J, Choi J, Knowledge-Based Wrapper Induction for Intelligent Web Information
Extraction, in [32], pp. 153-171, Springer-Verlag New York Inc., 2003

30. Yonggao Yang, Kwang Paick, Yanxiong Peng, Yukong Zang, PDF2XML: Converting
PDF to XML, Proceedings of the 2004 International Conference on Information and
Knowledge Engineering (IKE04), Las Vegas, 2004

31. Yip Chung Ch, Gertz M, Sundaresan N, Reverse Engineering for Web Data: From
Visual to Semantic Structures, in 18th International Conference in Data Engineering,
San Jose, California, 2002

32. Zhong N, Liu J, Yao Y (eds.), Web Intelligence, Springer Verlag, 2003

15

Processing Queries over RDF Views of Wrapped
Relational Databases

Johan Petrini and Tore Risch

Department of Information Technology, Uppsala University, 75195 Uppsala, Sweden
{Johan.Petrini, Tore.Risch}@it.uu.se

Abstract. The semantic web standard RDF enables web resources to be anno-
tated with properties describing structure and contents. However, there is a vast
amount of additional high quality information in the hidden web stored in data-
bases accessible from the web but not as web pages. In particular, most organi-
zations use relational database technology and such databases should also be
accessible from semantic web tools. We are developing a system to transpar-
ently wrap relational databases as virtual RDF resource descriptions. The wrap-
per provides relational database access to the Edutella infrastructure for search-
ing educational resources. Semantic web queries are expressed using a Datalog-
based RDF query language that through the wrapper transparently retrieves in-
formation from relational database servers. Since the data volume in these data-
bases is huge, the data cannot be downloaded but instead virtual RDF resource
descriptions are returned as query results. Query optimization techniques permit
transparent and efficient mapping from RDF queries to relational database que-
ries. Semantic web queries are more dynamic than relational database queries
and they may freely mix access to data and schema. This makes it necessary to
optimize not only data access time but also the time to perform the query opti-
mization itself.

1 Introduction

Modern information systems often need to access many different kinds of data, in-
cluding Internet-based web resources, relational databases, or files containing experi-
mental results. It is getting increasingly difficult to get the correct information when
retrieving information from web resources using traditional unstructured free-text
based search methods as provided by, e.g., GOOGLE.

Normally the useful information is hidden inside huge amounts of irrelevant in-
formation. This data retrieval problem gets even worse if one wants to combine web
resources with other kinds of data stored outside the web, for example in enterprise
databases, often referred to as the hidden web. Either one has to manually browse-cut-
and-paste between web search tools and database tools, or one has to develop hard-
wired programs accessing data from relational databases and web sources for combin-
ing and filtering the retrieved resources.

The semantic web initiative [3] aims at providing Internet-wide standards for se-
mantically enriching and describing web data. Using the standards RDF [7][14] and

16

RDF-Schema [4], abbreviated as RDFS, any web resource can be annotated with
properties describing its structure and contents. This facilitates guided search of web
resources in terms of these properties. The properties are represented as sets of RDF
statements, which are triples containing a web resource (the subject), a property (the
predicate), and a value (the object). RDFS [4] adds semantics to basic RDF with
schema definition capabilities providing, e.g. classes, inheritance, and restrictions on
the kinds of properties a given class of web resources can have. RDF is used, e.g. by
the Dublin Core standard [8] for meta-data markup of library data and the Edutella in-
frastructure [18] uses it for searching educational web resources.

Queries to semantic web data are specified using some of the query languages pro-
posed for this, e.g. RDQL [23], RQL [13], and QEL [21].

We are developing a system SWARD (Semantic Web Abridged Relational Data-
bases) for scalable RDF based wrapping of existing relational databases in the hidden
web. Instead of downloading the relational database tables into RDF repositories we
map an existing relational database schema into a corresponding virtual RDF state-
ment set of the wrapped relational database. When semantic web queries reference
this virtual statement set the system automatically translates fragments of the queries
into one or several SQL queries to the relational database. The result of a query is not
explicitly stored as RDF statements in a repository, but statements are instead dy-
namically generated as data is retrieved from the relational database. Query filters in
RDF queries are moved into SQL selections when possible. Filters not expressible in
SQL are applied on the results from the SQL queries. A particular problem is that
queries to RDF statement sets do not need to distinguish between what is schema and
what is data as in relational databases. In RDF both schema and data are mixed in the
statement sets and, unlike SQL, queries to RDF sources do not need to be expressed
in terms of a database schema. This prohibits pre-compilation of queries as in SQL.

The approach is evaluated initially in the context of the Edutella framework [18],
which is a peer-to-peer infrastructure for semantic web searches of educational re-
sources. Edutella uses the query language QEL [21], a Datalog [27] based query lan-
guage for RDF. Each educational source made available to Edutella is called an
Edutella provider. A provider receives dynamic QEL queries from Edutella to a spe-
cific source. It evaluates the query and returns the result as a set of RDF statements.
Our provider permits QEL queries to any wrapped relational database. As test case we
provide RDF query access to a relational database storing information about Swedish
museums, Museifönstret1[17]. Since, unlike SQL, Edutella queries are always dy-
namic and cannot be precompiled, we optimize not only the query execution time as
relational databases but also the query compilation time as is the focus of this paper.

Our approach enables efficient semantic web peer-to-peer queries to the combina-
tion of resources on the web and in the hidden web. It allows Edutella peers to access
existing relational databases as well as other sources, even though the relational data-
bases have totally different data representations than RDF-statements. The system
manages mappings between meta-data descriptions based on Dublin Core used in the
Edutella ontology and the wrapped relational databases. The system furthermore al-
lows user functions implementing algorithms for data filtration, indexing, and fusion,
and it enables transparent use of these user-defined functions in queries and views.

1 English:�The Window to Museums�.

17

2 Related Work

Usually, RDF statements are stored as web documents or in internal relational data-
bases designed for RDF [2][26]. The schema of the relational database is internal to
the repository system. One problem with storing all data as triples is that the reposi-
tory does not have any knowledge about the most efficient representation for each ap-
plication, which makes relational query optimization less effective. To alleviate this,
Jena2 [26] uses property tables for non-triple representation of RDF statements.

However, if one wants to access existing large relational databases through seman-
tic web queries using an RDF repository one needs to download the relational data-
base tables into the RDF repository before querying them. This can be very costly if
the relational database is large. By contrast regular relational databases are designed
and tuned for maximal efficiency of the applications using the database. To limit data
transmission they are designed for keeping all data in the database and only export a
minimal amount of data for answering queries. The database schema provides appli-
cation-oriented meta-data descriptions, efficient data representation, and efficient
query processing.

Rather than storing RDF data in dedicated RDF-repositories our work wraps exist-
ing relational databases to be used in the semantic web queries without downloading
database tables to a repository. Instead the statements necessary for answering a par-
ticular query are represented as virtual statements streamed through the wrapper. The
closest works are D2R MAP [5], and RDF Gateway [20], which provides conversion
methods from relational databases to RDF. The typed RDFS-based view specification
language RVL [16] is proposed for semantic web integration [6]. However, none of
the works deal with how to actually optimize semantic web queries over wrapped re-
lational databases, the main topic of this work.

Several mediator projects [10][11][12][15][19][22][25] wrap external data sources
from virtual databases. However, none of these projects deal with wrapping relational
databases under semantic web infrastructures.

There are a few proposals for query languages for RDF e.g. RDQL [23], RQL [13],
and QEL [21]. These query languages are based on declarative queries to the space of
triples constituting an RDF database. In this project we primarily use QEL but the
technique can be applied on the other query languages as well.

SWARD generalizes the Edutella peer-to-peer infrastructure [18] for searching
learning materials on the web to permit providers to execute QEL queries over the
hidden web.

3 Example

The relational database Museifönstret [17], abbreviated as WM, stores data about arti-
facts in Swedish museums. For example, a relation Resource in WM contains in-
formation about artifacts such as for example their name, description, URI and ID ac-
cording to the schema:
Resource(RID,MID,Name,URI,ShortDesc,Desc)

18

RID is a numeric resource identifier and MID is a numeric museum identifier. Our
Edutella provider SWARD wraps WM to appear as a set of RDF statements.

An example QEL query, q1, submitted to SWARD from Edutella is to find all mu-
seum artifacts with a name that contains the string �Matter�. It is expressed in QEL
as2:
@prefix qel:http://www.edutella.org/qel#
@prefix dc:http://purl.org/dc/elements/1.1/
?(x,t):-qel:s(x,’dc:title’,t),
 qel:like(t,’Matter’)

Here we use a Datalog-like syntax for the QEL query [21]. In practice it is sent from
Edutella to the provider using a less readable equivalent XML syntax.
qel:s(x,p,t) is true if there is an RDF statement matching the triple

<x,p,t> where x, p, and t are variables bound to resources. t may also be a literal.
qel:like(t,�Matter�) is true if either t is a literal and the string value of t
contains the string �Matter�, or t is a resource and the URI of t contains the string
�Matter�.

q1 is intentionally chosen to be very simple to enable, for the reader, a perceivable
step-by-step translation of the query to SQL in later sections. However, in an experi-
ment measuring processing time of a QEL query in SWARD, described in section 6, a
more complicated query containing a join is used.

4 System Architecture

Fig. 1 describes the architecture of SWARD. A QEL query arrives at the SWARD
Edutella provider. There is a query statement generator building on Jena2 that parses
incoming RDF data serialized as XML and extracts existing RDF statements express-
ing QEL queries. The dotted arrow in Fig. 1 from the query statement generator to the
calculus generator indicates logical flow of execution. Actually, the parsed RDF
statements are first stored in the local statement repository. The calculus generator
then translates the materialized RDF statements corresponding to a specific QEL
query into a domain calculus expression. It includes a fix-point rewrite algorithm to
minimize the domain calculus expression, before it is translated by the cost-based
query optimizer into an algebraic expression. This algebraic expression is then inter-
preted by the algebra interpreter over the combination of materialized RDF(S) state-
ments, explicitly imported and stored by the statement importer in the statement re-
pository, and virtual RDF statements generated by the relational statement wrapper.

2 @prefix notation used to abbreviate namespaces.

19

Fig. 1. Architecture of SWARD

Thus materialized statements form a local database in SWARD while virtual state-
ments are views of data in external sources. Instances of virtual statements are dy-
namically created and streamed through the system. A garbage collector automatically
removes no longer needed virtual statement instances. Finally, the result of executing
the algebraic expression is sent back over Edutella as variable-resource or variable-
literal bindings serialized as XML by the result builder.

Examples of materialized statements are statements imported from files containing
RDF(S) data such as the W3C definition of RDF(S) as meta-data statements. Hence,
as illustrated in Fig. 1, data in SWARD statement repository can originate from local
or remote RDF(S) files or the Edutella infrastructure.

Fig. 2 illustrates the modeling of wrapper data sources in SWARD. SWARD ex-
tends the basic RDFS model with RDFS classes representing different statement
sources3, and the possibility to define a hierarchy of such sources.

An RDFS class acting as a statement source is instantiated only once by the system
upon initialization. Each statement source has an associated property, stmts, main-
tained by the system that generates the statement set of RDF statements in the source.
Notice that statement sets belong to a source while the resources referenced by the
statements are universal.

3 A statement source is a data source with its content translated into RDF statements. Observe

that a RDFS class representing a statement source is modeling a data source and not the se-
mantics of data in that data source.

Statement
importer

RDF(S) data

Relational statement
wrapper

Relational data

SWARD Edutella provider

RDB Museifönstret
Local / remote
RDF(S) files

Query statement
generator

Incoming QEL queries in
XML

Calculus generator

Algebra interpreter

Result builder

Domain calculus
expression

RDF resources

Outgoing result
of QEL queries
in XML

Edutella
infrastructureStatement

repository

Materialized RDF statements = MS
Virtual RDF statements = VS
RDF statements = S

VS

MS

MS

MS

Cost-based query
optimizer

Algebraic
expression

SS

20

Fig. 2. Hierarchy of wrapper data sources in SWARD

There is a hierarchy of statement sources to handle that some sources are specializa-
tions of other, e.g. WMuseum is a specialization of general relational database state-
ment sources. Statements in a statement source, s, are seen as a union of statements in
statement sources subclassing s. The root class Source represents all RDF state-
ments. Each other RDF statement source is a subclass of Source. There is a subclass
to Source called Relational representing all relational database statement
sources. As illustrated by statement source CourseFile we also allow other kinds
of sources than relational databases. CourseFile represents RDF files containing
courses read by computer science students at Uppsala University. This paper focuses
on relational data sources which are subclasses to class Relational. For example,
class WMuseum represents the specific relational statement source WM. This separa-
tion between Relational and its subclasses enables us to generate and compute
tailor made statement sets for different databases. For example, often, for scalability
reasons, SWARD should treat statements in a statement source representing a rela-
tional database as virtual statements. Therefore RDFS classes representing statement
sources have a Boolean valued property virtual indicating if the statements be-
longing to a source are virtual or not. For the RDFS class to be virtual all its sub-
classes have to be virtual. The statement hierarchy can easily be extended with addi-
tional statement sources.

5 RDF Views over Relational Data

As illustrated in Fig. 1 a QEL query is translated from XML to an intermediate do-
main calculus representation. For each table T(C1,�Cn) in relational database R where
column named C1 is key for simplicity, SWARD generates a set of views denoted
CSS(R, T, Ci) with definitions:

Resource

....
Source

Relational

stmts, virtual

CourseFile

WMuseum

....

21

CSS(R,T,Ci):
{s,p,o|s=uriKey(R,T,c1) ∧

p=uriCol(R,T,Ci) ∧T(c1,�,cn) ∧ o=ci} .

(1)

where uriKey(R, T, c1) computes a unique URI for the key c1 and uriCol(R, T, Ci) de-
notes a unique URI for the column named Ci. Notice that CSS(R,T,Ci) describes a col-
umn Ci, i.e. it is not materialized. The name of the view is generated by concatena-
tion, e.g. CSS(�WM�,�Resource�,�Name�) = WMResourceName. Table I
shows how URIs representing data from a relational database are auto-generated by
the system, given a user defined namespace, ns4.

Table 1. Schema for autogenerating URIs representing data from a table T(C1,...,Cn) in a
relational database R using namespace ns

Function Generated URI
uriCol ns:databasename.relationname.columnname

uriKey ns:databasename.relationname.columnname
keyvalue

compUriKey
ns:databasename.relationname.
columnname1�columnnamen.
keyvalue1�keyvaluen

There are cases when URIs should be user specified rather than automatically gener-
ated. For this SWARD allows the user to explicitly specify uriKey for a CSS. For ex-
ample, the table Resource in WM already includes a field, URI, containing unique
URIs for each row (a secondary key) and this column is therefore chosen by the user
to represent the uriKey in the definition of WMResourceName as illustrated in Ex-
ample 1. Notice that the term Resource represents the wrapped relational table:

WMResourceName(s,p,o):

{s,p,o|
s=uri∧ /*uriKey*/
p=’ns:wm.resource.name’∧ /*uriCol*/
Resource(rid,mid,name,uri,shortdesc,desc)∧
o=name}

Example 1. Definition of WMResourceName

The algebra generator will combine CSSs appearing in a QEL query and generate
SQL strings for accessing the wrapped database. Values from column named Ci are
treated as literals if the column is not a foreign key. If Ci were a foreign key from an-
other table in R, T�, the system would replace �o=name� in Example 1 with
�o=uriKey(R,T�,name)�. (Compound keys are treated as tuples and handled by
the function compUriKey).

4 Namespace:�http://www.museifonstret.se/�

22

The statement set, stmts, of a statement source that represents a relational data-
base is defined as the union of all column statement sets for the source.

Fig. 3 illustrates how the statement set of WMResourceName is defined from col-
umn Name in table Resource in WM.

Fig. 3. Producing the statement set of WMResourceName

SWARD allows for different terminologies in received QEL queries and in URIs
from the CSSs. In our example Edutella uses a terminology based on Dublin Core,
which is different from the terminology of statement source WMuseum. The relations
between two URIs from different terminologies having the same meaning are called
source mappings. They are represented by a user defined table SM(U1, U2) in the
wrapper taking two URIs U1 and U2 as arguments and evaluating to true if there is a
source mapping between them.

For example, the RDF predicate produced by WMResourceName in Example 1 is
mapped to the URI �dc:title� in Dublin Core.

6 Translation of QEL to Optimized SQL

QEL queries are specified against an RDF view containing both materialized state-
ments from SWARD statement repository and virtual statements mapped from the
wrapped relational database. In our example, q1 is represented by the following do-
main calculus expression:

{s,p,o|stmt(s,p,o)∧like(o,’Matter’)∧p=’dc:title’}

stmt and like implements the built-in QEL predicates qel:s and qel:like, re-
spectively. stmt is evaluated over the statement set w of statement source Source.
stmt(s,p,o) evaluates to true if there is an RDF statement <s, p, o> in stmts of
Source.

In the rest of this section, for simplicity, w is assumed to be equal only to RDF
statements in WMuseum. Furthermore, WM is restricted to contain only one table,

URI DescSDescNameMIDRID URI DescSDescNameMIDRID

<subject, predicate, object>

Resource

23

Resource. Hence w can be seen as the disjunction of all CSSs in WMuseum and q1
is expanded to the following expression:
{s,p,o|
(WMResourceRID(s,q,o)∧SM(q,p))∨
(WMResourceMID(s,q,o)∧SM(q,p))∨
(WMResourceName(s,q,o)∧SM(q,p))∨
(WMResourceURI(s,q,o)∧SM(q,p))∨
(WMResourceShortDesc(s,q,o)∧SM(q,p))∨
(WMResourceDesc(s,q,o)∧SM(q,p))∧
p=’dc:title’∧like(o,‘Matter’)}

The resulting calculus expression is transformed into a simpler one by a fix point al-
gorithm using rewrite rules [9]. Thus the above expression is first translated to dis-
junctive normal form:
{s,’dc:title’,o|
(WMResourceRID(s,q,o)∧SM(q,’dc:title’)∧
like(o,’Matter’))∨
(WMResourceMID(s,q,o)∧SM(q,’dc:title’)∧
like(o,’Matter’))∨
(WMResourceName(s,q,o)∧SM(q,’dc:title’)∧
like(o,’Matter’))∨
(WMResourceURI(s,q,o)∧SM(q,’dc:title’)∧
like(o,’Matter’))∨
(WMResourceShortDesc(s,q,o)∧SM(q,’dc:title’)∧
like(o,’Matter’))∨
(WMResourceDesc(s,q,o)∧SM(q,’dc:title’)∧
like(o,’Matter’))}

Example 2. Expression of q1 on disjunctive normal form

Each CSS is substituted for its definition and simplified. For the CSS WMResource-
Name, according to Example 1, this produces the following term in the disjunction
above:

Resource(rid,mid,o,s,shortdesc,desc)∧
SM(‘ns:wm.resource.name’,’dc:title’)∧
like(o,’Matter’)

Example 3. Substitution of WMResourceName for its definition

With compile time evaluation the SM table is then evaluated by the calculus generator
and replaced with TRUE since SM maps �dc:title� to
�ns:wm.resource.name�. For the other terms in the disjunction (shown in Ex-
ample 2) SM will be evaluated to FALSE and they will be removed. The only remain-
ing calculus term is then translated into an algebraic expression, or query plan, by the
cost-based query optimizer that contains calls to a foreign function executing SQL ac-

24

cording to Fig. 4. This shows that compile time evaluation substantially reduces the
size of the calculus expression that is sent to the cost-based query optimizer and there-
fore reduces the query optimization time.

Fig. 4. An execution plan for the QEL example query

An algebra operator is one of {π, σ, ×, ∩, ∪, , γ}[9]. The π, σ, ×, ∩, ∪, and ,
operators have the same semantics as their relational counterparts. The γ (generate)
operator performs function application. It can thereby introduce objects other than
those produced by the leaf nodes into the query plan. In this way, the γ operator is
similar to the generate operator in [24]. The function sql_exec sends an SQL query
to a relational database.

An essential technique for improving the efficiency is to push down filter operators
such as like to SQL when possible as in Fig. 4. The system has special rewrite rules
for generating SQL strings from the calculus and it knows what functions can be exe-
cuted in the sources, e.g. like, and generates SQL strings with calls to such func-
tions. Furthermore, SWARD uses the heuristics to generate from a term as few SQL
queries as possible but never a Cartesian product or a union.

In q1 the variable p in the built-in predicate qel:s(x,p,t) is known to be
equal to �dc:title�. This enables SWARD to drastically reduce the number of
clauses in the disjunction shown in Example 2 using compile time evaluation of the
SM table. Once SM is evaluated there is only a single clause left (see Example 3) from
the original disjunction which is translated to a single SQL expression. An interesting
situation arises when p is unknown. In SQL the column names of a query must be ex-
plicitly specified. This is critical for relational database query optimization. By con-
trast RDF queries can have dynamic properties, i.e. RDF queries can contain variables
bound to RDF predicates. This would correspond to variables bound to table columns
in SQL, which is not allowed. For QEL this means that the calculus predicates such as
qel:s may be constructed out of variables rather than of known RDF resources.

A statement cache is used in SWARD to recycle already compiled QEL queries
meaning that the query can be executed directly without relational query optimization.

select URI, Name
from Resource
where Name LIKE �%Matter%�γsql_exec

π<s,�dc:title�,o>

<>

<s,o>

<s,�dc:title�,o>

select URI, Name
from Resource
where Name LIKE �%Matter%�γsql_exec

select URI, Name
from Resource
where Name LIKE �%Matter%�γsql_exec

π<s,�dc:title�,o>

<>

<s,o>

<s,�dc:title�,o>

25

Table 2. Measuring execution time of q2 over variable sized table Resource without compile
time evaluation

Tuples Proc sProc Exec sExex
700 8.667 0.013 0.005 0.008
2000 8.802 0.015 0.010 0.009
5000 8.786 0.027 0.020 0.009
10000 8.776 0.023 0.016 0.007

To see how compile time evaluation can improve performance an experiment was
conducted on a PC with a Pentium 3 2.2 GHz processor with 512 RAM running Mi-
crosoft SQL server. A QEL query was executed repeatedly over the relational data-
base WM with one table, Resource. The table was scaled up in each test with 700,
2000, 5000, and 10000 tuples. For every table size the test was made first without, see
Table II, and then with compile time evaluation, see Table III. The query used in the
experiment, q2, is an extension of the query in our running example and is expressed
in QEL as:
@prefix qel:http://www.edutella.org/qel#
@prefix dc:http://purl.org/dc/elements/1.1/
?(x,t,d):-qel:s(x,’dc:title’,t),
 qel:s(x,’dc:description’,d),
 qel:like(t,’Matter’),
 qel:like(d,’Fysik’)

In natural language that would be: Find all museum artifacts that have a name that
contains the string �Matter� and a description that contains the string �Fysik�5.

The time for each test was measured as the time taken to process the query; Proc
and the time taken to execute the query; Exec as part of Proc. For the purpose of our
experiment and for simplicity, Exec was defined as the time spent calling SQL. All
tests were measured in seconds. Table II and Table III respectively show the results of
the experiment with or without compile time evaluation. For each test the mean value
was calculated and chosen as the result of the test. Standard deviations for Proc (sProc)
and Exec (sExec) were also calculated.

Table 3. Measuring execution time of q2 over variable sized table Resource with compile
time evaluation

Tuples Proc sProc Exec sExec
700 0.953 0.017 0.010 0.009
2000 1.130 0.032 0.020 0.005
5000 1.140 0.027 0.020 0.006
10000 1.115 0.025 0.020 0.006

When analyzing the result of the experiment we see that there is a noticeable
reduction in time spent processing q2, Proc, when using compile time evaluation

5 English:�Physics�.

26

compared to when not. However, the execution time, Exec, is more or less constant.
The experiment shows that query processing time is improved substantially by com-
pile time evaluation of the SM table. However, the query execution time Exec is not
affected by compile time evaluation. The reason is that the query optimizer in
SWARD knows that SM is local to the wrapper. Therefore it is evaluated before
accessing the more expensive relational back-end and this makes query execution
efficient.

7 Summary

The SWARD system provides RDF views over relational databases in terms of virtual
statements. Transformations according to some general translation rules yield
optimized RDF queries in terms of domain calculus expressions. An algebra generator
then produces a query plan out of these expressions that contains calls to functions
executing SQL queries.

Various techniques are used to optimize the expressions such as rewrites and push
down of filter operators (e.g. like) to the relational database. This allows for the
creation of RDF views over relational databases in a highly scalable way.

When translating semantic web queries to SQL there is a problem that, unlike
SQL, semantic web queries are dynamic and they are not necessarily expressed in
terms of a schema. However, SWARDs abstraction of relational database columns
into CSSs makes the translation of QEL queries into SQL natural. To execute a QEL
query, q, over an RDF view w means evaluating w ∧ q as illustrated in Example 2. To
retrieve the entire view means executing all these expressions and appending their
results. Thus RDF predicates become large disjunctions of clauses where each clause
is a conjunction of constraints in the QEL query and calls to the relational database.
Since the disjunctions are large it is important to reduce their size before generating
the query algebra expression. We have shown that compile time evaluation of the
source mappings between URIs of different terminologies allows for substantial
reduction of the calculus expression and improved query compilation time. However,
in our example the query execution time is not effected since the regular cost-based
query optimization produces an efficient execution plan in any case.

We are currently generalizing our approach to include more complex queries and
other optimization strategies.

SWARD provides views over relational databases only in terms of basic RDF data.
Future work will offer a semantically enriched RDFS form. This requires creating for
each statement source some additional virtual statements providing information about
class-subclass relationship, instance-of etc.

References

1. Barrett et al.: RDF Representation of Metadata for Semantic Integration of Corporate
Information Resources, Proc. WWW2002, 2002.

27

2. D.Beckett and J.Grant: SWAD-Europe: Mapping Semantic Web Data with RDBMSes,
http://www.w3.org/2001/sw/Europe/reports/scalable_rdbms_mapping_report/, 2001.

3. T.Berners-Lee, J.Hendler, and O.Lassila: The Semantic Web, Scientific American, May
2001.

4. D.Brickley and R.V.Guha: RDF Vocabulary Description Language 1.0: RDF-Schema,
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/, 2004.

5. C.Bizer: D2R MAP - A Database to RDF Mapping Language, The 12th International World
Wide Web Conference (WWW2003), Budapest, Hungary, 2003.

6. V.Christophides, G.Karvounarakis, A.Magkanaraki, D.Plexousakis, and V.Tannen: The
ICS-FORTH Semantic Web Integration Middleware (SWIM), Data Engineering Bulletine,
IEEE, 26(4), Dec. 2003.

7. S.Decker et al.: The Semantic Web - on the Roles of XML and RDF, IEEE Internet
Computing, Sept./Oct. 2000.

8. Dublin Core Meta-data Initiative, Dublin Core Metadata Element Set, V 1.1,
http://dublincore.org/documents/dces/

9. G. Fahl and T. Risch: Query Processing over Object Views of Relational Data, The VLDB
Journal, Springer, Vol. 6, No. 4, 261-281, 1997.

10. H. Garcia-Molina et al.: The TSIMMIS Approach to Mediation: Data Models and
Languages, Intelligent Information Systems (JIIS), Kluwer, 8(2), 117-132, 1997.

11. L. Haas, D. Kossmann, E.L. Wimmers, and J. Yang: Optimizing Queries across Diverse
Data Sources, Proc. 23rd Intl. Conf. on Very Large Databases (VLDB'97), 276-285, 1997.

12. V. Josifovski and T. Risch: Integrating Heterogeneous Overlapping Databases through
Object-Oriented Transformations, Proc. 25th Conference on Very Large Databases
(VLDB'99), 435-446, 1999.

13. G.Karvounarakis el al.: Querying the Semantic Web with RQL, Computer Networks and
ISDN Systems Journal, 42(5), 617-640, August 2003.

14. G.Klyne and J.J.Carroll: Resource Description Framework (RDF): Concepts and Abstract
Syntax, http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/, 2003.

15. L.Liu and C.Pu: An Adaptive Object-Oriented Approach to Integration and Access of
Heterogeneous Information Sources, Distributed and Parallel Databases, Kluwer, 5(2),
167-205, 1997.

16. A.Magkanaraki, V.Tannen, V.Christophides, and D.Plexousakis: Viewing the Semantic
Web Through RVL Lenses, 2nd International Semantic Web Conference (ISWC'03),
Sanibel Island, Florida, USA, 2003.

17. http://www.museifonstret.se/
18. W.Neidl et al.: EDUTELLA: A P2P Networking Infrastructure Based on RDF. Proc. 11th

International World Wide Web Conference, Honolulu, Hawaii, USA, 2002.
19. D. Quass, A. Rajaraman, Y. Sagiv, J.Ullman, and J. Widom: Querying Semistructured

Heterogeneous Information in Deductive and Object-Oriented Databases, Proc. of the
DOOD'95 conference, LNCS Vol. 1013, 319-344, Springer 1995.

20. RDF Gateway - a platform for the semantic web, Intellidimension,
http://www.intellidimension.com/.

21. RDF Query Exchange Language (QEL) - concepts, semantics and RDF syntax,
http://edutella.jxta.org/spec/qel.html

22. T.Risch, V.Josifovski, and T.Katchaounov: Functional Data Integration in a Distributed
Mediator System, in P.Gray, L.Kerschberg, P.King, and A.Poulovassilis (eds.): Functional
Approach to Computing with Data, Springer, 2003.

23. A.Seaborne: RDQL - A Query Language for RDF, W3C Member Submission,
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/, 2004.

24. DD.Straube, and MT.Özsu: Queries and query processing in object oriented database
systems, ACM Transaction Information Syst, 8(4), 1990.

28

25. A. Tomasic, L. Raschid, and P. Valduriez: Scaling Access to Heterogeneous Data Sources
with DISCO, IEEE Transactions on Knowledge and Date Engineering, 10(5), 808-823,
1998.

26. K.Wilkinson, C.Sayers, H.A.Kuno, and D.Reynolds: Efficient RDF storage and retrieval in
Jena 2, 1st Intl. Workshop on Semantic Web and Databases (SWDB'03), Berlin,
http://hplabs.hp.com/techreports/2003/HPL-2003-266.html, 2003.

27. J. Ullman: Database and Knowledge Base Systems, Vols 1 & 2, Computer Press, 1988.

29

Inverse Wrappers for Legacy
Information Systems Migrat ion

Jean Henrard1 2, Anthony Cleve1, Jean-Luc Hainaut1

1 Database Applications Engineering Laboratory
Institut d’Informatique, University of Namur

rue Grandgagnage, 21 - B-5000 Namur - Belgium
{jhe, acl, jlh}@info.fundp.ac.be

2 REVER S.A.
Boulevard Tirou, 130 - B-6000 Charleroi - Belgium

Abstract. The paper studies some problems that arise when a technology
change induces the migration of a data-centered application. In particular, it
addresses the difficult problem of migrating application programs from a leg-
acy data manager, such as a COBOL file system, to a modern DBMS, such
as a relational database management system. The approach suggested in this
paper relies on the concept of inverse wrappers, that is, wrappers that simu-
late the legacy API on top of the new database. This architecture allows (1)
the design of a fully normalized database rid of the anomalies of the legacy
data, (2) future programs to be developed on a sound basis and (3) legacy pro-
grams to work on the new database with minimum transformation, and there-
fore at low cost.
The paper describes the components of this architecture, a methodology to
design them and a CASE tool that automates their generation.

1 Introduction

Migrating large information systems has long been recognized to be one of the most
complex and failure-prone processes. Several migration strategies have been identified
and described in the literature, notably in [3]. They can be classified according to sev-
eral dimensions.

Identifying two major components, namely the data and the programs, we can dis-
tinguish two families of strategies, according to which component is migrated first.

• Database first strategies. First, the legacy database is migrated, so that new pro-
grams can be developed on the target platform; later on, the legacy programs are mi-
grated to the new database; in the mean time, they either keep using the legacy da-
tabase, which is synchronized with the new database, or they access the latter
through some sort of wrappers.

• Database last strategies. First, the programs are migrated to the new platform; they
then use the legacy database through wrappers. New applications access the legacy
database through the same interface. When all the applications have been converted,
the database itself is migrated.
The second dimension concerns the time frame within which the replacement is car-

ried out. One typically identifies two main families.
30

• Big bang approach. The new system, comprising the data and the programs, replac-
es the legacy system in one step. Most generally, the substitution is carried out in a
very short time, typically a few days, so that both systems run with no overlap.

• Chicken little approach. The database and the applications are migrated piece by
piece.
This paper addresses the database first strategy in which the new database complete-

ly replaces the legacy one, so that their lifespan do not overlap. More specifically, it dis-
cusses the problem of migrating the legacy programs through a chicken little approach
in a reliable and inexpensive way through the use of wrappers.

In migration and interoperability architectures, wrappers are popular components
that convert legacy interfaces into modern ones. For instance, a set of standard files is
given an object-oriented API suited to modern distributed architectures. Such wrappers
are used to renovate legacy components. The components discussed in this paper play
the inverse role: they provide access through a legacy API to the new database. Hence
the name of inverse wrapper.

 We will show how to build the wrapper for the database first strategy. This strategy
involves the initial migration of the legacy database to a modern one and then (incre-
mentally) migrates the legacy applications and interfaces. The advantage of this solu-
tion is that the data are migrated to new structures that are supposed to be well designed
and rid of the flaws and awkwadness of the legacy database. The legacy applications
can still be used thanks to a wrapper that simulates the access to the legacy database on
top of the new one. On the contrary, the new applications as well as the migrated ones
can directly access the new database and profit from its expressiveness.

The reminder of the paper is organized as follows. Section 2 presents our migration
strategies. Section 3 develops how the schema of the legacy database is reengineered.
Section 4 presents how the mapping between the legacy database schema and the new
one can be modeled. Section 5 shows how the data are migrated. Section 6 describes the
wrapper generation. Section 7 presents how the programs are transformed to invoke the
wrapper instead of accessing the legacy database. Section 8 describes some practical as-
pects of the wrapper generation and section 9 concludes this paper.

2 Problem Statement

One of the biggest challenges in database migration based on a technology change, is
to provide new data structures that translate all the semantics of the legacy database and
nothing else. In particular, these structures should not inherit any technology-dependent
feature from the legacy data structures.

Failing to meet this requirement would provide a database that is flawed from its
very start, and that will lead to increasing semantic, integrity and performance prob-
lems.

The most popular migration approach, that could be called one-to-one strategy, en-
sures the structural equivalence between both legacy and new data structures. In a file
to relational database migration, it consists of converting each record type into a table
and each top-level field into a column. Its popularity comes from its extreme simplicity
31

and its low cost : both databases have (as far as possible) the same schema and convert-
ing the programs is particularly easy, since each I/O statement is replaced with a func-
tionally equivalent DML1 sequence. No understanding of the data structures nor of the
processing logic is required, so that the translation process can be automated to a large
extent. Such an approach naturally yields, but in some exceptional situations, poor data
structures that are difficult to maintain and to evolve.

The other approach, that we can call semantics-based strategy, has been advocated
by the authors in former papers [4]. It consists of converting the legacy database into
new, normalized, data structures that ensure semantic equivalence only. For example,
a record type can be translated into several normalized tables, while several record types
could be merged into a single table. The new database is stricty independent from the
legacy technology and no longer suffers from the flaws and idiosyncrasies of the legacy
database.

Unfortunately, this strategy can be much more costly than the former one. Indeed,
it requires a deep understanding of the legacy data structures before translating them
into the target data model. Secondly, since both data structures generally are quite dif-
ferent, data conversion involves complex data transformations that go well beyond the
straightforward store-each-record-into-a-row technique of the former approach. Third-
ly, the conversion of the programs is more complex since a legacy I/O statement could
have to be developed into a complex procedure the writing of which may require an in-
depth understanding of the application logic.

The goal of this paper is to explore and develop solutions to the problems raised by
the semantics-based approach.

Fig. 1. System conversion
The migration strategy we describe in this paper is sketched in Fig.Fig. 1. The left

part shows the main parts of the legacy system, comprising programs that interact with
the legacy data through its legacy schema.

1. Data Manipulation Language

New systemLegacy system

Legacy programs

Legacy DMS

Legacy
data

Legacy schema

Legacy programs*

New
data

New programs

Wrapper

New DMS

New schema
32

The right part shows the state of the new system after the legacy DMS1 has been re-
placed with a modern DMS (New DMS). The new database comprises the migrated
data and the migrated schema. Legacy programs now access the data through an inverse
wrapper that simulates the API of the legacy DMS. These programs have been slightly
processed in order to syntactically comply with the wrapper programming interface.
New programs use the database through the native interface of the new DMS. Later on,
if and when needed, the legacy programs could be rewritten according to the new tech-
nology.

This discussion shows clearly the new components that have to be produced in the
migration process: the new database schema, the new data, the wrapper and the trans-
formed programs. A fifth component will be mentioned later on.

We will show that they can be automatically derived from the reengineering of the
database schema.

Fig. 2. Database Schema Reengineering
This process is known to include two main phases, namely Database reverse engi-

neering and Database design (Fig. 2). The former aims at recovering the semantics of
the legacy data structures, that is, their conceptual schema, from various sources such
as the DDL2 code, the source code of the programs and the data themselves, while the
latter implements this schema into a physical schema, in the form of DDL statements
for the new DMS (New DDL).

Since the reengineering process is supported by a CASE tool, the mapping between
the legacy schema and the new schema can be recorded. Therefore, this process yields
an important by-product, the Mapping.

Converting the new data involves some data extract/transform/load (ETL) compo-
nent that we will call Migrator for short (Fig. 3). This component is the fifth product of
the migration methodology.

1. Data Management System
2. Data Description Language

Legacy data

New DDL

Conceptualization

 D
BR

E

Schema refinement

Legacy programs

Legacy
logical schema

DDL analysis

DB design

New
logical schema

Coding

Conceptual schema

Analysis

MappingLegacy DDL
33

We now have to show how to produce the data migrator and the wrapper, and how
to transform the legacy programs. They are built through three additional engineering
processes that are illustrated in Fig. 4.

In the next section, we develop further the processes that we have put in light in this
discussion. In particular, we will describe the functions of the DB-MAIN1 CASE tool
that support each of them.

3 Schema Reengineering

The schema reengineering, or conversion, process analyzes the legacy applications to
extract the logical and conceptual schemas of the legacy database through a database
reverse engineering (DBRE) phase. Then this conceptual schema is transformed into
the logical schema of the new database through a classical database design process, then
is coded into the DDL of the new DMS.

3.1 Methodology
Fig. 2/left depicts a simplified version of the methodology used to perform DBRE. A
complete presentation of this methodology can be found in [5]. The DDL analysis pars-
es the legacy DDL code to retrieve the raw physical schema. In the schema refinement
process, the schema is refined through an in-depth inspection of the way the program
uses and manages the data. Through this process, additional structures and constraints
are identified, which were not explicitly declared but expressed in the procedural code.
The existing data can also be analyzed, either to detect constraints, or to confirm or dis-
card hypotheses on the existence of such constraints. The final DBRE step is the data
structure conceptualization interpreting the legacy logical schema into the conceptual
schema. Both schemas have the same semantics, but the latter is platform independent
and includes no technical constructs.

1. www.db-main.be

Migrator
Extraction Loading

Legacy
data

Legacy schema

New
data

New schema

Fig. 3. Data conversion

Migrator generation Migrator

Mapping

Program transformation Legacy programs*Legacy programs

Wrapper generation Wrapper

Fig. 4. Production of the last components of
the new system
34

The logical schema of the new database is derived from the conceptual schema
through standard database engineering techniques (Fig. 2/right). This schema is then
enriched with technical constructs specific to the new platform and is then used to gen-
erate the DDL code of the new database.

4 Tool Support

Extracting the raw physical schema and storing it in the CASE tool repository is done
through a DDL extractor (SQL, COBOL, IMS, CODASYL, RPG, etc.) from the parser
library.

Schema refinement requires powerful and customizable schema and program ana-
lyzers, such as program slicing, pattern matching, etc. Experience showed us that there
is no such thing as two similar reengineering projects. Hence the need for programma-
ble, extensible and customizable tools. DB-MAIN (and more specifically its meta func-
tions) includes features to extend its repository and its functions. In particular, it in-
cludes a 4GL (Voyager2) that allows analysts to develop their own customized proces-
sors [5].

Data structure conceptualization and database design are based on schema transfor-
mations, that will be discussed below. Code generators produce the DDL code of the
new database according to the specifications of logical schema.

5 Mapping Definition

Deriving a schema from another is performed through techniques such as renaming,
translating, conceptualizing, which basically are schema transformations. Most data-
base engineering processes can be formalized as chains of schema transformations as
demonstrated in [6].

5.1 Schema Transformation
Roughly speaking, a schema transformation consists of deriving a target schema S' from
a source schema S by replacing construct C (possibly empty) in S with a new construct
C' (possibly empty). Adding an attribute to an entity type, replacing a relationship type
with an equivalent entity type or with a foreign key are three examples of schema trans-
formations.

Fig. 5. Representation of the structural mapping of a transformation that replaces multivalued
attribute A2 with entity type EA2 and relationship type R

A

A1
A2[0-N]
A3

1-10-N R

EA2
A2
id: R.A

A2

A

A1
A3

T

T’
35

More formally, a transformation is defined as a couple of mappings <T,t> such
as: C' = T(C) and c' = t(c), where c is any instance of C and c' the corresponding in-
stance of C'.

Structural mapping T explains how to modify the schema while instance mapping t
states how to compute the instance set of C' from the instances of C.

Any transformation can be given an inverse transformation ' = <T',t'> such that
T'(T(C))=C. If, in addition, we also have: t'(t(c))=c, then and ' are said semantics-
preserving (Fig. 5).

5.2 Compound Transformation
A compound transformation T = T2 o T1 is obtained by applying T2 on the schema that
results from the application of T1 [6].

An important conclusion of the transformation-based analysis of database engineer-
ing processes is that most of them, including reverse engineering and database design,
can be modeled through semantics-preserving transformations. For instance, transform-
ing a conceptual schema CS into a logical schema LS can be modeled as a compound
semantics-preserving transformation C-to-L = <CS-to-LS, cd-to-ld> in such a way that
LS = CS-to-LS(CS). This transformation has an inverse: L-to-C = <LS-to-CS, ld-to-cd>
such as CS = L-to-C(LS). The latter is a formal model of the Conceptualization phase
of DBRE (Fig. 2).

5.3 Transformation History
The history of a database engineering process consists of the formal trace of its chain of
transformations. In a history, a transformation is entirely specified by its signature,
which specifies the name of the transformation, the name of the objects concerned in
the source schema and the name of the new objects in the target schema. More precisely,
the history of a compound transformation contains the signatures of each transforma-
tion according to their order in the chain. For example, the signatures of the inverse
transformations represented in Fig. 5 are:

The first expression can be read as follows: by application of the ATTRIBUTE-to-
ET/inst transformation on attribute A2 of entity type A, a new entity type EA2 and a new
relationship type R are created. To simplify, certain objects implied in the transforma-
tion are not specified in the signature. This is the case for the relationship type R which
disappears when applying ET-to-ATTRIBUTE.

5.4 Source and Target Logical Mappings
The mappings between the source and target logical schemas are modeled through a
transformation history. The history is defined by the trace of the complex compound
transformation: LegLS-to-NewLS = LS-to-CS o CS-to-LS in such a way that NewLS =
CS-to-LS(LS-to-CS(LegLS)), where NewLS is the new logical schema and LegLS is the
legacy logical schema.

Σ

Σ Σ
Σ Σ

 T :(EA2,R) ATTRIBUTE-to-ET/inst(A,A2)

 T':(A2) ET-to-ATTRIBUTE(EA2)

 ←
 ←
36

5.5 Support
DB-MAIN includes a rich toolkit of transformations, most of them being semantics-
preserving. In addition, it can record the history of the transformations applied to con-
vert the legacy logical schema into a conceptual schema and to transform the latter into
the new logical schema.

6 Data Conversion

Schema conversion is concerned with the conversion of the data format and not of its
content [1]. Data conversion is taken in charge by a software component often called
ETL processor (Fig. 3), which transforms the data from the data source to the format
defined by the target schema. A converter has three main functions. Firstly, it performs
the extraction of the data source. Then, it converts these data in such a way that their
structures match the target (new) format. Finally, it writes legacy data in the target for-
mat. A converter relies on the mappings between the source and target physical sche-
mas.

The analysis of the Schema reengineering process has shown that, through schema
refinement, implicit constraints can be discovered, that will be translated into the new
schema. Quite often, data may violate these constraints, so that the legacy data often
have to be cleaned before being migrated. Though data cleaning can be a complex task,
it can be partly automated through specific functions of the migrator.

6.1 Methodology
Data conversion involves three main tasks. Firstly, the legacy logical schema is convert-
ed into the new logical schema. Secondly, the mapping between the source and target
physical schemas is extracted. Finally, this mapping is implemented in the migrator for
translating the legacy data according to the format defined in new logical schema.

6.2 Tool Support
Writing data migrators manually is an expensive and complex task, particularly for
mapping as we find them in semantics-based migration. As told in section 4.5, DB-
MAIN offers the mechanisms to record transformation histories. It also provide a trans-
lator of histories into mapping between the legacy and new schemas. Several migrator
generators have been developed for various technology conversions. Such a generator
automatically derives the migrator code from the mapping between both logical sche-
mas.

It must be noted that full automation generally is not achieved for cost reason. In-
deed, some mappings are problem-specific and have not been coded in the generator. In
such cases, the analyst has to add the specific code in the migrator. For example, if some
specific data conversion is needed (convert measuring units, capitalize a string, add a
prefix to a field value, etc.) the user must write the conversion code and insert it in the
migrator.

In order to design a more general solution and to minimize hand-written migrator
generator sections, we have divided the data migrator in two modules. The first one
37

reads the source data and produces an XML file. The second reads the XML file and
stores the data into the target database.

The structure of the XML file (DTD) is intermediate between the source schema and
the target schema, in order to ease the migration. The only purpose of the XML docu-
ment is to facilitate the transfer of data. Thus we did not try to have an XML file that
express the semantics of the data, as if it had to be used to store and manipulate the data.
For example, if the data contains information about customers and orders, we do not
necessarily produce a file where the orders are encapsulated into the data of its custom-
er. Usually the structure of the XML file is very close to the structure of the legacy sche-
ma.

7 Wrapper Generation

A data wrapper is a data model conversion component that is called by the application
program to carry out operations on the database. Its goal is generally to provide appli-
cation programs with a modern interface to a legacy database (e.g., allowing Java pro-
grams to access COBOL files). In the present context, the wrapper is to transform the
renovated data into the legacy format, e.g., to allow COBOL programs to read, write
records that are built from rows extracted from a relational database.

Fig. 6. A wrapper allows the new database to be accessed by the legacy application
The wrapper converts all legacy DMS requests from legacy applications into re-

quests against the new DMS that now manages the data. Conversely, it captures results
from the new DMS, possibly converts them to the appropriate legacy format [7] and de-
livers them to the application program. Fig. 6 depicts a frequent pattern, in which the
legacy logical schema relying on the COBOL file interface is rebuilt from the new re-
lational logical schema.

7.1 Methodology
As part of the InterDB project [9], we have developed a technology for the automated
production of hard-coded wrappers for data systems. In [8], we have shown that the
code of a wrapper dedicated to a couple of DMS families, performs the structural and
instance mappings and that these mappings can be modeled through semantics-preserv-
ing transformations. For a consultation query, the structural mapping explains how to
translate the query while the instance mapping explains how to form the result instanc-
es. Consequently the LegLS-to-NewLS mapping provides the necessary and sufficient
information to produce the procedural code of a specific wrapper.

Legacy COBOL
Programs

Relational DB

Wrapper

RDBMS

Relational
Logical schema

COBOL
Logical schema
38

7.2 Support
As for data conversion, writing wrapper manually is an expensive and complex task.
Thanks to the DB-MAIN representation of the mapping between the two schemas, it is
possible to automatically generate the wrapper.

The main difficulty is that the wrapper must simulate the legacy DML request from
the legacy applications into requests against the new DMS. For example, the COBOL
start instruction must be translated in several SQL queries. Section 8 will give some ex-
amples of such conversion rules.

Until now, we have implemented wrappers for COBOL-to-SQL and for IDS/II-to-
SQL. Our approach consists of defining one wrapper for each record type of the legacy
database.

For the COBOL-to-SQL wrapper, this solution is obvious since there is no relation
between the record types. Through the analysis of the DML instruction it is possible to
figure out which record is manipulated and thus which wrapper needs to be called.

For the IDS/II-to-SQL, the solution of one wrapper per record type is more less ob-
vious. Its main advantages is that the wrappers are smaller and easier to generate and to
maintain. But some DML instructions are more difficult to translate. For example, the
IDS/II DML get statement does not specify the record type to be read since this type is
that of the last record type accessed. If we use one wrapper per record type, the test fig-
uring out which was the last record type accessed must be done in the legacy application
and not in the wrapper, an option that makes program transformation more difficult.

8 Program Transformation

The database first migration strategy attempts, in a first step, to keep the legacy program
logic unchanged and to map it on the new DMS technology [3]. In the previous section,
we have explained that it is possible to build wrappers that transform the renovated data
into the legacy format. In this way, the application programs invoke the wrapper instead
of the legacy DMS. If the wrapper simulates the modeling paradigm of the legacy da-
tabase and its interface, the alteration of the legacy code is minimal. It consists of re-
placing the DML statements with wrapper invocations.

Some legacy DMS, such as MicroFocus COBOL, provide an elegant way to inter-
face wrappers with the legacy code. They allow programmers to replace the standard
DMS library with customized library. In this case, the legacy code does not need to be
altered at all.

8.1 Methodology
Thanks to the use of the wrapper-based technique, the logic of the legacy programs does
not need to be modified. Some program transformations are performed to replace each
DML instruction with a call to the wrapper. The program transformation is quite simple
because the analysis of the DML instruction is sufficient to derive the parameters of the
wrapper call.
39

8.2 Support
To automate the program transformations, we rely on the ASF+SDF meta-environment
developed by the SEN1 research group of the CWI [10]. We define the grammar of the
legacy language and the transformation rules to produce our program transformation
tool [11]. The tool takes the legacy program and some extra parameters (such as the
name of the wrapper) to produce the renovated program.

9 Practical Aspects

9.1 Partial Migration
In many projects, not all the database need to be migrated. For example, the legacy ap-
plications may access data of another information system that is not migrated. To cope
with such a situation, only the DML instructions used to access the migrated database
are translated by a call to the wrapper and the other DML instructions, that access the
non migrated data, are left unchanged.

9.2 Model Conversion Restrictions
Some legacy DMS constructions and some DML instructions cannot be easily translat-
ed into the new DMS or implemented into the wrapper. The programs that use such con-
structs need to be modified or redeveloped. This is especially true for the physical con-
structs that are not implemented in the new DMS, but that are used by the application
programs. We briefly mention some of those we have met during the development of
the IDS/II-to-SQL wrapper:

• DB-KEY. In IDS/II it is possible to get the current database key, i.e., some kind of
pointer to the current record. This DB-KEY can be stored in a variable or in a data-
base field (though not recommended) and used later to access the record (FIND
DB-KEY IS <var-name>). The SQL rowid is no substitute since its scope is
the current table. If the DB-KEY is only used locally in a program it can be simulat-
ed. However, its use as a foreign key requires complex artifacts such as technical
table and columns. In this specific project, we have decided to not translate the DB-
KEY construct and thus to rewrite the parts of the programs that use it.

• Find within area. In the declaration of the IDS/II database, each record type
is assigned to one or several areas (files). It is possible to walk through all the
records of an area (independently of their type): find first/next within
<area-name>. This is a very efficient way to access sequentially all the records
of an area. But in the new (SQL) database, the areas are not necessarily translated
into db_spaces. In addition, SQL provides no way to scan the rows stored in a
db_space. If each record type is only stored in one area, this can be translated by
the access of each record type of the area one after the other. We have chosen to not
offer this kind of access and to rewrite those parts of the legacy programs.

9.3 Illustration
To illustrate the building of wrappers, we will show how COBOL START and READ
NEXT statements have been translated.
40

The change of paradigm when moving from COBOL files to relational database in-
duces currency management problems such as the identification of the sequence scan.
COBOL allows the programmer to start a sequence based on an indexed key (START
statement), then to go on in this sequence through READ NEXT statements. The most
obvious SQL translation is through a cursor-based loop. However, the READ NEXT
statements can be scattered throughout the program, so that the identification of the in-
itial START statement, specifying the current sequence scan, is complex.

The technique illustrated below solves this problem. Let STOCK be an indexed
COBOL file such as declared in Fig. 7/left. The record type STK can be translated into
the SQL table STOCK (see Fig. 7/right).

Fig. 7. STOCK file declaration and its migrated table
A SQL cursor is declared for each kind of record key usage (=, >, >=) in the wrapper.

For instance, the table STOCK gives three cursors. Among them:

Fig. 8. Translation of START STOCK and of READ STOCK NEXT
A START statement can be simply translated through the corresponding cursor

opening (Fig. 8/left). Note that wrappers also have to simulate the legacy DMS excep-
tions, that are taken into account in the legacy programs logic. For instance, the execu-
tion of the COBOL START statement can produce an INVALID KEY exception occur-

 SELECT STOCK ASSIGN TO "STOCK"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS STK-CODE.
 ...
 FD STOCK.
 01 STK.
 02 STK-CODE PIC 9(5).
 02 STK-NAME PIC X(100).
 02 STK-LEVEL PIC 9(5).

 create table STOCK (
 CODE numeric(5) not null,
 NAME char(100) not null,
 LEVEL numeric(5) not null,
 primary key (CODE))

 DECLARE G_STK_CODE CURSOR FOR
 SELECT CODE, NAME, LEVEL
 FROM STOCK
 WHERE CODE > :WR-STK-CODE
 ORDER BY CODE

* translation of "START STOCK"
 IF WR-OPTION = "KEY IS > STK-CODE"
 EXEC SQL
 SELECT COUNT(*)
 INTO :WR-COUNTER
 FROM STOCK
 WHERE CODE > :WR-STK-CODE
 END-EXEC
 IF SQLCODE NOT = 0
 SET WR-STATUS-INVALID-KEY TO TRUE
 ELSE
 IF WR-COUNTER = 0
 SET WR-STATUS-INVALID-KEY TO TRUE
 ELSE
 MOVE STK-CODE TO WR-STK-CODE
 EXEC SQL
 OPEN G_STK_CODE
 END-EXEC
 MOVE "G_STK_CODE" TO LAST-CURSOR.
 ...

* translation of "READ STOCK NEXT"
 IF LAST-CURSOR = "G_STK_CODE"
 EXEC SQL
 FETCH G_STK_CODE
 INTO :WR-STK-CODE,
 :WR-STK-NAME,
 :WR-STK-LEVEL
 END-EXEC
 IF (SQLCODE = 0)
 MOVE WR-STK-CODE TO STK-CODE
 MOVE WR-STK-NAME TO STK-NAME
 MOVE WR-STK-LEVEL TO STK-LEVEL
 ELSE
 SET WR-STATUS-AT-END TO TRUE.
 ...
41

ring when no record with the specified key value has been found. In the example above,
the wrapper returns the variable WR-STATUS simulating the COBOL input-ouput ex-
ceptions.

The SQL translation of the READ NEXT statement consists of a FETCH of the last
opened cursor, as shown in the example of Fig. 8/right

The variable LAST-CURSOR provides the name of the currently opened cursor on
the table STOCK. So we know which cursor has to be fetched with respect to the current
reading sequence.

10Conclusion

Coupling two independent technologies, namely schema transformation and program
transformation, provides us with a very powerful tool to help solve the problem of au-
tomatically generating the components of semantics-based system migration.

Practically, several experiments conducted for two years have shown the validity of
the approach, at least for small to medium size programs. Applying it to large scale sys-
tems is planned in the near future.

As discussed in the paper, the prototype CASE tool still is experimental. Beyond the
proof of concept that is described in the paper, improvements are being studied in three
directions.

1. Refining the mappings for the COBOL-to-SQL and IDS/II-to-SQL migrations, in
particular, by extending the database with technical temporary structures that sim-
ulate dbkeys and areas during the transition period.

2. Collecting performance figures for large scale system and, where needed, designing
more efficient wrapper strategies.

3. Developing mapping rules for two other legacy models, i.e., IMS and SQL. Indeed,
SQL-to-SQL and IMS-to-SQL migrations are economically important but require
specific rules.

11 References

[1] Aiken, P., Muntz, A., Richards, R.: "DOD Legacy Systems - Reverse-Engineering Data
Requirements", Communications of the ACM, May 1994.

[2] Bull: DSE I-D-S/II (COBOL) Reference Manual, Bull, 1993.
[3] Brodie, M. L., Stonebraker, M.: Migrating Legacy Systems: Gateway, Interfaces & the In-

cremental Approach, Morgan Kaufmann, 1995.
[4] Henrard, J., Hick, J-M., Thiran, Ph., Hainaut, J-L.: "Strategies for Data Reengineering", in

Proeedings. of WCRE'02, IEEE Computer Society Press, 2002.
[5] Hainaut, J.-L., Roland, D., Hick, J.-M., Henrard, J., Englebert, V.: "Database Reverse En-

gineering: from Requirements to CARE Tools", Journal of Automated Software Engineer-
ing, 3(1), 1996.

[6] Hainaut, J.-L.: "Specification preservation in schema transformations - Application to se-
mantics and statistics", Data & Knowledge Engineering, 16(1), Elsevier Science Publish,
1996.
42

[7] Papakonstantinou, Y., Gupta, A., Garcia-Molina, H., Ullman, J.: "A Query Translation
Scheme for Rapid Implementation of Wrappers", in Proceedings of the international Con-
ference on Declarative and Object-oriented Databases, 1995.

[8] Thiran, Ph., Hainaut, J.-L.: "Wrapper Development for Legacy Data Reuse", in Proceed-
ings of WCRE'2001, IEEE Computer Society Press, 2001.

[9] Thiran, Ph., Hainaut, J-L., Integration of Legacy and Heterogeneous Databases, LIBD
Publish., Namur, 2002.

[10] van den Brand, M.G.J., Klint, P. : ASF+SDF Meta-Environment User Manual, 2003.
[11] Cleve, A. : Data-centered Applications Conversion using Program Transformations, Mas-

ter's Thesis, University of Namur, 2004.
43

Developing robust wrapper-systems with
Content Based Recognition

Christoph Göldner and Thomas Kabisch and Jörn Guy Süß
{goeldner,tkabisch,jgsuess}@cs.tu-berlin.de

Technical University of Berlin
Computation and Information Structures (CIS)

Abstract. Maintenance is a limiting factor in the application of wrap-
per technology. This paper introduces an approach which minimizes
maintenance through simplified definition and automatic adaptation. It
reuses WrapIt[12] as an existing component to accelerate initial defini-
tion and user-oriented maintenance, and exploits master-detail relations
often found in web applications to make the wrapper resistent to cos-
metic changes. Changes are detected based on structural information
and corresponding sample data.

1 Introduction

Wrapper systems can provide structured access to the content of the hidden
web[13]. But their application is limited by the effort and cost of initial definition,
lifetime maintenance and response time issues. While initial definition has been
extensively treated in research[6, 3] the other two aspects play a more limited
role. This paper introduces a simple struture-based approach, which specifically
addresses the last two aspects, while treating the first as a variable component.
As an area of application, it is intended to be applied by lay internet users.
The approach targets the bulk of applications working on a fixed schema of
form-based query, master view and subsequent detail view.

The rest of the paper is structured as follows: Section 2 gives an overview
of the approach through an example. Section 3 formalizes the approach based
on relational theory and describes the related algorithms in detail. Section 4
presents related research. The paper closes with an outlook in section 5.

2 System Overview

Based on a real world example, the Internet Movie Database, we introduce our
wrapping approach. The Internet Movie Database http://www.imdb.com/ is a
database driven search site which follows an archetypical navigation structure:
An input form allows the user to formulate a query, a master page subsequently

44

displays the first set of results in a list-like structure. Figure 2 shows an excerpt
of such a master page. Subsequent master pages are appended if the number of
results exceeds a certain limit. From the master page, details are accessible by
selection of a link. The detail page reflects the key information visible on the
master page and additional detail information. Master and detail pages follow a
fixed structure. Figure 1 describes master/detail page scheme.

Fig. 1. Informal model of dynamically generated master/detail page scheme

The following sections show how our approach defines, queries and reconfig-
ures wrappers for web sources using this design scheme.

2.1 Initial Definition

As mentioned in the introduction, there are a number of approaches to simplify
the initial defintion of the wrapper and the relationships between query, master
and detail. In our approach, we use WrapIt[12], to identify candidates for the
varying elements of the page which the lay user only has to reject or confirm.
Further we use XWrap [10] to extract linklists. Threse results are stored as XPath
[16] information, pointing into the page. Initial definition procedes in three steps,
defining the query interface, master and detail metadata, respectively.

Locating the Query Interface in the Form As a first step, the query inter-
face in the form page is identified by the user by selecting it visually and typing
in a query string. As a by-product, the relation between query and resulting
master page is defined and enables the wrapper to simulate calls to the form.
The management of the query interface is not elaborated further in this work,
as it is covered by the components employed.

Caching Master Keys and Detail Links Subsequently, the master result
page is screened for terms associated with the query term. WrapIt elects and

45

visualizes candidates for the records it believes to be the related data. The
user can confirm the notion, or repeat the process. In our example, the path
/p/table/a would retrieve the first movie, ’Shrek 2 (2004)’ on a master page.
That element contains both key information of the master entry, and the link to
the corresponding detail information. Our approach is based on the assumption,
that these elements are invariant, while the surrounding regular structure of the
page may change. We believe this assumption to hold, because the first repre-
sents the underlying business objects, and the second the underlying technical
infrastructure. As a result, we can abstract the master into a relation as shown
in 1. Following the chain of page links thus creates a cache of all master values
associated with a given query. This data forms an implicit first-level cache.

#text href

Shrek 2 (2004) /title/tt0298148/

Shrek 3 (2006) /title/tt0413267/

Shrek: Fairy Tale Freakdown (2001) /title/tt0286967/

Table 1. Sample values of the Detail-Links in the Master-Page

<p>Partial Matches (7 matches, by popularity)</p>
<p>
<table> <tr>

<td valign="top" align="right">1. </td>
<td valign="top" width="100%">
Shrek 2 (2004)</td>

</tr> <tr>
<td valign="top" align="right">2. </td>
<td valign="top" width="100%">
Shrek 3 (2006)</td>

</tr>
[...]
<tr>
<td valign="top" align="right">7. </td>
<td valign="top" width="100%">
Shrek: Fairy Tale...</td>

</tr></table>
</p>

Fig. 2. HTML code excerpt of the MasterPage from imdb.com, which results from a
query about ’Shrek’.

Caching Detail Field Values Finally, the user selects a detail link. The system
repeats this process in the background for other master entries. It now generalizes
over the structure of the detail pages looking for varying elements. These are
offered to the user as candidates for detail information, as in the preceding step.
Also, identification of labels for the detail fields is attempted, as these often

46

precede the variant information. Thus path information leading to the fields is
determined and stored, establishing a schema for detail pages.

<b class="ch">Tagline: In summer 2004, they’re back for more....
(more)

<b class="ch">Plot Outline:
Princess Fiona’s parents invite her and Shrek to dinner to celebrate her marriage.
If only they knew the newlyweds were both ogres.
(more)
(view trailer)

<b class="ch">User Comments:
Funnier than the original
(more)

Fig. 3. HTML code excerpt of the DetailPage from imdb.com, which results from se-
lecting the link associated with the key ’Shrek 2 (2004)’.

Metadata Schema Figure 4 shows the resulting schema, excluding the data
for the query interface. For our example, an instance of MasterPage would
refer to a specfic movie query, e.g. with search term ’Shrek’ and a resulting
URL=’http://www.imdb.com/find?tt=on;nm=on;mx=20;q=shrek’. A MasterItem
would be described as path=p/table/tr/td/a key=’Shrek 2 (2004)’ and
location=’http://www.imdb.com/title/tt0298148/’. DetailSchema would lead
to an item with the label = ’Plot Outline:’ and path=/body/b[@class=’ch’][3].
Finally an associated DetailItem holds the value = ’Princess Fiona’s parents
...’.

MasterPage

+location:URL

+term:String

MasterItem

+key:String

+path:XPath

+location:URL DetailItem

+value:String

DetailSchema

+path:XPath

+label:String

1..*

1..*

1..*

Fig. 4. UML model of the wrapper metadata schema

47

2.2 Query Submission and Caching

With the configuration introduced above, the wrapper is configured and ready
for operation. The user can search terms, and the wrapper will traverse the
master/detail structure following the path on the left-hand side of the activity
diagram in figure 5, as expected. The branches, that fork of to the right deal with
the condition were reconfiguration has to occur, because the cached metadata
does not retrieve the expected element, i.e. links to a detail page or the label
of an item of the detail. The next section describes how the wrapper deals with
such conditions.

Fig. 5. Activity diagram of the query-process

Query processing has been presented as a linear algorithm. However, since
the response to a specific search term is cached in the wrapper, many operations
may be executed in parallel. Also, the wrapper can retrieve preliminary answers,
while carrying out the query in the background. The wrapper can also choose
to skip the query and present the master page using the location stored in the
metadata. However none of these options is currently part of our implementation.

48

2.3 Reconfiguration and Recovery

If the query process as described above fails to find the respective elements in
the accustomed places in the page structure, these have probably moved due
to aesthetic rearrangement. Thus, the challenge is to realign the structural de-
scription. Figure 6 shows a modified master page. The algorithm now selects
a MasterPage from its cache, per random, recency, or some other criteria. It
queries the source and uses the altered response to locate the MasterItems,
which it assumes to be associated with the term. This match can exploit either
the key, location or both attributes. If it succeeds, the respective path struc-
ture has been rediscovered, and the MasterPage failure circumvented. In our
example, html/body/div[@class="results"]/ul/li/a would now be the new
path value of the MasterItem representing the ’Shrek 2’ movie. The details page
can be treated similarly. A formalization based on relational algebra of both
structures and algorithms has been carried out, to ensure a sound basis of the
approach.

<div class="results">

<h1>Search-Results</h1>

Shrek 2 (2004)

Shrek 3 (2006)

Shrek 2012

[...]

Shrek: Fairy Tale...

</div>

Fig. 6. Modified HTML code of the Master page example

2.4 Architecture

We distinguish three main functions which are covered by the wrapping system
Initial Definition, Querying and Reconfiguration. Each of those use cases touches
upon different components of the system, as shown in figure7. They are embed-
ded in a framework with a query-interface and a GUI on top of the Analyzer,
Extractor and Reconfigurator.

Initial Definition uses the Analyzer for finding structures in pages and the
Extractor to present the results to the configurating user. Querying is exclusively
done by the Extractor. If the extraction fails, a Reconfiguration is invoked. This
is performed by the Reconfigurator. It uses the Analyzer to find the respective
structures and the Extractor to validate its results.

49

Fig. 7. Architecture

3 Formalization

The following formalization is restricted to the needs of reconfiguration and
omits all aspects of value caching. Thus we simplify the model presented in
the last section. Without taking into account caching issues we only need to
distinguish between master and detail pages. Detail schema information will be
stored together with values.

3.1 Relational model

Let term and locationp depict the query term and the URL of the given page.
Further M refers to a set of master items, then a cached representation of a
user-request to a database-driven website, the master page p, can be depicted in
a relational manner as the tuple

p = (term, locationp,M).

Let further be locationm the URL of one associated detail page, key the
text which is enclosed in the corresponding <A>... block and pathm the
XPath[16] expression which refers to that link. Moreover the set D holds the
information which is given at the related detail page, then we define a master
item mi ∈ M = {m1,m2, ...,mn} by the tuple

mi = (key, locationm, pathm, D)

Detail schemes and detail items are parts of detail pages and will be formal-
ized together for simplification.
Let be pathd the XPath[16] to a specific detail field, label the describing name
of that field, and value a sample instance. Then an element of a detail page
dj ∈ D = {d1, d2, ..., dn} can be defined as a tuple:

dj = (label, value, pathd)

50

3.2 Heuristics

We introduce two heuristics which allow to decide which parts of a certain web
page have been structurally altered and help to reassign stored values to the new
structure.

Master page A structural change will cause a change of the XPath[16] expres-
sion of certain master items. It will not influence the URL nor the label of
that item. Thus we define the following heuristics to identify a corresponding
master item after a design change has been occurred:

∀m, m′ ∈ M : Locationm(m) = Locationm(m′) ∧Key(m) = Key(m′) ⇒ m = m′

Detail page In contrast to master pages, on detail pages there is no invariant
element like a fixed URL. The only common assertion to detail pages in our
understanding is a (label,value)-structure, which represents certain proper-
ties of the data-object on which the detail page is based. That data structure
might not change if structural changes occur, thus we define for two detail
elements d, d′ ∈ D the following heuristics to identify the corresponding
detail elements after a structural change:

∀d, d′ ∈ D : Label(d) = Label(d′) ∧ V alue(d) = V alue(d′) ⇒ d = d′

3.3 The Reconfiguration process

With help of the above heuristics we employ a reconfiguration function based
on content recognition.

Master page Let be S a DOM[17] representation of the (altered) HTML-
Structure and M the set of items of a master page which refer to detail
pages as stated above. The reconfiguration function fR extracts for a all
tuples m ∈ M the actualized path expression which refers to certain detail
pages:

fR(M, S) := {m′|m′ ∈ M ∧ Locationm(m′) = Locationm(m)

∧Key(m′) = Key(m) ∧ Path(m′) = Path(S.m)}

The reconfiguration process is done iteratively for all changed elements. Fig-
ure 8 shows the algorithm in detail.

Detail page The application of the reconfiguration for a detail page works sim-
ilarly to that one for the master page as stated above. The only difference is
the used heuristics.

51

Reconfig(M,S)

for all node in S {

if node = (’<a>...<a>’) then

for all m in M {

if (href(node) = Location(m) and subnode(node).text = Label(m))

then Path(m) = node.getPath();

fi;

}

fi;

}

Fig. 8. The Reconfiguration algorithm for master pages.

4 Related Work

Our approach shows similarities to guided configuration used in W4F [14] and
XWrap [10]. Analysis mainly uses two technologies: Heuristics, analyzing the
DOM [17] tree of a document in order to find groups of links that point to Detail-
Pages, are inspired by XWrap [10] and IEPAD [2], content-lookup in Detail-
Pages is based on the Roadrunner [5] technique of solving mismatches across
documents, similarly found in WrapIt [12]. Extraction also uses Roadrunner and
WrapIt, based on comparison of a page with a general wrapping representation.
Furthermore, extraction employs XPath [16] queries to retrieve Detail-Links. A
specialty of our system is the ability of reconfiguring itself at runtime without
user intervention. This technique is inspired by the Content-Based-Recognition
introduced in WrapIt and is supported by similar analysis-techniques as used
during the configuration. Additional modules, e.g. for label-assignment and form-
filling like in DeLa [18] or HiWE [13], will be integrated in the future.

5 Future Work

The presented process of reconfiguration with Content Based Recognition is a
good way for designing robust wrapper systems. Nevertheless there will be still
cases where our system could not be reconfigured satisfactorily. Furthermore our
system is designed only for the described schema of web sources yet and we have
to generalize it to work also with other schemes of web sources.

5.1 Fortifying the approach

At the time the approach lacks in terms of robustness. In case if cached sample
values are no more present in the underlying database of the website at the time
of reconfiguration, the process will fail. High frequency changing data sources,
e.g. flight schedules or movie sites with performance calenders, are not suitable

52

for the approach. Generally a design change could not be reconfigured with
our approach even if the data-structure remains identical if none of the stored
sample-values can be retrieved at a later date. To solve this problem we are
working on matching techniques that do not rely on certain sample values but
rather search and compare actual values on and between Master- and Detail-
Pages.

Other problems concern overlap of page structure and sample values, leading
to deduction of misleading path entries. An example are repeated occasions of
identical values on a page, e.g. the headline of the page is also the title of the book
that is shown there. Another problem are attributes that have similar values, e.g.
date attributes often just contain year dates that induce a high overlap. Thus
the reconfiguration results, especially the new path entries, need to be validated
over several pages to detect erroneous configuration data.

5.2 Generalizing the approach

The approach can be adapted to other schemes of web sources, due to the main
idea of storing sample values independent from the structure information. If you
have the new structure of a page that contains the stored data and compare
it with the stored data you can draw conclusions from it to the new positions
of the defined attributes in the changed structure. In general the approach is
independent from the described Master-/Detail-Page presentation. The main
problem is to find a way to get one or more instances of the stored data from
the changed website.

References

1. N. Ashish and C. Knoblock. Wrapper generation for semi-structured internet
sources. In Proc. Workshop on Management of Semistructured Data, Tucson, 1997.

2. Chia-Hui Chang. IEPAD: Information extraction based on pattern discovery. In
Tenth International World Wide Web Conference, pages 681–687, 2001.

3. W. Cohen, M. Hurst, and L. Jensen. A flexible learning system for wrapping tables
and lists in html documents, 2002.

4. W. Cohen and L. Jensen. A structured wrapper induction system for extracting
information from semi-structured documents.

5. Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner: Towards
automatic data extraction from large web sites. In The VLDB Journal, pages
109–118, 2001.

6. Saikat Mukherjee Guizhen. Automatic discovery of semantic structures in html
documents, 2000.

7. Thomas Kabisch. Grammatikbasiertes semantisches wrapping fuer föderierte in-
formationssysteme. In Tagungsband zum 15. GI-Workshop Grundlagen von Daten-
banken, pages 62–66. Fakultät fuer Informatik,Otto-von-Guericke-Universität
Magdeburg, 2003.

8. A. Laender, B. Ribeiro-Neto, A. Silva, and J. Teixeira. A brief survey of web data
extraction tools. In SIGMOD Record, volume 31, June 2002.

53

9. Ling Liu, Wei Han, David Buttler, Calton Pu, and Wei Tang. An XML-based
wrapper generator for web information extraction. In SIGMOD Conference, pages
540–543, 1999.

10. Ling Liu, Calton Pu, and Wei Han. XWRAP: An XML-enabled wrapper construc-
tion system for web information sources. In ICDE, pages 611–621, 2000.

11. I. Muslea, S. Minton, and C. Knoblock. Stalker: Learning extraction rules for
semistructured, 1998.

12. Mattis Neiling, Markus Schaal, and Martin Schumann. WrapIt: Automated inte-
gration of web databases with extensional overlaps, 2002.

13. Sriram Raghavan and Hector Garcia-Molina. Crawling the hidden web. In Pro-
ceedings of the Twenty-seventh International Conference on Very Large Databases,
2001.

14. Arnaud Sahuguet and Fabien Azavant. Building intelligent web applications using
lightweight wrappers. Data Knowledge Engineering, 36(3):283–316, 2001.

15. Myra Spiliopoulou and Lukas C. Faulstich. WUM: a Web Utilization Miner. In
Workshop on the Web and Data Bases (WebDB98), pages 109–115, 1998.

16. W3C. XML path language (XPath) version 1.0 – W3C recommendation 16 novem-
ber 1999. Available at http://www.w3.org/TR/xpath.html, 1999.

17. W3C. Document object model (DOM) level 3 core specification version 1.0 – W3C
recommendation 07 april 2004. Available at http://www.w3.org/TR/DOM-Level-
3-Core, 2004.

18. Jiying Wang and Fred H. Lochovsky. Data extraction and label assignment for web
databases. In Twelft International World Wide Web Conference, pages 470–480,
2003.

54

	WRAP2004-papers.pdf
	WRAP2004-papers.pdf
	henrard.pdf
	henrard.pdf
	1 Introduction
	2 Problem Statement
	3 Schema Reengineering
	3.1 Methodology

	4 Tool Support
	5 Mapping Definition
	5.1 Schema Transformation
	5.2 Compound Transformation
	5.3 Transformation History
	5.4 Source and Target Logical Mappings
	5.5 Support

	6 Data Conversion
	6.1 Methodology
	6.2 Tool Support

	7 Wrapper Generation
	7.1 Methodology
	7.2 Support

	8 Program Transformation
	8.1 Methodology
	8.2 Support

	9 Practical Aspects
	9.1 Partial Migration
	9.2 Model Conversion Restrictions
	9.3 Illustration

	10 Conclusion
	11 References

