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B-MERODE: A Model-Driven Engineering and               
Artifact-Centric Approach to Generate Smart Contracts 

Victor Amaral de Sousa1, Corentin Burnay1 and Monique Snoeck2 

1 University of Namur, Namur Belgium 
2 KU Leuven, Leuven Belgium 

Abstract. Blockchain technology has the potential to facilitate the development and 
improvement of cross-organizational business processes. When it comes to developing 
smart contracts with this purpose, model-driven engineering is a promising approach 
that has been adopted by a number of solutions. This paper presents B-MERODE, a 
novel approach relying on model-driven engineering and artifact-centric business pro-
cesses to generate smart contracts supporting cross-organizational collaborations. The 
feasibility of the approach is demonstrated by modeling the case of a rice supply chain. 
Compared to other solutions, B-MERODE provides more flexibility, more reusability 
and further leverages the automation potential offered by model-driven engineering.  

Keywords: Blockchain, BPM, Cross-Organizational Collaboration, MDE, Artifact-
Centric Business Process, MERODE, B-MERODE, Method. 

1 Introduction 

With the availability of blockchain technology and smart contracts (i.e. programs hosted and 
executed on blockchains), a broad range of applications have been made possible. Among 
these are opportunities for the implementation, execution and monitoring of cross-organiza-
tional Business Processes (BPs), as further detailed in [1]. A blockchain can be described as 
“[...] a distributed database, which is shared among and agreed upon a peer-to-peer network. 
It consists of a linked sequence of blocks, holding timestamped transactions [...] secured by 
public-key cryptography and verified by the network community. Once an element is ap-
pended to the blockchain, it cannot be altered, turning a blockchain into an immutable record 
of past activity" [2, p. 3].  

However, being a new technology, developing solutions relying on it remains a challeng-
ing task, for multiple reasons mentioned in [3]. These include the lack of adequate developer 
tools, the lack of people having the required skills and knowledge and a steep learning curve. 

One of the promising approaches that can facilitate the development of smart contracts 
supporting cross-organizational collaborations is Model-Driven Engineering (MDE). MDE 
enables generating executable code for smart contracts from a set of models that specify the 
processes to be supported. For example, [4] and [5] are tool-supported methods that allow to 
generate Solidity smart contracts respectively from BPMN diagrams and Finite State Ma-
chines (FSMs). Using MDE requires a language (i.e. a set of models) to use as input for code 
generation. Without insisting on MDE, authors of [6] call for the development of a shared 
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ledger business collaboration language. This should be a language that is understood by busi-
ness people and which can be used to specify cross-organizational BPs supported by block-
chain technology. Such a language would foster blockchain adoption and facilitate prototyp-
ing. Furthermore, [6] argues that the language should be based on artifact-centric BP models. 
In the past, several approaches to model-driven blockchain-based cross-organizational BPs 
have been proposed. Many of those are however process-centered rather than artifact-cen-
tered. Even though a few artifact-centered approaches exist, these provide only a partial cov-
erage of the required concepts, the code generation is not fully automated, and they impose 
a number of constraints to developers, hereby reducing reusability and flexibility. 

As a response to the need to develop new methods for the analysis and engineering of BPs 
supported by blockchain (detailed in [1]), the present paper proposes B-MERODE. B-
MERODE consists of a method and an artifact-centric shared ledger business collaboration 
language that can be used as input to generate smart contracts using MDE. The proposed 
method aims to alleviate or even resolve the shortcomings of existing artifact-centered ap-
proaches. Our proposition is based on MERODE, a method for the design and implementa-
tion of intra-organizational Enterprise Information Systems (EISs).  

The remainder of the paper is organized as follows. Section 2 introduces the research 
problem by first discussing requirements for solutions aiming at generating smart contracts 
to support cross-organizational collaborations. Then, a review of the related work is proposed 
and analyzed in the light the identified requirements. Based on this, a number of improve-
ments are suggested and the basic ingredients for a new solution allowing to realize such 
improvements are discussed. After that, section 3 presents our solution called B-MERODE. 
To have a first validation of the feasibility of the proposed approach, section 4 presents the 
case of a rice supply chain modeled using B-MERODE. Finally, section 5 discusses the lim-
itations of our approach and suggests further research leads. 

2 Research Problem 

2.1 Requirements 

When developing blockchain-based solutions to support cross-organizational BPs, a number 
of requirements (both functional and non-functional) have to be met: 
• Dynamic Participants Management [7]: to handle the dynamic nature of cross-organ-

izational BPs, it is key to have the ability to change participants as the process is 
running (e.g. replacing a wholesaler by another in case the first becomes unavailable). 

• Minimal Information Sharing [7]: considering the trust issues among collaborating 
organizations, which may even be competitors, minimizing the information that needs 
to be shared among the participants is key. This information can be about the identity 
of the participants, the data used in the process (e.g. details about an order) and infor-
mation about the internal structure and processes of the participants. 

• Formal Verification [5], [6], [8]: considering the immutable character of smart con-
tracts, it is crucial to ensure the correctness and soundness of these before deploying 
them. Indeed, once deployed, the code cannot be changed, and errors may be unfixa-
ble and thereby lead to unresolvable exploits.  
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• Reusability [8]: to avoid starting every process model from scratch, it is valuable for 

organizations to have the ability to reuse (parts of) models previously developed.  
• Flexibility: when modeling and executing BPs, flexibility is needed for many differ-

ent aspects, including management of the participants at runtime (c.f. dynamic partic-
ipants management); support of variants of BPs [8]; and support for unpredictable 
processes (i.e. processes where the sequence of activities may vary from one case to 
another) [9]. We further emphasize this requirement by including, as part of the flex-
ibility needs, the possibility for involved organizations to have as much freedom as 
possible in the specification and implementation of internal processes. Besides ele-
ments that are agreed upon as part of collaborations, the participants should remain 
free to implement their internal business processes as they want and using the tech-
nology of their choice. 

2.2 Related Work 

In the literature, a number of solutions using MDE to generate smart contracts supporting 
cross-organizational BPs can be found. The majority of these solutions rely on process-cen-
tric BP models to specify the processes. It has been argued that artifact-centric BP models 
offer a better alternative to build a shared ledger business collaboration language [6]. The 
process-centric paradigm focuses on activities and their sequence and only skims on data-
aspects. In contrast, the artifact-centric approach focuses on Business Objects (BOs) also 
called business artifacts, representing key tangible or conceptual entities relevant to the busi-
ness. To define the different components of artifact-centric BPs and to compare different 
models within that paradigm, the BALSA framework can be used [10]. It describes the con-
cerned processes as made of Business Objects (or Business Artifacts), Lifecycles, Services 
and Associations. Every BO can be related to others and is described by a number of data 
attributes. Furthermore, every object has a lifecycle that defines the key, business-relevant 
stages that it can go through. The services are used to make changes to BOs. These changes 
can be a modification of the value of the attributes, or the switch to a new state in the lifecycle. 
Finally, associations define the conditions under which services can be executed. 

As detailed in [6], artifact-centric BPs have a number of advantages when it comes to 
creating a shared ledger business collaboration language. Indeed, the layered approach they 
adopt provides improved flexibility, reusability and adaptation as well as a clearer separation 
of concerns. On top of that, the type of models used are argued to be more intuitive, which 
facilitates their creation and (informal) reasoning about them. Furthermore, the used models 
are declarative, which further improves flexibility. Finally, the proposed models support for-
mal reasoning, which is crucial in a blockchain context. One of the important aspects of BPs 
which is not explicitly detailed in the BALSA framework is around permissions management. 
Another framework which incorporates the BALSA dimensions (in a slightly different way) 
as well as permissions management aspects is the Philharmonic flows framework [11]. How-
ever, artifact-centric BP models as described in the BALSA framework can incorporate the 
fine-grained access permission constructs defined in Artifact-Centric Service Interoperation 
(ACSI) hubs [6]. These constructs are argued to be well-suited for a blockchain-enabled 
cross-organizational context [6] and they are more flexible than the ones described in the 
Philharmonic flows framework. 
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Starting from the idea of using artifact-centric BP models and MDE, the present section 

focuses on solutions that, at least to some extent, belong to the artifact-centric paradigm. The 
solutions that were identified are Lorikeet [12], FSolidM [5] and a solution relying on Dy-
namic Condition Response (DCR) graphs [13]. The remainder of this section provides an 
overview of the coverage of the requirements identified in section 2.1 in these solutions. 

The dynamic management of participants is only explicitly supported by Lorikeet. In terms 
of information sharing, the solution which requires the least sharing is Lorikeet. FSolidM 
does not provide explicit support for data-related aspects and neither does the solution using 
DCR graphs. Furthermore, this solution requires sharing the identity of the participants. In 
terms of opportunities for formal verification, all the reviewed solutions can support it, to 
some extent. When it comes to reusability, it appears to be limited within every solution. 
Indeed, considering that for most solutions, only or mainly the activity sequence is effectively 
supported, this is the only perspective of processes that can potentially be reused. Finally, 
FSolidM and DCR graphs provide a lot of flexibility regarding many aspects of business 
processes. The reason for that is that they only or mainly support the activity sequence. The 
fact that aspects related to data, permissions and participants are mostly left aside by existing 
solutions strongly limits their reusability but also their supported flexibility. By supported 
flexibility we mean flexibility for aspects which are explicitly supported. 

While the reviewed solutions can be associated with the artifact-centric paradigm, it ap-
pears that they do not adopt it to an extent allowing to reap the most benefits out of it. Mainly, 
the separation of concerns into different layers and the management of data and permission-
related aspects could be further improved by proposing a method that follows more closely 
the considered paradigm. 

Considering this, we call for a solution which offers explicit support of BP aspects related 
to data, permissions, participants and activity sequences. Furthermore, we call for a solution 
that provides flexibility and reusability in these aspects. By supporting more aspects of BPs, 
the power of MDE can be further leveraged, and its return on investment further increased.  

2.3 Ingredients for an Improved Solution 

In order to create a solution which meets the objectives mentioned in the previous section, 
we rely on three foundational ingredients: MDE, artifact-centric BPs (c.f. section 2.2) and 
MERODE. The present section introduces MERODE, motivates its choice and discusses its 
limitations in a context where the goal is to generate smart contracts supporting cross-organ-
izational BPs. 

Introduction to MERODE. MERODE is a method that relies on MDE and artifact-centric 
BPs to design and implement intra-organizational EISs. The Platform-Independent Model 
(PIM) consists of a number of models that are precise and complete enough to allow for the 
automatic generation of an executable application from them. The method is supported by 
tools for creating and verifying models and for the generation of working prototypes from 
these models. The method also provides methodological guidelines for ensuring the quality 
of the EIS's design.  

MERODE considers EISs as being made of three distinct layers: the domain layer, the 
Information System Services (ISSs) layer, and the business process (BP) layer. The first one 
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describes Business Object Types (BOTs), their respective data attributes and the relationships 
among different object types. Examples of BOTs could be Customer and Order, with each 
order being related to a customer. As part of the domain layer, the lifecycles of the different 
BOTs are also described.  

The ISSs layer describes the services offered by the software, divided in two types: input 
and output services. The former can affect business objects by updating their attributes’ value 
or the current state of their lifecycle. The output services provide (reading) access to the BOs.  

On top of that layer lies the BP layer. It defines the work organization and uses the defined 
ISSs to interact with the domain layer, which holds information about BOs.  

While MERODE uses and/or suggests particular models to represent each element of the 
three layers, the main part whose transformation towards a working prototype is automated 
(by the tools developed to this date) is the domain layer1. The domain layer is described by 
means of three inter-related models. First, the Existence Dependency Graph (EDG) specifies 
the BOTs, the relationships among them and their respective attributes, using a subset of the 
Unified Modeling Language (UML) class diagram notation. Then, the Object-Event Table 
(OET) is used to specify the business events that can be triggered on the BOs. When an event 
fires, it triggers the execution of methods on the BOs, as specified in the OET. These methods 
are used to create, modify or end BOs. Finally, using FSMs, the lifecycles of the BOTs are 
specified. The FSMs define the states in which the BOTs can be and the transitions from one 
state to another, which happen when methods are executed.  

For more detailed explanations about MERODE, the reader is referred to [14] and [15]. 
The first source provides an overview and summary of the method while the second describes 
it in much more details. 

Motivations for the use of MERODE. In section 2.2, motivations to adopt the artifact-cen-
tric paradigm to model blockchain-enabled cross-organizational collaborations have been 
discussed. One of the motivations for adopting MERODE as a founding approach is that it 
belongs to the artifact-centric paradigm and provides a good coverage of the BALSA dimen-
sions. As suggested in artifact-centric BPs, MERODE adopts a layered approach with the 
domain layer, the ISSs layer and the BP layer. The EDG is used to specify business artifacts, 
their relationships and their attributes. The OET and the FSMs are then used to define the 
lifecycles of the different BOTs. Besides that, the different services defined in the ISSs layer 
allow to cover the services dimension. Finally, the BP layer allows defining the associations. 
This layered approach adopted by MERODE allows for more reusability and flexibility, both 
part of the requirements identified in section 2.1. For example, while the OET and FSMs 
could be different from one solution to another, it would be possible to reuse a given EDG. 
Going even further, a complete domain model could be reused for different purposes.  

Overall, MERODE uses a set of layers and a set of models, and integrates all the different 
models in a consistent way, providing a rather holistic specification (and possible implemen-
tation) of the system being developed considering the covered BALSA dimensions. 

When using multiple models that need to be integrated, consistency across the models is 
key to avoid undesired behaviors. The approach proposed by MERODE offers consistency 
                                                        

 
1 A recent extension allows defining a presentation model, and generating tailored user interfaces ac-

cordingly [22]. This extension is however not relevant in a blockchain context. 
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by construction [14]. It does so first at a fundamental level, when defining the different mod-
els to use and their integration. On top of that, the approach includes a number of rules to be 
respected, and for which compliance can be checked automatically and formally. Such con-
sistency checking across the different models is further detailed in [15, Sec. 6.3]. Still related 
to consistency, some of the models used in MERODE offer opportunities for formal reason-
ing (e.g. formal deadlocks detection [16]), which is one of the arguments in favor of artifact-
centric approaches as well as one of the requirements identified in section 2.1. 

Overall, MERODE is a good candidate to meet the formal verification, reusability and 
flexibility requirements. However, the requirement of dynamic participants management is 
not explicitly supported. As for the minimal information sharing needs, these would depend 
upon the actual models built with MERODE. 

As an alternative to MERODE, other approaches also offer a good coverage of the BALSA 
dimensions. For instance, [17] proposes to cover all the dimensions using a defined set of 
UML models (not especially in a blockchain context). It suggests using class diagrams for 
the business artifacts dimension, FSMs for lifecycles, Object Constraint Language (OCL) 
operation contracts for services and activity diagrams for the associations. MERODE is com-
patible with the proposition made in [17] but offers a better support for code generation and 
more flexibility in the way services and associations are specified.  

In short, MERODE provides a robust basis to model information systems in a consistent, 
flexible, reusable and holistic way. However, this approach was not initially focused on the 
design of systems supporting cross-organizational BPs. Some of the limitations of MERODE 
for that context are discussed in the section that follows. 

 
Limitations of MERODE. In order to investigate MERODE’s limitations for blockchain-
enabled cross-organizational settings, we modeled a rice supply chain case using that method. 
The model and its explanations can be found in a separate report [18]. 

The first identified limitation is that there is no distinction between what needs to run on 
the blockchain and what can be run off the chain. However, such a distinction needs to be 
made in a blockchain-based setting, as discussed in [19], as it has an important impact in the 
way particular aspects (e.g. permissions) are managed.  

A second limitation is about permissions management. Whether we are in an intra- or 
inter-organizational setting, it is important to define who (i.e. which role or which participant) 
is allowed to perform which action. However, MERODE does not specify how permissions 
should be handled, it has no explicit notion of neither participants not participant types and 
it does not explicitly support the dynamic participants management (c.f. section 2.1). 

These two groups of limitations call for a number of changes and extensions of MERODE 
to make it suitable for blockchain-enabled cross-organizational settings, which are discussed 
in the next section. 

3 Contribution: B-MERODE 

The present section introduces the adaptations that we propose for MERODE to make it 
suitable for blockchain-enabled cross-organizational settings, considering the limitations pre-
sented in the previous section. We thereby propose a new version of MERODE that we call 
B-MERODE. Fig. 1 shows an overview of the different layers that we propose as well as 
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their interactions. The elements that are depicted using dotted lines are the ones that have 
been added in B-MERODE or that were modified from MERODE. As further detailed in the 
remainder of this section, B-MERODE provides two new layers compared to MERODE: the 
permissions layer and the core information system services layer. In our approach, we also 
bring a number of modifications to the existence dependency graph and to the object-event 
table. The information system services and BP layers remain essentially the same as in 
MERODE. However, due to the distinction between what is managed on and off the block-
chain, B-MERODE provides additional flexibility. 

 
Existence Dependency Graph. In order to support the permissions layer (described in the 
present section) as well as other aspects of the overall solution, a number of adaptations need 
to be performed at the level of the EDG. These changes are the distinction between regular 
and participant object types as well as the distinction between base and derived attributes. 

 
Regular and Participant Business Object Types. In the permissions layer, knowledge about 
the different participant types and business event types is required. Business event types have 
not been adapted in our approach and remain the same as in MERODE. However, to identify 
the different participant types, we propose an extension of the existence dependency graph. 
Instead of having only business object types, a distinction is made between regular BOTs and 
the ones that represent participant types (as it is the case in the Philharmonic flows framework 
[11]). A participant type represents a type of entity that is involved in a collaboration. For 
instance, in the example of [18], there were, among others, paddy batches, paddy ownerships, 
rice processing companies and wholesalers. The two first are regular BOTs and the two last 
represent different types of participants, of which multiple instances can be created (e.g. there 
might be multiple rice processing companies involved in a collaboration). In the end, partic-
ipant object types are regular object types marked with a “participant” flag.  

Describing the different participant types within a business network by means of the EDG 
provides a number of advantages. First, it allows describing the relationships among the par-
ticipants, with some of them being explicitly able to influence the behavior of others. A sec-
ond advantage is that it allows controlling the lifecycle of the different entities as they are 
involved in the collaboration. For instance, a particular process could be defined using B-
MERODE models to approve a new entity to join the collaboration. It would also be possible 
to dynamically add, modify and remove participants. Thereby, unlike MERODE, it allows to 
cover the dynamic participants management requirement identified in section 2.1. 

Base, Derived OCL and Derived Complex Attributes. A second modification that we propose 
to add is related to the attributes of the BOTs. In MERODE, every attribute is characterized 
by a name and by a value type (e.g. integer or string). A general distinction that can be made 
is between base attributes and derived attributes. Derived attributes have their value com-
puted based on the value of other attributes. For instance, in the case described in [18], the 
overall quality score of a paddy batch is derived from the quality scores computed for the 
different steps in the process followed by the rice processing company. While MERODE 
never mentions what to do with derived attributes and therefore does not make an explicit 
distinction between how base versus derived attributes should be handled, in a blockchain 
context this distinction needs to be made explicitly. While it should be possible to modify the 
value of base attributes directly, it should not be possible for one of the participants to change 
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the value of derived attributes directly. Indeed, the rules for the computation of a derived 
attribute should be agreed upon by the different participants, and it should not be possible to 
deviate from these rules (unless all concerned participants agree). 

 It is indeed not conceivable to let every participant decide how derived attributes are com-
puted. This is due to the trust issues faced in the cross-organizational settings for which B-
MERODE is proposed and which are not considered in MERODE. 

Among the derived attributes, a distinction is also required. For some derived attributes, 
defining how the value should be computed is doable using OCL. In other cases, it is not 
possible. OCL allows defining the value of a given attribute based on other attributes of the 
same object / attributes of other objects to which a given object has access. However, there 
may be cases where external (e.g. web) services need to be used to retrieve some data, or 
where it is not possible to formulate the calculation rules using OCL. In this context, more 
flexibility should be provided. To do so, the designers creating B-MERODE models are al-
lowed to write computation rules directly in the target programming language (i.e. the lan-
guage in which smart contracts code is generated).  

So, three types of attributes are proposed in B-MERODE:  base attributes whose value is 
manually set; derived OCL attributes whose value can be computed using OCL rules; and 
derived complex attributes that cannot be computed using OCL rules. 

 

 

Fig. 1. Overview of B-MERODE layers 

Object-Event Table. As explained in section 2.3, the OET defines methods which are as-
signed a type of effect: creating, modifying or ending BOs. Creation and ending methods can 
remain defined as they are in MERODE. In MERODE no further details are given on how to 
specify the effects of a method. However, in a blockchain context it is needed to specify at 
least the attributes that are (potentially) modified by the method, for two reasons. 

First, it is required to make a distinction between methods that will modify base attributes 
and the ones that modify derived attributes. Methods modifying derived complex attributes 
should be implemented as part of core information system services (more details on this later 
in the present section). Considering that to define which core information system services are 
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required, it is necessary to know which derived complex attributes can indeed be modified, 
providing a list of modified attributes for a method allows performing this identification.  

Second, in order to generate executable code for the modifying methods, it is required to 
know which parameters should be provided, and which attributes should get which of the 
parameters’ value as a new value. Defining the attributes modified by a given method pro-
vides the ability to do so. B-MERODE thus further refines MERODE with defining the mod-
ified attributes for each method. 
 
Finite State Machines. FSMs are defined and used in B-MERODE just as in MERODE. 

Permissions. When modeling a collaboration, it is crucial to define the different participant 
types as well as their respective permissions. Apart from mentioning that authorizations are 
cross-cutting the three layers, the MERODE approach provides no further details as how to 
handle permissions. However, permissions are an essential element on which collaborating 
organizations need to agree, and should therefore not be left at the liberty of the respective 
participants. For this reason, we suggest the addition of a permissions layer (on top of the 
domain layer) that is executed on the blockchain and ensures that only operations allowed 
for a given participant are successfully executed. Furthermore, this allows controlling infor-
mation sharing among the participants, which was identified as an important requirement.  
To model that layer, we rely on three permissions constructs of ACSI hubs that are compati-
ble with artifact-centric BPs, as defined in [6]: 

• Views can be used (among others) to define which BOTs and which attributes of these can 
be accessed by which type of participant.  

• CRUD operations define which type of operation (create, read, update or delete) can be 
executed by which participant type on which BOT and/or attribute. In MERODE, the cre-
ation, modification and ending of BOs happen through the execution of methods that are 
triggered upon occurrence business events. Therefore, defining which participant type can 
create, modify or end a BO is determined by defining which business event type can be 
triggered by which participant type. The same goes for the modification of the attributes’ 
values. For the reading of attributes’ values, there is a need to specify which participant 
type can read which attribute. 

• Windows define the conditions under which particular instances of BOTs (i.e. business 
objects) can be accessed (read or modified) by the different participants. For instance, in 
the case described in [18], a given rice processing company may be able to interact only 
with RPCOwnership objects that are assigned to that particular company. To define win-
dows, we rely on the Access Control Language (ACL) used in Hyperledger Composer2. 

To represent the different permission constructs mentioned above, we propose a permis-
sions model consisting of three components: the Event-Participant Table (EPT) defining 
which participant type can trigger which business event type (e.g. in Table 1);                             

                                                        
 

2 https://hyperledger.github.io/composer/v0.19/reference/acl_language (accessed on 
29/11/19) 
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the Attribute Reading Table (ART) defining which attribute can be read by which participant 
type (e.g. in Table 2); and a set of Instance Access Rules (IARs). 

For the IARs (e.g. in section 4), five elements need to be defined: the type of operation 
(CRUD); the BOT that is concerned; the participant type for which a condition is specified; 
the condition itself (in OCL format); and finally, whether or not the operation should be al-
lowed provided that the condition is met.  

In the proposed permissions model, views, CRUD operations and windows are used. How-
ever, there is no one-to-one mapping between these permissions constructs and the models 
that we propose. The EPT contributes to the definition of a part of the CRUD operations, 
focusing on the create, update and delete operations. Reading permissions are mainly defined 
in the ART, which encompasses views and reading operations (part of CRUD operations). 
The IARs are used to represent the windows. 

Core Information System Services Layer. Between the permissions layer and the ISS layer, 
we add another layer for Core Information System Services (CISSs). This layer is dedicated 
to the services that need to be executed on the blockchain. These include two default services: 
GetData to retrieve data from the domain layer and TriggerEvent to trigger events also de-
fined in the domain layer. In addition to these services, users have to define one CISS per 
derived complex attribute. It will allow to modify the value of the attribute at hand, according 
to rules agreed upon by the different participants. 

Every call to a core ISS will check, through the permissions layer, whether or not the 
participant trying to create, read, modify or end a BO is allowed to do so. When one of the 
base attributes involved in a derived OCL attribute is updated, the derived attribute itself will 
have its value automatically updated. Therefore, additional core information system services 
are only required for derived complex attributes. 

Information System Services Layer. In MERODE, information system services are used to 
interact with the domain layer. However, in B-MERODE, ISSs do not do it directly. Instead, 
they have to go through the CISSs layer, which will ensure that permissions are handled 
correctly. While the CISSs are executed and managed on the blockchain, base ISSs are not.  

Using B-MERODE, collaborating organizations are free to model and implement ISSs 
using any technology that can interact with smart contracts. 

With this approach, organizations remain free to facilitate input and output in and from 
the domain layer as they wish and without needing to share any details about the developed 
services with other participants. For example, if an organization wants to combine data from 
the domain layer with internal data at its disposal, it can do so in an output ISS, without 
informing any other participant. A good example would be a service assigning tasks to indi-
vidual people working for one of the participants. Indeed, the scope which is being consid-
ered in our context is the collaboration among enterprises. Therefore, while nothing prevents 
organizations from including details about their employees in the EDG (e.g. through an “em-
ployee” BOT), they are unlikely to be willing to share this information as part of the collab-
oration. Therefore, if the collaboration is kept as a scope, there is a need to manage permis-
sions inside the organizations as well (because not every employee can do whatever he or 
she wants). To implement that, an ISS could be developed. 
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This flexibility does not come at the expense of the consistency and security of the data 

stored and managed on the blockchain. Indeed, every ISS needs to go through a core ISS to 
interact with the domain layer. Core ISSs will only execute changes / retrieve data if the 
operation is allowed by the permissions layer.  

Business Process Layer. Finally, the top layer is the BP layer, as described in MERODE. 
Since it is also managed outside of the blockchain, participants are free to define their internal 
BPs using the tools, models and technologies of their choice without having to share any 
details with other participants. The different tasks in the process would use the services de-
fined in the ISSs or core ISSs layer to interact with the domain layer. 

3.1 Comparison to Related Work 

Compared to other solutions, B-MERODE offers explicit support for aspects of business pro-
cesses related to data, permissions, participants and activity sequence. It does so by relying 
on a layered approach, which allows for more flexibility and reusability. Furthermore, by 
explicitly covering all the aspects mentioned above, it allows to model BPs in a more holistic 
way. This in turn helps further leveraging the potential of MDE and thereby further increase 
its return on investment. Overall, B-MERODE offers a good coverage of all the requirements 
identified in section 2.1. 

Indeed, B-MERODE allows to dynamically manage participants and goes even further by 
allowing users to define, directly in B-MERODE, how the network of participants should be 
managed. In terms of information sharing, through the permissions constructs that the method 
incorporates, users have support and flexibility to define the information sharing needs as 
they wish. Regarding formal verification, the models that are used in our method to specify 
aspects related to data and to activity sequences can be formally verified, as discussed in [15]. 
On the level of reusability, by adopting a layered approach and considering the models that 
are used, reusability of parts of a B-MERODE model is possible. Finally, our method offers 
a lot of flexibility. First, the network of participants can be dynamically managed during 
process execution, and the way participants can evolve during the process can be specified 
using the provided models. Then, variants of BPs can be supported by creating new models 
that reuse parts of other previously developed models. On top of that, the model chosen to 
represent activity sequences supports unpredictable processes and variability in the process 
execution. Finally, with B-MERODE, organizations remain free to develop a number of ser-
vices as well as their internal business processes as they wish, using the technology of their 
choice, and without needing to share any information about this with other participants.  

4 Validation 

In order to provide a first validation of the method that we propose, this section presents an 
adaptation of the rice supply chain model developed in [18] using B-MERODE.  

Existence Dependency Graph. In the EDG proposed in [18, Fig. 2], two changes need to be 
performed. First, we need to flag the PaddyFarmer, PC (i.e. procurement company), RPC 
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(i.e. rice processing company), WholeSaler, IndustrialClient and the Retailer as participant 
types. Then, we need to make the distinction between the different types of attributes as dis-
cussed in section 3. In this case, we will mark overallQuality as a derived OCL attribute. The 
EDG drawn with B-MERODE is presented in Fig. 2, in which elements in bold and italic 
highlight changes from the original EDG described using only MERODE constructs. 

Object-Event Table. The OET that is proposed with B-MERODE is visually identical to the 
one proposed in the MERODE model [18, Sec. 2.2]. There is however a need to specify 
which are the attributes that are modified by modifying methods. For instance, 
EV_UPDATE_TRANSP_INFO would trigger a method on a PCOwnership business object, 
which would modify the transportation attribute of that object. For all the modifying meth-
ods, this information needs to be specified in B-MERODE. 
 
Finite State Machines. The FSMs in B-MERODE are exactly the same as in MERODE. 

Event-Participant Table. In the EPT shown in    Table 1,  a “X” in a cell means that the 
business event type can be triggered by the corresponding participant type. The business 
event types that are in the EPT are the ones found in the OET, and the participant types are 
the ones described in the EDG. In this EPT, one particular participant type has been added: 
the collaboration manager (CollabManager). The reason why it was added is that organiza-
tions collaborating together in a network (such as a supply chain) need to define the rules 
according to which new participants can join the collaboration. As this is not discussed in 
detail in the present paper, a simplified way of handing that is to add a dedicated participant 
type, the only task and permission of it is to create instances of the different participant types. 

 

 
Fig. 2. Rice Supply Chain – EDG with B-MERODE 

In the proposed model, every type of ownership (e.g. PCOwnership and RPCOwnership) 
is created by the participant type to which it corresponds (e.g. PC and RPC) when they ac-
quire the batch. Therefore, only a procurement company (respectively, a rice processing com-
pany) can trigger the EV_PC_TAKE_OWNERSHIP (respectively EV_RPC_TAKE_  
OWNERSHIP) event. Similarly, only the participant type related to a given type of ownership 
can mark it as finalized. Finally, the specific steps in the process that need to be executed by 
particular participant types and are recorded on the blockchain (e.g. cleaning step of the rice 
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processing company) can only be recorded through the triggering of the appropriate business 
events (e.g. EV_CLEAN_BATCH) by the responsible participant type. 

 
Attribute Reading Table. The second element of the permissions model that is described is 
the ART, available in Table 2. In that table, not all participant types are included (as BOTs 
from which attributes can be read). However, for all of them (except PaddyFarmer), the only 
attribute is name and it can be read by any participant type. For the RPCOwnership BOT, the 
scores related to the different processing steps (cleaningInfo, huskingInfo, etc.) are only read-
able by rice processing companies. However, the overall score derived from these individual 
scores is available to all the participants upward in the supply chain (i.e. up to the retailers 
and industrial clients). The remainder of the table is self-explanatory. 

 
                 Table 1. Rice Supply Chain – EPT      Table 2. Rice Supply Chain – ART 

Instance Access Rules. The last element to specify in the permissions model is the set of 
instance access rules (IARs). An example of IAR that would apply in the rice supply chain 
case is the following: 
          rule OnlyOwnRPCOwnership { 
               operation: [ READ, UPDATE, DELETE ], 
               businessObjectType(bo): RPCOwnership, 
               participantType(ptcp): RPC, 
               condition: bo.creator.id != ptcp.id, 
               action: DENY 
         } 

The rule states that to access a RPCOwnership BO (reading it, updating it or deleting it), 
a rice processing company must be the one that created the RPCOwnership. 

(Core) Information System Services and Business Process Layer. To provide a complete 
picture of the system that would be used to support the rice supply chain using B-MERODE, 
there are 3 layers that need to be further discussed: the CISS, ISS and BP layers. 

In the CISSs layer, default services (as described in section 3) are implemented, and no 
additional service needs to be defined as there are no derived complex attribute in the model. 
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The ISSs layer describes a number of services providing reading and writing facilities for the 
different participants. For example, a service can be defined to read all the (accessible) infor-
mation about paddy batches being processed by a given rice processing company. Such ser-
vices can be developed by the different participants as they wish to do so. Finally, in the BP 
layer, involved participants describe the internal BPs they implement to fulfill their duties as 
part of the collaboration. Just as ISSs, these processes remain at the liberty and discretion of 
the different parties involved.  

5 Limitations and Further Research 

In the present paper, we introduced B-MERODE, a novel MDE approach to generate smart 
contracts supporting cross-organizational BPs. B-MERODE adopts the artifact-centric BP 
paradigm. Unlike other comparable methods, B-MERODE has the potential to offer in-
creased flexibility and reusability, which we identified as important requirements. Further-
more, B-MERODE can further leverage the automation potential offered by MDE. After pre-
senting our approach, we proposed an early validation by modeling a rice supply chain. 

B-MERODE is still evolving and a number of further improvements can be made. In the 
current proposal, B-MERODE uses six distinct models as a consequence of the layered ap-
proach, which inevitably separates a number of concerns instead of representing them into a 
smaller set of models. Although the separation of concerns is crucial, in a next iteration we 
will study whether the number of distinct models could be reduced.  

Another limitation relates to the practical application of B-MERODE. Although we con-
ceptually motivate the approach and propose an early validation by means of a practical ex-
ample, a larger-scale application would be an essential next step to strengthen the validation 
and would allow discovering some potentially remaining weaknesses in our contribution.  

Further work should also consider architectural issues related to how existing information 
systems would, in practice, interact with a blockchain running smart contracts generated us-
ing B-MERODE. Those architectural aspects were beyond the scope of this paper, due to 
space limitations. 

Most importantly, future work will also address the transformation step required to go 
from the proposed models to executable code.  One of the benefits of the proposed approach 
is that it is entirely platform independent and that it can benefit from the existing expertise 
on MERODE transformations. Implementations of B-MERODE could generate smart con-
tracts that can be executed on any blockchain implementation, provided that the right trans-
formations are available. Supporting a variety of solutions is very important. Indeed, consid-
ering the investment in time and effort that would be required for people to be able to use B-
MERODE, having the ability to test the developed models onto multiple platforms could 
increase the return on that investment. 

With B-MERODE, the present paper aims at fostering adoption of blockchain technology. 
An important asset is its ability to generate working software from models in a single click. 
Extending this to blockchain will allow creating prototypes faster and at a lower cost (as 
explained in [6]). Facilitating the prototyping is crucial for organizations to successfully iden-
tify and capture strategic value from blockchain technology [20]. Furthermore, prototyping 
is a way to improve the outcome of an organization’s learning process. Such an outcome is 
part of the drivers of the innovation of organization’s business models [21]. 
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