
OBTAINING REAL-WORLD BENCHMARK PROGRAMS

FROM OPEN-SOURCE REPOSITORIES THROUGH

ABSTRACT-SEMANTICS PRESERVING

TRANSFORMATIONS

by

Maria Anne Rachel Paquin

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

May 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boise State University - ScholarWorks

https://core.ac.uk/display/326254713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2020
Maria Anne Rachel Paquin
ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Maria Anne Rachel Paquin

Thesis Title: Obtaining Real-World Benchmark Programs From Open-Source Repos-
itories Through Abstract-Semantics Preserving Transformations

Date of Final Oral Examination: 4th May 2020

The following individuals read and discussed the thesis submitted by student Maria
Anne Rachel Paquin, and they evaluated the presentation and response to questions
during the final oral examination. They found that the student passed the final oral
examination.

Elena Sherman, Ph.D. Chair, Supervisory Committee

Catherine Olschanowsky, Ph.D. Member, Supervisory Committee

Maria Soledad Pera, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Elena Sherman, Ph.D., Chair
of the Supervisory Committee. The thesis was approved by the Graduate College.

ACKNOWLEDGMENTS

I would like to begin by thanking my advisor, Dr. Elena Sherman, for all of her

guidance and support throughout this research. Over the last two years she not only

taught me what it means to be a researcher, but instilled in me the confidence to be

one myself. It is because of her faith in my ability and the countless hours she spent

sharing her advice, knowledge and ideas that I was able to finish this thesis, and for

that, I am eternally grateful.

I would like to thank Dr. Sole Pera and Dr. Catherine Olschanowsky for serving

as my committee members and providing insightful comments and suggestions during

my proposal. Thanks to Dr. Amit Jain for guiding me through my academic career

and helping me transition from academia to industry.

I am indebted to my friends and family, for providing both financial and emotional

support and for helping me endure the rigors of grad school. I would not have been

able to do it without them. Finally, I owe a deep and heart-felt thank you to Jim

Pelton. His words of encouragement and advice gave me the strength to persevere

during the most difficult times.

iv

ABSTRACT

Benchmark programs are an integral part of program analysis research. Re-

searchers use benchmark programs to evaluate existing techniques and test the fea-

sibility of new approaches. The larger and more realistic the set of benchmarks,

the more confident a researcher can be about the correctness and reproducibility of

their results. However, obtaining an adequate set of benchmark programs has been

a long-standing challenge in the program analysis community.

In this thesis, we present the APT tool, a framework we designed and implemented

to automate the generation of realistic benchmark programs suitable for program

analysis evaluations. Our tool targets intra-procedural analyses that operate on an

integer domain, specifically symbolic execution. The framework is composed of three

main stages. In the first stage, the tool extracts potential benchmark programs from

open-source repositories suitable for symbolic execution. In the second stage, the

tool transforms the extracted programs into compilable, stand-alone benchmarks by

removing external dependencies and nonlinear expressions. In the third stage, the

benchmarks are verified and made available for the user.

We have designed our transformation algorithms to remove program dependencies

and nonlinear expressions while preserving their semantics-equivalence in the abstrac-

tion of symbolic analysis. That is, we want the information the analysis computes on

the original program and its transformed version to be equivalent. Our work provides

static analysis researchers with concise, compilable benchmark programs that are rel-

evant to symbolic execution, allowing them to focus their efforts on advancing analysis

v

techniques. Furthermore, our work benefits the software engineering community by

enabling static analysis researchers to perform benchmarking with a large, realistic

set of programs, thus strengthening the empirical evidence of the advancements in

static program analysis.

vi

TABLE OF CONTENTS

ABSTRACT . v

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xiv

LIST OF SYMBOLS . xv

1 Introduction . 1

1.1 Scarcity of Benchmarks for Heavy-Weight Analyses 2

1.2 Symbolic Execution . 3

1.2.1 Example . 4

1.2.2 Symbolic PathFinder . 6

1.3 Scarcity of Benchmarks for Symbolic PathFinder 9

1.4 Thesis Statement . 10

1.5 Contributions . 10

2 Review of Available Benchmark Sources . 12

2.1 Existing Benchmark Repositories . 14

2.1.1 SIR . 15

2.1.2 DaCapo . 16

vii

2.1.3 Qualitas Corpus . 17

2.2 Mining Open-Source Repositories for Benchmarks 17

2.2.1 RepoReaper . 17

2.2.2 BOA . 18

2.2.3 Problem with Mining Open-Source Repositories 18

2.3 Synthetic Programs . 19

2.3.1 Problem with Synthetically Generated Programs 19

3 Background . 20

3.1 Data-Flow Analysis . 20

3.1.1 Framework . 21

3.1.2 Example: Reaching Definitions . 23

3.1.3 Example: Parity Analysis . 27

3.2 Semantic Program Equivalence . 28

3.2.1 Contextual Semantic Equivalence . 28

3.2.2 Structural Operational Semantics . 28

3.2.3 Rules for Proving Semantic Equivalence 29

4 Abstract-Semantics Preserving Transformations 31

4.1 Abstract-Semantics Program Equivalence . 31

4.1.1 Motivating Example . 31

4.1.2 Abstract-Semantics Equivalence . 32

4.2 Abstract-Semantics Preserving Transformations 34

4.2.1 Removing External Dependencies . 34

4.2.2 Substituting Nonlinear Symbolic Expressions 40

viii

5 Implementation of the APT Tool . 47

5.1 Overview of the Framework . 47

5.2 Extracting Programs . 47

5.2.1 Project Filter and Downloader . 47

5.2.2 File Filter . 49

5.3 Applying Transformations . 50

5.3.1 Compile . 50

5.3.2 Transform . 50

5.3.3 Recompile . 51

5.4 Verification and Preparing for SPF . 52

6 Evaluation . 55

6.1 Generating Benchmarks for Symbolic PathFinder 55

6.1.1 Input . 56

6.1.2 Generated Dataset . 56

6.1.3 Discussion . 57

6.2 Case Study: Using Generated Benchmarks to Evaluate Green 58

6.2.1 Overview of Previous Evaluation . 58

6.2.2 Experimental Setup . 60

6.2.3 Results . 62

6.2.4 Discussion . 64

6.2.5 Threats to Validity . 66

7 Conclusions . 67

7.1 Future Work . 68

ix

REFERENCES . 69

x

LIST OF TABLES

1.1 Static analysis complexity types and evaluation scope. 4

1.2 Possible program input for paths explored. 6

1.3 Commonly used artifacts for evaluating the Symbolic PathFinder (SPF)

tool. 9

2.1 SIR benchmarks for symbolic execution tools. 15

2.2 DaCapo Benchmarks. 16

3.1 Summary of RD data-flow problem. 24

3.2 Computation of kill and gen functions. 25

3.3 Solution to the RD data-flow problem. 27

4.1 Predefined expressions used for substitution. 37

6.1 Results of transforming open-source programs into SPF benchmarks. . . 57

xi

LIST OF FIGURES

1.1 Example code with corresponding symbolic execution tree to illustrate

symbolic execution. 7

3.1 Example code with corresponding flow-graph to illustrate Reaching

Definitions analysis. 24

3.2 Parity interpretation of a code fragment. 28

4.1 Two code fragments s1 and s2 which are not semantically equivalent

under concrete semantics (a),(c), but are semantically equivalent under

Parity analysis abstract semantics (b),(d). 32

4.2 Transformations rules for statements (stmt) and expressions (expr) to

resolve unknown types. 35

4.3 Substitution of an expression which has inferred boolean type. 36

4.4 Substitution of an expression which has inferred double type. 36

4.5 Effect of substituting expressions during the post-order traversal of the

method’s AST. 39

4.6 A nonlinear expression is replaced with a symbolic variable. 41

4.7 Transformation rule for nonlinear symbolic expressions. 42

4.8 A symbolic variable is reassigned after its corresponding expression is

killed. 43

4.9 Removal of a non-reaching definition. 44

xii

4.10 Example illustrating possible reaching definitions. 45

5.1 Workflow of the APT tool. 48

5.2 Java PathFinder configuration file for the example code. 54

6.1 Green reuse and time ratios of all methods. 63

6.2 Boxplots of Ts and Rs for all methods. 63

6.3 Green reuse and time ratios of constraint-heavy methods. 64

6.4 Boxplots of Ts and Rs for constraint-heavy methods. 65

xiii

LIST OF ABBREVIATIONS

APT – Abstract-Semantics Preserving Transformations

AST – Abstract Syntax Tree

SE – Symbolic Execution

PC – Path Constraint

SPF – Symbolic PathFinder

SMT – Satisfiability Modulo Theories

LV – Live Variable

RD – Reaching Definitions

xiv

LIST OF SYMBOLS

s: a statement

S?: a sequence of statements

init(S?): the entry statement in a sequence of statements

{final(S?)}: the exit statement(s) in a sequence of statements

L: a domain of data-flow values

t: the meet operator

ι: a data-flow value for initialization

fs: a transfer function for the statement s

σ: a concrete program state

σ̂: an abstract program state

>: the top element in L

⊥: the bottom element in L

U : the universal set

A: an analysis

entry(s): the data-flow value before executing statement s

exit(s): the data-flow value after executing statement s

gens: the set of definitions generated by a statement s

xv

kills: the set of definitions killed by a statement s

FV (S?): the set of free variables in the sequence of statements S?

V : the set of integer variables in a program

7→: notates a mapping from a program variable to a value, e.g., x 7→ 1

〈s, σ〉: a configuration of semantics

→: a transition relation between configurations of semantics

∗−→ : a multi-step reduction transition relation

Γ: the local type system, i.e., a typing function which determines the types of
variables

Img(Γ): the image of the typing function Γ, i.e., the set of types that Γ may
output

τ : a data type

Sτ : the semantic function for type τ

eτ : an expression of type τ

DA: an abstract domain of A

FA: the transfer functions of A

DA: the set of possible values to which A’s abstract semantics functions ŜτA can
evaluate an expression of type τ

P : a Java class file

T1: the set of types of the project P resides in

TP : the set of types defined in P

Γ2: the local type system for SPF

xvi

T2: the set of types defined in SPF or the Java standard library, i.e., the set of
types for which we would like P to be compilable

V ar(s): the variables either defined or used in the statement s

FV (e): the set of free variables in the expression e

sym: a symbolic variable

op: an infix operator

xvii

1

CHAPTER 1

INTRODUCTION

Static program analysis is a technique used to reason about a program’s behavior

without actually executing the program. These types of analyses have a range of

applications such as defect detection, program verification and compiler optimization

[20]. Because static analyses are routinely used to ensure the quality and correctness

of software systems, researchers are continually developing new techniques and op-

timizing existing ones. The ability of these techniques to handle the complexity of

real-world code relies on the soundness of their testing. Thus, researchers emphasize

the importance of evaluating program analysis techniques with benchmark programs

that are representative of real-world applications. The larger and more realistic the set

of benchmark programs, the more confidence the researcher can have in the evaluation

of the analysis technique. However, various analyses have different requirements of

their benchmarks. While light-weight analyses operate on the text of a program or

at most its abstract syntax tree (AST) structure, more involved analyses such as

data-flow analysis require compilable programs. Furthermore, heavy-weight program

analyses are designed to operate on programs with certain properties or features. For

example, symbolic execution, a path-sensitive heavy-weight analysis technique, may

focus on integer or string types, or operate on an intra-procedural level. Consequently,

tools that implement symbolic execution may be limited in the programs they can

2

effectively analyze. As a result, researchers have difficulty finding programs suitable

for evaluating heavy-weight analyses.

The objective of this work is to help researchers with this task. We do so

by developing a framework that automatically identifies, downloads and transforms

programs from open-source repositories to create a suite of benchmark programs

which can be used to analyze the symbolic execution tool Symbolic PathFinder. We

implement an instance of this framework to obtain 902 method benchmarks from 611

classes, increasing by nine times the number of available benchmark methods for this

tool. Moreover, we show the impact of increased numbered of benchmarks on the

results of a previous study.

1.1 Scarcity of Benchmarks for Heavy-Weight Analyses

To demonstrate the difficulty finding programs suitable for evaluating heavy-weight

analyses, the authors of [15] conduct a literature review of benchmark programs

classified by static analysis complexity. The levels of complexity are divided into

light, medium and heavy, and four papers of each complexity type are sampled from

recent software engineering and programming languages conferences. For each paper,

the survey considers the number and source of the benchmarks used in the study, as

well as program characteristics which are used to help approximate program size.

The results of the review are shown in Table 1.1. The Feature Type column

describes the program features each study was analyzing. Since medium and heavy-

weight analyses focus on a program behavior, entries in this column are simply the

number of lines of code or call graph edges. The last column contains the total number

of features analyzed in each study.

3

The data shows a substantial difference between the number of programs used

in light-weight analyses compared to medium and heavy-weight. While tens (or

hundreds) of thousands of programs are used in light-weight analyses, the number

of programs available for medium to heavy-weight is several orders of magnitude

smaller. Furthermore, using the total number of programs and features analyzed, we

can approximate the program size in each type of analysis. Even though medium and

heavy-weight analyses use a similar number of programs, the programs used in the

heavy-weight analyses are substantially smaller.

Without an adequate set of benchmark programs, researchers are left to manually

find and adapt real-world programs for their specific analyses. Consequently, they

focus time and energy on generating benchmarks that could be spent advancing

techniques. In addition, manual code transformations are error prone and hinder

scalability of the experiment. In this thesis, we address the problem of obtaining

a large set of benchmark programs, specifically for symbolic execution. To demon-

strate the challenges of obtaining realistic benchmark programs suitable for symbolic

execution, we first provide an overview of the technique.

1.2 Symbolic Execution

Symbolic execution [2] is a static analysis technique used to systematically explore

multiple program paths. In contrast to normal execution, symbolic execution does

not require specific input and is able to reason about different paths of executions

depending on potential input. For this reason, symbolic execution has been shown to

be a useful technique for defect detection [23] and test case generation [10].

During symbolic execution, input values are represented as symbolic variables

4

SA Type Conf & Year # Programs Feature Type Total #Features

Light-weight

ICSE’14 [14] 31,432 Java files 9,093,216
ICPC’15 [42] 16,221 License changes commits 1,731,828
MSR’16 [27] 554,864 Methods with catch blocks 10,862,172
MSR’16 [37] 28,466 Commit logs 20,130,474

Medium-weight

PLDI’17 [29] 14 Lines of code 293,154
POPL’17 [46] 25

Call graph edges
1,097,676

PLDI’17 [41] 7 445,500
PLDI’17 [39] 12 845,489

Heavy-weight

ISSTA’15 [22] 7

Lines of code

5,747
ICSE’15 [36] 10 3,590
ICSE’16 [11] 7 10,700
ASE’16 [24] 16 2,386

Table 1.1: Static analysis complexity types and evaluation scope.

rather than concrete values. As execution proceeds, it constructs a logical formula

over the symbolic input variables, called path constraints (PC). The solutions describe

the branch conditions satisfied to reach the program state of each explored path. Upon

reaching a conditional branch, the symbolic execution engine generates two PCs, each

extended from the original PC by conjoining the constraints of all previously taken

branches with the current branch constraint. The symbolic execution engine proceeds

independently along both branches, and in this way all possible program paths are

explored simultaneously. The feasibility of a new PC is checked by a constraint

solver. Moreover, the solution to the PC yields concrete values of input that cause

the program to follow that particular path, which can then be used for testing.

1.2.1 Example

Consider the code listed in Figure 1.1 [34], which switches the values of x and y.

During concrete, i.e., normal execution, specific values of input are used for x and

y and only one program path is explored. For example, if x = 1 and y = 2, the

5

conditional statement on line 2 evaluates to false, the false branch is followed and the

execution is finished.

In contrast, during symbolic execution x and y are represented by the symbolic

values X and Y , respectively. A symbolic execution engine maintains for each

program state: 1) a map of program variables to their symbolic values and 2) a

PC encoding the branches taken to reach that program state.

The symbolic execution of the example code can be represented as a tree, as shown

in Figure 1.1. Each program state is represented as a node in the tree. Initially, the

PC is ‘true’ since there are no restrictions on x and y. The variable xmaps to symbolic

value X and, similarly, y maps to Y . Upon executing the conditional statement on

line 2, both branches are explored, shown by the first branch of the tree. The right

child node corresponds to following the ‘false’ branch, i.e., when X ≤ Y , shown by

the path constraint for this program state.

The left branch corresponds to the conditional statement on line 2 being true,

i.e., X > Y . Upon executing line 3, x = x + y, a new program state is created with

the symbolic variable x now mapping to X + Y (note the PC stays the same for

non-branching instructions). After executing line 4, y maps to X, and after line 5, x

maps to Y . When the next branch is encountered, i.e., the conditional statement on

line 6, the symbolic execution engine creates two new program states, shown by the

bottom two nodes in the symbolic execution tree. The left node corresponds to the

‘true’ branch, i.e., (x − y) > 0, and the right node corresponds to the false branch,

(x − y) ≤ 0. Note the path constraint for the program state branching on the false

condition is unsatisfiable, since Y −X > 0 implies Y > X, and there are no values of

x and y such that x > y and y > x are both true. Branches that are unsatisfiable, as

in this case, do not need to be analyzed further by the symbolic execution engine.

6

Path Path Constraint Input
1,2,9 X ≤ Y x = 1, y = 1

1,2,3,4,5,6,8,9 X > Y ∧ Y −X ≤ 0 x = 2, y = 1
1,2,3,4,5,6,7,9 X > Y ∧ Y −X > 0 none

Table 1.2: Possible program input for paths explored.

A constraint solver can be used to solve the path constraints, generating concrete

input values that cause each program path to execute. Users can then create a

high-coverage test suite, or determine specific input values that cause a program to

execute along a path with a known bug for manual testing. For example, setting both

x and y equal to 1 causes the example code to execute along the path 1, 2, 9. Table

1.2 shows concrete input values for x and y for each of the paths explored.

In this example, the constraints are in the theory of linear integer arithmetic, for

which the decision problem is decidable. However, the constraints generated from real-

world software systems can be far more complex. Certain types of constraints, e.g.,

those that involve non-linear arithmetic, can lead to undecidable problems and may

not be solvable, depending on the theories supported by the specific constraint solver.

If the constraints cannot be solved, symbolic execution cannot generate concrete input

values. Thus, programs with complex path constraints cannot be used to test the

current capabilities of the symbolic execution engine.

1.2.2 Symbolic PathFinder

There are many tools implementing symbolic execution, such as KLEE [9], SAGE [31]

and CREST [8]. In this work we focus on Symbolic PathFinder (SPF), which is an

extension project of Java PathFinder [44]. Java PathFinder is a software verification

framework developed by the NASA Ames Research Center. At its core is a customized

7

1 int x , y ;
2 i f (x > y){
3 x = x + y ;
4 y = x − y ;
5 x = x − y ;
6 i f (x − y) > 0{
7 a s s e r t fa l se ;
8 }
9 }

Figure 1.1: Example code with corresponding symbolic execution tree to illustrate
symbolic execution.

8

Java Virtual Machine that allows for exploring different program paths, storing each

explored program state and backtracking when it visits a previously stored state.

SPF is an extension of Java PathFinder which performs symbolic execution of Java

bytecode; that is, programs can be executed with symbolic values for numeric and

boolean input variables. SPF uses the model checking supported by Java PathFinder

to backtrack and explore different paths of execution. The constraints that are

created during symbolic execution are solved with off-the-shelf decision procedures,

i.e., satisfiability modulo theories (SMT) solvers.

Although symbolic execution can exhaustively explore all possible paths of exe-

cution, in practice this is not likely to scale to large programs. Tools implementing

symbolic execution face many challenges when it comes to the complexity of real-world

code. Some of the key challenges are (i) state space explosion, i.e., the number of

program states increases exponentially with program size, and may be infinite in

the presence of loops, (ii) memory management, e.g., manipulating complex objects

may give rise to addresses stored by symbolic expressions, (iii) interactions with the

environment, e.g., system or library calls, and as previously discussed (iv) complex

path constraints. Thus SPF is less effective at processing programs that are large

and overly complex, contain rich object behavior, or perform library/system calls. In

addition to these obstacles, SPF only performs intra-procedural analysis and operates

on types supported by off-the-shelf constraint solvers. For these reasons, finding

real-world programs that SPF can effectively analyze is a challenging task.

9

Conf. &Year Total ASW Appolo Bin OAE MER TSAFE TCAS TreeMap WBS
TACAS’07 [1] 2 X X
ISSTA’08 [35] 1 X
ISSTA’10 [38] 5 X X X X
ISSTA’11 [33] 2 X X
ISSTA’12 [45] 5 X X X X
FSE’12 [43] 6 X X X
ICSE’13 [17] 2 X
FSE’13 [6] 1 X
FSE’14 [18] 2 X X
PLDI’14 [5] 2 X X
ISSTA’15 [22] 7 X X X X
ICSE’15 [36] 10 X X X X
ASE’16 [24] 16 X X
ICSE’16 [11] 7 X X X

Table 1.3: Commonly used artifacts for evaluating the Symbolic PathFinder (SPF)
tool.

1.3 Scarcity of Benchmarks for Symbolic PathFinder

The authors of [15] support our claim that finding programs suitable for SPF is

challenging. They examined 14 papers in software engineering and programming

languages conferences over the last decade and considered the benchmark programs

used in each evaluation. Results of this study are shown in Table 1.3. The first

two columns show the publication and the total number of benchmarks used in the

study. The remaining columns list commonly used benchmark programs among the 14

studies. A checkmark Xindicates that the authors used a corresponding benchmark

in their analysis. The total number of programs used as well as the commonality of

programs among 14 publications demonstrate the scarcity of programs available for

analysis with SPF.

10

1.4 Thesis Statement

Automating the selection and adaption of benchmark programs for SPF will advance

symbolic execution research by providing a large number of realistic programs to eval-

uate new and existing symbolic execution techniques.

To support this statement, we answer the following research questions:

1. Can we use source code from open-source repositories to obtain a suite of

compilable benchmark programs tailored specifically to SPF?

2. Can a larger set of benchmark programs affect existing evaluations of symbolic

execution techniques?

1.5 Contributions

The contributions of this thesis are the following:

1. Design and implementation of a framework that identifies, downloads and trans-

forms programs into benchmarks suitable for SPF.

2. Design of abstract-semantics preserving algorithms that eliminate a program’s

external dependencies and replace its nonlinear expressions.

3. Empirical evidence that demonstrates the necessity of an automated tool which

generates realistic benchmark programs for SPF.

Next, we provide an overview of existing benchmark sources and explain why

each is insufficient for SPF. We then provide sufficient background information on

data-flow analysis and semantic program equivalence to explain our framework and

11

corresponding implementation. We address the research questions in the evaluation

of our tool, and conclude with a summary of our contributions and ideas for future

work.

12

CHAPTER 2

REVIEW OF AVAILABLE BENCHMARK SOURCES

This chapter presents and evaluates several existing sources researchers can use to

obtain program benchmarks. As discussed in Chapter 1, researchers cannot choose

symbolic execution benchmarks arbitrarily; the programs must contain methods that

symbolic execution can process, and must produce non-trivial results, i.e., results use-

ful to researchers. An ideal program would contain code with the following properties:

(i) integer parameters to be executed symbolically, (ii) linear arithmetic operations

over the integer parameters, (iii) conditional statements over integer expressions,

(iv) a limited number of nested conditionals, and (v) a limited number of loops.

The first three requirements ensure that complex, non-empty path constraints are

generated when the program is executed symbolically. The last two requirements

mitigate the problem of state space explosion. Recall that the number of paths can

grow exponentially with the number of conditional statements, and similarly, new

path constraints can be generated each time the loop condition is checked. In fact, if

the upper bound of the loop condition is symbolic, path constraints will be generated

infinitely unless a limit on the search depth is set.

Below are some examples of desirable code structures. The compare method in

Listing 2.1 is from one of the commonly used programs identified in [15]. The other

two methods, abort shown in Listing 2.2 and myMethod in Listing 2.3, are from

13

example programs included with the SPF distribution.

private int compare (int k1 , int k2) {

i f (k1 < k2) {

return −1;

} else i f (k1 = = k2) {

return 0 ;

} else {

return 1 ;

}

}

Listing 2.1: A method from TreeMap.

public void abort (int a l t i t ude , boolean contro lMotorFired) {

i f (! contro lMotorFired)

f a i l u r e s . add (Fa i l u r e .LAS_CNTRL) ;

i f (a l t i t u d e <= 120000) {

i f (contro lMotorFired) {

setNextState ("abortLowActiveLAS") ;

} else {

setNextState (" abortPassiveLAS") ;

}

}

i f (a l t i t u d e >= 120000) {

setNextState ("abortHighActiveLAS") ;

}

}

Listing 2.2: A method from SPF’s example program ExampleAbort.

14

public int myMethod(int x , int y) {

int z = x + y ;

i f (z > 0) {

z = 1 ;

} else {

z = z − x ;

}

i f (x < 0) {

z = z ∗ 2 ;

} else i f (x < 10) {

z = z + 2 ;

} else {

z = −z ;

}

i f (y < 5) {

z = z − 12 ;

} else {

z = z − 30 ;

}

return z ;

}

Listing 2.3: A method from SPF’s example program MyClassOriginal.

2.1 Existing Benchmark Repositories

To address the lack of benchmarks available for empirical studies, researchers in the

programming languages and software engineering communities have created several

benchmark repositories such as SIR [12], DaCapo [4] and Qualitas Corpus [40].

15

Table 2.1: SIR benchmarks for symbolic execution tools.

Program LOC Classes Downloads

Array-Partition 13 1 594
Binary-Search-Tree 130 4 671
Doubly-Linked-List 277 1 385

Sorting 13 1 468
Vector 254 1 320

Binary-Heap 72 2 425
Disjoint-Set 35 1 364

Red-Black-Tree 334 1 396
Stack 114 5 334

However, these repositories only contain between 14 and 112 outdated projects, and

do not provide a sufficient number of programs suitable for symbolic execution.

2.1.1 SIR

The Software-artifact Infrastructure Repository (SIR) contains artifacts that researchers

can use to experiment with software testing and regression testing techniques. The

infrastructure offers all of the software-related artifacts to perform controlled exper-

imentation, including multiple program versions, test suites and fault data. SIR

includes 68 programs written in Java, most recently updated January 1, 2015. Nine

programs are targeted for symbolic execution and test case generation tools such as

SPF. These nine programs were uploaded July 14, 2011 and are shown in Table 2.1

with their size (in lines of code), class count, and number of times each one was

downloaded from SIR. From this table, we can see that all of the programs are rather

small, only five of which contain more than 100 lines of code. Furthermore, the

number of downloads of each program demonstrates a community need for such a set

of programs.

16

Table 2.2: DaCapo Benchmarks.

Program Description

avrora A simulation and analysis framework for AVR microcontroller.
batik A toolkit for handling images in the Scalable Vector Graphics format.

eclipse An integrated development environment.
fop A print formatter.
h2 A relational database management system.

jython A Python interpreter.
luindex A text indexing tool.
lusearch A text search tool.

pmd A source code analyzer.
sunflow An image rendering system.
tomcat A server executing Java Servlet and Java Server Pages

tradebeans An application emulating an online stock trading system
tradesoap An application emulating an online stock trading system

xalan An XSLT processor for transforming XML documents.

2.1.2 DaCapo

The DaCapo benchmarks are a set of freely available, general-purpose Java appli-

cations. The creators of DaCapo chose open-source programs that exhibited rich

code complexity and demanding memory requirements. They also considered ease

of use and testing, excluding GUI applications and targeting programs with minimal

dependencies outside the host JVM. The suite consists of 14 benchmarks shown in

Table 2.2.

Although these programs are much larger and more complex than those provided

by SIR, the source code is not included in the benchmark suite. Instead, an ‘execution

harness’ is provided which invokes the executable for each program with supplied

input. This may be a problem for some researchers who wish to have the original

source-code to reason about the correctness of their results.

17

2.1.3 Qualitas Corpus

The Qualitas Corpus is a curated collection of open-source Java programs. The

programs are aggregated from a variety of sources and documented with metadata,

with the objective of reducing the cost and increasing the reproducibility of empirical

studies on code structure. The current release of the corpus includes 112 systems.

Although the corpus contains a larger set of programs than SIR and DaCapo (in

fact, 6 of the 14 DaCapo benchmarks are included in the corpus), it is not consistently

updated. Since its release in May 2013, it has only been updated once, in September

2013. Without being well-maintained, a benchmark repository cannot consistently

provide researchers with programs that utilize modern programming practices.

2.2 Mining Open-Source Repositories for Benchmarks

Since benchmark repositories cannot consistently provide a large set of programs with

modern complexity, researchers are left to manually find and adapt real-world pro-

grams. With software mining tools such as Boa [13] or RepoReaper [26], researchers

can query open-source repositories to search for projects that contain programs spe-

cific to their needs.

2.2.1 RepoReaper

RepoReaper is a framework that allows researchers to select GitHub repositories that

contain an engineered software project rather than a toy project such as a homework

assignment. An implementation of the framework is presented as a software mining

tool called reaper, which computes several meta-data for GitHub projects such as

frequency of commits, ratio of test code to all code, whether or not a continuous

18

integration service is used, etc. These attributes are then used to determine if the

repository is an engineered project, using classifiers trained on a manually labeled

dataset.

The software mining tool reaper is available as an open-source project. The project

includes the dataset containing the raw values of 1,857,423 repositories, which can be

downloaded as a CSV.

2.2.2 BOA

Boa is a domain-specific programming language and infrastructure for analyzing

large-scale software repositories. The objective of Boa is to help scientists and re-

searchers analyze the wealth of information contained in ultra-large-scale repositories

by providing them the means to test their mining software repository hypotheses in

a systematic and reproducible fashion.

2.2.3 Problem with Mining Open-Source Repositories

Mining open-source repositories may be a viable option for light-weight analyses

which operate on the text of a program or at most its AST structure. However,

the process of finding and adapting programs for medium to heavy-weight analyses

is still a challenge. Since these types of analyses require compilable source code,

the researcher would have to download and build the projects in order to prepare

benchmarks for evaluation. Furthermore, the heavy-weight analysis that we target

in this work, symbolic execution, performs intra-procedural analysis in an integer

domain. Thus, the process of finding and preparing programs suitable for symbolic

execution would involve a substantial amount of work and careful documentation.

19

2.3 Synthetic Programs

Another approach researchers might take is to synthetically generate programs ac-

cording to some specifications. One such program generation tool is RUGRAT [21],

which researchers have used to evaluate different software engineering tasks for Java

programs, including program analysis, and test case generation techniques with high

structural coverage of programs [19] [30].

The objective of RUGRAT is to generate a structurally diverse set of Java pro-

grams parameterized by the frequencies with which a particular language construct

appears in generated programs. Users can specify a variety of program properties,

such as number of class fields, maximum nested conditional statements and interface

depths.

2.3.1 Problem with Synthetically Generated Programs

We investigated whether programs automatically generated with RUGRAT are ade-

quate for training a machine learning model which determines SPF’s configurations

for a given Java method [?]. To do this, we compared the performance of a model

trained on real programs with that of a model trained on synthetic programs. Our

results indicated that using synthetic data alone to train a model may be insufficient,

as such a model was unable to learn the relationship between attributes that was found

by models trained using data generated from real programs. Thus in certain contexts,

synthetically generated programs cannot fully represent real-world programs.

20

CHAPTER 3

BACKGROUND

Before presenting our framework for abstract-semantic preserving transformations,

we provide the necessary background information on data-flow analysis and semantic

program equivalence.

3.1 Data-Flow Analysis

One way compilers can improve the efficiency of code is by optimizing register alloca-

tion. Accessing a value stored in a register is faster than reading from memory or the

disk, and since we have a limited number of registers, we would like to optimize the

way they are allocated. For example, we do not need to store the value of a variable

if it will be overwritten before it is used. To identify those scenarios, researchers

developed Live Variable (LV) analysis that computes for each program point the

set of variables that are live, i.e., variables whose values could be used during some

execution of the program starting from that point.

Data-flow analysis frameworks define algorithms for iteratively gathering infor-

mation about the flow of data along program execution paths and can be used to

instantiate a specific analysis such as LV. The analyses compute invariants for each

program state, disregarding the rest of the program details. In general, no analysis

operates on a concrete representation of the state; it extracts and abstracts only the

21

information relevant to the analysis.

3.1.1 Framework

Although there are many data-flow analysis frameworks, we use the following as

defined in [28] for development of our APT tool:

• A data-flow graph of a sequence of statements S?

• A direction of flow, either forwards or backwards

• Extremal labels, either init(S?) or {final(S?)}

• A semilattice with a domain of values L and a meet operator t

• An initial value ι ∈ L

• A transfer function associated with each statement, mapping a value of the

domain to itself, fs : L→ L

The data-flow graph describes the flow of data through a sequence of statements.

Each node in the graph represents a statement, and directed edges between nodes

represent the flow of data. We can consider the flow in the forwards or backwards

direction, depending on the analysis. In the forward direction, there is an edge

from statement s′ to statement s if s can immediately follow s′ in some execution

of the program. In the backwards direction, we track how data flows from successor

statements to predecessor statements, i.e., from s to s′. The flow graph will have one

distinct entry node representing init(S?), and one or more exit nodes representing

{final(S?)}.

22

For each point in the program, we represent a set of possible concrete states σ

with an abstracted state σ̂. A data-flow value l ∈ L is then associated with each

abstracted program state. Each value l consists of abstracted information that we

wish to extract from the program, and the set of all possible l values is the domain of

the analysis. On the merge of control flows, data-flow values from multiple paths are

combined into one. We use the meet operator to merge the two values, summarizing

the contributions of each path in one data-flow value.

The domain of values L and meet operator t are defined in an algebraic structure

called a semilattice. A semilattice is a partially ordered set L and binary operator t

with the following properties for x, y, z ∈ L:

1. x t x = x

2. x t y = y t x

3. x t (y t z) = (x t y) t z

The semilattice has a top element > with the property that ∀x ∈ L,> t x = x, and

a bottom element ⊥ with the property that ∀x ∈ L,⊥ t x = ⊥. For example, if the

meet operator is ∪, top element is ∅ since ∀x ∈ L, ∅ ∪ x = x and the bottom element

is U , the universal set, since ∀x ∈ L,U ∪ x = U . Usually, we use > or ⊥ to initialize

data-flow values.

The transfer function fs of a statement s describes how smodifies data-flow values.

We use entry(s) to denote the data-flow value before executing the statement s and

exit(s) to denote the value after executing s. In the forwards direction, we relate the

data-flow values before and after executing s with exit(s) = fs(entry(s)).

23

We would like to find the values for entry(s) and exit(s) for each s in the program.

For an analysis A operating in the forwards direction, we do this using the following

set of equations:

entry(s) =


ι if s ∈ init(S?)

t {exit(s′),∀s′ ∈ pred(s)} otherwise

exit(s) = fs(entry(s))

The data-flow problem is to then find a solution that satisfies the set of equations

on all of the entry(s) and exit(s). Iterative algorithms such as worklist do this by

iteratively computing the information for incoming and outgoing data-flow values for

each statement until there is no change in the values.

3.1.2 Example: Reaching Definitions

Reaching Definitions (RD) is a common data-flow analysis with a variety of appli-

cations. Our motivation for presenting it here is twofold: first, it serves as a simple

example illustrating the framework described above, and second, it will aid in the

understanding of one of our transformation algorithms.

The goal of RD is to determine for a program point where each variable may have

been assigned, i.e., which definitions are reaching. We say a definition d reaches a

program point p if there exists a path from d to p such that d’s value is not overwritten.

For example, consider the code shown in Figure 3.1. The definition y = 2 reaches

statements (2) and (3), but is killed by statement (4) since y is reassigned to x∗y. We

would like to determine which definitions reach each node in the control-flow graph.

24

1 y = 2 ;

2 x = 0 ;

3 while (x < 5){

4 y = x∗y ;

5 x = x + 1 ;

6 }

x	=	0

		y	=	x	*	y

x	<	5

	y	=	2

		x	=	x	+	1

[1]

[2]

[4]

[5]

[3]

Figure 3.1: Example code with corresponding flow-graph to illustrate Reaching
Definitions analysis.

The characteristics of the RD analysis are summarized in Table 3.1. The data-

flow values are sets of definitions, where each definition is a tuple consisting of a

program variable with a corresponding assignment statement, or ? if its assignment

is unknown. For example, the data-flow value after the execution of statement (1),

i.e., exit(1), is {(x, ?), (y, 1)}, since y was last assigned on line (1) and we do not know

where x was last assigned.

Table 3.1: Summary of RD data-flow problem.

Domain Sets of definitions
Direction Forwards
Meet ∪
Transfer Function fs = gens ∪ (x− kills)
Initialize {(x, ?) | x ∈ FV (S?)}

When multiple paths merge, i.e., when a node in the control-flow graph has

multiple incoming flows/edges, we must consider the reaching definitions that are

propagated from each path. Since we cannot know which path is taken during the

25

program’s execution, we must consider all possible reaching definitions. To include

the definitions contributed from each converging path, we use set union as our meet

operator. For example, the reaching definitions from (2) and (5) are propagated to

statement (3). Therefore, both the definitions (x, 2) and (x, 5) reach the entry to

statement (3).

To determine how a statement s affects the data-flow values, i.e., the relationship

between exit(s) and entry(s), we use the transfer function fs = gens∪(x−kills) where

gens is the set of definitions generated by statement s and kills is the set of definitions

killed by s. For example, the assignment statement x = 0 on line (2) generates the

definition (x, 2) and kills all other definitions of x, i.e., (x, ?) and (x, 5). For non-

assignment statements, such as the while statement on line (3), exit(s) = entry(s)

since no definitions are generated or killed.

We initialize exit(s) with the data-flow value {(x, ?)} ∀x ∈ FV (S?)}, i.e., the

top element in the domain. In this way, we do not assume a definition d reaches a

statement s unless we find a path propagating d to s.

Table 3.2 shows the kill and gen sets for each statement in the example, which

are computed algorithmically. For example, the statement y = 2 on line (1) kills all

definitions of y, i.e., {(y, ?), (y, 1), (y, 4)}, and generates the definition (y, 1).

Table 3.2: Computation of kill and gen functions.

s kills gens

1 {(y, ?), (y, 1), (y, 4)} {(y, 1)}
2 {(x, ?), (x, 2), (x, 5)} {(x, 2)}
3 ∅ ∅
4 {(y, ?), (y, 1), (y, 4)} {(y, 4)}
5 {(x, ?), (x, 2), (x, 5)} {(x, 5)}

Once we have our kill and gen sets, we use Algorithm 1 to compute the reaching

26

definitions for each statement in the example, or equivalently, each node in the control-

flow graph. We begin by initializing the data-flow value for the exit of each statement

to the set {(x, ?)} ∀x ∈ FV (S?). We then repeat lines 5 through 10 while there is a

change to exit(s) for any s ∈ S?. In each iteration, we compute entry(s) and exit(s)

for each s ∈ S? using the data-flow equations defined in Section 3.1.1.

Algorithm 1 Worklist algorithm to compute reaching definitions.
1: function reaching-def(S?)
2: for all s ∈ S? do
3: exit(s) = {(x, ?)} ∀x ∈ FV (S?)}
4: end for
5: while any change to exit do
6: for all s ∈ S? do
7: entry(s) = ∪ exit(s′), s′ ∈ pred(s)
8: exit(s) = gens ∪ (entry(s)− kills)
9: end for
10: end while
11: end function

Using Algorithm 1, we are able to compute the reaching definitions for each of the

statements in the example. The solution to the data-flow problem is shown in Table

3.3.

Reaching Definitions is an example of a second order analysis, in which the

abstracted program states σ̂ are sets of values. For more complex analyses, such

as Parity or Sign analysis, σ̂ is a mapping from program variables to abstract values.

We give an example of a first order analysis next.

27

Table 3.3: Solution to the RD data-flow problem.

s entry(s) exit(s)

1 {(x, ?), (y, ?)} {(x, ?), (y, 1)}

2 {(x, ?), (y, 1)} {(x, 2), (y, 1)}

3 {(x, 2), (x, 5), (y, 1), (y, 4)} {(x, 2), (x, 5), (y, 1), (y, 4)}

4 {(x, 2), (x, 5), (y, 1), (y, 4)} {(x, 2), (x, 5), (y, 4)}

5 {(x, 2), (x, 5), (y, 4)} {(x, 5), (y, 4)}

3.1.3 Example: Parity Analysis

Parity is a first order data-flow analysis that interprets an integer value as being either

even or odd, or if it cannot decide, then both. If we defineParity = {even, odd} as the

set of abstract values, then we say that Parity analysis operates on V → P(Parity)

abstract domain, where V is the set of integer variables in a program. Commonly, ∅

and P(Parity) are denoted as ⊥ and >, respectively.

Figure 3.2 illustrates how Parity interprets a fragment of code when the incoming

value of x is the top value, i.e., x 7→ >. At the conditional statement, Parity

determines that only even values of x can enter this statement, while odd values

follow the false branch. Inside the conditional statement, the analysis reasons about

the effect of the statement x = x + 3 and determines that it changes all even values

to odd. At the merge point of the two branch outcomes, the analysis combines two

data-flows which results in the final σ̂[x 7→ odd] abstract state.

Later, in Section 4.1.1, we extend this example to demonstrate the concepts of

APT which targets similar first order data-flow analyses.

28

i f (x%2 == 0){
x = x+3;

}

x%2==0

x=x+3

x 7→ >

x 7→ even

x 7→ odd

x 7→ odd

x 7→ odd

Figure 3.2: Parity interpretation of a code fragment.

3.2 Semantic Program Equivalence

Proving that two programs (or program fragments) are semantically equivalent is an

important task that has application in various areas of computer science. For example,

programmers routinely refactor their code with the goal of producing an improved

version that exhibits the same behavior as the original program. Compilers also apply

code transformations that aim to reduce a program’s computational resources while

preserving its original behavior.

3.2.1 Contextual Semantic Equivalence

When determining whether two program fragments are semantically equivalent, we

consider contextual equivalence. That is, we say two fragments are semantically

equivalent if we can substitute one for the other in any program and the observable

behavior of the program is the same. For example, 2 ∗ x is semantically equivalent

to x+ x since we can substitute one for the other in any context and the behavior of

the program is unchanged.

3.2.2 Structural Operational Semantics

To prove contextual equivalence, we must have a way to reason about a program’s

behavior. For this, we can use structural operational semantics, introduced by Plotkin

29

[32], in which a program is defined as a set of transitions between configurations of

semantics. A configuration can be either a tuple containing a statement s and a

program state σ (a mapping from program variables to values), or a single state σ.

Thus, transitions could take either of these two forms:

〈s, σ〉 → 〈s′, σ′〉 or 〈s, σ〉 → σ′

The first form describes the case when execution of the first statement in s results in

a new configuration 〈s′, σ′〉, where s′ is the rest of the program and σ′ is the updated

state σ. The second form corresponds to a terminal configuration that produces state

σ′ after executing s.

3.2.3 Rules for Proving Semantic Equivalence

Using the structural operational semantics, we can define statement semantic equiv-

alence of as follows, where ∗−→ indicates a multi-step reduction relation:

Definition 1. Let s1 and s2 be two statements, then s1 =sem s2 iff ∀σ, and 〈s1, σ〉
∗−→

σ′1 and 〈s2, σ〉
∗−→ σ′2, we have σ′1 ≡ σ′2.

That is, two statements are semantically equivalent if starting at every possible

program state, the execution of those two statements results in identical terminal

states. We can compute those terminal states using the inductive reasoning on the

structural semantics and semantics of expressions of a language.

To determine the semantic equivalence of expressions, we use the semantic func-

tions Sτ for each τ ∈ Img(Γ), where Γ is the local type system, i.e., a typing function

which determines the types of variables. The semantics functions Sτ are defined by

the structural operational semantics of the language and evaluate the expressions

of a corresponding type to a value, i.e., Sτ [[eτ]] σ = v. For example, an arithmetic

30

function for integers SInt maps an expression eInt to its evaluation in a state σ, if

e is an integer variable x then SInt[[x]]σ = σ(x). Therefore, we define the semantic

equivalence for expressions as following:

Definition 2. Let e1 and e2 be two expressions of the same type τ , then e1 =sem e2

iff ∀σ and Sτ [[eτ1]] σ = v1 and Sτ [[eτ2]] σ = v2, we have v1 ≡ v2.

In other words, two expressions are semantically equivalent if for every possible

program state, the corresponding semantics function evaluates those expressions to

the same value. Therefore, for sound substitution of an expression e1 with another

expression e2, we must show using Sτ of the language that for every possible state σ,

e1 and e2 evaluate to the same value. For example, given that e1 is 2∗x and e2 is x+x,

we use the semantics function SInt which evaluates each expression to its value in the

program state, that is, SInt[[2∗x]]σ[x 7→ X] = 2∗X and SInt[[x+x]]σ[x 7→ X] = X+X

where X represents any possible value of x. Since 2∗X = X+X for any given X, the

two expressions are semantically equivalent and therefore, we can safely substitute

one for the other in any program context.

In general, proving the semantic equivalence of two programs is a non-trivial

task. Human assistance is often required to ensure program equivalence, especially

after complex code refactorings. However, such strong concrete-semantic equivalence

might be more than necessary for program verification techniques, such as data-flow

analysis that interprets the programs at some level of abstraction. In fact, as long

as the analysis computes the same information for the two program versions, we can

say they are contextually equivalent in the abstraction of the analysis. In the next

section, we formulate this notion of abstract-semantics equivalence.

31

CHAPTER 4

ABSTRACT-SEMANTICS PRESERVING

TRANSFORMATIONS

4.1 Abstract-Semantics Program Equivalence

Before we present our rules for performing abstract-semantics preserving transforma-

tions, we define abstract-semantic program equivalence.

4.1.1 Motivating Example

Consider the two code fragments s1 and s2 in Figure 4.1. We can disprove the

semantic equivalence of s1 and s2 by finding a value of x for which two program

fragments behave differently. For example, let us examine their effect on program

execution when the incoming value of x is zero, i.e., the incoming program state is

x 7→ 0. Figure 4.1(a) and Figure 4.1(c) demonstrate the execution traces of these

two fragments for the incoming state σ[x 7→ 0]. Since the resulting state from s1

is σ[x 7→ 3] and from s2 is σ[x 7→ 1], the two code fragments are not semantically

equivalent at the concrete semantics level.

Now consider Figure 4.1(b) and Figure 4.1(d), which show how Parity interprets

the same code fragments for all possible incoming values of x, i.e., when σ̂[x 7→ >].

For the conditional statement at s1, Parity determines that only even values of x can

enter this statement, while odd values follow the false branch. Inside the conditional

32

statement, the analysis reasons about the effect of the statement x = x + 3 and

determines that it changes all even values to odd. At the merge point of the two

branch outcomes, the analysis combines two data-flows which results in the final

σ̂[x 7→ odd] abstract state. In the same manner Parity analyzes s2, which also results

in the same final state.

For the remaining elements in Parity’s abstract domain, i.e., x 7→ ⊥, x 7→ odd or

x 7→ even, the two fragments produce the same final states, which are x 7→ ⊥ for the

first element and x 7→ odd for other elements. Since the two fragments evaluate to the

same abstract state for each incoming element, we can say s1 and s2 are semantically

equivalent in Parity abstraction.

Code fragment s1:
i f (x%2 == 0){

x = x+3;
}

x%2==0

x=x+3

x 7→ 0

x 7→ 0

x 7→ 3

x 7→ 3

(a)

x%2==0

x=x+3

x 7→ >

x 7→ even

x 7→ odd

x 7→ odd

x 7→ odd

(b)

Code fragment s2:
x = 2∗x+1; x = 2*x + 1

x 7→ 0

x 7→ 1

(c)

x = 2*x + 1
x 7→ >

x 7→ odd

(d)

Figure 4.1: Two code fragments s1 and s2 which are not semantically equivalent under
concrete semantics (a),(c), but are semantically equivalent under Parity analysis
abstract semantics (b),(d).

4.1.2 Abstract-Semantics Equivalence

Similar to concrete-semantics equivalence, we define abstract-semantics equivalence

for expressions and statements for a given analysis A with the abstract domainDA and

33

the set of transfer functions FA. First, we provide the definition for abstract-semantics

equivalence of two statements s1 and s2.

Definition 3. A program statement s1 is semantically equivalent to a program state-

ment s2 in the abstraction of the analysis A, that is s1 =semA
s2, when ∀σ̂ ∈ DA iff

fs1(σ̂) = σ̂′1 and fs2(σ̂) = σ̂′2, where fs1, fs2 ∈ FA, then σ̂′1 ≡ σ̂′2.

That is, given any abstract state, if executing s1 results in the same abstract state

as executing s2, the two statements are semantically equivalent in the context of the

analysis.

For defining abstract-semantics equivalence for expressions, we need to introduce

an additional notation DA to describe the set of possible values to which A’s abstract

semantics functions ŜτA can evaluate an expression of type τ . In the case of the

second-order analyses such as Reaching Definitions analysis, DA ≡ DA. However, for

the first-order analyses such as the Parity analysis, DA ≡ (V → DA). Now we can

construct the definition for abstract-semantics equivalence of two expressions e1 and

e2.

Definition 4. Two expressions e1 and e2 of the same type τ are semantically equiv-

alent in the abstraction of the analysis A, that is e1 =semA
e2, when ∀σ̂ ∈ DA, iff

ŜτA[[eτ1]]σ̂ = d1 ∈ DA, ŜτA[[eτ2]]σ̂ = d2 ∈ DA, then d1 ≡ d2.

That is, two expressions are semantically equivalent in the abstraction of the

analysis if for every possible program state, the semantics function evaluates the

expressions e1 and e2 to the same value. For example, consider again the code

fragment s1 in the example above. Let e1 be the original expression x+ 3 and let e2

be another expression x+ 1. Then ŜτA[[x+ 3]]σ̂ = odd, that is, the abstract semantics

function for parity analysis evaluates the expression x+3 to odd, since x is even at the

34

current program state σ̂. Similarly, ŜτA[[x+1]]σ̂ = odd, since adding 1 to an even value

also results in an odd value. We can consider the other possible incoming abstract

states σ̂, i.e., when x is odd or {even, odd}. In the former case, the semantic function

evaluates both e1 and e2 to even, and in the latter, both expressions are evaluated

to {even, odd}. Thus the expressions x+ 1 and x+ 3 are semantically equivalent in

Parity abstraction.

When the analysis cannot reason about an expression, e.g., if the variable x was

not resolvable in the above example, its evaluation is over-approximated with the top

element. Also note that not all statements and expressions modify the abstract state,

i.e., the data-flow information. For example, adding a print statement to the example

code snippet would not affect its behavior according to the analysis, and hence does

not modify any abstract state. Next, we use these observations to define rules which

allow us to perform sound program transformations.

4.2 Abstract-Semantics Preserving Transformations

We now present rules for performing APT on a set of open-source Java programs

to produce a set of real-world benchmarks for suitable for SPF. We then use these

rules to construct two transformation algorithms, the first of which removes external

dependencies from a target program and the second eliminates nonlinear symbolic

expressions in the program.

4.2.1 Removing External Dependencies

We assume there is a Java class file P , i.e., a program, which is compilable in a type

system Γ1 with the set of types T1 of the project it resides in. P might have several

Java classes defined in it, i.e., it defines TP types. In addition, SPF has a local type

35

system Γ2 with the set of types T2 in which we would like P to be compilable, i.e.,

the types defined in SPF or the Java standard library. Thus, T1 ∩ T2 ⊇ TP , that is,

the local type system can resolve the types defined in P .

Rules

We now present rules for removing statements, i.e., replacing with skip, and substi-

tuting expressions in P using the notion of abstract-semantics equivalence. The two

rules are shown in Figure 4.2.

stmt s1 −→ skip;

if ∀σ̂ ∈ DSE and fs1 ∈ FSE, fs1(σ̂) = σ̂ and ∃x ∈ V ar(s1) s.t. x 6∈ Dom(Γ2)

expr eτ1 −→ eτ2

if ŜτSE[[eτ1]] = d ∈ DSE and τ ∈ T2 and ∃x ∈ FV (eτ1) s.t. x 6∈ Dom(Γ2)

and ŜτSE[[eτ2]] = d and ∀x ∈ FV (eτ2), x ∈ Dom(Γ2)

Figure 4.2: Transformations rules for statements (stmt) and expressions (expr) to
resolve unknown types.

The first rule stmt says we can remove a statement, i.e., replace it with skip;,

if the transformer for s1 does not change the abstract state and the variables either

defined or used in the statement cannot be resolved by SPF, i.e., the local type sys-

tem. Through a series of substitutions and post-processing, our algorithm eliminates

dependencies on variables defined in the removed statements. However, the stmt rule

keeps statements that preserve the abstract state but either define or use variables of

types present in Γ2, such as System.out.println(). We do so to maintain as much

of the original program structure as possible for easy reference to the original code

and to reduce the complexity of our transformation algorithm.

36

The second rule expr says that an expression e1 of type τ ∈ T2 can be substituted

with another expression e2, if e1 has at least one free variable with a type that

Γ2 cannot resolve, and the abstract expression semantics for τ always evaluates e1

and e2 to the same abstract value. Even though Γ2 cannot resolve types of some

free variables, the abstract expression semantics should be able to reason about

the expression based on the expression category, i.e., a method invocation or field

access. In general, if an analysis cannot reason about an expression category, then

its evaluation is over-approximated with an element from its abstract domain, for

example with >. Since there is at least one free variable in e1 for which the local type

system cannot determine the type, then we cannot use Γ2 to determine the type of

e1. Our algorithm infers the type of e1 based on the program context.

For example, consider the listing below. If Γ2 cannot resolve the type of contextStack,

we can infer its boolean type based on its use in the conditional statement.

i f (contextStack . isEmpty ()) {

. . .

}

i f (newSymbolicBoolean ()) {

. . .

}

Figure 4.3: Substitution of an expression which has inferred boolean type.

In another example, we reason about the type of n.value() based on its comparison

to a floating-point literal.

while (n . va lue () < 10 .5){

. . .

}

while (newSymbolicDouble () < 10 .5){

. . .

}

Figure 4.4: Substitution of an expression which has inferred double type.

37

We have predefined expressions e2 for each type τ such that it evaluates to the

same abstract value and resolvable by SPF. These values are shown in Table 4.1. For

example, in the first listing, we would substitute an unresolved expression of type

Boolean with the expression Debug.makeSymbolicBoolean() where Debug is a type

defined in Γ2.

Table 4.1: Predefined expressions used for substitution.

τ eτ2

boolean Debug.makeSymbolicBoolean()

byte Debug.makeSymbolicByte()

char Debug.makeSymbolicChar()

double Debug.makeSymbolicReal()

float Debug.makeSymbolicReal()

integer Debug.makeSymbolicInteger()

long Debug.makeSymbolicLong()

short Debug.makeSymbolicShort()

string Debug.makeSymbolicString()

Transformation Algorithm

Algorithm 2 presents the pseudo code for removing P ’s dependency on Γ1 while

preserving P ’s behavior in the abstraction of symbolic execution. The algorithm

takes as an input the program or Java class file P .

From line 2 through line 32, the algorithm iterates over each of the classes defined

in P and each of the classes’ methods (lines 3 through 25). In the current implemen-

tation, methods that have unresolvable parameter types are removed (lines 4 through

38

Algorithm 2 Dependency removal algorithm for a java file P to be compilable in Γ2

while preserving operations on essential types TSE.
1: function transform(P)
2: for all cl ∈ classes(P) do
3: for all m ∈ methods(cl) do
4: if hasUnresolvableParamTypes(m) then
5: removeMethod(cl, m)
6: continue;
7: end if
8: for all s ∈ statements(m) do
9: stmt(s)
10: end for
11: for all e ∈ reversePre-Order(expressions(m)) do
12: τ = inferType(e)
13: if τ ∈ TSE then
14: expr(eτ)
15: end if
16: end for
17: for all x ∈ fieldVars(m) do
18: τ = getType(x)
19: if τ ∈ TSE then
20: sdef = defineAndInitialize(x);
21: insert(m, sdef)
22: end if
23: end for
24: updateReturnType(m)
25: end for
26: removeFields(cl)
27: for all τsuper ∈ superTypes(cl) do
28: if τsuper 6∈ T2 then
29: removeSuperType(cl, τsuper)
30: end if
31: end for
32: end for
33: for all τimport ∈ import(P) do
34: if τimport /∈ T2 then
35: remove(s)
36: end if
37: end for
38: end function

39

7), as well as invocations of the removed methods. In the future, we planned to

keep all of the methods, removing parameters of unresolvable type and updating the

corresponding method invocations to match.

For methods with resolvable parameter types, the algorithm iterates over its

statements in lines 8 through 10. For each statement, it first checks whether the

rule stmt could be applied, that is, whether the statement can be removed. On the

updated set of statements, the algorithm arranges the expressions in the post-order

traversal of the expression node of the method’s AST. We enforce such order so the leaf

expressions with types unresolved by Γ2 are substituted first, which maintains more

of the overall structure. For example, assume in the following code that Γ2 can resolve

x and y but not obj. Rather than replacing the whole conditional statement with

newSymbolicBoolean(), we substitute obj.size() with newSymbolicInteger().

i f (obj . s i z e () < 5 && x < y){

. . .

}

i f (newSymbol icInteger () < 5 && x < y){

. . .

}

Figure 4.5: Effect of substituting expressions during the post-order traversal of the
method’s AST.

Before checking whether the rule expr could be applied, the algorithm infers the

type of the expression based on its usage context on line 12. For example, if e is used

on the right-hand side of an assignment statement that defined a variable with an

integer type, then the algorithm infers that e’s type is Int.

After iterating over the expressions and performing necessary transformations (line

13 through 15), the algorithm finds class variables used in the method. For each class

variable, it generates a predefined definition and initialization statement and inserts

them into m’s body. In this way, the class variables become local variables. We do

40

this to contain all of m’s relevant code in the method body. This way, our framework

could be extended to extract only relevant methods out of open-source projects, i.e.,

producing individual benchmark methods rather than benchmark classes. (Recall we

focus on intra-procedural analysis.)

On line 24, the algorithm ensures that the declared return types of the methods

match. For example, the method might return a type that is not in T2, thus line 9

removes such statement. In this case, line 24 changes the return type of m to void.

This completes modification steps for methods.

On lines 26 through 31, the algorithm completes modification of all classes in

P . All of the field variables are removed, and then unresolved super class types

are removed. Finally, the algorithm finishes by removing from P unresolved import

statements.

4.2.2 Substituting Nonlinear Symbolic Expressions

While resolved dependencies make a method compilable, it still might not be suitable

for SPF. For example, nonlinear expressions in PCs could cause SPF to fail or be inef-

ficient. In general, the decision problem for arbitrary path constraints is undecidable.

However, solving constraints in the theory of linear integer arithmetic is decidable,

while solving constraints involving nonlinear integer arithmetic is undecidable.

In practice, a solver supporting nonlinear integer arithmetic tries to process such a

constraint and returns “unknown” if it cannot decide it in the alloted time. In this way,

the constraint is over-approximated with the top element since it cannot be evaluated

by the analysis. However, the symbolic execution engine has to wait for the solver to

process the constraint, returning “unknown” only after it has timed out (or throwing

an exception if the solver does not support that class of arithmetic). Alternatively,

we can anticipate expressions that the solver may not be able to process, and replace

41

them with an equivalent over-approximation, thus improving the efficiency.

To do so, we define a rule and corresponding algorithm for replacing nonlinear ex-

pressions with over-approximated expressions, in particular, new symbolic variables.

A simple example of this is shown in Figure 4.6. The nonlinear symbolic expression

a*b would generate a nonlinear path constraint, so we introduce a new symbolic

variable sym and use this variable to over-approximate the expression.

void compute (int a , int b){

int c = a∗b ;

. . .

}

void compute (int a , int b) {

int sym = newSymbol icInteger () ;

int c = sym ;

. . .

}

Figure 4.6: A nonlinear expression is replaced with a symbolic variable.

Rule

Figure 4.7 shows our rule ns_expr for substituting a nonlinear symbolic expression

with a symbolic variable. Note the similarities between this rule and the expr rule

introduced in the previous section. Both allow us to perform a substitution of an

expression e as long as the expression evaluates to the same abstract value. The

difference is that in the ns_expr rule, we substitute an expression e of type τ with

a symbolic variable of the same type when the expression e is a nonlinear symbolic

expression. We define a nonlinear symbolic expression as one whose left-hand operand

and right-hand operand both contain variables, and the expression operator is multi-

plication, division or the remainder operator.

42

ns_expr eτ1 −→ eτ2

if ŜτSE[[eτ1]] = d ∈ DSE and τ ∈ T2 and FV (lhs) 6= ∅ and FV (rhs) 6= ∅

and op ∈ {∗, /,%} and ŜτSE[[eτ2]] = d

Figure 4.7: Transformation rule for nonlinear symbolic expressions.

We correspond each nonlinear symbolic expression with a new symbolic variable that

we introduce into the program, i.e., an expression eτ1 of the form (ei op ej) is replaced

with an expression eτ2 of the form sym(ei op ej).

Transformation Algorithm

Algorithm 3 presents the pseudo code for removing P ’s nonlinear symbolic expres-

sions. From lines 2 through 29, the algorithm iterates over each of the classes defined

in P . For each method in the class, the algorithm first identifies all of the nonlinear

symbolic expressions and replaces them with symbolic variables (line 5 through 7). As

before, this is done in the post-order traversal of method’s AST. This maintains the

relationships between any such expressions in the method body. For example, given

that a, b, c and d are symbolic, (a*b)/(c*d) is replaced with sym1/sym2 which is

then repalced with sym3. Then if a*b appears later in the program it can be replaced

with sym1.

Next, we reassign symbolic variables after statements that kill their corresponding

expressions (line 13 through 19). For example, consider the following code. The

assignment statement b = b + 1 “kills” any expression using the variable b since its

value has changed, e.g., a*b. To preserve the intentions of the original code, we

reassign the symbolic variable substituted for a*b after the expression is killed. Thus,

we create a new symbolic variable after the line b = b + 1, which SPF interprets as

a new symbolic state.

43

void compute (int a , int b){
int c = a∗b ;
. . .
b = b + 1 ;
. . .
c = a∗b ;

}

void compute (int a , int b) {
int sym = newSymbol icInteger () ;
int c = sym ;
. . .
b = b + 1 ;
sym = newSymbol icInteger () ;
. . .
c = sym ;

}

Figure 4.8: A symbolic variable is reassigned after its corresponding expression is
killed.

Once all of the new assignment statements have been inserted, we use Reaching

Definitions to remove assignments that are never used. We implemented this analysis

using a constraint based approach, incorporating the control flow of the program into

the constraints with the equations defined below. We then solved the constraints

using the iterative work-list algorithm.

entry(s) ⊆


ι if s ∈ init(S?)

∪ {exit(s′),∀s′ ∈ pred(s)} otherwise

exit(s) ⊆ fs(entry(s))

On lines 20 through 24, we collect the reaching definitions for the statements that

originally contained nonlinear symbolic expressions, i.e., statements that now have

new symbolic variables. Any assignment statement to a symbolic variable that is not

in this set of reaching definitions can then be removed (line 27). In this scenario, the

expression that the symbolic variable represents is killed before the symbolic variable

is used.

The following code listing demonstrates this step. We introduce a new symbolic

variable sym to replace the nonlinear symbolic expression a*b. Inside the conditional

44

statement, the variable b is reassigned, killing the expression a*b. Thus we insert

an assignment of sym immediately after the expression is killed. However, before

the value of the symbolic variable is used, the expression is killed again with the

assignment statement a = 2*a. By the time we reach the last line sym, only the

assignment to sym immediately after a = 2*a is reaching. Thus we can remove the

assignment of sym after the statement b = b + 1.

void compute (int a , int b){

int c = a∗b ;

i f (c < b) {

b = b+1;

}

a = 2∗a ;

c = a∗b ;

}

void compute (int a , int b){

int sym = newSymbol icInteger () ;

int c = sym ;

i f (c < b) {

b = b+1;

sym = newSymbolicInteger();

}

a = 2∗a ;

sym = newSymbol icInteger () ;

c = sym ;

}

Figure 4.9: Removal of a non-reaching definition.

Note that if the assignment statement a = 2*a was in an else block, both

definitions would be reaching. Since there exists a path from both definitions to

the statement c = sym, neither would be removed, as shown in the code listed below.

45

void compute (int a , int b){

int c = a∗b ;

i f (c < b) {

b = b+1;

} else {

a = 2∗a ;

}

c = a∗b ;

}

void compute (int a , int b){

int sym = newSymbol icInteger () ;

int c = sym ;

i f (c < b) {

b = b+1;

sym = newSymbol icInteger () ;

} else {

a = 2∗a ;

sym = newSymbol icInteger () ;

}

c = sym ;

}

Figure 4.10: Example illustrating possible reaching definitions.

46

Algorithm 3 Nonlinear expression removal algorithm for SPF to more effectively
analyze a java file P .
1: function removeNonlinearSymbExpr(P)
2: for all cl ∈ classes(P) do
3: for all m ∈ methods(cl) do
4: for all e ∈ reversePre-Order(infixExpressions(m)) do
5: if containsVar(lhs) && containsVar(rhs) && op ∈ {∗, /,%} then
6: replaceWithSymbVar(e)
7: end if
8: end for
9: for all x ∈ newSymbVar(m) do
10: sdef = defineAndInitialize(x);
11: insert(m, sdef)
12: end for
13: for all s ∈ statements(m) do
14: kss = computeKillSet(s)
15: for all e ∈ kss do
16: symassign = reassignSymVarForExpr(e)
17: insertAfter(symassign, s)
18: end for
19: end for
20: for all s ∈ statements(m) do
21: if containedNonlinearSymbExpr(s) then
22: RD = RD ∪ computeReadingDef(s)
23: end if
24: end for
25: for all assignsym /∈ RD do
26: remove(assignsym)
27: end for
28: end for
29: end for
30: end function

47

CHAPTER 5

IMPLEMENTATION OF THE APT TOOL

In this chapter, we present an overview of our framework, then give implementation

details of each of the framework’s main components.

5.1 Overview of the Framework

Figure 5.1 shows a diagram of our implementation. The input is a CSV file of GitHub

repositories as gathered by RepoReaper, and the output is a directory of benchmark

programs. The framework is divided into three stages. The first stage filters the

projects for files that are suitable for the analysis. This is done with two components,

a Project Filter and a File Filter. The second stage transforms the resulting programs

with three components, Compile, Transform, and Recompile. Last is the verification

stage, in which we run SPF with the generated class files to ensure that they can be

analyzed. Below we describe each component in detail.

5.2 Extracting Programs

5.2.1 Project Filter and Downloader

We begin with a dataset of GitHub repositories obtained from RepoReaper [26],

a software mining tool that computes several meta-data for GitHub projects to

determine whether a repository contains an engineered software project or a toy

48

Project Filter

GitHub
Projects

File Filter

Files
Suitable
for SPF

1

Compile

Unsuccessful
Compiles

Successful
Compiles

Transform

Transformed
Files

Recompile

Unsuccessful
Compiles

Successful
Compiles

2

CSV

Source
Files

Class
Files

JPF
config file

Run SPF

3

Benchmarks

Figure 5.1: Workflow of the APT tool.

49

project such as a homework assignment. We use this dataset because it is large and

includes meta-data about each repository, including the programming language that

the project uses. With this dataset, we identify projects written in Java that have

a minimum and maximum number of lines of code specified by the user. We then

download a user-specified number of projects that meet the filtering criteria using

the Git URLs provided by the RepoReaper dataset. Projects that are already in our

database are not downloaded again.

This component is implemented in Java with approximated 750 lines of code and

6 classes.

5.2.2 File Filter

We search the downloaded projects for Java files that have characteristics meaningful

for evaluation with SPF. Specifically, we search for files that contain methods suitable

for SPF. We define suitable methods as those which have integer-only parameters and

at least one integer operation in the method’s body. If a class file contains at least

one such method, it is chosen as a potential benchmark program and copied to a

separate location for further processing.

This static analysis is implemented on the AST level using Eclipse JDT’s API

for creating and manipulating ASTs. We do both our static analysis and code

manipulation on this level since the AST excludes syntax details irrelevant to our

analysis while maintaining program structure and content. Our file filter iterates

over each Java file in the in obtained projects and matches its AST elements with

our specified criteria. The AST provides for each method a list of parameters with

their types, so we can easily check for methods with integer parameters. To filter for

methods with integer operations, we created a Visitor which traverses each method’s

AST and identifies integer operations. The filtered source codes become benchmark

50

candidates.

The File Filter component is implemented in Java with approximated 1K lines of

code and 5 classes.

5.3 Applying Transformations

5.3.1 Compile

To determine whether the potential benchmark programs require further transfor-

mation processing, we compile those files as stand-alone benchmark programs. This

is done from the application using the exec system call. The files that successfully

compile are set aside as benchmark-ready programs; those that do not compile are

passed along to the Transform component.

5.3.2 Transform

For each file passed to the Transform component, Algorithm 2 is first applied to

remove its external dependencies while preserving code structure relevant to the

analysis. Algorithm 3 is then applied to remove any nonlinear symbolic expressions.

Both algorithms operate on the AST level, implemented with the Eclipse JDT’s API.

We use the Visitor design pattern to traverse the tree, which allows us to iterate over

each program’s classes, methods, statements and expressions in the required order

and apply the necessary deletions/substitutions.

The Transform component (excluding Reaching Definitions) is implemented in

Java with approximately 3K lines of code and 15 classes. Reaching Definitions alone

is implemented with 2K lines of code and 14 classes.

51

Testing

To evaluate the correctness of Algorithm 2, we created 11 test cases for each instance

of program transformations such as: removal of a static method invocation, removal

of a variable declaration, and substitution of a method invocation (whose return value

is an integer) with a symbolic integer. To determine the correctness of the program

transformations we manually compared the results of SPF on the original and the

transformed programs and verified that they are equivalent.

To evaluate the correctness of Algorithm 3, we created two test suites, one to

test our substitution of nonlinear symbolic expressions, and another to test our

implementation of Reaching Definitions analysis. The first test suite contains methods

with nonlinear symbolic expressions. The expressions appear in a variety of Java

statements, e.g., method invocations, assignment statements, conditional statements,

etc. Some of the nonlinear expressions are operands of larger expressions, and some

are repeated. We ran lines 4 through 8 of Algorithm 3 on this suite, and manually

verified that the correct substitutions were made. The second test suite contains

methods with different control flows constructs (e.g., loops, conditional statements,

nested blocks, etc.). We manually computed the reaching definitions at various

program points, and verified that they were equivalent to the reaching definitions

that our analysis computed.

5.3.3 Recompile

Once the transformation is complete, the files are compiled again. At this point,

we record the total number of files that we could successfully compile, including

those which did not require transformation. Some files still may not compile after

transformation and this could be for two reasons: they contain features that are not

52

handled in our implementation, or they weren’t compilable in the original project.

For these files, we log their compilation error(s) for further consideration.

5.4 Verification and Preparing for SPF

In the Transform component, we verified that the resulting source code files can

be compiled after applying the necessary transformations. Additionally, we run the

resulting benchmarks with SPF to ensure that they can be processed. To do so, we

have to prepare them for SPF analysis. Since SPF requires the main method to serve

as the entry point for a method analysis, our framework instruments each benchmark

program with a main method, as well as a call from main to each of the program’s

SPF suitable methods. An example of an original class and its instrumented version

are shown in Listings 5.1 and 5.2, respectively. This instrumentation is done on the

bytecode level using the Apache Commons Byte Code Engineering Library (BCEL).

We then auto-generate program-specific Java PathFinder configuration files, spec-

ifying the method(s) to run the analysis on and the variable(s) to execute symbolically.

For methods that contain loops, we also assign a bound on the number of path condi-

tions checked, since the number of branch constraints generated grows exponentially

in the presence of loops. The configuration file for the example code is shown in

Figure 5.2.

53

Listing 5.1: Original Class.

public class MyClass {

public void t e s t (int a , int b) {

int c = a − b ;

while (c > 0){

. . .

}

}

}

Listing 5.2: Instrumented Version.

public class MyClass {

public void t e s t (int a , int b) {

int c = a − b ;

while (c > 0){

. . .

}

}

public stat ic void main (St r ing [] a rgs) {

t e s t (0 , 0) ;

}

}

54

Figure 5.2: Java PathFinder configuration file for the example code.

55

CHAPTER 6

EVALUATION

To evaluate the effectiveness and impact of APT, we use our tool to obtain SPF-

suitable benchmarks from GitHub repositories, computing the percentage by which

we were able to increase the number of compilable benchmarks in those repositories.

We then use this dataset to investigate how a larger set of benchmarks affects the

replication of a study previously conducted with a handful of programs. In partic-

ular, we reproduce an evaluation of the Green solver framework and compare our

conclusions to those of the original study. In the following sections, we present our

generated dataset and the results of the Green solver case study, which we use to

answer the following research questions:

RQ1 (effectiveness). Can we use open-source repositories to generate a suite of

compilable benchmark programs tailored specifically to SPF?

RQ2 (impact). Can a larger set of benchmark programs bring new insight to existing

evaluations of symbolic execution techniques?

6.1 Generating Benchmarks for Symbolic PathFinder

We first give an overview of the dataset we generated using our tool. We perform our

experiments on an Intel 3.50GHz Xeon E5-1620 workstation running CentOS version

7 and Java version 8.

56

6.1.1 Input

We use RepoReaper to identify and download 1000 Java projects that have a min-

imum and maximum number of lines of code of 100 and 10,000, respectively. The

RepoReaper dataset was retrieved January 7, 2019, and the projects were downloaded

July 25, 2019.

6.1.2 Generated Dataset

The results of running our tool with the supplied input are show in Table 6.1. The

first column specifies the number of GitHub projects that were downloaded from the

RepoReaper dataset. Columns 2-4 describe the collective files found in those projects

and sub columns labeled “C” and “M” show the number of classes and the number

of methods, respectively. The column labeled “Compilable After Transform” shows

data for the final set of benchmark programs and the last column shows data for the

programs which were still not compilable. For example, for 50 GitHub projects that

contain 1.3K classes and 8K methods, we determined that 82 classes containing 144

methods are potential benchmark candidates. From that set, 17 classes containing 41

benchmark methods could be compiled on their own. The rest of 103 methods in 65

classes require further processing. After applying our transformation component and

verifying the resulting programs, the total number of benchmark methods became 88

in 55 classes. The rest of 56 methods in 27 classes our implementation could not yet

resolve the dependencies. This is because we are not yet handling all Java language

features. For example, switch statements, try/catch blocks, throw statements and

arrays are not yet fully supported.

To ensure the experimental data that we obtain is representative, we performed

experiments on five datasets of different sizes. We select GitHub projects in the order

57

which they appear in the dataset generated by RepoReaper, thus the data in rows

2-4 subsume that data in the previous row.

Table 6.1: Results of transforming open-source programs into SPF benchmarks.

GitHub Total
Suitable Compilable Compilable Unsuccessful

Projects
For SPF As Is After Transform Compiles

C M C M C M C M C M

50 1.3K 8K 82 144 17 41 55 88 27 56

100 2.3K 15K 115 211 21 48 77 122 38 89

250 5K 29K 268 486 47 96 143 244 123 242

500 10K 64K 566 1034 134 254 330 504 236 530

1000 20K 125K 1091 2032 237 448 611 902 480 1130

6.1.3 Discussion

For each set of GitHub projects, we were able to increase the number of compilable,

SPF-suitable classes and as a result, the number of methods that can be used as

benchmarks. Starting with 50 GitHub projects, we increased the number of SPF-

suitable methods by 124.6%. This rate of increase is consistent as the number of

project repositories increases, with an average increase of 130.4% and a standard

deviation of 24.8%.

If we did not do any transformations, we would need to filter from significantly

more GitHub repositories to produce the same number of benchmark methods that

we would get after transformation. For example, we would need around 500 GitHub

repositories to produce 254 benchmark methods without transformation, while our

58

approach can produce the same number of methods from half the number of reposi-

tories.

Although we focus on intra-procedural analyses, we also record the increase of

compilable SPF-suitable classes. This is because a researcher may prefer benchmark

methods that are spread over many classes, suggesting a wider variety of methods

found in real-world applications. The average rate of increase of benchmark classes

is 199.7% with a standard deviation of 44.0%. The average number of suitable

methods per class is 1.6, thus our approach provides a variety of benchmark methods

representative of those that would be found in real programs.

RQ1. The answer to our first research question is positive: we can generate a suite

of compilable benchmark programs suitable for SPF from open-source repositories.

6.2 Case Study: Using Generated Benchmarks to Evaluate

Green

This section presents a case study to demonstrate the potential impact a larger set

of programs has on SPF evaluations. In the study, we replicate an evaluation of

the Green [43] solver framework, which was originally performed on only a handful

of programs. We then compare the results of our evaluation to those of the original

study. We conclude that a benchmark set with an increased number of programs does

in fact provide additional insights to the evaluation and hence the derived conclusions.

6.2.1 Overview of Previous Evaluation

The authors of Green framework noticed that applications such as symbolic execution

issue to SMT solvers many queries with conceptually identical constraints. Thus if

59

constraints can be partitioned into equivalent classes, the number of those classes

could be relatively small. The satisfiability results of each equivalent class can then

be stored in a database for quick retrieval.

The main challenge of this approach is to define an equivalence class and determine

whether a given constraint belongs to an existing equivalence class. Green overcomes

this challenges by extracting only relevant predicates in a constraint using slicing, and

translating constraints to their standard form using canonization. Constraint slicing

carries two benefits: it reduces the size of the constraint, but more importantly for

Green, it increases the chances of finding the constraint in the cache. Canonization

involves reordering constraint variables and expressing each constraint predicate in a

normal form, i.e., a1x1 + a2x2 + · · ·+ anxn + b ./ 0, where xi are integer variables, ai,

b are integer coefficients, and ./∈ {=, 6=,≤}.

Green uses the Redis database to store solved constraints and the Jedis interface

to interact with it. Since Redis is optimized to handle strings as key-value pairs,

Green uses string representations for both constraints and their satisfiability results

to store as the key and the value, respectively, in the database. Green supports two

underlying constraint solvers: Choco [16] and CVC3 [3].

We employ two of the four performance metrics used by the authors of Green (to

simplify our evaluation, we do not consider model counting): 1. a time ratio Ts = t+
t−

where t− is the running time of SPF when Green is not used, and t+ is the running

time when the Green is used, and 2. a reuse ratio Rs = n−−n+

n−
where n− is the number

of invocations of the decision procedure when Green is not used, and n+ is the number

of invocations when Green solver is used.

The time ratio measures how much (if at all) Green speeds up the analysis (e.g.,

a time ratio of 0.5 means the analysis was twice as fast when Green was used). The

reuse ratio gives the fraction of SAT queries that do not need to be re-calculated. For

60

example, a reuse ratio of 1.0 means all of the constraints were already available in

the cached database.

The original evaluation investigates the effectiveness of Green on satisfiability

queries when used (1) across program runs, (2) across different programs, and (3)

across different tools that utilize SMT solvers. Our evaluation is most closely related

to the authors’ approach of evaluating Green across different programs, so we replicate

the across different programs study. The results of the original evaluation indicate

that programs with common functionalities share a significant amount of identical

queries. The results also show that even unrelated programs share many constraints,

and in particular, when analyzing a sequence of unrelated programs, the RS tends

to increase for the next program in the sequence. Therefore, with the increase of RS,

the corresponding TS should decreases. However, the original study uses only six

programs to arrive at this conclusion.

In our replicated study, we compute the time ratio TS and the reuse ratio RS for

methods obtained from open-source repositories. We use these performance metrics

to derive conclusions about (a) connections between program position in the sequence

and its reuse ratio, and (b) the relationship between RS and TS. We then compare

our conclusions to those of the original study.

6.2.2 Experimental Setup

Using the benchmarks produced by our tool, we retain those methods in which SPF

makes at least two calls to a constraint solver during analysis. This resulted in

reducing the set of benchmarks from 902 methods in 611 classes to 151 methods in

94 classes. Although we only require two calls to a solver, many of these methods are

more constraint-heavy. For example, thirty require six or more calls to a constraint

solver. As stated earlier, our experiment is most closely related to the authors’

61

approach of evaluating Green across different programs. However, while they know

ahead of time whether or not their programs share similar functionality, we cannot

guarantee our benchmarks share any functionality, nor can we guarantee they are

unique.

To compare the performance of traditional SPF to SPF using the Green solver

on analyzing the program benchmarks generated by our tool, we run each of the

methods in our benchmark suite twice with SPF. The first time we use SPF’s default

configuration with CVC3 as the solver. The second time we instruct SPF to use

the Green solver framework with a registered decision procedure, constraint solver,

canonizer, and slicer. This is done by setting the option symbolic.green = true

and specifying the services to be performed as (slice (canonize Choco CVC3)) in

the Java PathFinder configuration file. At the time of our experiment, the slicer

component appears not to be working. 1

To compute Ts, we average t− and t+ over three runs before calculating the ratio.

We obtain n− and n+ values from the Green listener report. We track each method

by its project, package and class of origin.

Since the order in which methods are analyzed could affect the constraints avail-

able for reuse, and hence Ts and Rs values, we initially considered four different

method orderings: S1, S2, S3 and S4. In the sequence S1, methods are grouped

together by class, classes are grouped by packages, and packages are grouped by

projects. Projects, packages and classes are listed in lexicographical order. The

sequences S2, S3 and S4 are three random orderings of the methods in S1.

For each sequence, we ran methods with SPF one after another and collected the

necessary information to produce the statistics for Ts and Rs. We then calculated the

1When trying to reproduce an example in the paper as well as in our experiments and noticed
the slicer has no effect. We notified Green developers.

62

t-test for the means between each pair of sequences’ Ts scores and similarly each pair

of sequences’ Rs scores. The t-test shows if there is a significant difference between

the means of two datasets. The results indicate no significant difference between the

sequences’ Ts and Rs variables. For example, the t-test between S1 and S2 for Ts

results in a p value of 0.76, and for Rs a p value of 0.82. The t-test between S2 and

S3 for Ts yields a p value of 0.84, and for Rs a p value of 0.62. Since all four sequences

resulted in similar distributions of Rs and Ts, we show the results of only one random

sequence.

6.2.3 Results

We first discuss the results of the entire dataset (i.e., plots of Ts and Rs for every

method in the sequence). Since we failed to observe the same trends as in the original

study, we then focus on constraint-heavy methods, which we define to have six or

more PCs, and discuss our findings for this subset of programs.

All methods

Figure 6.1 shows Ts and Rs for all methods in the sequence. In Figure 6.1(a), we

see that in almost every case, Green speeds up the analysis (i.e., the time ratio is less

than 1.0). In the few instances in which the time ratio is greater than 1.0, only one

or two constraints need to be solved and the time difference of running SPF with and

without Green is a matter of milliseconds.

Figure 6.1(b) shows the the reuse ratio Rs, which fluctuates between 0.0 and 1.0

with no apparent saturation as the number of programs increases. Figure 6.2 shows

the minimum, maximum, median and upper/lower quartiles of Ts and Rs. We see a

median time ratio of 0.82 and a median reuse value of 1.0. We also notice a broad

distribution of reuse values, ranging from 0.0 to 1.0.

63

(a) (b)

Figure 6.1: Green reuse and time ratios of all methods.

(a)

Figure 6.2: Boxplots of Ts and Rs for all methods.

Between the variables Ts and Rs, we calculate a correlation coefficient of 0.01 with

a p-value of 0.86, indicating a statistically insignificant correlation.

64

Constraint-heavy Methods

Filtering the dataset for methods with 6 or more constraints yields 30 methods, the

results of which are shown in Figures 6.3 and 6.4. We see in Figure 6.3(a) that Green

speeds up the analysis in every case, with a median time ratio of 0.72 (see Figure

6.4(a)). In Figure 6.3(b), we see the reuse ratio fluctuating between 0.0 and 1.0, with

a median reuse ratio of 0.36 (see Figure 6.4(b)).

(a) (b)

Figure 6.3: Green reuse and time ratios of constraint-heavy methods.

Between Ts and Rs, we compute a correlation coefficient of -0.43 with a p-value

of 0.02, indicating a negative correlation that is statistically significant.

6.2.4 Discussion

We notice several differences between the results of our analysis and those of the

original study. When measuring the reuse that takes place across programs, the

authors see the quartiles move towards 1.0 as more programs are analyzed. However,

we do not see a similar trend in our experiment. The fraction of SAT queries reused

consistently fluctuates between 0.0 and 1.0 as more programs are analyzed.

65

(a) (b)

Figure 6.4: Boxplots of Ts and Rs for constraint-heavy methods.

The previous findings demonstrate that the SPF runtime decreases as more SAT

queries are reused. This suggests a negative correlation between the variables Ts and

Rs. But, in our dataset of all methods, we see no significant correlation between

Ts and Rs. Yet, we do observe a statistically significant negative correlation in the

dataset of constraint-heavy methods.

Although we do not always see a correlation between the reuse and time ratios,

we do see a consistent decrease in the runtime when Green framework is employed.

This drop in runtime is even more prevalent in the constraint-heavy methods, which

actually has a lower reuse rate of 0.36. This could indicate the reason why the speed

up of the analysis is independent from the reuse component. For example, Green

may express constraints in a format that is beneficial to solvers, that is, canonization

and normalizing may affect the runtime. The authors of [25] came up to similar

conclusions, that solvers are sensitive to the format in which constraints are expressed.

While the authors use only six programs to perform their evaluation, we were able

66

to use 94 programs consisting of 151 benchmark methods. Furthermore, the programs

were taken from a variety of real-world applications and tailored specifically to SPF

analysis. With this larger dataset, we were able to gain insightful information that

would not have been possible from running the experiment with only a handful of

programs. Therefore, the answer to our second research question is positive too: the

study with a larger set of benchmark programs does arrive at the different conclusions.

RQ2. The answer to our second research question is positive: the larger set of

benchmark programs can affect the evaluation.

6.2.5 Threats to Validity

Internal

As stated above, the slicer component of the Green solver framework did not appear

to be working during our experiment. This could contribute to differences between

our results and those of the original experiment. Additionally, the code we use to

perform our evaluation may have bugs. To reduce this threat, we verify the output

of SPF with and without the use of Green on select programs as we automate the

process. We also use libraries (SciPy and Scikit-learn) for aggregating the data and

collecting statistics.

External

The programs used in our experiment may not be representative. To reduce this

threat, we use our tool to select a large number of programs from open-source

repositories, which yields a wide-range of real-world programs with a varying number

of parameters and conditional statements.

67

CHAPTER 7

CONCLUSIONS

This thesis presents the APT tool, a framework which automates the generation

of realistic benchmark programs suitable for the symbolic execution tool SPF. This

is done by extracting suitable programs from open-source repositories, then trans-

forming them into compilable, stand-alone benchmarks by removing their external

dependencies and nonlinear symbolic expressions. We designed the transformation

algorithm around our concept of abstract-semantic program equivalence; that is, we

apply transformations which guarantee semantic equivalence in the abstraction of

symbolic analysis. In this way, we preserve program behaviors that are relevant

to SPF, which allows us to produce a large set of realistic, non-trivial benchmark

programs.

We implemented an instance of the APT tool to acquire a large number of

benchmark programs for SPF, increasing by nine times the number of available

benchmarks for this tool. To evaluate their impact, we replicate an evaluation of

the Green solver framework and compare the results of our evaluation to those of the

original study. Our results show that the increased number of benchmark programs

does in fact affect the evaluation and hence the derived conclusions. Our case study

demonstrates the importance of having a large, diverse set of program benchmarks

available, which necessitates the means for automatically obtaining such benchmarks.

68

7.1 Future Work

The transformer component of the APT framework is part of a web-based Program

Analysis Collaboratory (PAClab) tool [7] which uses user-defined selection criteria to

obtain realistic benchmarks suitable for a specific verification task. Based on selection

criteria, PAClab identifies relevant programs from open-source repositories, obtains

those programs, and if necessary performs sound program transformations to adapt

them to the verification task. PAClab makes the resulting program benchmarks avail-

able for download. PAClab is designed as a scalable, modular, and parametrizable

tool that takes advantage of a computer cluster to handle multiple user requests.

Currently, the transformer component targets intra-procedural analyses with inte-

ger abstract domains. This component will be extended to support different analyses,

for example, inter-procedural analyses where a benchmark consists of an entire Java

class rather than a single method. The current implementation also only supports

one evaluation environment, i.e., SPF, and will be extended to support different envi-

ronments as well. Researchers will then be able to use PAClab’s UI to select different

filtering and transformation options that are relevant for their research. With this

parameterization, the tool will be able to assemble various benchmarks for different

verification environments and verification tasks. Program analysis researchers will

then be able to obtain a variety of scoped program benchmarks, allowing them to

focus on developing analysis techniques rather than searching for suitable artifacts.

69

REFERENCES

[1] Saswat Anand, Corina S. Păsăreanu, and Willem Visser. Jpf-se: A symbolic
execution extension to java pathfinder. In Proceedings of the 13th International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems, TACAS’07, pages 134–138, Berlin, Heidelberg, 2007. Springer-Verlag.

[2] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Eliaand, Camil Demetrescu,
and Irene Finocchi. A survey of symbolic execution techniques. ACM Computing
Surveys, 51(3), 2018.

[3] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger
Hermanns, editors, Proceedings of the 19th International Conference on Com-
puter Aided Verification (CAV ’07), volume 4590 of Lecture Notes in Computer
Science, pages 298–302. Springer-Verlag, July 2007. Berlin, Germany.

[4] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel
Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump,
Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas
VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The dacapo bench-
marks: Java benchmarking development and analysis. In Proceedings of the 21st
Annual ACM SIGPLAN Conference on Object-oriented Programming Systems,
Languages, and Applications, OOPSLA ’06, pages 169–190, New York, NY, USA,
2006. ACM.

[5] Mateus Borges, Antonio Filieri, Marcelo d’Amorim, Corina S. Păsăreanu, and
Willem Visser. Compositional solution space quantification for probabilistic
software analysis. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, pages 123–132,
New York, NY, USA, 2014. ACM.

[6] Pietro Braione, Giovanni Denaro, and Mauro Pezzè. Enhancing symbolic exe-
cution with built-in term rewriting and constrained lazy initialization. In Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 411–421, New York, NY, USA, 2013. ACM.

70

[7] Rebecca Brunner, Maria Paquin, Elena Sherman, and Robert Dyer. Paclab: a
program analysis collaboratory. In under submission, TACAS 2020, 2020.

[8] Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic test generation.
In Proceedings of the 23rd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2008, pages 443–446, 2008.

[9] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs. pages
209–224, 2008.

[10] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: Three
decades later. Communications of the ACM, 56(2):82–90, February 2013.

[11] Bihuan Chen, Yang Liu, and Wei Le. Generating performance distributions
via probabilistic symbolic execution. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages 49–60, New York, NY,
USA, 2016. ACM.

[12] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure and its potential
impact. Empirical Software Engineering, 10(4):405–435, October 2005.

[13] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. Boa: A
language and infrastructure for analyzing ultra-large-scale software repositories.
In Proceedings of the 35th International Conference on Software Engineering,
ICSE’13, pages 422–431, May 2013.

[14] Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N. Nguyen. Mining
billions of ast nodes to study actual and potential usage of java language features.
In Proceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pages 779–790, New York, NY, USA, 2014. ACM.

[15] Robert Dyer and Elena Sherman. Cri: Ci-p: Collaborative: Towards a program
analysis collaboratory, August 2018. Award Abstract Number 1823294.

[16] Jean-Guillaume Fages and Jean-Guillaume Fages. Choco-solver. https://
github.com/chocoteam/choco-solver, 2018.

[17] Antonio Filieri, Corina S. Păsăreanu, and Willem Visser. Reliability analysis
in symbolic pathfinder. In Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 622–631, Piscataway, NJ, USA, 2013.
IEEE Press.

71

[18] Antonio Filieri, Corina S. Păsăreanu, Willem Visser, and Jaco Geldenhuys.
Statistical symbolic execution with informed sampling. In Proceedings of the
22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pages 437–448, New York, NY, USA, 2014. ACM.

[19] Gordon Fraser and Andrea Arcuri. A large-scale evaluation of automated unit
test generation using evosuite. ACM Transactions on Software Engineering and
Methodology, 24(2):8:1–8:42, December 2014.

[20] Anjana Gosain and Ganga Sharma. Static analysis: A survey of techniques
and tools. In Durbadal Mandal, Rajib Kar, Swagatam Das, and Bijaya Ketan
Panigrahi, editors, Intelligent Computing and Applications, pages 581–591, New
Delhi, 2015. Springer India.

[21] Hussain Ishtiaque, Csallner Christoph, Grechanik Mark, Xie Qing, Park Sang-
min, Taneja Kunal, and Mainul Hossain B. M. Rugrat: Evaluating program
analysis and testing tools and compilers with large generated random benchmark
applications. Software: Practice and Experience, 46(3):405–431, October 2014.

[22] Xiangyang Jia, Carlo Ghezzi, and Shi Ying. Enhancing reuse of constraint
solutions to improve symbolic execution. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, pages 177–187, New
York, NY, USA, 2015. ACM.

[23] James C. King. Symbolic execution and program testing. Communications of
the ACM, 19(7):385–394, July 1976.

[24] Xin Li, Yongjuan Liang, Hong Qian, Yi-Qi Hu, Lei Bu, Yang Yu, Xin Chen, and
Xuandong Li. Symbolic execution of complex program driven by machine learn-
ing based constraint solving. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ASE 2016, pages 554–559, New
York, NY, USA, 2016. ACM.

[25] Justin Lloyd and Elena Sherman. Minimizing the size of path conditions using
convex polyhedra abstract domain. SIGSOFT Software Engineering Notes,
40(1):1–5, February 2015.

[26] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Cu-
rating github for engineered software projects. Empirical Software Engineering,
22(6):3219–3253, 12 2017.

[27] Suman Nakshatri, Maithri Hegde, and Sahithi Thandra. Analysis of exception
handling patterns in java projects: An empirical study. In Proceedings of the

72

13th International Conference on Mining Software Repositories, MSR ’16, pages
500–503, New York, NY, USA, 2016. ACM.

[28] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag Berlin Heidelberg, first edition, 1999.

[29] Peter Ohmann, Alexander Brooks, Loris D’Antoni, and Ben Liblit. Control-flow
recovery from partial failure reports. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2017,
pages 390–405, New York, NY, USA, 2017. ACM.

[30] Sangmin Park, B. M. Mainul Hossain, Ishtiaque Hussain, Christoph Csallner,
Mark Grechanik, Kunal Taneja, Chen Fu, and Qing Xie. Carfast: Achieving
higher statement coverage faster. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE ’12,
pages 35:1–35:11, New York, NY, USA, 2012. ACM.

[31] Michael Y. Levin Patrice Godefroid and David Molnar. Automated whitebox
fuzz testing. In Proceedings of the Symposium on Network and Distributed System
Security, 2008.

[32] G.D. Plotkin. Call-by-name, call-by-value and the ?-calculus. Theoretical
Computer Science, 1(2):125 – 159, 1975.

[33] Corina S. Păsăreanu, Neha Rungta, and Willem Visser. Symbolic execution
with mixed concrete-symbolic solving. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ISSTA ’11, pages 34–44, New
York, NY, USA, 2011. ACM.

[34] Corina S. Păsăreanu and Willem Visser. Verification of java programs using sym-
bolic execution and invariant generation. In Proceedings of the 11th International
SPIN Workshop on Model Checking of Software. Springer-Verlag, 2004.

[35] Corina S. Pǎsǎreanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet,
Michael Lowry, Suzette Person, and Mark Pape. Combining unit-level symbolic
execution and system-level concrete execution for testing nasa software. In Pro-
ceedings of the 2008 International Symposium on Software Testing and Analysis,
ISSTA ’08, pages 15–26, New York, NY, USA, 2008. ACM.

[36] Rui Qiu, Guowei Yang, Corina S. Păsăreanu, and Sarfraz Khurshid. Compo-
sitional symbolic execution with memoized replay. In Proceedings of the 37th
International Conference on Software Engineering - Volume 1, ICSE ’15, pages
632–642, Piscataway, NJ, USA, 2015. IEEE Press.

73

[37] Vinayak Sinha, Alina Lazar, and Bonita Sharif. Analyzing developer sentiment
in commit logs. In Proceedings of the 13th International Conference on Mining
Software Repositories, MSR ’16, pages 520–523, New York, NY, USA, 2016.
ACM.

[38] Matt Staats and Corina Pǎsǎreanu. Parallel symbolic execution for structural
test generation. In Proceedings of the 19th International Symposium on Software
Testing and Analysis, ISSTA ’10, pages 183–194, New York, NY, USA, 2010.
ACM.

[39] Tian Tan, Yue Li, and Jingling Xue. Efficient and precise points-to analysis:
Modeling the heap by merging equivalent automata. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2017, pages 278–291, New York, NY, USA, 2017. ACM.

[40] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe,
Hayden Melton, and James Noble. Qualitas corpus: A curated collection of java
code for empirical studies. In 2010 Asia Pacific Software Engineering Conference
(APSEC2010), pages 336–345, December 2010.

[41] Rei Thiessen and Ondřej Lhoták. Context transformations for pointer analysis.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2017, pages 263–277, New York, NY,
USA, 2017. ACM.

[42] Christopher Vendome, Mario Linares-Vásquez, Gabriele Bavota, Massimiliano
Di Penta, Daniel German, and Denys Poshyvanyk. License usage and changes: A
large-scale study of java projects on github. In Proceedings of the 2015 IEEE 23rd
International Conference on Program Comprehension, ICPC ’15, pages 218–228,
Piscataway, NJ, USA, 2015. IEEE Press.

[43] Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. Green: Reducing,
reusing and recycling constraints in program analysis. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, FSE ’12, pages 58:1–58:11, New York, NY, USA, 2012. ACM.

[44] Guillaume Brat SeungJoon Park Willem Visser, Klaus Havelund and Flavio
Lerda. Model checking programs. In Automated Software Engineering, ASE
’10, pages 203–232. Kluwer Academic Publishers, 2003.

[45] Guowei Yang, Corina S. Păsăreanu, and Sarfraz Khurshid. Memoized symbolic
execution. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis, ISSTA 2012, pages 144–154, New York, NY, USA, 2012.
ACM.

74

[46] Qirun Zhang and Zhendong Su. Context-sensitive data-dependence analysis
via linear conjunctive language reachability. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,
pages 344–358, New York, NY, USA, 2017. ACM.

