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Abstract: Background: Resistance acting on a cyclist is a major concern among the cycling fraternity.
Most of the testing methods require previous training or expensive equipment and time-consuming
set-ups. By contrast, analytical procedures are more affordable and numerical simulations are perfect
for manipulating and controlling inputs. The aim of this case study was to compare the drag of
a cyclist in the aero position as measured using numerical simulation and analytical procedures.
Methods: An elite male cyclist (65 kg in mass and 1.72 m in height) volunteered to take part in this
research. The cyclist was wearing his competition gear, helmet and bicycle. A three-dimensional
model of the bicycle and cyclist in the aero position was obtained to run the numerical simulations.
Computational fluid dynamics (CFD) and a set of analytical procedures were carried out to assess drag,
frontal area and drag coefficient, between 1 m/s and 22 m/s, with increments of 1 m/s. The t-test paired
samples and linear regression were selected to compare, correlate and assess the methods agreement.
Results: No significant differences (t = 2.826; p = 0.275) between CFD and analytical procedures
were found. The linear regression showed a very high adjustment for drag (R2 = 0.995; p < 0.001).
However, the drag values obtained by the analytical procedures seemed to be overestimated, even
though without effect (d = 0.11). Conclusions: These findings suggest that drag might be assessed
using both a set of analytical procedures and CFD.

Keywords: cycling; drag; comparison; CFD; analytical procedures

1. Introduction

Cycling is one of the world’s most popular sports [1]. In competitive cycling events, arrival time is
the main performance variable and several strategies have been used to improve it [2]. It is possible to
identify a set of propulsive forces (produced by the lower limbs on the crank) and resistive forces (drag
and rolling resistance) in cycling [3]. The propulsive forces applied by the cyclist enable the translation
of the cyclist-bicycle system, whereas drag and rolling resistance are the main resistive forces [4–6].
The final arrival time depends on the average velocity achieved to travel the distance of a given race
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event. Therefore, to reach faster average velocities, cyclists are keen to enhance the propulsive forces
and concurrently to minimize the resistive forces [3,4]. Helmets, apparel and different body postures
have been studied to minimize drag resistance, specifically pressure drag, which is the main resistive
force at speeds above 5 m/s [5,7–9].

It is possible to find in the literature different methods to assess drag in cycling, such as analytical
procedures, coasting deceleration techniques, wind tunnel testing and numerical simulations using
computational fluid dynamics (CFD) [10]. The latter is widely used because it is possible to better
control environmental variables such as wind and temperature. CFD provides details of the flow field
surrounding the body under analysis, such as pressure drag, viscous drag, total drag, drag coefficient
and pressure distributions [5,10,11]. However, most cyclists do not have ready access to wind tunnel
testing or CFD. To assess drag using analytical procedures, a set of assumptions or estimations of
the frontal surface area and drag coefficient are required [10]. The drag coefficient is assumed to be
invariant across different speeds when assessed using analytical procedures [12]. However, it is not
known how much the drag coefficient may vary at different speeds. Usually, CFD studies assess a
representative participant of a specific cohort group. Moreover, this methodology avoids confounding
factors such as between-subject variability [10,13]. This standard procedure running CFD analysis
has also been reported early on in other studies in cycling [5,11]. Cyclists might be aware that drag
variations can influence the total resistance force they are under and their training intensity [10].
Moreover, environmental conditions such as air temperature and humidity may affect the cyclist’s
performance, energy cost and exercise response [10].

Several authors have argued that analytical procedures are a feasible alternative to assess drag [3,4].
Indeed, analytical procedures are more affordable in comparison to other techniques available [14,15].
Analytical procedures provide insights in real time and on-site, over a race event or training session [14].
That said, analytical procedures require estimation of the drag coefficient and the frontal surface
area [14,15]. These variables have been consistently reported as the main challenges to diminishing the
bias output by such procedures [14]. As far as our understanding goes, no study can be found in the
literature comparing drag in cycling assessed using CFD and a set of analytical procedures; however,
several authors [3–5,9,10] have used each method individually to assess cyclists’ drag. Thus, it is yet
unclear if data collected by both procedures can be interpreted interchangeably.

The aim of this case study was to compare cyclist drag in the aero position using numerical
simulation and a set of analytical procedures. It was hypothesized that in assessing and describing the
same phenomenon, a bias might exist between the two techniques.

2. Materials and Methods

2.1. Sample

An elite male cyclist with 55.0 kg of body mass and 1.72 m of height volunteered to take part in this
research. The participant was wearing his competition gear (jersey: 100% polyester; shorts: polyamide,
polypropylene and elastane fibers) and time-trial helmet (LAS, Cronometro) and riding a road bicycle
(KTM, Revelator Master 2017, 7 kg of mass). All the procedures were in accordance with the Helsinki
declaration and informed written consent was obtained beforehand. Approval was granted by the
Ethics Committee of the University of Beira Interior under the registration number D1608.

2.2. Scanning

A three-dimensional scan (3D Systems, Inc., Rock Hill, SC, USA) was used to digitize the bicycle
and the cyclist. The scanner precision was 0.0009 m (0.9 mm) at a 0.5 m (50 cm) distance, capturing
spikes and roughness. The geometry was obtained with the participant in one of the most-used
aerodynamic positions [6]. The geometries were edited on the Geomagic Studio software (2013, 3D
System, Rock Hill, SC, USA) (Figure 1). In Geomagic, the models were corrected, removing spikes,
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double faces, merge parts and fill holes. Upon that, an exact organic surface was generated (3D Systems,
Rock Hill, SC, USA) and converted into a Computer Aided Design (CAD) model [15].
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Figure 1. Three-dimensional model of the cyclist-bicycle system.

2.3. Boundaries

An ASUS (ASUS, N751, Taipé, Taiwan) machine running on an Intel processor was used (Core i7
4720HQ 2,6GHz). The Central Process Unit (CPU) had 4 cores and 8 threads, a maximal turbo boost of
3.6 GHz and a speed of 5 GT/s. The computer had 12 Gb of Random Access Memory (RAM) memory
and an Solid-State Drive (SSD) hard disk of 256 Gb.

On the Ansys Workbench software (Ansys Fluent 16.0, Ansys Inc., Pennsylvania, PA, USA),
three-dimensional frontiers were generated as a domain around the model (domain: 7 m in length,
2.5 m in height and 2.5 m in width; model: placed at 2.5 m distance of the inlet end). The mesh was
created with more than 42 million elements [16]. The elements were the volumes in which equations of
motion were applied around the geometry [11,13]. The cell size was ~25 µm [11]. The mesh processing
time was about 12 h.

The numerical simulations to assess drag were run between 1 m/s and 22 m/s, with increments
of 1 m/s. Typically, during downhill or sprinting events, cyclists may reach the top speeds selected
in this study [17,18]. Thus, each speed was set in the inlet portion of the domain (-z direction). The
turbulence intensity was set as 1 × 10%−6%, and the system was set with the scalable walls function.
Each computation took about 48 h to reach the simulation’s convergence.

2.4. Numerical Simulations

The Fluent CFD numerical code (Ansys Fluent 16.0, Ansys Inc., Pennsylvania, PA, USA) uses the
finite volumes approach method to solve the Reynolds-averaged Navier–Stokes (RANS) equations.
For that, a turbulence model is required, and the Realizable k-e was selected. This model was used
with low-Reynolds number modelling (LRNM) to deal with the viscosity-affected region. This model
presented higher convergence stability in comparison to standard k-e. Moreover, the Realizable k-e
turbulence model presented a higher computation economy and velocity histograms very similar to
the standard k-e, RST and RNG k-e models [15,18].

For pressure-speed coupling, the SIMPLE algorithm was used. The pressure, convection terms
and viscosity were defined as second. The least squares cell-based technique allowed us to compute
the gradients. Pressure and moment were defined as second and first order upwind. The turbulence
kinetic energy and dissipation rate were set as first order upwind. For all the simulations, an automatic
convergence occurred before 1404 interactions (Ansys Fluent 16.0, Ansys Inc., Pennsylvania, PA, USA).
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2.5. Analytical Procedures

Drag was computed by Equation (1):

FD = 0.5ρACdv2 (1)

where FD is drag force, ρ is the air density (1.292 kg/m3), A is the surface area, estimated as 0.269 m2 by
Equation (2) [19], and Cd is the drag coefficient, estimated as 0.733 by Equation (3) [12,20]:

Ap = 0.0293h0.725m0.425 + 0.0604 (2)

where h is the subject height and m the body mass.

Cd = 4.45m−0.45 (3)

2.6. Statistical Analysis

Descriptive statistics, Kolmogorov–Smirnov and Levene’s tests were selected to assess normality
and homogeneity. The drag value distributions for the 22 velocities for each method were tested by the
Kolmogorov–Smirnov test. The t-test paired samples compared the two methods (CFD vs. analytical
procedures) as in previous studies [14]. The Cohen’s d effect size was set as without effect if d < 0.2,
moderate effect if 0.8 > d ≥ 0.2 and strong effect if d > 0.5 [21].

Simple linear regression models using CFD and analytical procedures were computed for the
dataset in SI units (i.e., untransformed units) and after logarithmic transformation (log–log, transformed
units). The determination coefficient was computed (R2). Effect sizes were set as very weak if R2 < 0.04,
weak if 0.04 ≤ R2 < 0.16, moderate if 0.16 ≤ R2 < 0.49, high if 0.49 ≤ R2 < 0.81 and very high if 0.81 ≤ R2

< 1.0 [13,14].

3. Results

The drag values collected using CFD ranged between 0.21 N and 74.39 N whereas with analytical
procedures they ranged between 0.14 N and 68.49 N. The drag coefficient was estimated using the
analytical procedures as 0.773; conversely, with CFD it ranged between 0.61 and 0.95. From 3 m/s
to 22 m/s, the drag values collected using CFD were higher in comparison to analytical procedures.
Figure 2 depicts the drag values collected using CFD (black line) and analytical procedures (grey line).
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Figure 2. Drag values across different speeds as measured using CFD and analytical procedures.

The comparison between the two techniques presented no significant differences and small effect
sizes (t = 0.209; p = 0.650; d = 0.11). The linear regression models produced using CFD and analytical
procedures presented a significant relationship and very high effect sizes for drag both in absolute units
(R2 = 0.99; R2a = 0.99; SEE = 0.52; p < 0.001) and after log–log transformation (R2 = 0.98; R2a = 0.98;
SEE = 0.09; p < 0.001) (Figure 3).
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When the model trend line was forced to cross the axis origin (i.e., c = 0, so y = m.x), the adjustment
remained as in absolute values (R2 = 0.99; SEE = 0.51; p < 0.001; Equation (4):

Y = 0.914x (4)

4. Discussion

The aim of this study was to assess a cyclist’s drag in the aero position using numerical simulations
and analytical procedures. The hypothesis was that there might be a bias between methods. The main
results of this research were that the analytical procedures presented no significant differences from
the numerical simulations. Moreover, the methods presented a significant and very high relationship.
Nevertheless, as speed increased, drag as assessed with analytical procedures was underestimated in
comparison to CFD.

CFD has been selected in several other studies to assess drag in cycling [9,16,22]. This technique
is accurate when compared to wind tunnel testing [22–24]. Some reported an overestimation of
7%–11% in CFD results as compared to wind tunnel testing [5]. Analytical procedures enable the
production of on-site and real-time data for cyclists [14]. Little is known about the different methods
for assessing drag in sport settings. However, analytical procedures seem to be prone to overestimating
the aerodynamics in comparison to CFD [13]. CFD has also presented an 18% underestimation in
comparison to experimental testing in swimming [25]. That was justified by the impossibility for the
swimmer to keep a perfectly streamlined position over the entire trial [25]. In our study, analytical
procedures also underestimated drag in comparison to CFD. That might be explained by: (1) the drag
coefficient being estimated and assumed as invariant across the different speeds, independently of the
bicycle shape, helmets or sports gear, or (2) the frontal surface area being derived from an estimation
by a mathematical model. However, studies have reported a strong agreement between data on the
frontal area and the surface area [12,20,26].
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The CFD drag output was 27.02 (±23.78) N and in the analytical procedures it was 24.41 (±21.76)
N. The mean difference between techniques was 9%. No statistical differences, and trivial effect sizes,
were found between techniques (t = 0.209; p = 0.650; d = 0.11). In our study, the drag coefficient as
measured with analytical procedures was estimated as 0.773, and with CFD it varied between 0.61 and
0.95. To date, no study has compared drag in cycling using CFD and analytical procedures. However,
it is possible to find at least one study comparing the two methods in swimming [13]. Barbosa et al. [13]
noted a very high relationship between the absolute values and those after logarithmic transformation
(R2 = 0.98; p < 0.001 and R2 = 0.99; p < 0.001, respectively), as in this study in cycling (R2 = 1.00;
p < 0.001 and R2 = 0.98; p < 0.001, respectively). Log–log transformation has been used to minimize
the distribution variance effect on linear regression [13,14].

CFD has been seen as an alternative method to the gold standard for measurement (wind tunnel)
when compared to experimental techniques or analytical procedures [22,24]. On the other hand,
analytical procedures have also been used in cycling [3,26] as a quick and straightforward technique to
assess drag. Barbosa et al. [13] suggested that the biggest challenge to forecasting drag in swimming
using analytical procedures is the prediction of the drag coefficient as an input variable. In our study,
the variables that were estimated using analytical procedures were the drag coefficient and the frontal
surface area whereas CFD assessed drag coefficient, surface area and drag force using numerical
simulations. Defraye et al. [5] noted that CFD might overestimate the effective surface area (i.e., ACd)
in comparison to wind tunnel. Thus, analytical procedures might have a larger bias compared to a
gold-standard technique (e.g., wind tunnel). Based on the literature [3,13,22–24,26], drag coefficient
variations across different velocities may explain the differences between methods.

The current study presented no significant differences between the use of CFD and analytical
procedures to assess an elite male cyclist. However, a meaningful effect between methods was observed.
We found a good fit between methods. The drag values obtained using analytical procedures were
overestimated in comparison to CFD. The following can be considered as limitations of this research:
(1) only one participant was evaluated and was only representative of other cyclists of an elite level,
and (2) one single position was analyzed (i.e., the aero position). This study could help cyclists, coaches,
support staff and researchers to be aware that analytical procedures can provide insights into drag
force. However, drag values assessed using analytical procedures might be overestimated and as such
should be corrected using the correction factor that is modelled and reported here. Follow-up projects
could compare different testing methods (e.g., CFD, coasting deceleration, analytical procedures and
wind tunnel) and positions and develop an analytical equation to assess drag coefficient in the function
of speed at different positions. However, the most analyzed variables are drag and effective surface
area [3,13,26].

In this study, drag coefficient estimation was dependent on the subject´s mass and surface area
as predicted by his height [12,20]. In field and lab settings, within- and between-subject variability
can affect drag estimation. Nevertheless, in our study, the analytical procedures’ estimations and the
three-dimensional model for CFD were based on the same participant.

Most cyclists do not have ready access to wind tunnel testing or CFD. Wind tunnel testing requires
highly-trained staff and is an expensive procedure. CFD also requires highly-trained staff to run the
numerical simulations and it is a time-consuming procedure. Thus, end-users such as cyclists and
practitioners should consider using the set of analytical procedures reported here to estimate drag
force. That said, they should also be aware of the bias between testing techniques and the need to
correct it. Altogether, this study supports the use of analytical procedures as a valid method to assess
drag in comparison to CFD.

5. Conclusions

In conclusion, based on this case study, drag in cycling can be assessed using both a set of analytical
procedures and CFD. Even though there were no significant differences and effect sizes were trivial,
the analytical procedures overestimated drag force in comparison to CFD, and this should be corrected.
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Based on this case, coaches, athletes, support staff and researchers should be aware that in elite cyclists
drag can be assessed by using either analytical procedures or CFD, choosing the most convenient at
any given time.
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