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Abstract: Background: Non-digestible oligosaccharides are versatile sources of chemical diversity, well known 
for their prebiotic actions, found naturally in plants or produced by chemical or enzymatic synthesis or by hy­

drolysis of polysaccharides. Compared to polyphenols or even polysaccharides, the antioxidant potential of oligo­

saccharides is still unexplored. The aim of the present work was to provide an up-to-date, broad and critical con­
tribution on the topic of antioxidant oligosaccharides. 

Methods: The search was performed by crossing the words oligosaccharides and antioxidant. Whenever possible, 

attempts at establishing correlations between chemical structure and antioxidant activity were undertaken. 

Results: The most representative in vitro and in vivo studies were compiled in two tables. Chitooligosaccharides 

and xylooligosaccharides and their derivatives were the most studied up to now. The antioxidant activities of 

oligosaccharides depend on the degree of polymerization and the method used for depolymerization. Other fac­
tors influencing the antioxidant strength are solubility, monosaccharide composition, the type of glycosidic link­

ages of the side chains, molecular weight, reducing sugar content, the presence of phenolic groups such as ferulic 

acid, and the presence of uronic acid, among others. Modification of the antioxidant capacity of oligosaccharides 
has been achieved by adding diverse organic groups to their structures, thus increasing also the spectrum of po­

tentially useful molecules. 

Conclusion: A great amount of high-quality evidence has been accumulating during the last decade in support of 
a meaningful antioxidant activity of oligosaccharides and derivatives. Ingestion of antioxidant oligosaccharides 

can be visualized as beneficial to human and animal health. 

Keywords: Antioxidant, circular economy, functional properties, oligosaccharides, oligosaccharide derivatives, oxidative stress. 

1. INTRODUCTION 

There is now strong belief, corroborated by sound scientific 
research, that antioxidants own properties that are beneficial to 
people suffering from a series of illnesses. A massive number of 
investigations prove their essentialism in daily diets. Accordingly, 
antioxidants have always drawn the attention of the scientific com­
munity, though much more intensely in recent years [1-8]. World­
wide expert panels from various scientific fields show the action of 
both natural and synthetic antioxidants against a number of ailments 
such as cancer [9], cardiovascular dysfunction [10], neurodegenera­
tive diseases and diabetes, in addition to inflammation [11] and 
aging [7]. 

The classic defmition of Halliwell and Gutteridge [12] states 
that antioxidant is "a substance that, when present at a low concen­
tration compared with that of an oxidizable substrate in the 

*Address correspondence to this author at the Program Post-graduated of 
Food Science, Universidade Estadual de Maringa, Maringa, PR, Brazil; 
Tel!Fax: 55-44-30114715; E-mail: rmperalta@uem.br; 
rosanemperalta@gmail.com 

1 /20 $65.00+.00 

medium, inhibits oxidation of the substrate". In a simplified way, an 
antioxidant compound is a molecule able of inhibiting the oxidation 
of other molecules. Oxidation reactions can form free radicals, 
which in turn are atoms, molecules or ions with unpaired electrons, 
highly unstable and active towards chemical reactions with other 
molecules. Reactive oxygen species (ROS) comprising superoxide 
anion radical (02·- ), hydroxyl radical (OH·), peroxyl (R02·), hy­
droperoxyl (H02·), alkoxyl (RO·), peroxyl (ROO·), nitric oxide 
(NO·), nitrogen dioxide (N02·), and lipid peroxyl (LOO·) and the 
non-radicals hydrogen peroxide (H20 2), hypochlorous acid (HOC!), 
ozone (03), singlet oxygen et ~g), and lipid peroxide (LOOH), are 
free radicals that provoke oxidative stress, causing devastating and 
irreversible damage to cell components (lipids, proteins and DNA) 
and various pathologies [8]. Essentially, antioxidant substances 
counteract the harmful activity ofROS in cell membranes by means 
of (1) hydrogen atom transfer; (2) single-electron transfer, and (3) 
the capability to chelate transition metals [10, 13]. Notwithstanding 
that normal cells possess antioxidant defense systems against ROS, 
including enzymatic and non-enzymatic systems, the extended ac­
cumulation of cell damage generates ailments such as cancer and 
accelerated aging [7]. Hence, the daily dose of antioxidant corn-
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pounds plays an essential preventive role in oxidative stress-related 
illnesses as it counteracts the ROS damaging effects [6]. 

Antioxidants can be classified in manifold ways. Depending on 
their activity, they can be categorized as enzymatic and non­
enzymatic antioxidants [14] (Fig. 1). With respect to enzymatic 
antioxidants, they are sub-categorized into primary and secondary 
enzymatic defenses. The triad offrrst-line defense enzymes, namely 
superoxide dismutase (SOD), catalase (CAT) and glutathione per­
oxidase (GPx), plays a vital role in the entire antioxidant defense 
strategy, particularly in what regards the superoxide anion radical 
(Oz-) that is constantly produced by the normal body metabolism, 
mostly via the mitochondrial energy production pathway [15]. The 
secondary enzymatic defense, consisting of glutathione reductase 
and glucose-6-phosphate dehydrogenase, does not neutralize free 
radicals directly; however, this system has supporting roles for the 
other endogenous antioxidants [2]. Non-enzymatic antioxidants act 
by ceasing free radical chain reactions [14]. Fig. (1) displays the 
major classes of non-enzymatic antioxidants, as well as the most 
representative compounds of each class. 

The other way of categorizing antioxidant compounds is based 
on their source. The antioxidants can be categorized as endogenous 
or exogenous antioxidants [13]. There is quite a number of non­
enzymatic endogenous antioxidants, including vitamins (A), en­
zyme cofactors (Q10), in addition to low molecular weight mole­
cules such as nitrogen compounds (uric acid), and peptides (glu­
tathione) (Fig. 1). In spite of its extraordinary efficiency, the en­
dogenous antioxidant system does not attend to all of the body's 
demands, a reason why humans depend on several types of antioxi-
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dants from dietary sources to keep free radical concentrations at 
low levels. Vitamins (C and E), carotenoids (carotenes and xantho­
phylls), the wide group of polyphenols (simple phenols, phenolic 
acids, flavonoids, stilbenes, lignans and tannins), and antioxidant 
carbohydrates are all exogenous antioxidant compounds [2] (Fig. 
1). Furthermore, based on their polarity, antioxidant substances can 
be categorized in water-soluble (e.g. vitamin C) and lipid-soluble 
(e.g. vitamin E, carotenoids, and lipoic acid) antioxidants [13, 15]. 

In recent decades, research accomplishments in the field of 
natural antioxidants have expanded considerably the knowledge on 
naturally occurring compounds with beneficial health effects in 
foods [16]. Among these, vitamins, carotenoids and polyphenols [5, 
6] were the most studied for their antioxidant activities, in particular 
the last group. However, lately, polysaccharides purified from natu­
ral products have given rise to an increasing interest in antioxidant 
carbohydrates [17] due to their promising pharmacological and 
biological activities [18, 19]. Likewise, promising antioxidant ef­
fects have been attributed to oligosaccharides, which are shorter­
chain carbohydrates [20-22]. In the past ten years, the number of 
scientific articles regarding oligosaccharides has expressively in­
creased, with an increment of more than 65% in the total number of 
publications (obtained from Web of Science, September 2019; pe­
riod restricted to 2008-2018). Despite the growing interest in these 
bioactive compounds, oligosaccharides are not yet properly a hot 
topic in the field of antioxidant research. In the past five years, for 
instance, the papers holding the terms 'polysaccharide' versus 'an­
tioxidant' (5060 publications) and 'polyphenol' versus 'antioxidant' 
(12423 publications) corresponded to more than 9-fold and 23-fold, 

Enzymatic Antioxidants Non-Enzymatic Antioxidants 
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Glutathione peroxidase 

Secondary Enzymes 
Glutathione reductase, 
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Fig. (1 ). Classes of natural antioxidant molecules. 
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respectively, the total number of reports containing the terms 'oligo­
saccharide&' and 'antioxidant' (534 publications) (obtained from 
Web of Science, September 2019; keyword restricted to topics). 

Bearing this in mind, the present report aims to provide an up­
to-date, broad and critical contribution on the topic of antioxidant 
oligosaccharides, addressing the aspects involved in their obtain­
ment and characterization, optimized production, evaluation of 
antioxidant potential, and therapeutic effects. With the purpose of 
presenting the latest advancements and trends in antioxidant oligo­
saccharide&, most of the experimental reports were published after 
2010. 

2. OLIGOSACCIIARIDES 
2.1. Definition 

Carbohydrates formed by one or two monomeric units are usu­
ally called monosaccharides and disaccharides, respectively. When 
the degree of polymerization is high, the term polysaccharide is 
applied. Polysaccharides may be composed of a great number of 
monosaccharide units, hundreds or thousands. When the degree of 
polymerization is relatively low, between 3 and 30 units, the term 
oligosaccharide is preferred [23]. Most of the few naturally occur­
ring oligosaccharide& are found in plants and play important roles 
such as carbon storage, translocation, and protection against stress 
caused by drought or low temperatures [24]. 

Based on their physiological fates in mammals or humans, the 
oligosaccharide& can be classified as digestible or non-digestible. 
The concept of non-digestible oligosaccharide& originates from the 
observation that the anomeric C atom (Cl or C2) of the monosac­
charide units of some dietary oligo- and polysaccharides has a con­
figuration that makes their corresponding glycosidic bounds resis­
tant to hydrolysis by the digestive enzymes [25]. Fructooligosac­
charides (FOS), the raffinose family of oligosaccharides (RFO), 
xylooligosaccharides (XOS) and isomaltulose, are the most widely 
distributed non-digestible oligosaccharide& in the plant kingdom 
[26, 27]. Galactooligosaccharides (GOS) and fructooligosaccha­
rides (FOS) are found in human milk [28, 29]. Several oligosaccha­
rides are also commonly bound to lipids and amino acids through 
0-glycosidic and N-glycosidic bonds to constitute glycolipids and 
glycoproteins of many types of cells [30]. 

The non-digestible oligosaccharide& gained notoriety as useful 
compounds for health preservation from the moment when they 
became to be considered, together with the non-digested 
polysaccharides, as prebiotics. Prebiotics are not hydrolysed by 
human digestive enzymes but they selectively enhance the activity 
of specific groups of beneficial bacteria, which are called probiot­
ics. These bacteria can ferment prebiotics and produce short-chain 
fatty acids. The beneficial bacteria are present in the gut where they 
are known to promote the host's health by stimulating the immune 
system, inhibiting the growth of pathogenic bacteria and also by 
improving digestion_and abso.rption of essential nutrients [31]. The 
reputation of prebiotic oligosaccharides as health promoters had a 
drawback due to their fermentation_profiles and dosages required 
for health effects. Actually, most prebiotics belong to the group of 
dietary nondigestible carbohydrates, which includes resistant starch 
and resistant dextrins, non-starch polysaccharides, such as pectins, 
arabinogalactans, gum arabic, guar gum and hemicellulose, and 
nondigestible oligosaccharide& such as inulin-type fructans, galac­
tan&, mannans, raffmose, and stachyose [32]. Xylooligosaccharides, 
pectinoligosaccharides, chitosanoligosaccharides, and agarooligo­
saccharides have received attention in recent years [33-35]. These 
molecules are known as "colonic foods" because they enter the 
colon and serve as substrates for the endogenous colonic bacteria, 
consequently providing the host with metsbolic substrates, essential 
micronutrients, and energy. Of particular interest are prebiotics able 
to promote health benefits such as immunological activities that can 
promote the proliferation of beneficial bacteria and inhibit coloniza­
tion of the gut by pathogenic ones, thus exerting a protective effect 
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against acute or chronic gut disorders. Other benefits are their abil­
ity to lower blood cholesterol and to regulate glycemia, and their 
anti-tumour effects. In consequence, there is a growing interest in 
obtaining new low-cost prebiotics, useful for being used as food 
supplements, as well as in seeking for new in vitro and in vivo 
methods to evaluate their mechanisms of action. Several non­
digestible oligosaccharides have been used in the food industry as 
prebiotic supplement products or food ingredients [36]. 

In general terms, it is believed that the regular consumption of 
prebiotics protects against the development of the so called Western 
diseases, including diabetes, cardiovascular disease, colon cancer, 
obesity, abnormal lipid metsbolism and chronic inflammatory dis­
eases [31, 32]. Oxidative stress plays an important role in the 
worsening of these pathological conditions. For this reason, at least 
in theory, the capability of oligosaccharides to act as antioxidants 
could have beneficial effects in maintaining good health. 

2.2. Methods for Obtaining Oligosaccharides 

Oligosaccharides can be obtained from natural sources and 
through chemical and/or biotechnological processes. 

2.2.1. Extraction 

Oligosaccharides can be found at various concentrations as 
natural components of milk, honey, sugarcane juice, fruits and 
vegetables such as chicory, asparagus, onions, garlic, bananas, 
leeks, rye, wheat, soybeans, mustard, bamboo shoots, Jerusalem 
lentils, yacon, barley, tomatoes, and artichoke. Generally, these 
natural sources contain concentrations ranging from 0.3 to 6% fresh 
weight. However, there are only a few classes of naturally produced 
oligosaccharides and because of their structural complexity, 
isolation from their corresponding sources is generally quite 
difficult [37, 38]. 

When oligosaccharides are naturally available in food, only the 
extraction process is required. This process can be performed by 
solubilizing the substrate in water, methanol or ethanol [39]. More 
recently, ultrasonic and microwave extractions have been used in 
the extraction of oligosaccharides from different plant materials. 
Ultrasonic extraction has been widely used because of its capillary 
effects since microwaves can penetrate the plant matrix and 
generate heat within the cells, both resulting in cell disruption and 
enhanced mass transfer [40, 41]. 

2.2.2. Obtainment of 0/igosaccharilhs by Depolymerization of 
Polysaccharilhs 

Oligosaccharide& can be obtained from the depolymerization of 
polysaccharides such as starch, inulin, pectin, xylan, glucan, 
mannan, arabinan, galactan, chitosan, among others [32, 38, 40]. 
The depolymerization of polysaccharide& can be performed by 
chemical, physical or enzymatic processes [38, 39]. Chemical and 
physical methods can be combined to increase the hydrolysis 
efficiency. 

In chemical depolymerization, mineral acids (H2S04 and HCl) 
and organic acids (such as maleic, oxalic, acetic or trifluoroacetic) 
are employed at different concentrations as catalysts [38]. This 
process, also called acid hydrolysis, is relatively simple, 
inexpensive and easy to control since the reaction is interrupted by 
neutralization of the medium [39]. In the alkaline depolymerization 
of xylans, NaOH, KOH, Ca(OH}z, and ammonia can be used for 
obtaining xylooligosaccharides [42] . 

Hydrogen peroxide (H20 2) can also be used to depolymerize 
various polysaccharide&. H20 2 is easy to handle, readily available, 
and environment-friendly [43]. This technique is based on the for­
mation of free radicals, which can attack the glycosidic linkages of 
the polysaccharides. 

In physical processes such as hydrothermal treatments or auto­
hydrolysis, acids are generally not used and hydrolysis occurs due 
to the high temperatures [38]. The temperatures employed generally 
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range from 130 to 230 °C [39]. In this process, hydrogen ions 
(H30) derived from auto-ionization of water act as catalysts. In 
addition, partial cleavage of acetyl groups to acetic acid during the 
process results in increased H30+ concentration in the reaction 
medium [38, 39]. Gamma radiation. ultraviolet light, microwaves, 
ultrasound, high-pressure dynamic micro-fluidization have also 
been applied to the production of oligosaccharides [39, 44]. 
Although physical processes represent a fast and clean way to 
produce oligosaccharides, their applications are still limited, and the 
reaction conditions must be optimized for better performance and 
for solving problems related to the basic kinetics of polysaccharide 
hydrolysis. 

Enzymatic hydrolysis usually requires mild conditions (low 
temperature) that prevent the formation of sugar breakdown 
products such as furfural and 5-hydroxymethylfurfural. However, 
this process requires greater control and the use of different 
enzymes due to the structural diversity of polysaccharides and 
enzymatic stereo-specificity [38]. In the enzymatic processes, 
mixtures of oligosaccharides with different degrees of poly­
merization are formed. The chemical structures and composition of 
these mixtures depend on the type and source of enzymes and on 
the processing conditions, including the initial substrate 
concentration [32]. Depending on the initial substrate, the 
production of oligosaccharide& may be accompanied by the 
production of monomers followed by the generation of 
disaccharides and other oligomers through the action oftransferases 
and the reverse hydrolytic activity of the hydrolases [32, 45]. 

For breaking down the polysaccharide glycosidic bonds, differ­
ent enzymes can be used. Glycoside hydrolases (EC 3.2.1.-) are a 
widespread group of enzymes which hydrolyse the glycosidic bond 
between two or more carbohydrates or between a carbohydrate and 
a non-carbohydrate moiety. These enzymes catalyze hydrolysis by 
means of general acid catalysis that requires two critical residues; a 
proton donor and a nucleophilelbase. This hydrolysis occurs 
through two mechanisms that give rise to a general retention or 
inversion of the anomeric configuration. As the polysaccharide 
structures are diverse in terms ofmonomeric structures as well as in 
terms of their glycosidic linkages, different polysaccharide 
hydrolases can be used in the enzymatic degradation of a 
polysaccharide for producing oligosaccharides. Some examples are 
jJ-mannanase, (EC 3.2.1.78), chitinase (EC 3.2.1.14), xylanase (EC 
3.2.1.8), inulinase (EC.3.1.2.7), jJ-agarase (EC. 3.2.1.81), and pect­
inase (EC.3.21.15), which hydrolyze the glycosidic linkages of 
mannan, chitin, xylan, inulin and agar, respectively. Polysaccharide 
lyases (EC 4.2.2.-) cleave the glycosidic bonds of uronic acid­
containing polysaccharides by a ~-elimination mechanism to gener­
ate an unsaturated hexenuronic acid residue and a new reducing end 
at the point of cleavage [46, 47]. More information about these and 
other enzymes capable to depolymerize polysaccharides can be 
found in www.cazy.org. 

2.2.3. Enzymatic Synthesis of Oligosaccharides 

Glycosyl transferases (GTs, EC 2.4.x.y) can be used for 
enzymatic synthesis of oligosaccharides [48]. GTs are enzymes that 
catalyse the transfer of sugar moieties from activated donor mole­
cules to specific acceptor molecules, forming glycosidic bonds in 
vivo [49]. Although GTs are good catalysts for oligosaccharide 
synthesis, their application is limited due to their low availability 
and the use of complex and expensive activated substrates. In 
addition, GTs are unstable in solution, which makes them 
unrealistic for industrial applications. These limitations lead to an 
increased use oftransglycosylases (GHs) [48]. 

Some GHs may catalyze reverse hydrolysis (thermodynamic 
control) or transglycosylation (kinetic control) of the anomeric 
configuration, a retention mechanism that can lead to 
oligosaccharide synthesis (Fig. 2) [45, 49]. They are typically less 
regio-selective and the oligosaccharide production yield is lower 

than that one obtained by GTs [45]. However, they are more readily 
available, stable, easy to handle, require no cofactors and act on 
simple and inexpensive donors such as monosaccharides and 
disaccharides [48]. GHs are mainly responsible for the hydrolysis 
of short-chain oligosaccharides resulting from the synergistic action 
of endoglucanases producing free glucose as a rate-limiting step. 
An efficient catalyst for synthesis, but not hydrolysis, of glycosidic 
bonds can be generated by site-directed mutation ofGHs [50, 51]. 

~~ 

Nu- HzO (b) 

(a) 

~ ~~ ~ 
o oe'\~(d) ~ t o 

Ho--H ~ 

Glu2 0 

Fig. (2). Generalized mechanism of a transglycosylase. (a) Hydrolysis; (b) 
Reverse hydrolysis; (c) ttansglycosylation; (d) secondary hydrolysis; Glu1

, 

Glu2
: glutamate; Nu: nucleophile. 

When a disaccharide is used as a substrate, the transglycosyla­
tion product is formed via self-condensation. For this to occur, the 
process must be faster than the hydrolysis of the glycoside; the 
enzyme transfers the glycosyl residue from the donor to an acceptor 
with retention of the anomeric configuration. The primary hydroxyl 
group reacts preferably in a way that leads to the formation of 1-6 
bonds, although the bonding may occur at all positions, leading to a 
variety of different products. In order to direct the reaction to 
transglycosylation. the main strategy is to use high concentrations 
ofsubstrate [49]. 

2.2.4. Chetnical Syntltesis of Oligosaccharides 

Chemical synthesis can also be used for obtaining oligosaccha­
rides. Continuous monitoring is mandatory in this type of synthesis 
bec1111se it usually requires the use of pure and hazardous chemicals, 
making it expensive and laborious. The process involves strategies 
of protection. deprotection, and activation to control the regio­
selectivity and stereochemistry of the resulting oligosaccharide. 
These strategies are undesirable and unrealistic for large scale 
production and result in low yields [48]. On the other hand, in 
enzymatic synthesis, orthogonal protectionldeprotection of the 
different portions is not necessary due to the excellent regio-
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selectivity of enzymes and because of the full stereo-chemical 
control of the new binder [27,48,49]. 

2.2.5. Q11antification and Str11ctllral.A.nalysis ofOligosaccharilks 

Establishing structure-function relationships is important for 
elucidating biochemical mechanisms of action. However, due to the 
possibility of a large number of carbohydrate isomers for a given 
chemical formula, the structural identification is still a difficult task 
[52]. An oligosaccharide containing six hexoses, for example, has 
more than 1012 possible isomers, and differentiation of such a large 
number of isomers using a single and simple analytical method 
becomes difficult [53]. Furthermore, most naturally occurring 
oligosaccharide& and those generated from polysaccharide 
hydrolysis or chemical and enzymatic synthesis exist in mixtures of 
various complexities [36]. The complexity of the mixtures often 
requires the use of a consortium of different analytical techniques 
for complete chemical characterization [54, 55]. In addition, purifi­
cation is always a prerequisite prior to structural analysis [36]. 

The absence of chromophore groups in many oligosaccharides 
makes detection problematic. Thus, derivatization of 
oligosaccharides is indispensable to achieve highly sensitive 
detection [56]. Some common derivatization strategies include 
reductive amination, permethylation and hydrazide labeling of the 
reducing end of the oligosaccharide [57]. 

Colorimetric methods, such as the 3,5-dinitrosalicylic acid 
assay, which detect reducing ends of oligosaccharide&, can be used 
for quantification [54, 55]. However, techniques that provide 
qualitative and quantitative information of independent oligo­
saccharide& such as planar chromatography, gas chromatography 
(GC), high-performance liquid chromatography (HPLC) and 
capillary electrophoresis (EC) are the most widely used and can be 
coupled to spectroscopic instruments for structural information [55-
57]. 

Among the planar chromatographic techniques, thin layer 
chromatography (TLC) is the most common method in the 
characterization of oligosaccharides. When compared to HPLC, it is 
less efficient in the separation of complex mixtures. However, TLC 
also offers some benefits: it is simple and adaptable to equipment 
availability and does not require specially trained technicians, being 
available to all types of laboratories [58]. TLC and high­
performance thin layer chromatography (HPTLC) have been largely 
used, for example, in the analysis of human milk oligosaccharide& 
[59]. HPTLC was recently used in the analysis of xylooligosaccha­
rides obtained from sugar cane bagasse [60]. 

Because oligosaccharides have high polarity and low volatility, 
the use of GC in principle does not seem ideal, since a previous 
derivatization step is often required [61, 62]. However, GC has 
proven to be the most appropriate technique in many cases, 
particularly when only small samples are available and/or 
oligosaccharides appear as a complex mixture of isomers [62]. GC 
coupled to mass spectrometry (MS), GC-MS, has been shown to be 
a valuable technique for the identification of unknown 
carbohydrates [61]. Recently, structural differences between pectin 
oligosaccharide& (POS) obtained through enzymatic hydrolysis of 
pectins of various origins have been elucidated by GC-MS [63]. 

Traditional methods of HPLC can be combined with mass spec­
trometry (IIPLC-MS) and also wi1h amperometric, fluorescence and 
refractive index pulse detectors [64]. HPLC was used recently in stud­
ies with mannanoligosaccharides [65] and xylooligosaccharides [66]. 

Sophisticated techniques such as high-performance anion 
exchange chromatography (HP AEC) and high-performance anion 
exchange chromatography with pulsed amperometric detection 
(HPAEC-PAD) can be used to evaluate oligosaccharides at very 
low concentrations (femtomole, picomole) [35, 54, 67]. 

In terms of resolution, capillary electrophoresis (CE) is 
considered one of the most powerful techniques, being useful in the 
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analysis of free oligosaccharides, glycoprotein&, and 
glucosaminoglycans. As an example, it was recently used for the 
analysis of glucose_oligomers_in wort samples to follow the fermen­
tation _process using Saccharomyces pastoriallus and Saccharomy­
oodes ludwigii yeast strains [68]. 

For the direct determination of oligosaccharide structure, 
nuclear magnetic resonance (NMR) and mass spectrometry (MS) 
techniques are widely used [53, 55]. MS is based on the conversion 
of components of a sample into gaseous ions, which are taken to a 
mass analyzer, where they are separated according to the 
mass/charge ratio [54]. Its application is challenging due to the low 
carl>Ohydrate ionization efficiency of mass spectrometers and the 
similarity of mass spectra among large numbers of isomers [53]. 

As a standanl approach, the molecular mass of an 
oligosaccharide is determined by MS, while the types of 
monosaccharide bindings and side group positioning are resolved 
by NMR, MS-GC and MC-MS/MS [69]. LC-MS has been consid­
ered especially useful in the characterization of neutral and acidic 
oligosaccharide&, such as pectin oligosaccharides [54]. 

The structures of FOS, highly purified by means of high-speed 
counter-current chromatography (HSCCC) coupled with pre­
column derivatization, were determined by mass spectrometry (MS) 
and nuclear magnetic resonance (NMR) [70]. Although widely 
used, NMR has low sensitivity and severe signal overlap, which 
often makes data interpretation difficult [71]. 

Recent studies have employed mass spectrometry associated with 
matrix-assisted laser desmption and ionization followed by detection 
on a flight time type analyzer (MALDI-TOF-MS) to analyze the 
oligosaccharide& from longam [41], xylo-oligosaccharides from 
eucalyptus glucuronoxylan obtained by auto-hydrolysis [72], and 
chitosan oligosaccharide& [73]. The most common methods used for 
oligosaccharide ionization are impact ioirization of electrons (El), 
electrospray ionization (ESI) and desmption ionization/matrix­
assisted laser ionization (MALDI) [54, 61, 74, 75]. Recently, the 
xylooligosaccharides obtained by auto-hydrolysis ofbamboo by BSI­
MS [33], and the neoagarooligosaccharide from Gracilaria were 
characterized by BSI-TOF-MS [76]. Recently, the quadrupole time­
of-flight tandem mass spectrometry (Q-TOF-MS/MS) was used di­
rectly to analyze the structures of oligosaccharides produced by the 
action of endo-~-1 ,3( 4)-D-glucanase Bngl6A from Coprinopsis cine­
rea on barley ~-glucan [77] and products of the action of chitin 
deacetylases (Cdal and Cda2) from 1he mushroom Coprinopsis cine­
rea on chitin oligosaccharides [78]. 

Vibrational spectroscopy techniques such as Infrared (IR) and 
Raman are also versatile, powerful and complementary tools for 
structural characterization of carbohydrates, including oligo­
saccharides. Both techniques provide spectra with a different set of 
characteristic bands and indicate, for example, in the IR spectra, the 
nature of the H bond, or the Raman spectra, the ring configuration 
[79]. Fourier-transform infrared spectroscopy (FTIR.) is the most 
common technique used to characterize oligosaccharides. Recently, 
the raffinose family of oligosaccharide& was characterized using, 
among other methods, FT -IR [80]. 

3. ANTIOXIDANT PROPERTIES OF OLIGOSACCHA­
RIDES 

Antioxidant activity can be analyzed by different in vitro and in 
vivo methods. Generally, in vitro antioxidant tests are easier to be 
executed [81]. In vivo tests allow analysis under physiological 
conditions, but require the use of animal models, some of which 
(such as mammals) are expensive and time-consuming. 

3.1. In vitro Studies 

Table 1 presents recent reports of investigations in which the 
obtainment of oligosaccharide& was followed by an evaluation of 
their antioxidant properties by different in vitro methods. 
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Table 1. Antioxidant activities of oligosattharides evaluated by in vitro methods. 

Source and Obtainment Most Important Observations and Conclusions Refs. 

Extraction 

Hot water extraction of oligo-saccharide from An oligosaccharide from the fruiting bodies was purified through chromatographic methods. [82] 

the mushroom Hericium erinaceus. The oligosaccharide is composed by D-xylose and D-glucose, and has a molecular weight of 

1,877 Da. It presented antioxidant activity as evaluated by three methods: DPPH, ABTS and 

hydroxyl radical scavenging activities. 

Extraction of an oligosaccharide from green The oligosaccharide was purified using Sephadex G-25 and presented a molecular weight of [83] 

asparagus. 569 Da. It was able to scavenge hydroxyl and superoxide radicals with a dose-effect relation-

ship. 

An oligosaccharide from longan pulp was The purified oligosaccharide exlu"bited a dosiHiependent scavenging activity of the 1,1- [41) 

extracted by an optimized ultrasonic- diphenyl-2-picrylhydrazyl radical. 

microwave method. 

From Degradation of Polysaccharides 

Pectin oligosaocharides were obtained from Antioxidant properties of pectin oligosaccharides produced by irradiation were confinned by [84] 

degradation of citrus pectin by irradiation (20 two methods, DPPH scavenging activity and P-carotene-linoleic acid bleaching assay. The 

kGy). pectin oligo-saccharides were not mutagenic and inhibited growth oftumor cells. 

Carrageenan is a collective term for a group of Superoxide anion, hydroxyl radical and DPPH free radical scavenging activities were used to [85] 

sulfated polysaccharide& extracted from ma- evaluate the antioxidant activities of carrageenan and derivatives. The derivatives of car-

rine red algae. JC-Carrageenan oligosaccha- rageenan oligo-saccharides exhibited higher antioxidant activity than the poly- and oligosac-

rides were prepared through acid hydrolysis of charides: the oversulfated and acetylated derivatives, which scavenged superoxide radicals, 

the polysaccharide followed by synthesis of the phosphorylated and low-degree of sulfation acetylated derivatives, which scavenged 

their oversulfated, acetylated, and phosphory- hydroxyl radicals, and the phosphorylated derivatives, which scavenged DPPH radicals, all 
lated derivatives. exhibited significant antioxidant activities. The effect of the molecular weight of the car-

rageenan on the antioxidant activities is not obvious, considering that both polysaccharide 

and the mixture of oligosaccharides exhibited a similar activity against the three antioxidant 

systems in vitro. 

""-Carrageenan oligosaccharides were obtained The antioxidant activities of different degradation products were investigated by four differ- [86] 

by the degradation of parent K-carragecnan ent antioxidant assays, including superoxide radical scavenging activity, hydroxyl radical 

using free radical depolymerization, mild acid scavenging activity, reducing power and DPPH radical scavenging activity. The various 

hydrolysis, x.-carrageenase digestion and depolymerization methods influenced the antioxidant activities of the x. -carrageenan oligo-

partial reductive hydrolysis. The structure saccharides. These results indicate that the antioxidant activities of"" -carrageenao oligosac-

types were accurately and comparatively charides could be related to the degree of polymerization, the content of reducing sugar and 

elucidated by ESI-MS and CID MS/MS. sulfate groups, and the structure of the reducing termini. 

Degradation of a polysaccharide from the The resulting oligosaccharide& showed strong hydroxyl radical scavenging activity and re- [87] 

mushroom Flammulina velutipes with H,O,. ducing capacity at the concentration of 100 J.Lg!mL. 

Oxidative degradation of xanthan umler acidic The antioxidant activities of both oligosaccharides were inferred from their capacity in scav- [88] 

aod alkaline conditions produced two oligo- enging superoxide anion radical (0{), hydroxyl radical ( •OH), 2,2-diphenyl-1-

saocharides XGOS-A (MW 7500 Da) and picrylbydrazyl (DPPH) radical and hydrogen peroxide (H2£h) and by measuring their ferrous 

XGOS-B (MW 7330 Da), respectively. ion chelating activity and reducing power. XGOS-B had a more pronounced antioxidant 

activity than XGOS-A. The antioxidant activity of the xanthan oligosaccharides appear to be 

related to their contents of pyruvic acid and the reducing sugar. 

Maleoyl xanthan oligosaccharides The antioxidant activities of the xanthan oligosaccharide derivatives were deduced from their [89] 

(XGOSMA) and phthaloyl xanthan oligosac- ability to scavenge the superoxide anion radical (02·") and the hydroxyl radical (OH), 2,2-

charides (XGOSPA) were prepared by react- diphenyl-1-picrylhydrazyl (DPPH) radical in addition to a determination of their reducing 

ing xanthan oligosaccharides with maleic power. The results indicated that XGOSPA exlu"bited higher antioxidant activity than 

anhydride and phthalic anhydride, respec- XGOSMA with similar substituting degrees in all the above mentioned antioxidant evalua-

tively. tion systems. This may be related to the fact that the phthaloyl group has a stronger electron-

withdrawing effect than the maleoyl group. 

Peach gum oligosaccharides were obtained by Peach gum derived oligosaccharides presented high hydroxyl radical scavenging and high [90] 

depolymerization of peach gum polysaccha- DPPH scavenging activities at a concentration of 100 l'glmL. 
ride using H,(h. 

Table 1 contd .... 
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N-Maleoyl chiiDsan oligoiiiUXlharide (NMCOS) The antioxidant activities of the derivatives were evaluated by superoxide anion~-- and [91] 

and N -succinyl chiiDsan oligosaccharide hydroxyl radical OH scavenging and determination of reducing power. Results suggest that 

(NSCOS) were prepared ftom a chitos1111 oligo- NMCOS possesses stronger antioxidant activities, which may be related to the fact that the 

saccharide by acylation with maleic anhydride maleoyl moiety has a stronger electron-withdrawing effect than the succinyl moiety. 

and succinic anhydride, respectively. 

A N-furoyl chitosan oligo-saccharide (NF- The derivative exlnbited higher antioxidant activities than the chitosan oligosaccharide as [92] 

COS) was prepared via acylation of chiiDsan determined by three methods: DPPH scavenging activity, reducing power and hydroxyl radi-

and chiiDsan oligosaccharide. cal scavenging activity. 

An oligosaccharide from flaxseed was ob- The flaxseed gum oligosaccharide (FGOS) was chamcterized by HPLC-SEC, GC, FTIR, NMR [93] 

tained using the H,~ oxidative method. and FESEMl. FGOS exhibited good fn:e nulli:al scavenging ability (OH" 82.58%, DPPH" 

52.74% and ABTS" 91.29% at most, respectively), suggesting a potent antiradical activity. 

Ultrasound irradiation and enzymatic hydroly- The filtrate prepared by ultrasound pre-tteatment of wheat chaff was evaluated for its anti- [94] 

siB were applied to the production of antinxi- oxidant capacity using the ABTS radical-scavenging assay. The resulting tested activity was 

dant xylooligosaccharides from wheat chaff. equal to 1.03 ± 0.01~UDol ascorbic acid equivalent/g. 

The corn cob xylan was extracted using dilute XOS was tested for its DPPH radical scavenging activity and presented a ICso of 1 mg/ml. [95] 

acid, dilute alkali and sodium hypochlorite. 

The extracted xylan (X OS) was subjected ID 

enzymatic hydrolysis using Bacillua aerophi-

Ius KGJ2 xylanase. 

The polysaccharide of Crassostrea gigas The oligosaccharidcs presented elevated antioxidant activities evaluated by two methods, [96] 

(--.4)-a-d-Glc-{1--> with few --.3,4)-~-d-Glc- hydroxyl radical scavenging (HRSA) and DPPH free radical scavenging activities. 

(1--> and -->2,4)-~-D-Glc-(1-+branched units), 

a sheUfish largely cultivated in China, was 

depolymerized using H20 2• 

Xylooligosaccharides (XOS) from beechwood XynlOA produced a mixture of neutral and acidic XOS and the XOS produced by Xyn30D [72] 
1111d birchwood glucuronoxylans were pro- were all acidic containing a methylglucuronic acid (MeGlcA) ramification. The substituted 

duced by enzymatic hydrolysis using two acidic XOS-MeGlcA showed a high and stronger antioxidant activity, detennined as ABTS 

xylanases, a OHIO (XynlOA) and a GHJO scavenging ability, than the XOS produced by XynlOA. The antioxidant activity increased 

(Xyn30D). with the degree of polymerization ofXOS, and depended on the type ofxylan substrate used. 

Crude Aspergillua fomigatus xylanasc was The scavenging ability ofXOS obtained from the 12 h enzymatic hydrolysis was studied [97] 

used for hydrolysing wheat husk without any using the DPPH assay. The XOS exhibited concentration-dependent antioxidant activity, with 

pre-treatment& for producing XOS. a maximum of74% at the concentration of 6 m.g/ml. 

Thermoascu:r aurantiacus family 10 endoxy- A feruloyl arabinoxylotrisaccharide (F AX3) showed high antioxidant activity in the 2,2- [98] 

lanase (XYLI) was used to obtain feruloylated diphenyll-picrylhydrazyl (DPPH) reduction assay, exhibiting an antiradical efficiency, and 

oligosaccharides from insoluble wheat flour inhibited the copper-mediated oxidation ofhum1111low density lipoprotein (LDL) in a dose-

arabinoxylan (WFAX). dependent lllliJlller with almost complete iolu'bition at 32 f.LM. 

Agar (1-4)-lillkcd 3,6~dro-a-l-galactose The oligosaccharide& neoagaro-octaose and neoagaro-decaose exhibited increased radical [99] 

alternating with (1-3)-lillkcd ~-D- scavenging activity towards 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-biB (3-

galactopynmose) was extracted from Gelidium ethylbenzothiazoline sulfonic acid) radicals. 

C1111QlhJii and hydrolysed by a recombinant ~-

agarase. 

Agaro-oligosaccharides were ob-tained from Oligosaccharide samples were able to scavenge the. ABTS + and DPPH radicals, and also [100] 

commercial agarose through an enzymatic capable to reduce ferric ttipyridyl-ttiazine (ferric ion reducing power). 

hydrolysis reaction using ceUulase from 

Trichoderma reesei 

Alginates with different guluronic (G) and Alginate oligosaccharides with molecular weights (MW) from 1000 to 3750 Da were ob- [101] 

mannuronic (M) acids were submitted to tained by "(-irradiation ofNaAlg solution in the presence of small amounts of Hl~ at low 

radiation-induced degradation in aqueous and doses (below 5.0 kGy) and by controUing the G/M. The antioxidant properties of the fractions 

~02 solutions. with various molecular weights and different G/M ratios were evaluated by using the DPPH 

method. Both MW and G/M ratio are important factors in controUing the antioxidant proper-

ties of alginate oligosaccharides. Lower GIM ratios lead ID relatively strong scavenging abili-

ties as evaluated by the DPPH method. 

Table 1 CODtd-. 
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Alginate oligosaccbarides (AOS) were pre- The antioxidant activity of AOS was evaluated by lipid oxidation inhibition, radical scaveng- [102] 

pared from alginate using alginate lyase. The ing activity, and ferrous ion chelating activity. AOS were able to completely inln"bit lipid 

AOs were structurally characterized by thin oxidation in emulsions. AOS showed excellent radical scavenging activity towards ABTS, 

layer chromatography, infrared spcctrometry, hydroxyl, and superoxidc radicals, but had no ferrous ion chelating activity. The radical scav-

and mass spec-trometry. The A Os were struc- enging activity is suggested to originate mainly from the presence of the conjugated alkene 
turally characterized as a mixture of dimers, acid structure formed during enzymatic dcpolymerization. According to the resonance hybrid 

trimers, and t.etramers. theory, the parent radicals of AOS are dclocalized through allylic mmmgement, and as a 

consequence, the reactive intermediates are stabilized. 

Porphyridium cruentum poly-saccharide& The antioxidant properties of the degradation products were evaluated by determining the [44] 

were degraded using hermetical microwave scavenging ability of free radicals, inhibitory effects on lipid peroxidation in liver homogen-

resulting in different molecules with 2918 to ates and haemolysis of mouse erythrocytes. The low-molecular-weight fragments after deg-

256.2, 60.66 and 6.55 kDa. radation exerted an inln"bitory effect on oxidative damage. The 6.55-kDa fragment had 

stronger antioxidant activity than the 60.66 and 256-kDa fragments. 

Glucuronomannan oligosaccharides (GS) were Antioxidant activities (hydroxyl radical scavenging activity, superoxide radical scavenging [103] 

firstly obtained by H2~ degradation of fu- activity, reducing power and DPPH radical scavenging activity) of Gs and SGs were deter-

coidan that was extracted from the brown alga mined. The higher the degree of polymerization the greater the antioxidant strength, except 

Sargassum thunbergii. Sulfated glucurono- for the hydroxyl radical scavenging activity. On the other band, the higher the sutfate content, 

mannan oligosaccharides (SGS) were obtsined the lower the reducing power and the DPPH radical scavenging activity. Opposite results 

by sutfation of GS. were found for the superoxide radical scavenging activity. Compared with fucoidan, most GS 

and SGS showed higher antioxidant activity. 

Wheat bran insolul21e dietary fiber and an Structural characterization demonstrated that the four fractions ofFEOS contsined esterified [104] 

oxalic acid solution were mixed and boiled for ferulic acid, arabinose and xylose linked by beta (1-4) glycosyl glycosidic bonds. FEOS 

5 h. Soluble feruloylated oligosaccharides revealed a concentration~ependent antioxidant activity as free radical scavengers (DPPH and 

(FEOS) were separated on a Sephadex LH-20 hydroxyl), in reduction ability and metal ion chelation. FE08-2 showed the best antioxidant 

gel filttation column eluted with 2So/o (v/v) potential. The antioxidant capacity was not only influenced by the amount of esterified 

ethanol/water. ferulic acid but might be related to physical and chemical properties, such as particle size, 

solubility and viscosity. 

A mulberry polysaccharide was firstly ex- One of the oligossacharidcs, EMOS-la, consisted of galactose units with an average molecu- [105] 

tracted in a water bath at 80 •c for 4 h and lar weight of 987 Da. The antioxidant activity ofEMOS-la, evaluated by as the DPPH and 
precipitated with ethanol The crude mulberry ABTS radical scavengiiJg activities and ferric reducing antioxidant power (FRAP), correlated 

poly-saccharide solution was then incubated positively with its concentration. 

with ~-mannanase. The resulting oligosaccha-

rides were purified by DEAE-52 ceUulose and 

Sephadex G-100 column. 

A Gracilaria (red algae) crude polysaccharide NAOS exhibited antioxidant capacity as determined by different methods, DPPH, ABTS, 

was hydrolysed with agarase into neoagaro superoxide and hydroxyl radical scavenging activities and FRAP. The analysis showed that 
[76] 

oligo-saccharides (NAOS) with different the degrees of polymerization can affect the antioxidant capacity ofNAOSs. 

degrees of polymerization. 

Eazymatie Syntheaill 

Daidzein was converted into 7 -0-[6-0-( 4-0- Cultured cells of Catharanthua roaeua were used to convert daidzein into its 4'-0-~- [106] 

(~D-xylopyranosyl))-fJ-D-xylopyranosyl]-13- glucoside, 7-0-Jl-glu.cosidc, and 7-0-~-primeveroside. The latter was xylosylated by a As-

D-glucopyran-oside by means of two enzy- pergillus sp. Jl-xylosidase to daidzein trisaccharide, 7-0-[6-0-(4-0-(~D-xylopyrancsyl))-(3-

matic steps. D-xylopyranosyl]-(3-D-glu.copyranoside. The fJ-glucosides and P-xylooligosaccharidc of 

daidzein exerted DPPH free-radical and supcroxidc radical scavenging activities. 

The 2-diphenyl-1-picrylhydrazyl radical scavenging activity 
(DPPH scavenging activity) is the most commonly used method for 
the study of oligosaccharides, probably because of its simplicity, 
speed and low cost compared to other methods [80]. Other recently 
used methods for evaluating the antioxidant capacity of 
oligosaccharides include the 2,2 • -azino-bis (3-ethylbenzothiazoline 
sulfonic acid) radicals scavenging activity (ABTS scavenging activ­
ity), hydroxyl radical scavenging activity, ferric reducing antioxi­
dant power (FRAP) superoxide anion radical scavenging, reducing 
power, and ferrous ion chelating activity. The principles, 

advantages and disadvantages of these methods can be accessed in 
specialized reviews [2, 107, 108]. 

3.2. In l'ivo Studies 
The evaluation of the antioxidant capacity of different 

molecules can be performed following their effects on the redox 
state of different biological fluids and tissues, such as plasma, 
erythrocytes, urine and cerebrospinal fluids of humans and 
experimental animals. The eventual antioxidants to be tested are 
administered to the animals which are euthanized after given 
periods of time. Samples of blood, tissues or organs are used to 



assess oxidative stress marker levels or eventual molecular or cell 
damages [81]. Endogenous enzymatic antioxidants such as 
superoxide dismutase (SOD), catalase (CAT) and glutathione 
peroxidase (GSH-Px) and non-enzymatic molecules such as re­
duced glutathione (GSH) act to reduce the levels of ROS [109, 
110]. When ROS levels increase due to the increase in oxidants or 
deficiencies in cellular antioxidants, an oxidation-reduction 
imbalance occurs defined as oxidative stress, fuvoring an oxidative 
cellular environment [111, 112]. As a result of oxidative stress, for 
example, hepatic damage may occur, which impairs the liver 
functions and leads to many complications, such as immediate 
metabolic dysfunctions. These lesions initiate cell necrosis, fibrosis, 
lipid peroxidation, reduction in glutathione levels, and increased 
levels of alanine aminotransferase (AL T) and aspartate 
aminotransferase (AS T) in plasma [113 ]. 

End products of lipid peroxidation, such as malondialdehyde 
(MDA) and 4-hydroxy-2-nonenal [114] can also be used as 
biomarkers of oxidative stress. The widespread use of MDA as a 
biomarker of lipid peroxidation is due to its reaction with DNA 
forming MDA-DNA adducts [115] and its easy reaction with 
thiobarbituric acid (TBAR) [116]. 

Total antioxidant capacity (T -AOC) of plasma is an important 
biomarker of oxidative stress, and useful in the evaluation of the 
antioxidant capacity of samples. T -AOC considers the synergistic 
role of all antioxidants (enzymatic and non-enzymatic) rather than 
the simple sum of individual antioxidants since it defines the syner­
gistic effect between the various antioxidant compounds in the 
sample [117]. In addition to the enzymes already described above, 
the antioxidant system also comprises compounds such as uric acid, 
vitamin C, vitamin E, glutathione, bilirubin, a-lipoic acid, and caro­
tenoids. 

Table l presents recent studies in which different 
oligosaccharide& had their antioxidant activities evaluated under in 
vivo conditions. 

3.3. Strudural Features of Oligosaeeharides Determining Anti­
oxidant Activity 

Contaminants, especially phenolics and proteins, have been 
many times considered the reason for the overestimation of the 
antioxidant activities of crude extracts or partially purified oligo­
saccharides and polysaccharides. For this reason, it is absolutely 
necessary to use powerful methods of purification as well as strict 
criteria to confirm the homogeneity of the molecule 

In the same way as the antioxidant action of polysaccharide& 
[13 8-144 ], the antioxidant activities of oligosaccharides are affected 
by a myriad of reasons such as the method of depolymerization, the 
degree of polymerization. solubility, nature of the monosaccharide 
constituents, the glycosidic linkages of the side chains and the mo­
lecular weight [86, 96, 145-147]. A recent report shows that the 
transglycosylation products containing ~-1,6-branched 3-0-~-D­
gentiobiosyl-D-laminarioligosaccharides of laminaritriose reacted 
with a glucosidase which exhibited about 95% enhancement in the 
anti-oxidant activity compared to the untreated unbranched lami­
naritriose. This enhanced anti-oxidant activity was related to the 
production of a branched 3-0-~-D-gentiobiosyl residue [148]. In 
addition, the anti-oxidant activity of the laminarin containing more 
~-1 ,6 branches, isolated from Eisenia bicyclis, is stronger than that 
of the laminarin containing less ~-1,6 branches, isolated from 
Laminaria digitata [149]. 

Furthermore, the reducing sugar content, the presence of pheno­
lic groups such as ferulic acid, and the presence of uronic acid, 
among others, revealed to play an important role in the antioxidant 
properties [150, 151]. Still further, both polysaccharides and oligo­
saccharides have their antioxidant properties improved after chemi­
cal modifications, such as sulfation, carboxymetbylation, phos­
phorylation, benzoylation, acetylation. among others [152]. After 
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derivatization, both polysaccharides and oligosaccharides have their 
antioxidant activities increased [153-158]. 

An interesting improvement of antioxidant activity was ob­
tained by chemical modification of a xanthan oligosaccharide. The 
antioxidant activity of the xanthan oligosaccharides is generally 
attributed to the reducing sugar and pyruvate acid contents [88]. 
The derivatives maleoyl xanthan oligosaccharidcs (XGOSMAs) 
and phthaloyl xanthan oligosaccharides (XGOSPAs), prepared by 
reacting xanthan oligosaccharides with maleic anhydride and 
phthalic anhydride, respectively, have similar substitution degrees, 
similar molecular weights, pyruvate acid and reducing sugar con­
tents, but present higher antioxidant activity when compared to the 
non-reacted preparations [89]. The higher antioxidant properties of 
xanthan oligosaccharide derivatives have been attributed to the 
properties of these substituting groups [89]. 

Chitosan oligosaccharides (COS) are degradation products of 
chitosan, which is the N-deacetylated derivate of chitin, the second 
most abundant polymer in nature after cellulose. Chitin is found 
commercially in the waste products of the marine food processing 
industry, especially in those resulting from shrimp shell processing 
[ 159]. Compared to chitosan, COS have higher water solubility and 
lower viscosity, being absomed through the intestine and excreted 
into the urine. The biological activities and therapeutic implications 
of COS were recently revised [156]. Several studies revealed that 
COS possess strong antioxidant and greater radical scavenging 
competency, showing potential biomedical applications [156-160]. 
The antioxidant activity of COS depends on their degree of deace­
tylation and molecular weights [156-160]. It was shown that 90% 
deacetylated medium molecular weight COS have the highest free 
radical scavenging activity against DPPH, hydroxyl, superoxide, 
and ctubon-centered radicals [22]. The antioxidant properties are 
closely related to the amino and hydroxyl groups, which can react 
with unstable free radicals to form stable macromolecule radicals. 
Recently a commercial 85% deacetylated chitosan was degraded by 
a chitinase from CopriTiopsis cinerea into several COS with degrees 
of polymerization ranging from 2 to 20 with a significant increase 
in the antioxidant activity, as evaluated by the DPPH-radical­
scavenging activity method [161]. 

The antioxidant capacity of chitosan oligosaccharides can be 
modified by adding diverse organic groups to their structures [159-
160]. The antioxidant properties of several modified chitosan oligo­
saccharides have been studied in detail [91, 92]. Besides increasing 
the spectrum of potentially useful molecules, such studies also con­
tribute to a better understanding of the mechanisms underlying the 
antioxidant activity of these compounds. Good examples, among 
several others to be discussed below, are N-maleoyl chitosan oligo­
saccharide (NMCOS) and N-succinyl chitosan oligosaccharide 
(NSCOS). These derivatives were prepared from a chitosan oligo­
saccharide by acylation with maleic anhydride and succinic anhy­
dride, respectively [91]. The antioxidant activities of these deriva­
tives were evaluated by measuring superoxide anion Oi- and hy­
droxyl radical OH scavenging and by determining their reducing 
power. Results suggest that NMCOS possess stronger antioxidant 
activities, which may be related to the fact that the maleoyl moiety 
has a stronger electron-withdrawing effect than the succinyl moiety. 

A N-furoyl chitosan oligosaccharide (NF-COS) was prepared 
via acylation of chitosan and chitosan oligosaccharide [92]. The 
NF-COS derivative exhibited higher antioxidant activities than the 
chitosan oligosaccharide, as determined by three methods: DPPH 
scavenging activity, reducing power and hydroxyl radical scaveng­
ing activity. 

A gallate chitooligosaccharide derivative (gallate-COS) was 
obtained by covalently linking gallic acid to amino groups of chito­
oligosaccharide (COS) (Fig. 3). The chemical structure of gallate­
COS was identified by FT-IR, 1H NMR. and 13C NMR. [151]. COS 
and gallate-COS were found to be non-toxic and able to scavenge 
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Fructo-ollgo1aecbarldes (FOS) 

The effects offructo-oligosac-charidcs (FOS) on The supplementation ofFOS increased the daily output ofbifidobacteria, decreased plasma [118] 

fecal bifidobac-tcria, lipid pcroxidation index, TBARS and cholesterol concentrations in constipated nursing-home elderly residents among 

indexes of nutritional status, and sustainability other health beneficial effects. The effects remained at the end of the post-FOS period. 

after withdrawal were studied in constipated 

nursing-home residents. 

The effects of treatment with ftucto- No differences were observed with respect to lipid pcroxidation and hydro-peroxide concen- [119] 
oligosaccharides (FOS) on intestinal mucositis tration in all investigated groups. However, the authors concluded that FOS supplementation 

induced by S-fluorouracil (S-FU) were evaluated in mucositis can improve cellular metabolism, preserving the catalase content and exerting 

in mices. Oxidative stress was evaluated in antioxidant properties. FOS supplementation showed protective effects on the barrier 

fragments of ileum by measuring thiobarbituric function of the intestinal mucosa and may be an important adjunct in the prevention and 

acid-reactive species (TBARS), hydro-peroxide treatment of mucositis. 

concen1ration and superoxidc dismutase (SOD) 

plus catalase (CAT) activities. 

The effects of in ovo and/or oral administration Among other functional effects, the supplementation with oligosaccharidcs improved the [120] 

of the oligosaccharide from palm kernel cake on total antioxidant capacities of serum and liver measured by both FRAP and ABTS methods. 

prenatal and post-hatched broiler chicks were The analysis of antioxidant related genes (antioxidant enzymes), showed that the expression 

evaluated. of catalase in the liver was significantly higher in the oligosaccharide palm kernel group than 
in the control group. However, no changes were observed in the expression of glutathione S-

1ransferBSCHl and superoxide dismutase. 

Alginate Oligoaaccharide1 

Oligosaccharide nanomedicine ofalginate so- After 1-month therapy, infection rates and side effects were lower in patients treated with 

dium (ONAS) was prepared with ampicillin at ONAS than in those of the control group which received pluronic nanoparticles. The same 

size <200 nm. ONAS was administered orally to occurred with the fusion rates (a measure for the success of the surgery). Compared to the 

patients with degenerative lumbar disease (OLD) control group, serum levels of miR-lSS, AL T, AST, and IL-l~ were lower while SOD, GSH, 
[121] 

osteoporosis. The purpose was to find out if and IL-lra were higher in the ONAS group. The authors concluded that ONAS minimizes 

ONAS can prevent some of the complications complications and improves the therapeutic effects after surgery in OLD by regulating serum 

that follow the surgery that consists in posterior miR-155 and by increasing the antioxidant activities by means ofa down regulation of the 

lumbar intervertebral fusion with cages (PLIFC). serum levels ofmiR-lSS. 

An alginate oligosaccharide (AOS) was prepared AOS treatment resulted in increased serum levels of SOD, GSH, HDL-C, and reduced levels 

from alginate sodium ofbrown algae using of interleukin-1 (IL-l) beta and IL-6. Treatment also diminished the plasma AST/ AL T ratios 

alginate lyase. Four AOS with different degrees and the plasma triglycerides, total cholesterol (TC), low-density lipoprotein cholesterol LDL-

of poly-merization were produced and purified C, and malondialdebyde (MD A) levels. AOS reduced the osteosarcoma progression, which is 

by size-exclusion chromatography. Only one associated with an improvement of the antioxidant and anti-inflammatory capacities ofpa-
[122] 

AOS (DPS) had antitumor effects on osteosar- tients, suggesting its potential use as a drug for osteosarcoma therapy. 

coma cells. Osteo-Sl!It:oma patients were as-

signed into two groups: AOS (oral administra-

tion of 10-mg AOS-DPS daily) and control 

groups (placebo). 

An alginate oligosaccharide obtained by alginic Superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), malondialdehyde (MDA) 

acid polysaccharide using alginate lyase, was and total antioxidant capacity (TAOC) were evaluated. A higher serum GSH content and 

used as a novel feed supplement in swine pro- CAT activity was observed in AOS-supplcmented pigs than those in the control group. Also, 

duction. Growth performance, antioxidant ea- AOS supplementation increased the serum T-AOC. No obvious differences in SOD activity [123] 

pacity and intestinal digestion-absorption func- and MDA content were observed between the two groups. 

tion in weaned pigs were evaluated and com-

pared with a control group. 

Mannan Oligo•aecbarldes (MOS) 

MOS was used as food supplement and its effects Supcroxide dismutase (SOD), total antioxidant capacity (T -AOC), malon-dialdehyde (MD A) 

on growfu performance, antioxidant capacity, non- and glutathiom: peroxidase (GSH-Px) in the hepatopancrcas, intestine and scrum were evalu-
[124] 

specific immunity and intestinal morphology of ated. The dietary MOS affected significantly the antioxidant capacity of the crabs. 

the Chinese mitten crab were evaluated. 

Table 2 eontd .... 
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MOS was used as food supplement and its effects on MDA, reduced glutatbione (GSH), superoxide dismutase (SOD) and glutatbione peroxi- [125] 

growth performance, serum corticosterone level, dase (GSH-Px) levels were evaluated in breast muscle homogenate. The addition of 

antioxidant ability, meat quality and chemical com- MOS increased the GSH-Px activity and decreased the MDA content with the GSH-Px 

position of breast muscle was studied in broilers activity being similar to that in the control group. However, there were no differences in 

exposed to cyclic heat stress (HS). SOD activity and GSH content in the breast muscle among groups. MOS improved oxida-

tive status in broilers under cyclic heat stress. 

Pectin Oligosaccharidea (POS) 

A study was conducted to investigate the effect of The oxidative status was inferred from the total antioxidant capacity (T -ADC), superox-

pectin oligosaccharides (POS) and zinc chelate ide dismutase (SOD), copper-zinc superoxide dismutase (CuZn·SOD) and glutatbione 

(Zn-POS) on growth performance, zinc status, intes- peroxidase (GSH-Px) activities besides the MDA contents in serum and liver. Supple-
[126] 

tina1 ID.OIJihology and antioxidant status in broilers. mentation of the diet with pectin otigosaccharides (POS) and zinc chelate (Zn-POS) had 

a powerful impact on the activities of enzymes and gene expression involved in the anti-

oxidant status ofbroilers. 

Chito1an Oligosacebarides (COS) 

The authors investigated the effects of dietaiy COS Maternal dietaiy COS supplementation increased plasma total SOD and caused a down-

supplementation during late gestation on the antioxi- trend in plasma MDA. The mRNA expression of some antioxidant genes in the placenta 

dant defence capacity of sows. were increased and pro-inflammatory cytokines were reduced by COS supplementation. 
[127] 

No significant modifications were observed in the activities of placental total SOD and 
CAT. Maternal dietaiy supplementation with COS protected sows against oxidative 

stress by increasing plasma antioxidants and blocking the inflammatory response. 

In tbis work, the authors investigated the effects ofa The oxidative status was evaluated by determining the serum total antioxidant activity 

Forsythia suspenso extract (FSE) and chitooligosac- and the enzymes superoxide dismutase and glutatbione peroxidase, and by quantifying 

charide (COS), alone or together, on per-formance the oxidative injury products 8-hydroxy-2'-deoxyguanosine (urine) and malondialdehyde 

and health status of weaned piglets. (serum). The FSE or COS supplementation in post-weaning diets improves the perform-
[35] 

ance and feed utilization, and decreases the severity of diarrhea. The beneficial effects of 

both FSE or COS may be attributed to the same underlying biological response mecha-

nisms as assessed by reduced intestinal permeability, improved antioxidant capacity and 
enhanced immune function. 

The authors evaluated the effects of chitosan oligo- Circula.ting antioxidant levels were higher in the COS group than in the control group. COS [128] 

saccharides (COS) on corona.ty heart disease (CHD) consumption increased tbe serum levels of SOD and GSH and reduced the levels of ALT 

patients. and AST. The lipid profiles were improved in the COS group. In the same way, COS con-
sumption increased the types and numbers of pro biotic species of the intestinal flora. 

The effects of chitooligosaccharides (COS) on COS supplementation improved the serum T -AOC (total antioxidant capacity) and de-

growth, antioxidant capacity, non-specific immune creased the serum MDA and catalase activities. No significant differences were observed 

response, and resistance to Aeromonm hydrophikl in in tbe serum SOD and GSH-Px activities among the dietaiy treatments. Results suggest [129] 
GIFT tilapia (Oreochromis niloticus) were evalu- that dietary COS supplementation could enhance the performance and the immune re-

ated. sponse of GIFT tilapia. 

The authors investigated the possible anti-aging The decreased activities of SOD, CAT, and GSH-Px caused by D-gal were gradually [130] 
effect of COS using the mouse aging model induced elevated to values comparable to those in the control group. The MDA level was attenu-

by D-galactose (D-gal.) ated by COS in a dose-dependent manner. 

The objective oftbis study was to investigate the Pretreatment witb COS significantly reduced the high levels ofMDA caused by DOX in [34] 

potential role of COS in doxombicin (DOX}-induced the heart tissue. COS also reverted to normal levels the activities of CAT and SOD as 

cardio-toxicity, and the effects of COS on apoptosis weD as the GSH level and the GSH/GSSG ratio. 

and oxidative stress in rats and H9C2 ceUs. 

The authors evaluated the effects of COS on NF-ICB COS diminished ROS production and retinal oxidative damage. It also inhibited NF-ICB 

(nuclear factor kappa B) activation and MAPK. (mi- activation by decreasing IICB degradation and p65 expression. COS decreased 

togen-ac-tivated protein kinases) phosphorylation in phosphorylation of JNK. and ERK, but increased the phosphorylation of p38. [131] 
a rat model of retinal IIR injury induced by tran-

siently raising tbe intra-ocular pressure. 

The objective oftbis study was to analyse the anti- The administration of a high fat diet resulted in a reduction of the activities of superoxide [132] 

oxidant activities of chitooligosaccharides (COS) in dismutase, catalase and glutatbione peroxidase in stomach, liver and serum of mice. The 

a high-fat diet (HFD)-mouse model administration of COS, in association with the high fat diet, resulted in significant in-

creases in the activities of the three enzymes. In conclusion, COS can restore tbe activi-

ties of the enzymes affected by the high fat diet. 

Table l CODtd--
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Feruloyl Oligo1aeebaride1 (FEOS) and Otben 

The antioxidant activities of wheat bran feruloyl SOD, CAT, and GSH-Px in FEOS groups were sigoificantly increased in heart, liver, and 

oligosaccharides (FEOS) were determined in rats by kidney when compared with the control group. The same occurred with the glutathione 

measuring the activities and mRNA expression (GSH) contents in heart, liver, and kidney. FEOS up-regulated the mRNA expression 

levels of phase 11 detoxifying/antioxidant en-zymes: levels of SOD, CAT, and H0-1 in the organs. The immunoblot analysis revealed in-
[133] 

superoxide dismutase (SOD), catalase (CAT), glu- creased nuclear factor-E2-related factor (Nrf2) protein expression levelll in the organs 

tathione peroxidaae (GSH-Px), and heme oxygenase- and there were positive correlations between the mRNA expression of phase 11 detoxify-

1 (H0-1) in rat organs, heart, liver, and kidney. ing!antioxidant enzymes and the expressions ofNr£2 protein. The authors conclude that 

FEOS treatment could modulate the detoxifying/antioxidant enzymes via Nr£l signaling. 

In this work the effects of wheat bran feruloyl oligo- Compared to the control group, the serum catalase (CAT), glutathione peroxidase (GSH- [78] 

saeeharides (FEOS), as an antioxidant supplement Px) and superoxide dismutase (SOD) activities and glutathione (GSH) levels of lambs 

for perform-ance, were investigated with respect to were sigoificantly higher, while the serum total antioxidant capacity (T -AOC) slightly 

blood metabolite levelll, antioxidant status and rumi- increased. 

nal fermentation in lambs. 

Wheat bran feruloyl oligosaccharides (FEOS) pos- Compared to the control group, the antioxidant enzyme activities (superoxide dismutase, 

sess in vitro antioxidative potential. The aim of this catalase and glutathione peroxidase) were higher in plasma from rats fed with FEOS and 

study was to investigate the protective effect of oxidised glutathione and malandialdehyde levels were lower. After ingestion ofFEOS, 
[134] 

FEOS against oxidative stress in rat plasma. the plasma of rats was more resistant to AAPH-induced haemolysis compared to the 

control group. These results suggest that FEOS enhance the level of the antioxidant activ-

ity in rat plasma in vivo. 

The mechanisms by which wheat bran feruloyl oli- The FEOS treated group had the highest activities and mRNA expression levelll of so-

gosaccharides (FEOS) pro-tect against 2,2' -azobis(2- peroxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). The ac-

methylpro-pionamidine) dihydrochloride (AAPH) tivities of SOD, CAT, and GPx positively correlated with the mRNA and protein expres-

induced oxidant injury were in-vestigated in rats. sion levels ofNrf2. The FEOS group increased the mRNA expression level ofNrf2 and 

down regulated the expression level ofkelch-like ECH-associated protein-1 (K.eap 1 ), 
[135] 

demonstrating that FOs could cause a dissociation of the Nrf2/Keapl complex. The up-

stream signaling ofNrf2, gene and protein expression levels ofp38 mitogen-activated 

protein kinases (MAPK.) and phosphatidylinositol-3-kinase (PI3K) were up-regulated by 
FOs. Pretreatment ofFOsH increased the mRNA and protein expression levels of mascu-

loaponeurotic fibrosarcoma K (MafK) but not MaiD and MatF. 

The objective of this study was to evaluate the pro- Acrylamide exposure caused a sigoificant reduction in the maternal gesta-
tective effect of a com-bination supplementation of tionalllactational body weight and preweaning body weight as well as behavioral altera-

fructo- and xylooligosaeeharides (FOS + XOS) tions among male offspring. The combination supplement of FOS + XOS had no sigoifi-

during perinatal period aiming to mitigate acryla- cant effect on these modifications. However, sigoificantly diminished antioxidant en-

mide-induced oxidative stress and neurotoxicity in zyme (SOD and CAT) activities in the maternal and offspring brain were restored in rats 

mothers (rats) and young pups. given FOS+ XOS supplementation. The prebiotic supplementation normalized the cle-

vated nitric oxide levels in the cerebellum of the offspring born to ACR exposed rats. [136] 

Furthermore, prebiotics restored the activity of acetylcholinesterase (AChE) and im-

proved the levels of dopamine (DA) in the maternal cortex. The protective effect of pre-

biotic supplementation was also discernible in the mitochondrial fraction of maternal 

brain regions. These findings suggest that prebiotic supplementation during pregnancy 

may be useful in attenuating the perinatal toxic effects associated with neurotoxin expo-

sure. 

Sulfate oligosaeeharides from green algae Ulva The oligosaccharides enhanced the glutathione, superoxide dismutase, catalase, and 

lactuca (ULO) and Enteromorpha prolifera (EPO) telomerase levels and the total antioxidant capacity, and decreased the levels ofmalon-

were used for investigating anti-aging effeets and the dialdehyde and advanced glycation end products. After ULO and EPO treatment, the 

underlying mechanism in SAMP8 mice. levels of inflammatory factors, including IFN-'"f, TNF-a, and IL-6, decreased; the BDNF 

and CbA T levels increased; and hippocampal neurons were protected. Down-regulation 

of the p53 and FOXOI genes and upregulation of the Sirtl gene indicate that ULO and [137] 

EPO have potential therapeutic effects in the prevention of aging in SAMP8 mice. By 

16S rRNA gene high-throughput sequcncing, the abundance of Desulfo-vibrio was found 

to be markedly different in mice treated with ULO and EPO. The abundances of Verru-

comicrobiaceae, Odorihacteraceae, Mogibacteriaceae, Planococcaceae, and Coriobac-
teriaceae correlated positively with the age-related indicators. 



cellular radicals in RA W264.7 cells. Both COS and gallate-COS 
inhibit oxidative damage to lipids, proteins and DNA in RA W264. 7 
cells, decrease the activation and expression ofNF-lCB and increase 
the level of intracellular antioxidant enzymes (SOD and GSH) in 
oxidative stress-induced RA W264.7 cells. Collectively, gallate­
COS could be used as scavengem to control free radicals that lead 
to damage to cellular systems. 
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Fig. (3). Galloyl-chitooligossacharide structure. 

Xylooligosaccharides (XOS) are sugar oligomers formed by 
xylose units, which appear naturally in fruits, vegetables, milk, and 
honey, For large scale, XOS are obtained from hydrolysis reactions 
involving arabinoxylans derived from lignocellulosic materials, or 
cereal and millet brans [60, 92, 93, 95, 162]. The antioxidant activ­
ity of xylo-oligosaccharides is generally attributed to the presence 
of ester-linked hydroxycinnamic acid derivatives, such as ferulic 
acid, coumaric caffeic and syringic acid residues on the xylan chain 
[78, 96, 102, 131, 132, 133, 163] (Fig. 4). Members offeruloylated 
oligo-saccharides may differ from each other in terms of composi­
tion and number of glycosylated monosaccharides, the species of 
sugar residues linked to ferulic acid and the linking position, the 
contents of ferulic acid, and whether they contain di-, tri-, tetra­
ferulic acid or p-coumaric acid. 

Feruloylated oligosaccharides owe their nutritional functions to 
both ferulic acid and oligosaccharides. They are stable under low 
pH and high temperature. As excellent functional ingredients, feru­
loylated oligosaccharides have a wide range of applications in the 
food industry [81, 100]. 

4. PERSPECTIVES 

In recent years, the concept of the linear economy has been 
replaced by the concept of a circular economy, since the linear 
model is based primarily on the use of non-renewable fossil 
resources. The concept of a circular economy endorses the 

o:-L-arahinofuranosyl 
units 

Fig. (4). Feruloyl xylooligosaoobaride structure. 
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approach to recycling, reuse, closing the product life cycle [164]. 
Within this context, the use of agro-industrial waste, such as 
lignocellulosic materials to obtain xylooligosaccharides and xylo­
oligosaccharide derivatives, and marine food processing industry 
waste, including shrimp shell, to obtain chitooligosaccharides and 
chitooligosaccharide derivatives, represent applications of the 
circular economy concept, linked to the bio-based economy [165-
172], 

Green technology could also be incorporated more frequently in 
the obtainment of antioxidant oligosaccharides. Although the 
extraction process using water is the most economic one, it is not 
selective and several interferents are coextracted. Besides this, high 
temperatures are generally required to improve efficiency, which 
can lead to degradation of thermolabile oligosaccharides. 
Additionally, other advanced techniques can be routinely used in 
the future, including microwave-assisted extraction, pressurized 
liquid extraction, supercritical fluid extraction and subcritical water 
treatment The latter has already been used as an effective method 
for the obtainment of oligosaccharides from passion fruit peel [173] 
and from Pleurotus eryngii [174 ]. Other green technology methods 
such as the use of ionic liquids for the extraction and fractionation, 
microwave-assisted extraction, ultrasound-assisted extraction, 
pressurized liquid extraction, supercritical fluid extraction, and 
enzyme-assisted extraction, have emerged during the last decades 
[175] and will certainly be useful in the obtainment of antioxidant 
oligosaccharides. 

SUMMARIZING CONCLUSION 

The above considerations gain substantial significance and im­
portance if one considers the quite numerous and generally consis­
tent reports that were detailed in this literature review regarding the 
antioxidant properties of non-digesttble oligosaccharides. The pro­
duction on a large scale of antioxidant oligosaccharides is still a 
challenge for food science and technology. However, several 
methods have been recently developed, modified, and adapted to 
optimize the production of different oligosaccharides. The food 
industry needs more efficient, simple, and less expensive processes 
for their application on a large scale. 

In conclusion, the consumption of antioxidant oligosaccharides 
may be beneficial to human and animal health. The main benefits 
can be expected in the case of diseases that modify substantially the 
redox status of patients, such as diabetes, cardiovascular disease, 
colon cancer, obesity, abnormal lipid metabolism and chronic in­
flammatory diseases such as rheumatoid arthritis. However, 
experimental approaches where different oligosaccharides and 
oligosaccharide derivatives can be evaluated in parallel are 
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necessary to elucidate the mechanisms of action and the real 
benefits of consuming these compounds in the control of oxidative 
stress. 
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