Microbial Risk Analysis xxx (xxxx) xxxx

Contents lists available at ScienceDirect

Microbial Risk Analysis

journal homepage: www.elsevier.com/locate/mran

Full length article

Risk factors for sporadic cryptosporidiosis: A systematic review and metaanalysis

Pauline Kooh^{a,*}, Anne Thébault^a, Vasco Cadavez^b, Ursula Gonzales-Barron^b, Isabelle Villena^c

^a Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France

^b Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal

^c Laboratory of Parasitology-Mycology, EA ESCAPE, University of Reims Champagne-Ardenne, Reims, France

ARTICLE INFO

Case-control studies

Cohort studies

Meta-regression

Cryptosporidium

Keywords: Research synthesis ABSTRACT

Cryptosporidium spp. is an important cause of gastrointestinal disease worldwide, responsible for 69 million cases of illness in 2016. Information on the sources and transmission pathways of human cryptosporidiosis results mainly from outbreak investigations.

A systematic review and a meta-analysis of case-control and cohort studies were performed to determine the main risk factors associated with sporadic cryptosporidiosis. Suitable scientific articles were identified through a systematic literature search and subjected to a methodological quality assessment. From each study, odds ratio (OR) measures were extracted or calculated, as well as study characteristics such as population type, design, type of model and risk factor hierarchy. Mixed-effects meta-analysis models were adjusted by population type to appropriate data partitions.

From 1985 identified references, the quality assessment stage was passed by 57 cohort and case-control studies focusing on sporadic cryptosporidiosis. The eligible studies were conducted between 1983 and 2016 and provided 568 OR categorized for meta-analysis.

This meta-analysis identified travel, immunocompromising conditions, contact with infected humans, waterborne transmission (contact with recreational waters, wastewater, and consumption of untreated drinking water), contact with animals and food consumption as the relevant risk factors for sporadic cryptosporidiosis. With regards to food exposures, consumption of meat, dairy products (raw milk) and dishes consumed outside home were found significantly associated with cryptosporidiosis. The consumption of poorly washed fruits and vegetables significantly increases ORs. This meta-analysis reveals that some potential sources of *Cryptosporidium* such as shellfish or vegetables are under-investigated.

Future case-control studies for sporadic cryptosporidiosis should include population at risk, and investigate other potential sources in relation to the genotype and the subtype of *Cryptosporidium* spp.

1. Introduction

Cryptosporidium spp. is a protozoan parasite that belongs to Apicomplexa phylum. *Cryptosporidium* spp. is a well-known causative agent of gastrointestinal diseases and commonly identified in humans and animals, including livestock and particularly cattle (calves). The main symptom of human cryptosporidiosis is diarrhea that may be responsible for weight loss and dehydration in immunocompetent, but immunocompromised patients are at increased risk of developing a severe disease (Hunter and Nichols, 2002).

Cryptosporidium spp. are globally distributed, responsible for 69 million cases of illness, and 57,203 deaths in 2016 (Troeger et al.,

2018). Kirk et al. (2015) estimated that cryptosporidiosis resulted in 2159,331 DALYs in 2010. A clinical and epidemiological study involving 22,500 children from Africa and Asia revealed that *Cryptosporidium* spp. is one of four pathogens responsible for most of moderate to severe diarrhea in infants and toddlers (Kotloff et al., 2013). In 2016, *Cryptosporidiosis* was estimated to account for 10% of cases of diarrhea mortality among children under 5 years old (Troeger et al., 2018).

There are numerous species and genotypes of *Cryptosporidium*, but human infection involves mainly two species: *Cryptosporidium hominis*, whose main host is humans and *Cryptosporidium parvum* which infects animal and ruminants. Transmission can occur through the fecal-oral route, involving direct (person-to-person transmission or contact with

* Corresponding author.

E-mail addresses: pauline.kooh@anses.fr (P. Kooh), anne.thebault@anses.fr (A. Thébault), vcadavez@ipb.pt (V. Cadavez), ubarron@ipb.pt (U. Gonzales-Barron), ivillena@chu-reims.fr (I. Villena).

https://doi.org/10.1016/j.mran.2020.100116

Received 12 November 2019; Received in revised form 20 April 2020; Accepted 21 April 2020 2352-3522/ © 2020 Elsevier B.V. All rights reserved.

animals) and indirect (waterborne or foodborne) pathways.

Water is the principal vector of contamination of *Cryptosporidium* and, numerous waterborne outbreaks involving both drinking water and recreational waters have been reported (Moreira and Bondelind, 2017; Ryan et al., 2017). Over the past years, foodborne outbreaks of cryptosporidiosis have been increasingly reported involving a diversity of food products (Ryan et al., 2018). Outbreaks investigations provide useful information about sources and transmission pathways of human cryptosporidiosis. Nevertheless, cryptosporidiosis cases are underreported or underdiagnosed in most countries (ECDC, 2019; Haagsma et al., 2013).

Several epidemiological studies of sporadic cryptosporidiosis have been published. A systematic review and a meta-analysis of case-control and cohort studies were performed to determine the main risk factors associated with sporadic cryptosporidiosis. Characterization of risk factors will contribute to identifying measures to reduce the burden of cryptosporidiosis.

2. Material and methods

The protocol of the systematic review and the meta-analysis model are described in depth in the methodological paper of this special issue (Gonzales-Barron et al., 2019).

2.1. Systematic review

The literature search was conducted in March 2017 using a combination of keywords related to (1)"*Cryptosporidium*" "OR" "cryptosporidiosis", (2) "case-control" "OR" "risk factor" "OR" "cohort" (3) "infection" "OR" "disease", joined by the logical connector "AND". Relevant studies were identified from five bibliographic search engines, Science Direct, PubMed, Scielo, ISI Web of Science and Scopus. No restrictions were defined for the year of the study or type of publication. The search was limited to the languages English, French, Portuguese and Spanish.

Each reference record was screened for relevance for inclusion in the meta-analysis study. The methodological quality of the "candidate" studies was assessed using pre-set quality criteria, comprising (1) appropriate selection of the controls; (2) adjustment to correct for confounders, (3) comparability between cases and controls, (4) acceptable responses rates for the exposed and control groups; (5) data analysis appropriate to the study design; (6) provision of odds ratio (OR) with confidence interval or p-value; or provision of sufficient data to calculate ORs; overall quality of the study (Gonzales-Barron et al., 2019). Primary studies that passed the screening for relevance were marked as having a potential for bias if they failed to meet at least one of the methodological quality assessment criteria.

Data from primary studies were then extracted using a standardized spreadsheet. Data extracted included the relevant study characteristics (location, period, population, case definition, design, sample size of the groups, type of model, etc.), the categorized risk factors, the setting, the handling practices and the outcome of the study (ORs).

A data categorization scheme was established to hierarchically group the risk factors into travel, host-specific factors and, pathways of exposure (i.e., person-to-person, animal, environment, and food routes) (see the methodological paper of this issue). In addition to the standard risk factors, the class "Hygiene" (e.g. "no handwashing after toilet", "poor hygiene habits") was also used. Person-to-person transmission was stratified in three classes: contact in the household, contact in the community and sexual transmission. The variable "Population" was stratified into mixed (adults or undefined), children (under 16 years old) and susceptible (HIV infection, AIDS, elderly population).

2.2. Data synthesis

The joint meta-analytical data was first described using basic

statistics. Next, data was partitioned into subsets of categories of risk factors. The meta-analytical models were then fitted to each of the data partitions or subsets to estimate pooled OR related to travel, host-specific factors and transmission pathways related to person-to-person contagion, animal contact, environmental exposures, and food vehicles. The meta-analytical models were fitted separately by population type. For some food classes, the effects of food preparation (e.g., eating raw, undercooked) and setting (i.e., eating food prepared outside the home) on the pooled OR were assessed by calculating the ratio of the mean OR when food is mishandled to the base OR.

The statistical analysis was designed to assess the effect of the geographical region, the study period and the analysis type (univariate/ multivariate) on the final result. The objective of the region-specific meta-analysis was to inform the decision on whether the geographical regions were to be maintained for the subsequent pooling of ORs. A geographical region (Asia, North America, South America, Africa, Europe, Oceania) was removed from a particular meta-analysis partition only if its pooled ORs were different from those associated with the other regions, or if less than 3 ORs represented the region (Gonzales-Barron et al., 2019).

All meta-analytical models were essentially weighted random-effects linear regression models. Once a meta-analysis model was fitted, influential diagnostics statistics were applied to remove any influential observation originating from studies marked as having a potential for bias. Publication bias was assessed by funnel plots and a statistical test investigating the effect of the study sample size on the ORs (Tables 2, 3

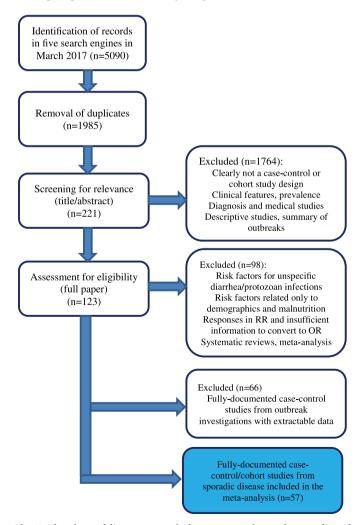


Fig. 1. Flowchart of literature search for case-control or cohort studies of human cryptosporidiosis.

(protective effect).

P. Kooh, et al.

Microbial Risk Analysis xxx (xxxx) xxxx

Team, 2008) implemented with the metafor package (Viechtbauer, 2010).

only when significant. Pooled ORs were considered significant when the

lower bound of the 95% confidence interval (CI) was equal or greater

than 1.0, except for breastfeeding where the upper bound of the con-

fidence interval had to be below 1 for it to be deemed as significant

The meta-analyzed risk factors are presented in summary tables

and 4) (Gonzales-Barron et al., 2019). Heterogeneity between studies was assessed by different indicators such as the between-study variability (τ^2), the QE test investigating residual heterogeneity, the variance of residuals and the intra-class correlation I² (Gonzales-Barron et al., 2019). Publication bias and remaining heterogeneity were not further corrected for, but were taken into account for the interpretation of the results.

All analyses were carried out in the R software (R Development Core

Table 1

Characteristics of primary studies investigating risk factors for acquiring sporadic cryptosporidiosis included in the meta-analysis.

StudyID*	Country	Study period	Population	Design	Analysis & model**	# ill/ non-ill	Quality
Abdel-Messih et al., 2000	Egypt	May 2000–May 2002	Children	Unmatched	Uni -Chi Uni-UL	90 ill 791 non-ill	Good
Al-Dabbagh et al., 2010	Iraq	June 2003-Oct 2003	Children	Matched	Uni –Chi Multi-UL	100 ill 100 non-ill	Good
Al-Shibani et al., 2009	Egypt	2009	Mixed	Unmatched	Uni- Chi	70 ill 222 non-ill	Good
Aragón et.al., 2003	USA	May 1996–Sep 1998	Susceptible	Matched	Uni –CL Multi-CL	49 ill 99 non-ill	Good
Bhattacharya et al., 1997	Bangladesh	1991–1994	Children	Unmatched	Uni –Chi Multi-UL	68 ill 204 non-ill	Good
Bouratbine et al., 1998	Tunisia	1997	Children	Unmatched	Uni –Chi	12 ill 120 non-ill	Good
Chacín-Bonilla et al., 2008	Venezuela	2017	Mixed	Unmatched	Multi-UL	67 ill 448 non-ill	Good
Chen et al., 2017	China	2011–2012	Children	Unmatched	Uni –Chi	40 ill 531 non-ill	Good
Cohen et al., 2008	USA	1992–2002	Children Adult	Unmatched	Uni-UL Multi-UL	Not stated	Good
Cruz et al., 1988	Guatemala	July 1985–June 1986	Susceptible Children	Unmatched	Uni –Chi	19 ill 110 non-ill	Good
Egger et al., 1990	Switzerland	June-Sep 1988	Children	Matched	Uni- Chi	19 ill 38 non-ill	Good
El-Shabrawi et al., 2015	Egypt	Sep 2007–Sep 2009	Children	Matched	Uni- Chi	14 ill 236 non-ill	Good
Firdu et al., 2014	Ethiopia	Feb-Aug 2011	Children	Unmatched	Uni –Chi	11 ill 18 non-ill	Poor
Fournet et al., 2013	Netherlands	Aug 2012	Mixed	Unmatched	Uni-Chi Multi-UL	82 ill 125 non-ill	Good
Gallaher et al., 1989	Mexico	July–Oct 1986	Mixed	Matched	Uni-MH	24 ill 46 non-ill	Good
Girotto et al., 2013	Brazil	Dec 2009-Oct 2010	Susceptible	Unmatched	Uni –Chi	3 ill 290 non-ill	Good
Glaser et al., 1998	USA	Apr 1992–Nov 1994	Susceptible	Unmatched	Uni –Chi	48 ill 99 non-ill	Good
Goh et al., 2004	UK	Jan 1998–Feb 2000	Mixed	Unmatched	Uni-Chi Multi-UL	152 ill 466 non-ill	Good
Hellard et al., 2003	Australia	Oct 1998–Aug 2000	Mixed	Unmatched	Uni –Chi	10 ill 24 non-ill	Good
Helmy et al., 2015	Egypt	Apr–June 2011	Children	Unmatched	Uni –Chi	81 ill 84 non-ill	Good
Hunter et al., 2004	UK	Feb 2001–May 2002	Mixed	Unmatched	Uni-Chi Multi-UL	427 ill 400 non-ill 261 ill	Good
Izadi et al., 2014	Iran	Sep 2009–Mar 2010	Mixed	Unmatched	Uni-Chi	351 non-ill 28 ill	Good
Izadi et al., 2012	Iran	Nov 2008–Mar 2009	Susceptible	Unmatched	Multi-UL Uni-Chi	394 non-ill 11 ill	Good
Khalakdina et al., 2003	USA	July 1999–July 2001	Mixed	Matched	Multi-UL Uni-CL	172 non-ill 26 ill	Good
Khan et al., 2004	Bangladesh	May 2001–Aug 2002	Children	Unmatched	Multi-CL Uni –Chi	62 non-ill 46 ill	Good
Kutima et al., 2015	Kenya	Jan 2011–June 2013	Children	Unmatched	Uni –Chi	46 non-ill 36 ill	Good
Lake et al., 2007	UK	2000–2004	Mixed	Matched	Multi –CL	676 non-ill 3368 ill	Good
Mahdi and Ali, 2002	Iraq	2002	Mixed	Unmatched	Uni –Chi	3368 non-ill 5 ill 220 non ill	Good
Manabe et al., 1998	USA	July 1989–1997	Susceptible	Unmatched	Uni –Chi	230 non-ill 68 ill 129 non-ill	Good
Marder, 2012	USA	2003-2010	Mixed	Unmatched	Uni –UL		Poor
						Lcontinued	on nove nage

(continued on next page)

P. Kooh, et al.

Table 1 (continued)

Country	Study period	Population	Design	Analysis & model**	# ill/ non-ill	Quality
					6534 ill 30,890 non-ill	
Kenya	Jan 2010-Dec 2011	Children	Unmatched	Uni-Chi Multi-UL	187 ill 1925 non-ill	Good
India	2016	Mixed	Unmatched	Uni –Chi	59 ill 233 non-ill	Good
Guinea-Bissau	1992	Children	Matched	Multi-CL	125 ill 125 non-ill	Good
Netherlands	2013–2015	Mixed	Unmatched	Uni-UL Multi-UL	312 ill	Good
Cambodia	Apr–June 2012	Children	Unmatched	Uni-Chi	38 ill	Good
Malawi	Jan 2001-Dec 2002	Children	Unmatched	Uni-Chi	24 ill	Good
Nigeria	July–Dec 2014	Children	Unmatched	Uni-Chi	88 ill	Good
Zambia	Nov 1995–Mar 1996	Children	Unmatched	Uni-Chi	37 ill	Good
Australia	July–Aug 2010	Mixed	Unmatched	Uni-MH Uni-Chi	15 ill	Good
Jordan	July 1992–Sep 1993	Children	Matched	Uni-Chi	18 ill	Good
Lebanon	Jan 2013	Children	Unmatched	Uni-UL	26 ill	Good
Brazil	Aug 1998–May 1999	Children	Unmatched	Uni-UL	223 non-ill 64 ill	Good
Canada	Apr 2005–Dec 2007	Mixed	Unmatched	Uni-Chi	380 non-ill 36 ill	Poor
Canada	June 2005–May 2009	Mixed	Unmatched	Multi-UL Uni-Chi	801 non-ill 51 ill	Poor
Mexico	Aug 1999–Mar 2000	Mixed	Unmatched	Uni-Chi	54 non-ill 298 ill	Poor
Australia	June 1998–May 2001	Children	Matched	Uni-CL	345 non-ill 64 ill	Good
		Mixed		Uni-CL Multi-CL	262 non-ill 201 ill	
USA	1999–2001	Mixed	Matched	Uni-MH	795 non-ill 267 ill	Good
				Multi-CL	464 non-ill 233 ill 467 non ill	
India	2008–2013	Children	Unmatched	Uni-UL Multi-UL	407 hon-ill 411 ill 180 non-ill	Good
					113 ill 51 non-ill	
Mexico	2000	Children	Unmatched	Uni-Chi Multi-UL	10 ill	Good
USA	1983–1990	Susceptible	Unmatched	Uni-MH	125 ill	Good
Thailand	2007	Susceptible	Unmatched	Uni-Chi	23 ill	Good
Tanzania	Aug 2010–July 2011	Children	Unmatched	Uni-Chi Multi III	23 ill	Good
Uganda	Nov 1999–Jan 2001	Susceptible	Matched	Uni-Chi	488 ill	Good
USA	Aug–Sep 2007	Mixed	Matched	Uni-CL	47 ill	Good
				Multi-CL	45 ill	
Colombia	Feb-Apr 2009	Susceptible	Unmatched	Uni-Chi	38 ill	Good
NewZealand	2006	Mixed	Unmatched	Uni-Chi	534 ill	Poor
China	Oct-Nov 2014	Mixed	Unmatched	Uni-Chi	73 ill	Good
				Multi-UL		
	Kenya India Guinea-Bissau Netherlands Cambodia Malawi Malawi Cambia Australia Jordan Icbanon Brazil Canada Canada Mexico Mexico Mexico USA India Mexico USA India USA India USA India USA	KenyaJan 2010-Dec 2011India2016Guinea-Bissau1992Netherlands2013-2015CambodiaApr-June 2012MalawiJan 2001-Dec 2002MalawiJuly-Dec 2014ZambiaJuly-Aug 2010AustraliaJuly-Aug 2010JordanJuly 1992-Sep 1993IcbanonJan 2013BrazilAug 1998-May 1999CanadaJune 2005-May 2009MexicoAug 1999-Mar 2000AustraliaJune 1998-May 2001India2008-2013India2000USA1983-1990TanzaniaAug 2010-July 2011USAAug 2010-July 2011USAAug 2010-July 2011USANov 1999-Jan 20001USANov 1999-Jan 2001USAKay 2007ColombiaFeb-Apr 2009NewZealandZo06	KenyaJan 2010-Dec 2011ChildrenIndia2016MixedGuinea-Bissau1992ChildrenNetherlands2013-2015MixedCambodiaApr-June 2012ChildrenMalawiJan 2001-Dec 2002ChildrenNigeriaJuly-Dec 2014ChildrenZambiaNov 1995-Mar 1996ChildrenJordanJuly-Aug 2010MixedJordanJuly 1992-Sep 1993ChildrenIebanonJan 2013ChildrenGanadaApr 2005-Dec 2007MixedGanadaJune 2005-May 2009MixedMexicoAug 1998-May 2001MixedIustraliaJune 1998-May 2001ChildrenMexico2008-2013ChildrenIndia2008-2013SusceptibleThailand2007SusceptibleTanzaniaNov 1999-Jan 2001SusceptibleUSANov 1999-Jan 2001SusceptibleTonadaNov 1999-Jan 2001SusceptibleColombiaFeb-Apr 2009SusceptibleNewZealandZo06Mixed	KenyaJan 2010-Dec 2011ChildrenUmmatchedIndia2016MixedUmmatchedGuinea-Bissau1992ChildrenMatchedNetherlands2013-2015MixedUmmatchedGambodiaApr-June 2012ChildrenUmmatchedMalawiJan 2001-Dec 2002ChildrenUmmatchedNigeriaJuly-Dec 2014ChildrenUmmatchedJordanJuly-Jug 2010MixedUmmatchedJordanJuly 1992-Sep 1993ChildrenUmmatchedJordanJan 2013ChildrenUmmatchedBrazilAug 1998-May 1999ChildrenUmmatchedGanadaApr 2005-Dec 2007MixedUmmatchedMexicoAug 1999-May 2009MixedUmmatchedMexicoAug 1999-May 2000MixedUmmatchedMexicoJune 1998-May 2001ChildrenUmmatchedMexicoAug 1999-Mar 2000MixedUmmatchedUSA1999-2011MixedUmmatchedIndia2008-2013ChildrenUmmatchedUSA1983-1990SusceptibleUmmatchedThailand2007SusceptibleUmmatchedUSANov 1999-Jan 2001SusceptibleMatchedUSANov 1999-Jan 2001SusceptibleMatchedUSAAug-Sep 2007MixedMatchedUSANov 1999-Jan 2001SusceptibleMatchedUSAAug-Sep 2007MixedMatchedUSAFeb-Apr 2009Suscep	KenyaJan 2010-Dec 2011ChildrenUnmatchedUni-Chi Multi-ULIndia2016MixedUnmatchedUni-Chi Multi-ULGuinea-Bissau1992ChildrenMatchedUni-Chi Multi-ULCambodiaApr-June 2012ChildrenUnmatchedUni-Chi Multi-ULGambodiaApr-June 2012ChildrenUnmatchedUni-Chi Multi-ULMalawiJan 2001-Dec 2002ChildrenUnmatchedUni-Chi Multi-ULNigeriaJuly-Dec 2014ChildrenUnmatchedUni-ChiZambiaNov 1995-Mar 1996ChildrenUnmatchedUni-Chi Uli-KhiJordanJuly-Dec 2010MixedUnmatchedUni-ChiJordanJuly-Dec 2010MixedUnmatchedUni-ChiJordanJuly-Seep 1993ChildrenUnmatchedUni-ChiJordanJuly 1992-Sep 1993ChildrenUnmatchedUni-ChiLebanonJan 2013ChildrenUnmatchedUni-ChiMatcoAug 1998-May 1999ChildrenUnmatchedUni-ChiMatcoAug 1998-May 2009MixedUnmatchedUni-ChiMulti-ULCanadaJune 2005-Dec 2007MixedUnmatchedUni-ChiMulti-ULCanadaJune 199Anay 2001ChildrenMatchedUni-ChiMulti-ULCanadaJune 199Anay 2001ChildrenMatchedUni-ChiMulti-ULUni-ChiMixedMixedUni-ChiMulti-ULUSA1993-201Suscept	Kenya Jan 2010-Dec 2011 Children Ummatched Second India 2016 Mixed Unmatched Uni -Chi 187 III India 2016 Mixed Unmatched Uni -Chi 291 II Guinea-Bissau 1992 Children Matched Uni -Chi 291 II Netherlands 2013-2015 Mixed Unmatched Uni -Chi 383 III Netherlands 2013-2015 Mixed Unmatched Uni -Chi 381 II Gainea-Bissau 1992 Children Unmatched Uni -Chi 381 II Malavi Jan 2001-Dec 2002 Children Unmatched Uni -Chi 381 II Malavi Jan 2001-Dec 2002 Children Unmatched Uni -Chi 381 II Nigeria July-Dec 2014 Children Unmatched Uni -Chi 381 II Jordan July-Dec 2014 Children Unmatched Uni -Chi 15 III Jordan July-Dec 2014 Children Unmatched Uni -Chi 16 III Jordan July 1992-Sep 1933 Children Matched Uni -Chi 18 III Jordan July 1992-Sep 1933 Children Unmatched Uni -Chi 223 non-III

* References are listed in Appendix 1.

** Uni: univariate analysis; Multi: multivariate analysis; Chi: chi-square test; MH: Mantel & Haenzel method; UL: unconditional logistic regression; CL: conditional logistic regression.

Population	Geographical area	Risk factor	Pooled OR [95% CI]	N/n*	<i>p</i> -value of risk factor	Publication bias p- value	Points removed**	Heterogeneity analysis***	et al.
II	AII	Abroad	4.216 [2.529–7.029]	9/14	Travel < 0.0001	0.0408	0	$t^2 = 0.284$ QE(df = 19) = 73.419, p-val < 0.0001 $S^2 = 0.056$ $t^2 = 30.265$	
Mixed(y)	AII	Immunocompromising conditions Other medical conditions	4.507 [2.168–9.367] 2.392 [1.588–3.604]	Hc 6/10 2/3	Host specific) <0.0001 <0.0001	0.022	o	$t^2 = 0.5591$ QE(df = 11) = 42.355, <i>p</i> -val < 0.0001 $S^2 = 0.973$	
Children	AII	Immunocompromising conditions	2.721 [2.147–3.448]	4/7	< 0.0001	0.366	0	$I^2 = 36.503$ $r^2 = 0.897$ QE(df = 25) = 102.641, p-val < 0.0001 $S^2 = 1.39902$	
Mixed Children Susceptible	AI		Transmissi 2.489 [2.033–3.049] 3.786 [1.989–7.205] 1.903 [1.170–3.095]	ion Persc 12/69 5/7 5/7	Transmission Person to person by population 033-3.049] 12/69 <0.0001 <0.00 89-7.205] 5/7 <0.0001 [70-3.095] 5/7 0.010	ulation < 0.0001	o	$I^2 = 39.06$ $I^2 = 39.06$ $T^2 = 0.2578$ QE(df = 80) = 199.431, <i>p</i> -val < 0.0001 S2 = 0.393 $I^2 = 39.62$	
AII	All	Contact in the community Sexual transmission Contact in the household	Transmissio 3.339 [2.623-4.243] 2.350 [1.439-3.837] 2.191 [1.771-2.711]	n Person 6/14 3/11 9/43	Transmission Person to person by type of contact 2.623-4.243] 6/14 <0.0001	of contact 0.304	1	$r^2 = 0.0485$ QE(df = 65) = 167.161, <i>p</i> -val < 0.0001 $S^2 = 0.315$ $r^2 - 10.05$	
AII	AII	ИА	1.736 [1.286–2.343]	Perso 4/4	Personal Hygiene /4 0.0003	0.453	0	$t^{2} = 15.33$ $t^{2} = 0$ Q(df = 3) = 4.2604, p-val = 0.2347 $S^{2} = 0.189$ $t^{2} = 0$	
Mixed	AI	Farm animals	2.167 [1.703–2.758]	Ani i 13/41	Animal contact /41 < 0.0001	0.698	ო	$t^2 = 0.2953$ $t^2 = 0.2953$ QE(df = 64) = 224.108, <i>p</i> -val < 0.0001 $S^2 = 0.336$	
Children	AI	Farm animals Pets	1.968 [1.284–3.018] 1.694 [1.297–2.212]	9/15 8/15	0.002 < 0.0001	< 0.0001	0	$\Gamma^{-} = 46.1/12$ $r^{2} = 0.359$ QE(df= 28) = 59.869, <i>p</i> -val = 0.0004 $S^{2} = 0.458$ $I^{2} = 43.967$	
Mixed	АП	Water	1.794 [1.444–2.230] 1.358 [1.249–1.475] 1.968 [1.475–2.625] 1.697 [1.127–2.555]	5/18 14/4 14/6 5/8	Environment 3 < 0.0001 46 < 0.0001 55 < 0.0001 0.011	0.555	0	$\tau^2 = 0.601$ QE(df = 143) = 1534.2984, <i>p</i> -val < 0.0001 S2 = 0.351 $I^2 = 63.119$	Micro
Children	Oceania removed (2 OR excluded)	Daycare attendance Farm environment Daycare attendance Untreated drinking Water Recreational water	1.539 [1.429–1.659] 1.802 [1.194–2.719] 1.742 [1.031–2.945] 1.367 [1.092–1.712] 4.114 [1.579–10.72]	3/5 3/3 3/3 9/19 2/2	< 0.0001 0.005 0.038 0.006 0.004 Food	0.079	0	$\tau^2 = 0.0182$ QE(df = 28) = 33.467, <i>p</i> -val = 0.219 $S^2 = 0.464$ $I^2 = 3.774$	obial Risk Analysis
								(continued on next page)	xxx (x

-
77
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2
- 2
-
0
~~
3
S
3
5
e 2 (

Population	Population Geographical area	Risk factor	Pooled OR [95% CI]	N/n*	<i>p</i> -value of risk factor	Publication bias p- value	Points removed**	Pooled OR [95% CI] N/n* $p$ -value of risk Publication bias p- Points removed ^{**} Heterogeneity analysis ^{***} factor value
Mixed	All	Dairy Meat	1.533 [1.009–2.329] 4/10 0.045 1.934 [1.236–3.024] 4/9 0.004	4/10 4/9	0.045 0.004	0.248	0	$\tau^2 = 0.2602$ QE(df = 50) = 159.0378, <i>p</i> -val < 0.0001 $s^2 = 0.26$ $\tau^2 - 0.000$
Children	All	Composite	1.532 [1.072–2.189] 2/2		0.019	0.993	0	$r^2 = 49.99$ $r^2 = 0$ QE(df = 4) = 5.9980, <i>p</i> -val = 0.1993 $S^2 = 0.304$ $I^2 = 0$

points removed by sensitivity analysis, all results are given after removing data concerned; ***Between-study variability ( $\tau^2$ ), test for residual heterogeneity (QE), variance of

positive; (y): year is significant (before/after 2000) in this model and the estimates are taking this effect into account.

****Immunosuppressed or HIV

*N/n Number of studies/number of OR;** esiduals (s²), intra-class correlation (I²).

P. K

# 3. Results

#### 3.1. Descriptive statistics

From 1985 identified references, the quality assessment stage was passed by 57 primary studies – cohort and case-control studies – focusing on sporadic cryptosporidiosis (Fig. 1). These published studies were conducted between 1983 and 2016. Table 1 and Appendix 1 compile the list of the primary studies along with their main features. The eligible studies jointly provided 568 odds-ratios categorized for meta-analysis. Meta-analytical data were obtained from primary studies conducted in 31 countries, although studies from only 5 countries generated  $\sim$ 70% of the ORs retrieved. These were: USA (9 studies – 136 ORs), UK (3 studies - 79 ORs), Australia (3 studies - 66 ORs), the Netherlands (2 studies - 66 ORs) and Canada (2 studies - 47 ORs).

Primary studies investigated risk factors in different types of population, namely children (27 studies), mixed population (24 studies) and susceptible population, which included immunocompromised individuals (8 studies) and elderly population (1 study). Separate metaanalyses were then adjusted on the mixed population (382 ORs), children (117 ORs) and susceptible (69 ORs). Most studies investigated illness caused by any *Cryptosporidium* species (49) or by *C. parvum* without distinction between *C. parvum* and *C. hominis*. Few studies investigated cases caused by *C. parvum* (3) or *C. hominis* (1). In all studies, the symptomatic cases of cryptosporidiosis were laboratory-confirmed.

With regards to the risk factor classes, sporadic illness investigations focused more on multiple pathways of exposure: environment (222 ORs), contact with animals (114 ORs), food (80 ORs), person to person (78 ORs). Host-specific factors (47 ORs), personal hygiene (4 ORs) and travel (23 ORs) were also investigated.

During methodological quality assessment, potential for selection bias status was assigned to six case-control studies since, in those, the controls were not healthy individuals but people affected by another enteric disease such as giardiasis (Firdu et al., 2014; Redlinger et al., 2002), salmonellosis (Marder, 2012), amoebiasis (Ravel et al., 2013), campylobacteriosis (Wilson et al., 2008), and one of nine other enteric infections (Pintar et al., 2009). As it is not clear whether these controls shared routes of exposure with the case patients, the ORs extracted from the aforementioned studies were marked as having potential for selection bias. These case-control studies provided 84 potentially-biased ORs whose influence on the meta-analyzed OR estimates was appraised by means of the Cook's distance.

Only 13 case-control studies employed a matched experimental design (Table 1). Bringing together the matched and unmatched designs, 379 ORs (67% of the data) were not adjusted by any confounder (crude ORs) (e.g. age, sex, other risk factors), while 189 ORs (33%) were adjusted using either Mantel–Haenzel or logistic regressions.

# 3.2. Meta-analysis

The meta-analysed significant risk factors are presented in summary tables (Table 2 and 3). Non-significant results on the main risk factors are presented in Appendix 2. More detailed descriptive results, in particular, funnel plots, forest plots, and OR of non-significant results, are in a complete report available upon request.

## 3.2.1. Meta-analysis for travel

According to this meta-analysis, foreign travel is an important risk factor for acquiring cryptosporidiosis. For residents of USA, UK, Switzerland, Netherlands, Australia and New Zealand, traveling abroad increased their odds of acquiring cryptosporidiosis (pooled OR = 4.216; 95% CI [2.529–7.029]) (Table 2; Fig. 2).

# 3.2.2. Meta-analysis for host-specific risk factors

The meta-analysis on host-specific factors showed that immunocompromising conditions were associated with cryptosporidiosis

#### Table 3

Results of the meta-analysis on disaggregated risk factors.

Risk Factor	Population	Geographical area	Risk factor precise	Pooled OR [95% CI]	N/n*	<i>p</i> -value of risk factor	Publication bias p-value	Points removed**	Heterogeneity analysis***
Meat	Mixed & Susceptible	All	Others****	1.991 [1.288–3.080]	3/8	0.002	0.890	0	$\tau^2 = 0$ QE(df = 8) = 4.5068, <i>p</i> -val = 0.809 S ² = 0.243 I ² = 0
Dairy	Mixed & Children	All	Milk	1.509 [1.071- -2.125]	6/8	0.019	0.647	0	$\tau^2 = 0$ QE(df = 10) = 8.5624, <i>p</i> -val = 0.574 S ² = 0.0.205 I ² = 0
Composite	Mixed & Children	All	Dishes	1.717 [1.220–2.416]	6/17	0.002	0.015	0	$\tau^2 = 0.142$ QE(df = 18) = 126.1028, p-val < 0.0001 s2 = 0.330 I ² = 30.085
BBQ	All	All	BBQ	2.005 [1.624–2.476]	2/4	< 0.0001	0.383	0	$\tau^2 = 0$ Q(df = 3) = 26.214, p-val < 0.0001 $S^2 = 0.315$ $I^2 = 0$

*N/n Number of studies/number of OR;** points removed by sensitivity analysis, all results are given after removing data concerned; ***Between-study variability ( $\tau^2$ ), test for residual heterogeneity (QE), variance of residuals ( $s^2$ ), intra-class correlation ( $I^2$ ); **** Meats of non-specified origin.

for the mixed, children with pooled ORs ranging from 2.721 to 4.507. For the mixed and children population, immunocompromising conditions included HIV infection, other immune system illnesses, the use of immunosuppressive medication, etc. Other medical conditions, including chronic disease and HBV infection, were also found to be associated with cryptosporidiosis in the mixed population (pooled OR = 2.392; 95% CI [1.588–3.604]).

#### 3.2.3. Meta-analysis for person to person transmission factors

Person-to-person transmission was a significant risk factor of acquiring cryptosporidiosis for all the populations (pooled OR ranging from 1.903 to 3.786; Table 2; Fig. 3). The same data set related to person-to-person transmission was stratified in three classes according to the type or the location of the contact. Significant associations were found for contact in household (pooled OR = 2.191; 95% CI [1.771–2.711]), contact in the community (pooled OR = 3.339; 95% CI [2.623–4.243]) and sexual transmission (pooled OR = 2.350; 95% CI [1.439–3.837]).

Poor personal hygiene (e.g. "no handwashing after toilet", " poor hygiene habits") could be a risk factor for cryptosporidiosis (pooled OR = 1.736; 95% CI [1.286–2.343]).

#### 3.2.4. Meta-analysis for animal contact

Contact with animals was associated with an increased risk of cryptosporidiosis. Significant associations were found for farm animals in the mixed population (pooled OR = 2.167; 95% CI [1.703-2.758]; Fig. 4) and children (pooled OR = 1.968; 95% CI [1.284-3.018]) and pets in children (pooled OR = 1.694; 95% CI [1.297-2.212]).

### 3.2.5. Meta-analysis for environmental factors

In both the mixed and children populations, the environmental pathways under study were significantly associated with cryptosporidiosis: recreational water (pooled OR = 1.968; 95% CI [1.475-2.625] for the mixed population (Fig. 5); pooled OR = 4.114; 95% CI [1.579-10.715] for children); farm environment (pooled OR = 1.794; 95% CI [1.444-2.230] for the mixed population and pooled OR = 1.802; 95% CI [1.194-2.719] for children), attendance to daycare (pooled OR = 1.539; 95% CI [1.429-1.659] for the mixed population and pooled OR = 1.742; 95% CI [1.031-2.945] for children), untreated drinking water (pooled OR = 1.358; 95% CI [1.249-1.475] for the mixed population and pooled OR = 1.367; 95% CI

[1.092-1.712] for children) and wastewater (only in the mixed population: pooled OR = 1.697; 95% CI [1.127-2.555]). Data from Oceania (2 ORs) were removed from the children population. This exclusion only affects the significance of the OR related to attendance to daycare.

#### 3.2.6. Meta-analysis for food consumption

The meta-analysis on food consumption pathways revealed significant associations with meat (pooled OR = 1.934; 95% CI [1.236-3.024]; Fig. 6) and dairy (pooled OR = 1.533; 95% CI [1.009-2.329]; Fig. 7) for the mixed population, and composite foods (pooled OR = 1.532; 95% CI [1.072-2.189]) for children. Within the food vehicles, associations with cryptosporidiosis were observed for: barbecue foods (pooled OR = 2.005; 95% CI [1.624-2.476]), meat of non-specified origin ("Others"; pooled OR = 1.991; 95% CI [1.288-3.080]), dishes prepared outside the home (pooled OR = 1.717; 95% CI [1.220-2.416]) and milk (comprising essentially raw milk in this category) (pooled OR = 1.509; 95% CI [1.071-2.125]). If we restrict the analysis to raw milk, combining ORs in population mixed and children with 7 OR, the raw milk is still significant at a pooled OR of 1.670 (95% CI [1.035-2.695]).

Food categories that on meta-analysis had a non-significant association with cryptosporidiosis were produce (comprising raw or fresh vegetables (10 ORs) and unwashed fruits (1 OR) and beverage. The only food data partitions comprising sufficient data that could support the assessment of the effect of handling were those of produce and dairy (Table 4). It was found that people who ate unwashed fruits and vegetables, had their odds of infection significantly increased by a factor of 1.572. Hence, the practice of not washing vegetables before consumption represents on its own a risk factor for cryptosporidiosis.

For most of the meta-analytical models reported in Tables 2–4, the statistical tests indicated the absence of potential significant publication bias at 5% significance. Exception is observed for partitions related to travel, host-specific in the mixed population, person-to-person transmission, animal contact in children, and composite foods. However, for these five partitions, the spread of data points within the funnel plot does not hint any evidence of a strong publication bias problem (Fig. 8). Moreover, the intra-class correlation  $I^2$  indicates low (<25%) to moderate (<50%) heterogeneity (Tables 2–4). Remaining between-study heterogeneity (significant *p*-values below 0.05 for Q or QE) was observed for most of the data partitions.

# Microbial Risk Analysis xxx (xxxx) xxxx

		[ 95% CI ]	Odds Ratio	Label	Country	Study
		[1.11-37.08]	6.43	Travelled in Mediterranean country	Switzerland	Egger_ADC_1990
		[1.08-3.7]	2	Travel abroad in Europe	Netherlands	Fournet_Eurosurveillance_2013
	-	[0.73-3.55]	1.61	Travel outside USA	USA	Glaser_AIDS_1998
		[2.86-11.16]	5.65	Travel outside UK	UK	Hunter_EID_2004*
		[2.62-17.85]	6.84	Travel outside UK	UK	Hunter_EID_2004*
		[2.89-7.85]	4.74	Travel outside UK	UK	Hunter_EID_2004
$\longrightarrow$		[3.28-201]	25.7	Travel to another country	USA	Khalakdina_BMCPH_2003
		[1.55-279]	20.9	Travel to another country	USA	Khalakdina_BMCPH_2003*
		[4.8-15.6]	8.6	Travel overseas	Australia	Robertson_EpiInf_2002
		[2.1-14.6]	5.6	Travel overseas	Australia	Robertson_EpiInf_2002
		[3.3-18.4]	7.8	International travel	USA	Roy_JCM_2004*
		[2.7-22]	7.7	International travel	USA	Roy_JCM_2004*
		[0.3-14.2]	2	International travel	USA	Valderrama_EpiInf_2009
		[1-1.9]	1.4	Overseas travel	NewZealand	Wilson_EPI_2008
-		[2.53-7.03]	4.22		All	Random Effect Meta-Analysis

Fig. 2. Forest plot of the association of cryptosporidiosis with travel abroad in all populations (n=14) (* adjusted OR)

Study	Country	Label	Odds Ratio	[ 95% CI ]	
Chen_JBP_2017	China	Household member with diarrhoea	2.66	[1.04-6.8]	
Egger_ADC_1990	Switzerland	Contact with person with diarrhoea	41.11	[4.64-364.02]	$\rightarrow$
Egger_ADC_1990	Switzerland	Visited kindergarten	4.8	[0.79-29.07]	
Morse_InProceeding_2008	Malawi	Household member with diarrhoea	8.8	[1.8-53.4]	
Osman_PLOS_2016	Lebanon	Household member with gastroenteritis	1.7	[0.8-4]	
Solorzano-Santos_RIC_2000	Mexico	Diarrhoea in family	5.82	[0.86-39.18]	
Solorzano-Santos_RIC_2000*	Mexico	Diarrhoea in family	4.15	[0.47-36.91]	
Random Effect Meta-Analysis	s All		3.79	[1.99-7.21]	•

Fig. 3. Forest plot of the association of cryptosporidiosis with person-to-person transmission in children (n=7) (* adjusted OR)

#### P. Kooh, et al.

#### Microbial Risk Analysis xxx (xxxx) xxxx

Study	Country	Label	Odds Ratio	[ 95% CI ]	
Fournet_Eurosurveillance_2013	Netherlands	Contact with farm animals	0.74	[0.41-1.32]	
Goh_EID_2004	UK	Contact with farm animals	2.23	[1.45-3.43]	
Goh_EID_2004	UK	Ate food within 1-2 h contact with farm animals	3.11	[1.79-5.38]	
Goh_EID_2004	UK	Feed farm animals by hand	1.74	[0.97-3.12]	
Goh_EID_2004	UK	Stroke any farm animal	2.01	[1.17-3.42]	
Goh_EID_2004	UK	Any other contact w/ farm animal	2.78	[1.57-4.93]	
Goh_EID_2004*	UK	Contact with farms without cattle or sheep	1.96	[0.79-4.88]	
Goh_EID_2004*	UK	Contact with a cattle farm	1.67	[0.73-3.82]	
Hunter_EID_2004*	UK	Touch any cattle	3.88	[1.42-10.04]	
Hunter_EID_2004*	UK	Touch or handle farm animals	2.65	[1.11-6.32]	
Hunter_EID_2004	UK	Touched any farm animal	1.65	[1.07-2.54]	
Hunter EID 2004	UK	Touched any cattle	2.69	[1.11-6.7]	
Izadi JTM 2014	Iran	Contact with calves	6.68	[1.99-22.39]	
Izadi JTM 2014*	Iran	Contact with calves	8.3	[2.3-26.5]	
Marder Thesis 2012*	USA	Animal contact - Livestock	2.79	[2.34-3.32]	
Marder_Thesis_2012*	USA	Animal contact - Poultry	0.73	[0.57-0.95]	
Mooij NIPHE 2015*	Netherlands	Had contact with cattle	3.42	[1.99-5.9]	
Mooij NIPHE 2015*	Netherlands	Had contact with cattle	3.8	[2-7]	
Mooij NIPHE 2015*	Netherlands	Petted cattle or calves	2.9	[1.6-5.25]	
Mooij_NIPHE_2015*	Netherlands	Contact with farm animal	1.71	[1.1-2.67]	
Mooij NIPHE 2015*	Netherlands	Contact with animal faeces	1.81	[1.08-3.05]	
Mooij NIPHE 2015*	Netherlands	Contact with cattle or calves	2.35	[1.36-4.06]	
Mooij NIPHE 2015*	Netherlands	Contact with sheep	1.94	[1.09-3.47]	
Mooij NIPHE 2015*	Netherlands	Contact with goats	1.99	[1.21-3.27]	
Mooij NIPHE 2015*	Netherlands	Contact with animal faeces	1.19	[0.78-1.82]	
Ng EP 2012	Australia	Ate among the animals	0.87	[0.25-3.02]	e
Ng EP 2012	Australia	Washed hands after contact with animals	1.52	[0.42-5.55]	
Pintar Epilnf 2009	Canada	Visited a farm; petting zoo or fair	1.6	[1-2.5]	
Robertson EpiInf 2002	Australia	Calf contact away from home	3.1	[1.7-5.4]	
Robertson Epilnf 2002	Australia	Lamb contact away from home	2.3	[1.2-4.6]	
Robertson Epilnf 2002*	Australia	Calf contact away from home	2.9	[1.5-5.7]	
Robertson EpiInf 2002	Australia	Calf contact away from home	2.5	[1-6.4]	
Robertson Epilnf 2002	Australia	Lamb contact away from home	0.5	[0.1-2.1]	e
Robertson Epilnf 2002*	Australia	Calf contact away from home	5.1	[1.5-17.3]	
Roy_JCM_2004*	USA	Contact with calves and cows	3.4	[2-5.8]	
Roy JCM 2004*	USA	Contact with calves and cows	3.5	[1.8-6.8]	
Valderrama Epilnf 2009	USA	Contact with cows; sheep; goats	1	[0.4-2.8]	
Yang IDP 2017	China	Keep livestock or poultry	2.04	[1.05-3.98]	
Yang_IDP_2017*	China	Keep livestock or poultry	2.27	[1.01-5.08]	
Yang IDP 2017	China	Living under same roof with livestock	0.65	[0.19-2.19]	
Wilson EPI 2008	NewZealand	Farm animals	2.8	[2.4-3.4]	
Random Effect Meta-Analysis			2.17	[1.7-2.76]	
Tanaoni Encor meta-Analysia			2.17	[1.1-2.1.0]	
				0.1	10 1.0 2.0 5.0 10.0 15.0 25.0

Fig. 4. Forest plot of the association of cryptosporidiosis with contact with farm animals in the mixed population (n=41) (* adjusted OR)

## 4. Discussion

This meta-analysis identified foreign travel (pooled OR = 4216), immunocompromising conditions (pooled OR ranging from 2.721 to 4.507), person-to-person transmission (pooled OR ranging from 1.903 to 3.786), environmental pathways (pooled OR ranging from 1.358 to 1.968 in the mixed population), animal contact (pooled OR ranging from 1.694 to 2.167), and food consumption (pooled OR ranging from 1.533 to 1.934) as risk factors of cryptosporidiosis. For person-toperson, environmental and animal contact pathways, the same risk factors were identified in the mixed population and children. Food exposures were less investigated in children compared to the mixed population. Fewer studies investigated the susceptible population (immunocompromised individuals and elderly) and the pooled OR related to animal, environmental and food exposures were non-significant.

Overall, these meta-analytical results are in line with the epidemiology of *Cryptosporidium* (EFSA BIOHAZ Panel, 2018). Few studies investigated cases caused specifically by *C. parvum* (11) or *C. hominis* (1). Although the epidemiology of both *C. parvum* and *C. hominis* could involve indirect transmission routes (water, foods), there are some specificities. *C. hominis*, which infects mainly humans, is transmitted through the fecal-oral pathway and, hence, person-to-person transmission plays a major role in the transmission. On the other hand, the main reservoir of *C. parvum* is ruminants, and, as such, zoonotic transmission could occur through animal contact.

Foreign travel is a known risk factor of cryptosporidiosis (Hagmann et al., 2014). However, due to the lack of information on the countries of travel, it was not possible to identify regions at particular

#### risk (Fig. 2).

The host susceptibility risk factors (in particular immunosuppression linked to AIDS) have been established in previous studies (Hunter and Nichols, 2002).

Person-to-person transmission is a known risk factor of cryptosporidiosis. In this meta-analysis, higher pooled OR were obtained for children compared to adults (Fig. 3). This might be related to higher exposure due to the lack of hygiene, greater susceptibility, and less immunity. Regarding the person-to-person pathways, contact with an ill person at home (contact in the household), contact in institutions (child /daycare, schools, etc.) and contact during sexual activity were significantly associated with cryptosporidiosis. The lack of personal hygiene (lack of handwashing), identified as a risk factor, can lead to person-to-person transmission.

The meta-analysis confirms the major role of water in the transmission of cryptosporidiosis. Exposure to recreational waters, wastewater (lack of sanitation) and the consumption of untreated drinking water significantly increase the risk of cryptosporidiosis. Many outbreaks of cryptosporidiosis have been associated with the consumption of drinking water (Dalle et al., 2003; Eisenberg et al., 2005; Moreira and Bondelind, 2017), and the ingestion of bathing water in swimming pools or leisure facilities (first cause of outbreak in the United States and the United Kingdom) (Gharpure et al., 2019; Ryan et al., 2017). *Cryptosporidium* is often present in aquatic environments from fecal sources and can be found in a large range of concentrations (1 to several hundred oocysts /L) (Nasser, 2015). *Cryptosporidium* oocysts can bypass common water treatments during occasional failure of the filtration (Lonigro et al., 2006), and are highly

#### Microbial Risk Analysis xxx (xxxx) xxxx

Study	Country	Label	Odds Ratio	[ 95% CI ]	
Equipped Europurgoilloppo 2012	Netherlands	Contact with surface water	1.15	[0.63-2.1]	
Gallaher AJPH 1989 Goh_EID 2004	Mexico	Swim in surface water	1.15 3.7	[0.63-2.1] [1.02-13.5]	
Goh_EID_2004	UK	Swimming pool	0.94	[0.61-1.44]	
Hellard STI_2003 Hunter_EID_2004*	Australia	Swimming	1.75	0.25-12.5	
Hunter_EID_2004*	UK	Swam in a toddler pool	1.26	0.96-1.65	
Hunter_EID_2004 Hunter_EID_2004	UK UK	Swimming pool use	1.15	0.86-1.55	
Khalakaina PMCPU 2002	USA	Use of toddler pool Swimming; hot tub/spring	1.52 1.02	[1.01-2.28]	
Marder Thesis 2012*	USA	Recreational water	6.53	[6-7.12]	
Marder Thesis 2012*	USA	Recreational water - Treated	8.8	[7 96-9 73]	
Marder Thesis 2012*	ŬŜĂ	Recreational water - untreated	4.77	4.25-5.37	
Mooij_NIPHE_2015*	Netherlands	Swam in river or lake	5.26	[2.5-11.06]	
Marder_Thesis_2012* Marder_Thesis_2012* Marder_Thesis_2012* Mooij_NIPHE_2015* Mooij_NIPHE_2015*	Netherlands	Swam in the sea	3.19	[1.41-7.23]	
Mooij_NIPHE_2015* Mooij_NIPHE_2015*	Netherlands	Scuba dived in a pool Swam in an inflatable pool	1.81	[0.7-4.67]	
Mooij_NIPHE_2015*	Netherlands Netherlands	Swam in an inflatable pool Swam in river or lake	1.26	[0.82-1.94]	
Mooij_NIPHE_2015* Mooij_NIPHE_2015*	Netherlands	Used inflatable pool	4.9 2.42	[2-12] [1.54-3.81]	
Mooij_NIPHE_2015* Mooij_NIPHE_2015* Mooij_NIPHE_2015* Mooij_NIPHE_2015*	Netherlands	Swallowed inflatable pool water	0.77	[0 20 1 52]	
Mooii NIPHE 2015*	Netherlands	Swallowed inflatable pool water Swallowed pool water	2.09	[1.28-3.42] [1.1-2.33] [0.79-2.71]	
Mooii NIPHE 2015*	Netherlands	Swam in a pool	1.6	[1.1-2.33]	
MOOII NIPHE 2015	Netherlands	Swallow water during sports	1.47	[0.79-2.71]	
Mooii NIPHE 2015*	Netherlands	Swim in river or lake	1.5	0.79-2.87 1.25-2.46 1.03-3.08	
Mooij_NIPHE_2015*	Netherlands	Swim in inflatable pool	1.75	[1.25-2.46]	
Mooij_NIPHE_2015*	Netherlands	Swallow inflatable pool water	1.78	[1.03-3.08]	
Mooij_NIPHE_2015*	Netherlands	Swim in pool	1.65 1.23	1.23-2.19 0.87-1.74	
Mooij_NIPHE_2015* Pintar_EpiInf_2009	Netherlands Canada	Swallow pool water Went hiking; camping or canoeing	2.1	[0.8-5.7]	
Pintar Epilnf 2009	Canada	Went swimming	3.8	[1.8-8.2]	
Pintar Epilnf 2009	Canada	Swim pool	1.9	0.8-4.8	
Pintar Foilnf 2009	Canada	Swim in natural water (lake or river)	3.1	11/0.671	
Pintar Foilof 2009*	Canada	Swim in natural water (lake or river) Swim in natural water (lake or river)	2.91	[1.14-7.38]	· · · · · · · · · · · · · · · · · · ·
Ravel_EpiInf_2013 Ravel_EpiInf_2013 Ravel_EpiInf_2013	Canada	Swam in the lake	1.71	[1.14-7.38] [0.56-5.22] [0.82-12.96] [0.57-7.33]	
Ravel_EpiInf_2013	Canada	Swam in the pool	3.25	[0.82-12.96]	
Ravel_EpiInf_2013	Canada	Canoed; kayaked	2.05	[0.57-7.33]	
Ravel_EpiInf_2013 Robertson_EpiInf_2002 Robertson_EpiInf_2002 Robertson_EpiInf_2002 Robertson_EpiInf_2002* Robertson_EpiInf_2002 Robertson_EpiInf_2002	Australia	Swimming in public pool Swimming in public toddlers' pool	2.5	[1.8-3.4] [1.5-3.4]	
Robertson_Epilnf_2002	Australia Australia	Swimming in public toddlers' pool	2.3 2.5	1.8-3.4	
Robertson_Epilnf_2002*	Australia	Swimming in public adults' pool Swimming in public pool	2.7	1.9-3.8	
Robertson Epilnf 2002	Australia	Swimming in public pool Swimming in public toddlersÅ pool	1.3	[0.9-2]	
Robertson EpiInf 2002	Australia	Swimming in public toddlersA' pool	1.9	1-3.6	
Robertson_EpiInf_2002	Australia	Swimming in public adultsa pool	1.3	[0.9-2.1]	i
Robertson_EpiInf_2002* Roy_JCM_2004* Roy_JCM_2004* Roy_JCM_2004* Roy_JCM_2004* Roy_JCM_2004* Roy_JCM_2004* Roy_JCM_2004*	Australia	Swimming in public pool	1.2	[0.8-1.9]	
Roy_JCM_2004*	USA	Freshwater swimming	1.6	[1-2.5] [1.2-5.6]	
Roy_JCM_2004*	USA	Marine swimming	2.6	[1.2-5.6]	
Roy_JCM_2004*	USA USA	Pool swimming	1.3 0.6	0.8-1.9 0.2-2.1	
Roy_JCM_2004	USA	Community/municipal pool swimming Subdivision/neighborhood pool swimming Kiddle/wading pool swimming	0.9	[0.1-10.1]	
Roy_JCM_2004*	USA	Kiddle/wading pool swimming	3.6	[0.9-14.2]	· · · · · · · · · · · · · · · · · · ·
Roy_JCM_2004* Roy_JCM_2004* Roy_JCM_2004* Roy_JCM_2004* Roy_JCM_2004* Roy_JCM_2004* Roy_JCM_2004* Roy_JCM_2004* Roy_JCM_2004*	USA	Private pools swimming	3.7	[1-13.4]	
Roy JCM 2004*	USA	Waterpark swimming	1.4	[1-13.4] [0.6-3.5]	
Roy_JCM_2004*	USA	Freshwater swimming	1.9	[1-3.5] [0.7-8.2] [0.8-2.3] [0.3-3.3]	· · · · · · · · · · · · · · · · · · ·
Roy_JCM_2004*	USA	Marine swimming	2.5	[0.7-8.2]	
Roy_JCM_2004*	USA	Pool swimming	1,3	0.8-2.3	
Koy_JCM_2004 ⁻ Valderrama_EpiInf_2009	USA USA	Waterpark swimming Recreational water	1 1.8	0.3-3.3	
Valderrama_EpiInf_2009	USA	Lake; pond; river	2.1	0.8-5.5	
Valderrama Epilnf 2009	USA	Water sports	0.5	0.1-3.1	
Valderrama Enilof 2000	USA	Hot tubes; spas; jacuzzis	1.1	0.4-2.7	
Valderrama_Epilnf_2009 Valderrama_Epilnf_2009 Valderrama_Epilnf_2009 Valderrama_Epilnf_2009 Valderrama_Epilnf_2009	USA	Water park	2	[0.8-5]	
Valderrama_EpiInf_2009	USA	Swimming pool	1.3	[0.6-2.7]	
Valderrama_EpiInf_2009	USA	Spray prad; fountain	0.8	[0.2-2.7]	
Valderrama_Epilnf_2009	USA	Hot springs	6	[0.6-57.7]	
	USA	Recreational water in mouth	1.6	[0.6-3.8]	
Valderrama_EpiInf_2009* Wilson_EPI_2008	USA NewZealand	Recreational water Recreational water	4.6	[1.4-14.6] [2.8-4.4]	
Random Effect Meta-Analysis		Neurealional water	1.97	[1.46-2.64]	
Rundom Eneor Meta-Allalysis			1.07	11.40-2.041	
				0.	.10 1.0 2.0 5.0 10.0 15.0 25.0

Fig. 5. Forest plot of the association of cryptosporidiosis with contact with recreational waters in the mixed population (n=65) (* adjusted OR).

resistant to disinfection procedures like chlorination (Erickson and Ortega, 2006).

Contact with farm animals and farm attendance are identified as risk factors, which is supported by described outbreaks. In the US, contact with infected cattle is the second cause of cryptosporidiosis outbreaks, responsible for 15% outbreaks for the period 2009–2017 (Gharpure et al., 2019). Several outbreaks have also been reported in Europe (Lange et al., 2014; Utsi et al., 2016; Alsmark et al., 2018). Possession of a pet is only significant in children. The role of pets (dogs and cats) in the transmission of cryptosporidiosis is nevertheless not established in the literature (de Lucio et al., 2017; Lucio-Forster et al., 2010).

Among the food-related risk factors, meat was found as a risk factor, which was less expected. Only one outbreak linked to the consumption of raw meat has been reported (Yoshida et al., 2007). Within the meat category, meat of unspecified origin ("others") is found significant but beef is not a significant risk factor (with only 2 ORs from 2 publications). None of the ORs are significant in each study alone (3 studies from Canada and the United Kingdom), but this factor appears significant by the combination of ORs in the meta-analysis (8 ORs) (Fig. 6). This association could reflect fecal contamination of beef carcasses during the slaughter process, as observed with other enteric pathogens (e.g. Salmonella, or Shigatoxin-producing E. coli). Data on the contamination of meat by Cryptosporidium are however limited. The prevalence of Cryptosporidium spp. in feces and meat samples were investigated by Moriarty et al. (2005): Cryptosporidium spp. were isolated from fecal samples (7.3%) but not from carcasses samples. To confirm the plausibility of this association, meat should be explored in specific surveys and investigations of outbreaks and sporadic cases of cryptosporidiosis.

The consumption of dishes prepared outside home and BBQ foods were also found significantly associated with *Cryptosporidium*. This can be linked to poor hygiene practices (e.g. contamination by an infected handler during the preparation of these products).

Unpasteurized milk and dairy products emerged as a risk factor in the meta-analysis. This result is consistent with published outbreaks (Harper et al., 2002; Loury et al., 2019; Rosenthal et al., 2015). *C. parvum* was listed among microbiological hazards potentially transmissible through milk and present in the EU milk-producing animal population (EFSA BIOHAZ Panel, 2015). However, identification and isolation methods of *Cryptosporidium* are not standardized in dairy products and these products are rarely found contaminated during outbreaks investigations (Loury et al., 2019).

Produce (washed and not washed in the same category) was not identified as a risk factor, but the consumption of poorly washed fruits and vegetables significantly increases ORs. Fresh produce is the main vehicle of foodborne cryptosporidiosis outbreaks (Aberg et al., 2015; England, 2017; Ethelberg et al., 2009; McKerr et al., 2015). Nevertheless, several case-control studies found that the consumption of vegetables is a protective factor against cryptosporidiosis (Goh et al., 2004; Nic Lochlainn et al., 2019; Roy et al., 2004). Roy et al. (2004) explained this effect by the acquisition of protective immunity following repeated exposure to low doses of oocysts on contaminated vegetables as observed in waterborne outbreaks (Hunter, 2000). Produce (vegetables) should be better studied by taking into account the type of vegetable (more exposed or not to irrigation of contaminated

#### Microbial Risk Analysis xxx (xxxx) xxxx

Study	Country	Label	Odds Ratio	[ 95% CI ]	
Goh_EID_2004	UK	Raw sausages	1.56	[0.51-4.61]	
Goh_EID_2004	UK	Other raw meat	1.93	[0.71-5.14]	
Mooij_NIPHE_2015*	Netherlands	Ate filet American	1.12	[0.8-1.57]	+
Pintar_EpiInf_2009	Canada	Purchased meat at a butcher's	0.8	[0.2-3.5]	-
Pintar_EpiInf_2009	Canada	Killed own meat	2.3	[0.5-10]	
Ravel_EpiInf_2013	Canada	Meat from other than groceries	2.54	[0.81-7.94]	
Ravel_EpiInf_2013	Canada	Meat from private kill	2.16	[0.37-12.51]	
Ravel_EpiInf_2013	Canada	Butcher shop	4.99	[1.01-24.58]	
Ravel_EpiInf_2013	Canada	BBQ	2.12	[0.79-5.71]	
Random Effect Meta-Analysis	All		1.93	[1.24-3.02]	•
				0.1	0 1.0 2.0 5.0 10.0 25.0

Fig. 6. Forest plot of the association of cryptosporidiosis with meat consumption in the mixed population (n=9) (* adjusted OR).

Study	Country	Label	Odds Ratio	[ 95% CI ]	
Goh_EID_2004	UK	Pasteurised milk	1.3	[0.72-2.36]	
Goh_EID_2004	UK	Unpasteurised milk	1.28	[0.53-3.02]	
Goh_EID_2004	UK	Local cheese	1.94	[0.54-6.71]	
Goh_EID_2004	UK	Other cheese	1.43	[0.91-2.27]	
Goh_EID_2004	UK	Yogurt	1.03	[0.66-1.63]	+
Goh_EID_2004*	UK	Ate non-locally produced cheese	1.49	[0.91-2.43]	
Ravel_EpiInf_2013	Canada	Unpasteurized milk	2.34	[0.4-13.57]	
Robertson_EpiInf_2002	Australia	Unpasteurized milk products	2	[0.7-5.5]	
Robertson_EpiInf_2002	Australia	Unpasteurized milk products	3.9	[1.2-12.4]	
Valderrama_EpiInf_2009	USA	Unpasteurized milk	2	[0.1-32]	
Random Effect Meta-Analys	is All		1.53	[1.01-2.33]	•

Fig. 7. Forest plot of the association of cryptosporidiosis with dairy consumption in the mixed population (n=10) (* adjusted OR).

waters, such as lettuce) and the type of preparation (washed or not).

Beverages (including cider/bottled water/ice) were not identified as a risk factor in the meta-analysis. Cider was investigated in one study and was found non-significant (Roy et al., 2004). Apple cider/juice has been responsible for two outbreaks in the USA (Blackburn et al., 2006; Millard et al., 1994) and recently in Norway (Robertson et al., 2019). Recommendations have been made on grazing animals in orchards and washing fruits. Shellfish are considered as potential vehicles of *Cryptosporidium* but were not investigated in the included studies. Although shellfish have been found contaminated with *Cryptosporidium* oocysts in several surveys (Giangaspero et al., 2014; Gomez-Bautista et al., 2000; Gomez-Couso et al., 2006; Robertson and Gjerde, 2008), no outbreaks have been reported to date. The role of shellfish in *Cryptosporidium* infections should be investigated in future case-control studies.

Our results are comparable to the meta-analysis conducted by

Effect of handli	Effect of handling on the pooled OR for produce.	r produce.						oon,
Risk Factor	Risk factor precise	Pooled OR [IC95%]	N/n*	-d	value of risk factor OR ratios [CI95%]	Points removed**	Points removed ^{**} Publication bias $p$ -value	Heterogeneity analysis**
Produce	Unwashed Base	1.159 [0.615–2.185] 0.737 [0.602–0.903]	3/4 6/7	0.039 0.003	1.572 [1.021–2.419]	0	0.236	$r^2 = 0$ QE(df = 9) = 9.7450, <i>p</i> -val = 0.3715 $S^2 = 0.151$ $I^2 = 0$

*** between-study variability ( $\tau^2$ ), test for residual heterogeneity (QE), variance of residuals  $(s^2)$ , intra-class correlation  $(I^2)$ .

#### Microbial Risk Analysis xxx (xxxx) xxxx

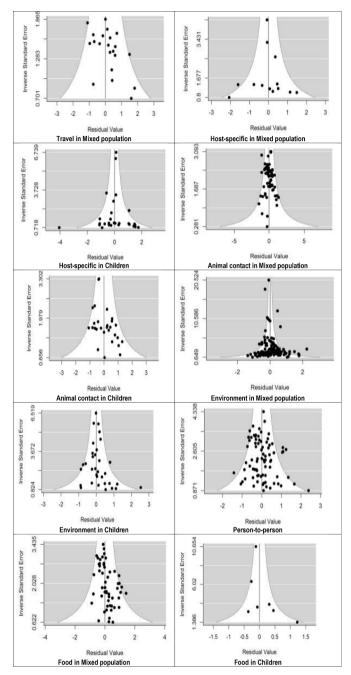



Fig. 8. Funnel plots of studies investigating categorized risk factors (travel, host-specific, environment, animal contact, person to person and food).

Bouzid et al. (2018) who reported diarrhea in the household, animal contact, lack of toilet facility and overcrowded conditions as risk factors for cryptosporidiosis in low and middle-income countries based on 11 studies. Food exposures were not investigated in the included studies and poor drinking water was not found significant. These differences may be related to the analysis strategy of Bouzid et al. (2018) as only studies reporting at least four relevant risk factors were included in their meta-analysis.

## 5. Conclusion

In summary, this meta-analysis confirmed known risk factors of cryptosporidiosis linked to anthroponotic and zoonotic pathways of transmission: contact with infected humans, waterborne transmission, contact with animals and food consumption. Except for meat, the

Microbial Risk Analysis xxx (xxxx) xxxx

identified vehicles are all consistent with described outbreaks.

Future case-control studies of sporadic infections should better explore the role of dairy, shellfish, meat, and vegetables, including washing/cooking and hygiene practices. These risk factors should also be included in questionnaires used for outbreak investigations. Moreover, the development of sensitive methods (based on molecular assays) for detection and isolation of *Cryptosporidium* oocysts in these different matrices is necessary to link cases to food items (Rousseau et al., 2018). Susceptible populations, such as children, elderly or immunosuppressed people could be better addressed, due to the severity of cases in those populations. The immunity should be taken into account to reduce misclassification in case-control studies (Hunter, 2000). It may be interesting to consider serology, in addition to criteria related to symptoms, and parasite excretion. In order to improve the detection of cases, biological diagnosis of persistent diarrhea should specify *Cryptosporidium* research (Loury et al., 2019).

Lastly, subtyping of human isolates can provide insights into the epidemiology of cryptosporidiosis, allowing the identification of risk factors specific to species or subtypes.

## CRediT authorship contribution statement

**Pauline Kooh:** Methodology, Project administration, Writing original draft. **Anne Thébault:** Methodology, Formal analysis, Writing review & editing. **Vasco Cadavez:** Methodology, Investigation, Formal analysis. **Ursula Gonzales-Barron:** Methodology, Investigation, Formal analysis, Writing - review & editing. **Isabelle Villena:** Supervision, Writing - review & editing.

# **Declaration of Competing Interest**

The authors declare no conflict of interest.

#### Acknowledgments

The authors would like to thank ANSES staff and the members of the ANSES Working Group on Source Attribution of Foodborne Diseases: Moez Sanaa, Laurence Watier, Jean Christophe Augustin, Frédéric Carlin, Julie David, Philippe Fravalo, Laurent Guillier, Nathalie Jourdan-Da Silva, Alexandre Leclercq, Lapo Mughini-Gras, Nicole Pavio.

Ursula Gonzales-Barron and Vasco Cadavez are grateful to the Foundation for Food Science and Technology (FCT, Portugal) and FEDER under Programme PT2020 for financial support to CIMO (UID/AGR/00690/2019).

#### Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.mran.2020.100116.

# References

- Aberg, R., Sjoman, M., Hemminki, K., Pirnes, A., Rasanen, S., Kalanti, A., Pohjanvirta, T., Caccio, S.M., Pihlajasaari, A., Toikkanen, S., Huusko, S., Rimhanen-Finne, R., 2015. *Cryptosporidium parvum* caused a large outbreak linked to frisee salad in Finland, 2012. Zoonoses Public Health 62, 618–624.
- Alsmark, C., Nolskog, P., Angervall, A.L., Toepfer, M., Winiecka-Krusnell, J., Bouwmeester, J., Bjelkmar, P., Troell, K., Lahti, E., Beser, J., 2018. Two outbreaks of cryptosporidiosis associated with cattle spring pasture events. Vet. Parasitol. 14, 71–74.
- Blackburn, B.G., Mazurek, J.M., Hlavsa, M., Park, J., Tillapaw, M., Parrish, M., Salehi, E., Franks, W., Koch, E., Smith, F., Xiao, L., Arrowood, M., Hill, V., da Silva, A., Johnston, S., Jones, J.L., 2006. Cryptosporidiosis associated with ozonated apple cider. Emerg. Infect. Dis. 12, 684–686.
- Bouzid, M., Kintz, E., Hunter, P.R., 2018. Risk factors for *Cryptosporidium* infection in low and middle income countries: a systematic review and meta-analysis. PLoS Negl. Trop. Dis. 12, e0006553.
- Dalle, F., Roz, P., Dautin, G., Di-Palma, M., Kohli, E., Sire-Bidault, C., Fleischmann, M.G.,

Gallay, A., Carbonel, S., Bon, F., Tillier, C., Beaudeau, P., Bonnin, A., 2003. Molecular characterization of isolates of waterborne *Cryptosporidium* spp. collected during an Outbreak of gastroenteritis in South Burgundy. France J. Clin. Microbiol. 41, 2690–2693.

- de Lucio, A., Bailo, B., Aguilera, M., Cardona, G.A., Fernandez-Crespo, J.C., Carmena, D., 2017. No molecular epidemiological evidence supporting household transmission of zoonotic *Giardia duodenalis* and *Cryptosporidium* spp. from pet dogs and cats in the province of Alava. Northern Spain. Acta Trop. 170, 48–56.
- ECDC, 2019. Cryptosporidiosis. Annual Epidemiological Report For 2017, ECDC, ed. ECDC, Stockholm.
- EFSA BIOHAZ Panel, 2018. Public health risks associated with food-borne parasites. EFSA Journal 16.
- EFSA BIOHAZ Panel, 2015. Scientific Opinion on the public health risks related to the consumption of raw drinking milk. EFSA Journal 13, 3940.
- Eisenberg, J.N., Lei, X., Hubbard, A.H., Brookhart, M.A., Colford Jr., J.M., 2005. The role of disease transmission and conferred immunity in outbreaks: analysis of the 1993 *Cryptosporidium* outbreak in Milwaukee. Wisconsin. Am. J. Epidemiol. 161, 62–72.
- Erickson, M.C., Ortega, Y.R., 2006. Inactivation of protozoan parasites in food, water, and environmental systems. J. Food Prot. 69, 2786–2808.
- Ethelberg, S., Lisby, M., Vestergaard, L.S., Enemark, H.L., Olsen, K.E., Stensvold, C.R., Nielsen, H.V., Porsbo, L.J., Plesner, A.M., Molbak, K., 2009. A foodborne outbreak of *Cryptosporidium hominis* infection. Epidemiol. Infect. 137, 348–356.
- Firdu, T., Abunna, F., Girma, M., 2014. Intestinal protozoal parasites in diarrheal children and associated risk factors at Yirgalem hospital, Ethiopia: a case-control study. Int. Sch. Res. Notices 2014, 357126.
- Gharpure, R., Perez, A., Miller, A.D., Wikswo, M.E., Silver, R., Hlavsa, M.C., 2019. Cryptosporidiosis outbreaks - United States, 2009-2017. MMWR Morb. Mortal. Wkly. Rep. 68, 568–572.
- Giangaspero, A., Papini, R., Marangi, M., Koehler, A.V., Gasser, R.B., 2014. Cryptosporidium parvum genotype IIa and Giardia duodenalis assemblage A in Mytilus galloprovincialis on sale at local food markets. Int. J. Food Microbiol. 171, 62–67.
- Goh, S., Reacher, M., Casemore, D.P., Verlander, N.Q., Chalmers, R., Knowles, M., Williams, J., Osborn, K., Richards, S., 2004. Sporadic cryptosporidiosis, North Cumbria, England, 1996-2000. Emerg. Infect. Dis. 10, 1007–1015.
- Gomez-Bautista, M., Ortega-Mora, L.M., Tabares, E., Lopez-Rodas, V., Costas, E., 2000. Detection of infectious *Cryptosporidium parvum* oocysts in mussels (Mytilus galloprovincialis) and cockles (Cerastoderma edule). Appl. Environ. Microbiol. 66, 1866–1870.
- Gomez-Couso, H., Mendez-Hermida, F., Castro-Hermida, J.A., Ares-Mazas, E., 2006. *Cryptosporidium* contamination in harvesting areas of bivalve molluscs. J. Food Prot. 69, 185–190.
- Gonzales-Barron, U., Thébault, A., Kooh, P., Watier, L., Sanaa, M., Cadavez, V., 2019. Strategy for systematic review of observational studies and meta-analysis modelling of risk factors for sporadic foodborne diseases. Microbial Risk Anal., 100082.
- Haagsma, J.A., Geenen, P.L., Ethelberg, S., Fetsch, A., Hansdotter, F., Jansen, A., Korsgaard, H., O'Brien, S.J., Scavia, G., Spitznagel, H., Stefanoff, P., Tam, C.C., Havelaar, A.H., 2013. Community incidence of pathogen-specific gastroenteritis: reconstructing the surveillance pyramid for seven pathogens in seven European Union member states. Epidemiol. Infect. 141, 1625–1639.
- Hagmann, S.H.F., Han, P.V., Stauffer, W.M., Miller, A.O., Connor, B.A., Hale, D.C., Coyle, C.M., Cahill, J.D., Marano, C., Esposito, D.H., Kozarsky, P.E., for the GeoSentinel Surveillance, N., 2014. Travel-associated disease among US residents visiting US Geosentinel clinics after return from international travel. Fam. Pract. 31, 678–687.
- Harper, C.M., Cowell, N.A., Adams, B.C., Langley, A.J., Wohlsen, T.D., 2002. Outbreak of *Cryptosporidium* linked to drinking unpasteurised milk. Commun. Dis. Intell. Q. Rep. 26, 449–450.
- Hunter, P.R., 2000. Modelling the impact of prior immunity, case misclassification and bias on case-control studies in the investigation of outbreaks of cryptosporidiosis. Epidemiol. Infect. 125, 713–718.
- Hunter, P.R., Nichols, G., 2002. Epidemiology and clinical features of Cryptosporidium infection in immunocompromised patients. Clin. Microbiol. Rev. 15, 145–154.
- Kirk, M.D., Pires, S.M., Black, R.E., Caipo, M., Crump, J.A., Devleesschauwer, B., Döpfer, D., Fazil, A., Fischer-Walker, C.L., Hald, T., Hall, A.J., Keddy, K.H., Lake, R.J., Lanata, C.F., Torgerson, P.R., Havelaar, A.H., Angulo, F.J., 2015. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med. 12, e1001921.
- Kotloff, K.L., Nataro, J.P., Blackwelder, W.C., Nasrin, D., Farag, T.H., Panchalingam, S., Wu, Y., Sow, S.O., Sur, D., Breiman, R.F., Faruque, A.S., Zaidi, A.K., Saha, D., Alonso, P.L., Tamboura, B., Sanogo, D., Onwuchekwa, U., Manna, B., Ramamurthy, T., Kanungo, S., Ochieng, J.B., Omore, R., Oundo, J.O., Hossain, M.J., Akinsola, A., Qureshi, S., Quadri, F., Adegbola, R.A., Antonio, M., Hossain, M.J., Akinsola, A., Mandomando, I., Nhampossa, T., Acacio, S., Biswas, K., O'Reilly, C.E., Mintz, E.D., Berkeley, L.Y., Muhsen, K., Sommerfelt, H., Robins-Browne, R.M., Levine, M.M., 2013. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382, 209–222.
- Lange, H., Johansen, O.H., Vold, L., Robertson, L.J., Anthonisen, I.L., Nygard, K., 2014. Second outbreak of infection with a rare *Cryptosporidium parvum* genotype in schoolchildren associated with contact with lambs/goat kids at a holiday farm in Norway. Epidemiol. Infect. 142, 2105–2113.
- Lonigro, A., Pollice, A., Spinelli, R., Berrilli, F., Di Cave, D., Cavallo, P., Brandonisio, O., 2006. *Giardia cysts* and *Cryptosporidium* oocysts in membrane-filtered municipal wastewater used for irrigation. Appl. Environ. Microbiol. 72, 7916–7918.
- Loury, P., Gross, L., Dugast, F., Favennec, L., Dalle, F., Rougemont, A.d., Polack, B., Giraudeau, D., Valot, S., Costa, D., Hubert, B., 2019. Épidémie de cryptosporidiose dans un collège de l'ouest de la France, November 2017. Bull. Epidémiol. Hebd. 16, 295–300.

#### Microbial Risk Analysis xxx (xxxx) xxxx

- Lucio-Forster, A., Griffiths, J.K., Cama, V.A., Xiao, L., Bowman, D.D., 2010. Minimal zoonotic risk of cryptosporidiosis from pet dogs and cats. Trends Parasitol. 26, 174–179.
- Marder, E., 2012. Risk factors for cryptosporidiosis and giardiasis infections in the United States: a case-case comparison in 16 States. Faculty of the Rollins School of Public Health of Emory University.
- McKerr, C., Adak, G.K., Nichols, G., Gorton, R., Chalmers, R.M., Kafatos, G., Cosford, P., Charlett, A., Reacher, M., Pollock, K.G., Alexander, C.L., Morton, S., 2015. An outbreak of *Cryptosporidium parvum* across England & Scotland associated with consumption of fresh pre-cut salad leaves, May 2012. PLoS ONE 10, e0125955.
- Millard, P.S., Gensheimer, K.F., Addiss, D.G., Sosin, D.M., Beckett, G.A., Houck-Jankoski, A., Hudson, A., 1994. An outbreak of cryptosporidiosis from fresh-pressed apple cider. JAMAJAMA 272, 1592–1596.
- Moreira, N.A., Bondelind, M., 2017. Safe drinking water and waterborne outbreaks. J. Water Health 15, 83–96.
- Moriarty, E.M., McEvoy, J.M., Lowery, C.J., Thompson, H.P., Finn, M., Sheridan, J.J., Blair, I.S., McDowell, D.A., Duffy, G., 2005. Prevalence and characterisation of *Cryptosporidium* species in cattle faeces and on beef carcases at slaughter. Vet. Rec. 156, 165–168.
- Nasser, A.M., 2015. Removal of *Cryptosporidium* by wastewater treatment processes: a review. J. Water Health 14, 1–13.
- Nic Lochlainn, L.M., Sane, J., Schimmer, B., Mooij, S., Roelfsema, J., van Pelt, W., Kortbeek, T., 2019. Risk factors for sporadic cryptosporidiosis in the Netherlands: analysis of a 3-year population based case-control study coupled with genotyping, 2013-2016. J. Infect. Dis. 219, 1121–1129.
- Pintar, K.D.M., Pollari, F., Waltner-Toews, D., Charron, D.F., Mcewen, S.A., Fazil, A., Nesbitt, A., 2009. A modified case-control study of cryptosporidiosis (using non-Cryptosporidium-infected enteric cases as controls) in a community setting. Epidemiol. Infect. 137, 1789–1799.
- Public Health England, 2017. National increase of C. parvum 2015. Final outbreak investigation report (London).
- Ravel, A., Nesbitt, A., Pintar, K., Macarthur, A., Wang, H.L., Marshall, B., Pollari, F., 2013. Epidemiological and clinical description of the top three reportable parasitic diseases in a Canadian community. Epidemiol. Infect. 141, 431–442.
- Redlinger, T., Corella-Barud, V., Graham, J., Galindo, A., Avitia, R., Cardenas, V., 2002. Hyperendemic *Cryptosporidium* and *Giardia* in households lacking municipal sewer and water on the United States-Mexico border. Am. J. Trop. Med. Hyg, 66, 794–798.
- Robertson, L.J., Gjerde, B., 2008. Development and use of a pepsin digestion method for analysis of shellfish for *Cryptosporidium* oocysts and *Giardia* cysts. J. Food Prot. 71, 959–966.
- Robertson, L.J., Temesgen, T.T., Tysnes, K.R., Eikas, J.E., 2019. An apple a day: an outbreak of cryptosporidiosis in Norway associated with self-pressed apple juice. Epidemiol. Infect. 147, e139.
- Rosenthal, M., Pedersen, R., Leibsle, S., Hill, V., Carter, K., Roellig, D.M., 2015. Notes from the field: cryptosporidiosis associated with consumption of unpasteurized goat milk - Idaho, 2014. MMWR Morb. Mortal. Wkly. Rep. 64, 194–195.
- Rousseau, A., La Carbona, S., Dumetre, A., Robertson, L.J., Gargala, G., Escotte-Binet, S.,

Favennec, L., Villena, I., Gerard, C., Aubert, D., 2018. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of *Giardia duodenalis*, *Cryptosporidium* spp., and *Toxoplasma gondii*: a review of methods. Parasite 25, 14.

- Roy, S.L., DeLong, S.M., Stenzel, S.A., Shiferaw, B., Roberts, J.M., Khalakdina, A., Marcus, R., Segler, S.D., Shah, D.D., Thomas, S., Vugia, D.J., Zansky, S.M., Dietz, V., Beach, M.J., 2004. Risk factors for sporadic cryptosporidiosis among immunocompetent persons in the United States from 1999 to 2001. J. Clin. Microbiol. 42, 2944–2951.
- Ryan, U., Hijjawi, N., Xiao, L., 2018. Foodborne cryptosporidiosis. Int. J. Parasitol. 48, 1–12.

Ryan, U., Lawler, S., Reid, S., 2017. Limiting swimming pool outbreaks of cryptosporidiosis - the roles of regulations, staff, patrons and research. J. Water Health 15, 1–16.

- Troeger, C., Blacker, B.F., Khalil, I.A., Rao, P.C., Cao, S., Zimsen, S.R.M., Albertson, S.B., Stanaway, J.D., Deshpande, A., Abebe, Z., Alvis-Guzman, N., Amare, A.T., Asgedom, S.W., Anteneh, Z.A., Antonio, C.A.T., Aremu, O., Asfaw, E.T., Atey, T.M., Atique, S., Avokpaho, E.F.G.A., Awasthi, A., Ayele, H.T., Barac, A., Barreto, M.L., Bassat, Q., Belay, S.A., Bensenor, I.M., Bhutta, Z.A., Bijani, A., Bizuneh, H., Castañeda-Orjuela, C.A., Dadi, A.F., Dandona, L., Dandona, R., Do, H.P., Dubey, M., Dubljanin, E., Edessa, D., Endries, A.Y., Eshrati, B., Farag, T., Feyissa, G.T., Foreman, K.J., Forouzanfar, M.H., Fullman, N., Gething, P.W., Gishu, M.D., Godwin, W.W., Gugnani, H.C., Gupta, R., Hailu, G.B., Hassen, H.Y., Hibstu, D.T., Ilesanmi, O.S., Jonas, J.B., Kahsay, A., Kang, G., Kasaeian, A., Khader, Y.S., Khalil, I.A., Khan, E.A., Khan, M.A., Khang, Y.-.H., Kissoon, N., Kochhar, S., Kotloff, K.L., Koyanagi, A., Kumar, G.A., MagdyaaaaAbdaaaaEl Razek, H., Malekzadeh, R., Malta, D.C., Mehata, S., Mendoza, W., Mengistu, D.T., Menota, B.G., Mezgebe, H.B., Mlashu, F.W., Murthy, S., Naik, G.A., Nguyen, C.T., Nguyen, T.H., Ningrum, D.N.A., Ogbo, F.A., Olagunju, A.T., Paudel, D., Platts-Mills, J.A., Qorbani, M., Rafay, A., Rai, R.K., Rana, S.M., Ranabhat, C.L., Rasella, D., Ray, S.E., Reis, C., Renzaho, A.M.N., Rezai, M.S., Ruhago, G.M., Safiri, S., Salomon, J.A., Sanabria, J.R., Sartorius, B., Sawhney, M., Sepanlou, S.G., Shigematsu, M., Sisay, M., Somayaji, R., Sreeramareddy, C.T., Sykes, B.L., Taffere, G.R., Topor-Madry, R., Tran, B.X., Tuem, K.B., Ukwaja, K.N., Vollset, S.E., Walson, J.L., Weaver, M.R., Weldegwergs, K.G., Werdecker, A., Workicho, A., Yenesew, M., Yirsaw, B.D., Yonemoto, N., ElaaaaSayedaaaaZaki, M., Vos, T., Lim, S.S., Naghavi, M., Murray, C.J.L., Mokdad, A.H., Hay, S.I., Reiner, R.C., 2018. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect, Dis. 18, 1211-1228.
- Utsi, L., Smith, S.J., Chalmers, R.M., Padfield, S., 2016. Cryptosporidiosis outbreak in visitors of a UK industry-compliant petting farm caused by a rare Cryptosporidium parvum subtype: a case-control study. Epidemiol. Infect. 144, 1000–1009.
- Viechtbauer, W., 2010. Conducting meta-analyses in r with the metafor package. 201036, 48.
- Wilson, N., Baker, M., Edwards, R., Simmons, G., 2008. Case-case analysis of enteric diseases with routine surveillance data: potential use and example results. Epidemiol. Perspect. Innov. 5, 6.
- Yoshida, H., Matsuo, M., Miyoshi, T., Uchino, K., Nakaguchi, H., Fukumoto, T., Teranaka, Y., Tanaka, T., 2007. An outbreak of cryptosporidiosis suspected to be related to contaminated food, October 2006, Sakai City, Japan. Jpn. J. Infect. Dis. 60, 405–407.