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 Abstract 

 

The Iberian Peninsula (Portugal and Spain) is a great production area of olives. The 

fruit production can be severely affected by the olive fruit fly, Bactrocera oleae (Rossi, 

1790) (Diptera). Detailed geographical distribution maps of key pests, such as B. oleae, are 

essential for their integrated management. Although different sources reporting the 

occurrence of B. oleae are available for sub-regions of Portugal and Spain, the data 
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available are dispersed and centralization of this information considering the Iberian 

Peninsula as a faunistic geographical unit is currently lacking. In this work, we built two 

distribution maps of B. oleae throughout the Iberian Peninsula, one based on occurrence 

sites and another based on its bioclimatic habitat suitability. After modeling the bioclimatic 

suitability of B. oleae using a maximum entropy model, three potential distribution areas 

beyond the previously known occurrence range of the olive fruit fly were identified 

corresponding to the autonomous community of Galicia (Spain), the Spanish and 

Portuguese sides of the International Douro Natural Park, and the autonomous community 

of Castilla y León (Spain). Interestingly, each region houses nowadays autochthonous olive 

cultivars. The drivers that most contributed to the model were the precipitation of the 

coldest quarter and the precipitation of driest month which agrees with the B. oleae 

bioecology. Although our approach is not fully-comprehensive in terms of occurrence sites, 

we show how a maxent modeling approach can be useful to identify potential risk areas of 

B. oleae occurrence throughout a target geographical extent such as the Iberian Peninsula. 
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1 | Introduction 

 

The olive tree (Olea europaea L.) cultivation strongly influences the human life 

across the Mediterranean basin from economic to landscape aspects (Loumou & Giourga, 

2003). The Mediterranean basin encompasses 91.83% of the world olive harvested area 

(FAOSTAT, 2019). This region produces and consumes 99% and 87% of the world’s olive 

oil respectively. Southwestern Europe (i.e. the Iberian Peninsula housing Portugal and 

Spain) represents 29.36% of the olive harvested area within the entire Mediterranean basin 

(FAOSTAT, 2019). 

The olive tree is susceptible to the attack of different insect pests such as Bactrocera oleae 

(Rossi, 1790) (Diptera), Prays oleae Bernard, 1788 (Lepidoptera), Saissetia oleae (Olivier, 

1791) (Hemiptera), Euphyllura olivina Costa, 1839 (Hemiptera), and Phloeotribus 

scarabaeoides (Bernard, 1788) (Coleoptera) (Haniotakis, 2003; Haber & Mifsud, 2007). 

Among them, the olive fruit fly is the most damaging pest across the Mediterranean basin 

because of direct pulp destruction caused by the larvae development, premature drop of the 

infested fruits and general reduction in olive oil quality, which may cause a loss up to 40% 

of the production (Pereira et al., 2004; Boccaccio & Petacchi, 2009).   

Accordingly, monitoring schemes have been implemented by the countries as an 

informative and predictive-like tool such as the Spanish monitoring web of olive pests “Red 

DACUS”. However, efficient networks of monitoring stations are usually expensive (e.g. in 

terms of human resources) and the information provided by them does not extend beyond 

their geographical position. 

In contrast, species distribution modeling is a widely used method to investigate the 

potential occurrence and spread of species. Species distribution models (SDMs) are based 
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on the relationship of a pool of georeferenced observations of a species occurrence (or 

abundance) with different environmental predictors across a determined geographical 

extent (Franklin, 2013). SDMs have been used in several fields of ecology such as research 

on invasive species (e.g. Dark, 2004), climate change impacts (e.g. Thuiller et al., 2006), 

conservation (e.g. Dubuis et al., 2011), and modeling of pest species distribution and spread 

(see Kehlenbeck et al., 2012, and Sutherst, 2013). Among these modeling techniques, the 

Maxent models (i.e. maximum entropy models) raised as a general-purpose machine 

learning method that allows modeling a species distribution using presence-only data 

(Phillips et al., 2006). However, although open-source and user-friendly tools are already 

available to follow this approach (e.g. Phillips et al., 2017) and detailed presence/absence 

occurrence data are freely accessible from different resources (e.g. global species 

repositories), there is still a lack of detailed stand-alone distribution maps and species 

distribution models for B. oleae in the Iberian Peninsula. 

The objectives of this work were (1) to provide an occurrence-based distribution map of B. 

oleae for the Iberian Peninsula (i.e. Spain and Portugal), and (2) to assess the climatic 

suitability across the same geographical extent based on bioclimatic drivers. 

 

2 | Material and methods 

 

The compilation of occurrence sites of B. oleae and O. europaea, the selection of 

bioclimatic drivers, and modeling processes were carried out using the environment for 

statistical computing R (R Core Team, 2018). 
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2.1 | Occurrence-based distribution map 

Occurrence sites of B. oleae were collected through a bibliographic review that 

included scientific papers, Spanish government technical reports of B. oleae monitoring 

stations, the Global Biodiversity Information Facility online database (GBIF, 2018), and 

personal observations. Analogously, occurrence sites for O. europaea were obtained from 

the former database only. The GBIF occurrence datasets (Bactrocera oleae (Rossi, 1790) in 

GBIF Secretariat (2017) & Olea europaea L. in GBIF Secretariat (2017)) were obtained 

using the gbif function of the {rgbif} package. The list of occurrence coordinates and 

corresponding references are provided in Table S1. A digital elevation model from Reuter 

et al. (2007) was used to project the occurrences sites for the Iberian Peninsula. 

 

2.2 | Bioclimatic variables 

The bioclimatic variables used were obtained from the WorldClim database (Fick & 

Hijmans, 2017). WorldClim is a gridded climate database that provides a set of bioclimatic 

variables derived from the monthly temperature and rainfall values representing annual 

trends, seasonality, and extreme or limiting environmental factors. The pool of 19 variables 

was downloaded at 2.5 minutes spatial resolution (~ 4.5 km at the equator) and is described 

in Table 1. A driver selection was then carried out to avoid multicollinearity among the 

bioclimatic variables using the cor and findCorrelation functions of the {stats} and {caret} 

packages respectively. For this purpose, a pool of 1000 random points across the 

Mediterranean basin extent was generated and those variables exceeding a threshold of 0.8 

for the Pearson pairwise correlation were excluded for modeling. 
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2.3 | Species distribution modeling 

The model was developed using an R implementation of Maxent (Phillips et al., 

2006), a machine-learning method that uses the principle of maximum entropy to 

approximate the unknown probability distribution of a species based on presence-only data 

(Phillips et al., 2006) using the maxent function of {dismo} package (Hijmans et al., 2017). 

Since B. oleae is associated to the olive tree cultivation, the geographical extent of the 

selected bioclimatic drivers was focused on the Mediterranean basin (15ºW, 40ºE, 27ºS, 

50ºN), the highest olive producing region worldwide (FAOSTAT, 2019) using the crop 

function of {raster} package (Fig. S1). 

The optimal model was selected following Muscarella et al. (2014) towards a balance of 

goodness-of-fit with model complexity and evaluation of models with spatially independent 

data. The {ENMeval} package allows creating data sets for k-fold cross-validation using 

different methods for partitioning occurrence data, building a series of candidate models 

using the function ENMevaluate (calling the algorithm of {maxnet} package that uses 

{glmnet} for model fitting based on “Maxent” Java package, version 3.4.0), and provides 

evaluation metrics to select the optimal model settings. We used the “checkerboard1” 

method for partitioning occurrence data to build a series of 40 models corresponding to five 

combinations of feature classes (linear, quadratic, product, threshold, and hinge) and eight 

regularization multipliers (β) (0.5, 1, 1.5, 2, 2.5, 3, 3.5,  and 4). Duplicate presence points 

(i.e. occurrence points that fell in the same grid cell) were removed and 10000 random 

background localities were used across the study extent (Fig. S2). The occurrences records 

of B. oleae used in this work correspond to presence-only data thus the background data 

represent pseudo-absences towards AUC (area under the receiver operating characteristic 

curve) calculations (see below) (Phillips & Dudík, 2008; Barbet-Massin et al., 2012). 
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The optimal model was assessed by selecting the one with the lowest AIC (Akaike 

Information Criterion). The AIC corrected for small samples sizes (AICc) reflects both 

model goodness-of-fit and complexity thus the model with the lowest AICc is considered 

the best model across the combinations of feature classes and regularization multipliers (see 

Muscarella et al. (2014) for details). Once selected, the model was refitted using the 

optimal model tuning and the AUC was calculated. The AUC is a threshold independent 

measure of predictive accuracy based only on the ranking of locations (Merow et al., 2013) 

and ranges from 0.5 (i.e. random) for models with no predictive ability to 1.0 (i.e. perfect 

discrimination between suitable and unsuitable cells) for models with a perfect prediction. 

According to Swets (1988), a model with an AUC > 0.7 provides “useful'' discrimination 

ability, > 0.8 means “good'' model performance, and > 0.9 results in a “very good'' model 

performance. 

The bootstrapped standard error of AUC, its 95% confidence interval, and the ROC 

(Receiver operating characteristic) curve were calculated following Steven & Phillips 

(2009) and using the {ROCR} package (Sing et al., 2005). Finally, the number of predicted 

values falling at each step of 0.1 within the range of predicted climatic suitability (i.e. 0.0–

0.1, 0.1–0.2, 0.2–0.3, 0.3–0.4, 0.4–0.5, 0.5–0.6, 0.6–0.7, 0.7–0.8, 0.8–0.9 and 0.9–1.0) was 

calculated and 20 replicates of the predictions were run for plotting purposes. A response 

curve was fitted for each bioclimatic variable representing the average prediction for all 

data points that were used to fit the model. The response curves were calculated using the 

response function of {dismo} package. Finally, the chorological map of O. europaea of 

Caudullo et al. (2017) (file Olea_europaea_europaea_plg_clip.shp) was used to 

graphically assess the amount of extended climatic suitability of B. oleae beyond the known 

distribution of the olive tree occurrence area in the Iberian Peninsula. 
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3 | Results 

 

3.1 | Occurrence-based distribution map 

The compilation of occurrence records of B. oleae resulted in a total of 762 records 

(Table S1) of which 219 presence records were used for training and 73 for testing after 

reducing the geographical extent to the target region (the Mediterranean basin). In the case 

of O. europaea, 37,556 records were downloaded from the GBIF database and used only 

for plotting purposes. The occurrence-based distribution map of B. oleae for the Iberian 

Peninsula is presented in Fig. 1. 

 

3.2 | Bioclimatic variables 

The multicollinearity analysis resulted in the exclusion of the bioclimatic variables bio1, 

bio5,  bio10,  bio11, bio12, bio13, bio16, bio17, and bio18 (Fig. 2) so that the mean diurnal 

range, isothermality, temperature seasonality, minimum temperature of coldest month, 

temperature annual range, mean temperature of wettest quarter, mean temperature of driest 

quarter, precipitation of driest month, precipitation seasonality, and precipitation of coldest 

quarter were used as predictors for subsequent modeling purposes. 

 

3.3 | Species distribution modeling 

Among the five feature combinations used to select the optimal model (L, LQ, 

LQH, LQHP, and, LQHPT) and the eight regularization multipliers (ranging from 0.5 to 

4.0), the one that achieved the lowest AICc and a ΔAICc = 0 was the linear and quadratic 

model (LQ) with a regularization multiplier (β) = 0.5, resulting in 17 parameters (Table 
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S2). The LQ model gave an AUC = 0.923 (Fig. S3), with a bootstrapped standard error = 

0.0146, and a 95% confidence interval of [0.894, 0.951]. In terms of prediction within the 

Iberian Peninsula (10ºW, 5ºE, 35ºS, 15ºN) (Fig. 3), 19.44% of cells fell within the [0.0, 0.1] 

interval of p (predicted climatic suitability), 9.21% within [0.1, 0.2], 8.41% within [0.2, 

0.3], 8.59% within [0.3, 0.4], 9.42% within [0.4, 0.5], 9.81% within [0.5, 0.6], 9.68% 

within [0.6, 0.7], 8.97% within [0.7, 0.8], 8.15% within [0.8, 0.9], and 8.31% within [0.9, 

0.10] (Fig. S4). Among the selected bioclimatic variables, the drivers that contributed most 

to the Maxent model were the precipitation of coldest quarter, precipitation of driest month, 

and mean diurnal range whereas the mean temperature of the wettest quarter, the mean 

temperature of driest quarter, and isothermality were the less contributing variables (Table 

2). The response curve for each bioclimatic variable is presented at Fig. 4. 

The average omission and predicted area for species, and the sensitivity versus specificity 

results (ROC) for the 20 replication runs of the optimal model are provided at the 

supplementary material as the Fig. S5 and Fig. S6 files respectively. 

Three potential distribution areas beyond the previously known occurrence range of the 

olive fruit fly were identified (Fig. 5), each one representing a region where the olive tree is 

currently being cultivated: (1) the autonomous community of Galicia (Spain), (2) the 

Spanish and Portuguese sides of the International Douro Natural Park, and (3) the 

autonomous community of Castilla y León (Spain). 

 

4 | Discussion 

 

In this work an occurrence-based distribution map of B. oleae for the Iberian 

Peninsula was built using different occurrence sources. The occurrence records were used 
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subsequently used to model the climatic suitability of B. oleae using a maximum entropy 

modeling approach and the AUC obtained (0.923) resulted in a very good model 

performance according to Swets (1988). Maxent models are commonly used to assess the 

probability of occurrence of a given species according to its potential distribution and based 

on the discrimination of suitable versus unsuitable areas for the species. In addition, niche-

based models are usually projected on a target geographical extent, thus giving a theoretical 

area of predicted presence for the species (Phillips et al., 2006). However, several factors 

such as biotic interactions (Anderson et al., 2002) and historical factors (Peterson et al., 

1999) can lead a species to be unable to occupy a certain area even if favorable. In fact, in 

our case study, the “probability of occurrence” of B. oleae is determined a priori by the 

presence or absence of O. europaea thus we prefer to interpret our results strictly in terms 

of climatic suitability or potential distribution area instead of occurrence probability (see 

Yackulic et al., 2013). 

The Maxent model prediction agrees in general with Müller et al. (2019) and with the 

pattern found by Ponti et al. (2014) through mechanistic physiologically-based 

demographic models (PBDMs) for the olive fruit fly abundance in the Mediterranean basin 

and extends its potential distribution area (i.e. areas with P ≥ 0.5) to the autonomous 

communities of Galicia, Asturias, and Castilla y León, as well as to the whole Ebro river 

valley within Spain (Figs 3 & 4).  

These results are of capital importance since Galicia (northwestern Spain) had recently 

emerged as a new olive-growing region housing two autochthonous cultivars (Brava and 

Mansa de Figueredo) with potential relevant health benefits due to high concentration 

levels of phenolic compounds (Reboredo-Rodríguez et al., 2018; Figueiredo-González et 

al., 2019). 
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Analogously, the olive tree is one of the most extensively cultivated perennial species in the  

International Douro Natural Park. The Park encompass the border section of the Douro 

River, a deep, embedded valley with cliff margins that separate Portugal from Spain across 

more than 100 km. The Spanish side of the Valley runs along the provinces of Zamora and 

Salamanca (Castilla y León) (Fig. 4). In this region, the olive tree cultivation, with its own 

autochthonous cultivar (Zorzal) is of economic and social importance attending to its 

traditional use as excipient, medicinal properties, and ecotourism (including “olive-oil 

tourism”) incoming (González et al., 2010; Marcos, 2010). 

The autonomous community of Castilla y León houses 2% of the olive crop area of Spain 

(Muriel & Marcos, 2012). Within this region, the olive tree cultivation in the province of 

Valladolid has been increasing during the last years. Cropping areas that formerly did not 

support the growing of O. europaea are nowadays being exploited taking advantage of 

increased temperatures due to climate change and irrigation (Moreno et al., 2005; 

Tanasijevic et al., 2014).  

In terms of the predictive bioclimatic variables selected, our results are in line with the 

current knowledge on the life history of B. oleae and O. europaea. The olive tree is the 

most abundant perennial tree historically adapted to Mediterranean conditions (Loumou & 

Giourga, 2003), i.e. a Csa-type climate according to the Köppen-Geiger classification 

characterized by hot and dry summers and mild and moist winters (Peel et al., 2007). The 

drivers that most contributed to the model were the precipitation of the coldest quarter and 

the precipitation of driest month which suggest that the habitat requirements of B. oleae are 

directly or indirectly driven by boundary climatic conditions (i.e. limiting environmental 

factors for both the pest and the host species, O. europaea). 
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Although Podgornic et al. (2013) did not found a significant relationship between 

precipitation and trap captures in Slovenia, Yokohama & Miller (2007) found in a series of 

laboratory and field studies at California that exposure to 5°C and 85% RH caused 100% 

mortality of eggs and three larval instars. Moreover, 3rd instar larvae and 0–4 d-old pupae 

reached almost 100% of mortality after immersion in water saturated sand for 3 days. These 

agree with the predictions of our model since the climatic suitability for B. oleae decreased 

at high values of the precipitation during the coldest quarter. In addition, the decreasing 

pattern in climatic suitability found for precipitation during the driest month agrees with the 

adaptation of B. oleae and it host to the hot and dry summers across the Mediterranean 

region. However, the survival of overwintering pupae of the olive fruit fly could be affected 

by soil moisture as Wang et al. (2013) found in California suggesting that mortality could 

result from pupae dehydration before the winter rains. 

On the other hand, the following most contributing variable to the model prediction was the 

mean diurnal range of temperature. Almost all ecophysiological parameters of B. oleae are 

strongly affected by temperature (Wang et al., 2009; Pappas et al., 2013; Ordano, 2015; 

Baratella et al., 2017). For example, our model predicted a strong decrease in the climatic 

suitability for B. oleae at a mean diurnal range higher than 10ºC and an optimal for the 

mean temperature of coldest month at c. 4.5ºC. Marchi et al. (2016) found a consistent 

relationship between the degree of infestation and the temperature-based indices calculated 

for the previous period using decade-long agrometeorological time series whereas 

Gonçalves et al. (2012) estimated that daily minimum temperature could explain the 

mortality of overwintering B. oleae in olive groves in the “Terra Quente” region of Trás-os-

Montes (northeastern Portugal). 
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Our Maxent model could reliably capture the bioclimatic information involved in the life-

history of B. oleae using presence-only data. Of course, our modeling approach can be 

improved by considering different common model limitations such as sampling bias, 

representativeness of the selected geographical extent, optimal model selection (e.g. testing 

different methods of data partitioning, feature class combinations, and regularization 

multipliers) as well as the consideration of further explanatory variables (e.g. pest 

dispersion ability, presence/absence of olive trees, and the application of pesticides and 

management practices). Dealing with these issues implies a huge effort in terms of 

comprehensive sampling programs, bibliographic review and model development; 

however, despite some criticism to Maxent models (based on the narrow set of 

circumstances that allow for an unbiased equivalence between the logistic output and 

probability of occurrence (Yackulic et al., 2013)), we showed how this approach can help 

identify potential risk areas of pest occurrence or colonization with high economic 

implications. In any case, despite the hypothesis testing aim, model performance, and 

interpretation of a species distribution model, the process implicitly generates an 

occurrence-based distribution map for the target species which is itself a useful 

contribution. 

In conclusion, the spread of the occurrence (actual or potential) of B. oleae, the amount of 

areas with predicted climatic suitability higher than 0.5, and the extension of olive crop 

areas in the Iberian Peninsula make this region an excellent geographical area to investigate 

the processes involved in the potential dispersion/colonization of B. oleae. For example, the 

increasing temperatures in response to climate change predicted by climate models (IPCC, 

2014) makes mandatory to study the effect of climate change on the relationships between 

the olive tree and its obligate pest B. oleae.  
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Although using a Maxent approach to model shifts in a species distribution (e.g. 

anticipation of pest invasion purposes) due to climate change (e.g. under different 

representative concentration pathways (RCPs), i.e. different greenhouse gas concentration 

trajectories adopted by the IPCC) could be tempting, different aspects such as biotic 

interactions, evolutionary change, dispersal ability, and emergence of new fundamental 

niches should be taken into account beyond regarding only climate variables (Pearson & 

Dawson, 2003; Veloz et a., 2012; Guisan et al., 2014). For this, powerful individual-based 

approaches such as climate envelope and physiologically based demographic models 

(PBDM) (Gutiérrez et al., 2008, 2009) and recent eco-evolutionary models (Moya-Laraño 

et al., 2014; Grimm et al., 2017) have been used and rising respectively and could help to 

deal with this task in the near future. We hope this work would represent a stimulus for 

further research towards a deeper knowledge of a biological system as important as the 

olive grove agroecosystem. 
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Table 1. Description of bioclimatic variables provided by the WorldClim database. 

 

Code in  database Bioclimatic variable 

bio1 Annual mean temperature 
bio2 Mean diurnal range (mean of monthly (max temp - min temp)) 
bio3 Isothermality (bio2/bio7) (× 100) 
bio4 Temperature seasonality (standard deviation × 100) 
bio5 Max temperature of warmest month 
bio6 Min temperature of coldest month 
bio7 Temperature annual range (bio5-bio6) 
bio8 Mean temperature of wettest quarter 
bio9 Mean temperature of driest quarter 

bio10 Mean temperature of warmest quarter 
bio11 Mean temperature of coldest quarter 
bio12 Annual precipitation 
bio13 Precipitation of wettest month 
bio14 Precipitation of driest month 
bio15 Precipitation seasonality (coefficient of variation) 
bio16 Precipitation of wettest quarter 
bio17 Precipitation of driest quarter 
bio18 Precipitation of warmest quarter 
bio19 Precipitation of coldest quarter 
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Table 2. Percent of contribution of each selected bioclimatic driver used to model the 

climatic suitability of Bactrocera oleae in the Iberian Peninsula. 

 

Bioclimatic variable 
Percent 

contribution 

Precipitation of coldest quarter 22.20 
Precipitation of driest month 20.00 

Mean diurnal range 
(Mean of monthly (max temp - min temp)) 14.90 

Min temperature of coldest month 13.80 
Temperature seasonality 

(Standard deviation ×100) 12.30 

Precipitation seasonality 
(Coefficient of variation) 9.10 

Temperature annual range 
(Max temperature of warmest month - Min temperature of coldest month) 5.40 

Mean temperature of wettest quarter 1.60 
Mean temperature of driest quarter 0.50 

Isothermality 
(Mean diurnal range / Temperature annual range) × 100 0.20 
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Figure captions 

 

Figure 1. Occurrence-based distribution map of Bactrocera oleae throughout the Iberian Peninsula. Blue dots represent occurrence 

records projected on a digital elevation model. Altitude is expressed in meters (m). 

 

Figure 2. Multicollinearity analysis of the pool of 19 bioclimatic variables available from WorldClim for the selected geographical 

extent of analysis (the Mediterranean basin: 15ºW, 40ºE, 27ºS, 50ºN). Pies represent the amount of Pearson correlation within each 

pair of variables. The description of bioclimatic variables is available at Table 1. 

 

Figure 3. Mean of 20 Maxent prediction replicates using the linear and quadratic (LQ) model for the climatic suitability of Bactrocera  

oleae in the Iberian Peninsula. Colors have been chosen to allow risk assessment in terms of pest potential presence (i.e. reddish areas  

indicate higher climatic suitability).  

  

Figure 4. Response curve of each selected bioclimatic driver used to model the climatic suitability of Bactrocera oleae in the Iberian  

Peninsula. Asterisks indicate the three most contributing variables to the model: precipitation of coldest quarter (bio19), precipitation  

of driest month (bio14), and mean diurnal range (bio2). Codes of variables correspond to Table 1.  

  

Figure 5. Extended distribution (mean of 20 Maxent prediction replicates using the linear and quadratic (LQ) model) of the climatic  

suitability (p) of Bactrocera oleae in the Iberian Peninsula. Black thick lines represent country administrative limits. Black thin lines  

represent administrative limits of districts and autonomous communities for Portugal and Spain respectively. Orange dots represent  

occurrence records of B. oleae, green dots represent occurrence records of Olea europaea, and the green area represents the current  
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chorological map of O. europaea. The red, purple, and blue circles encompass the autonomous community of Galicia, the central area  

of Castilla y León, and the Spanish side of the International Douro Natural Park. These areas of new olive cultivation with no previous  

capturing of the pest have been suggested by the model as suitable for pest establishment. Reddish areas indicate higher climatic  

suitability.  
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