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Abstract

The McMurdo Dry Valleys constitute the largest ice-free region of Antarctica and one of the most 

extreme deserts on Earth. Despite the low temperatures, dry and poor soils and katabatic winds, some 

microbes are able to take advantage of endolithic microenvironments, inhabiting the pore spaces of 

soil and constituting photosynthesis-based communities. We isolated a green microalga, Endolithella 

mcmurdoensis gen. et sp. nov from an endolithic sandstone sample collected in the McMurdo Dry 

Valleys (Victoria Land, East Antarctica) during the K020 expedition, in January 2013. The single 

non-axenic isolate (E. mcmurdoensis LEGE Z-009) exhibits cup-shaped chloroplasts, electron-dense 

bodies and polyphosphate granules but our analysis did not reveal any diagnostic morphological 

characters. On the basis of phylogenetic analysis of the 18S rRNA (SSU) gene, the isolate was found 

to represent a new genus within the family Chlorellaceae.

Key index words: 18S rRNA, extremophiles, LEGEcc, genus, microalgae, sandstone 

Abbreviations: BI, bayesian inference; DAPI, 4′,6-diamidino-2-phenylindole; LEGEcc, Blue 

Biotechnology and Ecotoxicology culture collection; OTU, operational taxonomic unit; QIIME, 

Quantitative insights into microbial ecology
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Introduction

The remarkable diversity of green algae reflects a great adaptive capacity, allowing for survival in the 

most extreme environments on Earth such as marine deep waters (Zechman et al. 2010, Hodač et al. 

2016, Spalding et al. 2016), deserts (Friedmann and Ocampo 1976, Lewis and Lewis 2005), 

hypersaline habitats (Vinogradova and Darienko 2008) or habitats with temperatures below freezing 

point (Morgan-Kiss et al. 2008). Even in these extreme settings, green microalgae play an important 

ecological role (Lyon and Mock 2014), but their diversity is far from being understood, especially in 

unexplored polar environments (Hodač et al. 2016). The life-limiting environmental conditions that 

occur in Antarctica are triggers for speciation and development of endemic species, making this a 

particularly promising location for the exploration of microbial diversity (Vincent 2000). 

In Antarctica, trebouxiophycean microalgae are known since the description of Chlorella 

antarctica (Wille 1928), and many studies have highlighted the considerable diversity of this group in 

cold environments (Friedmann and Ocampo 1976, Friedmann 1982, Carvalho et al. 2017, Nedbalová 

et al. 2017). The McMurdo Dry Valleys constitute the largest ice-free region of Antarctica (Horowitz 

et al. 1972) and one of the world's most extreme deserts. The average annual temperature is about -

22C, winter temperatures typically of -60C, precipitation levels are lower than 100 mm water 

equivalent, the land is battered by katabatic winds and intense UV radiation and the soils are poor, 

with low levels of carbon, nitrogen and small amounts of clay (Wynnwilliams 1990, Ugolini and 

Bockheim 2008, Cary et al. 2010). Despite all these extreme conditions, life exists. Soil and rocks act 

as refuge, protecting life from intense solar radiation and desiccation providing milder microclimate 

conditions that ease the growth of microbial life (Pointing et al. 2009) with significant diversity 

(Wood et al. 2008). In fact, some microbes are able to inhabit porous rocks such as sandstones 

(Friedmann 1982, Hughes and Lawley 2003), constituting photosynthesis-based endolithic 

communities (Friedmann and Ocampo 1976) that rely heavily on cyanobacteria and microalgae. In 

Antarctica land environments, green algae, especially Chlorella-like forms, are particularly abundant 

and diverse (Hodač et al. 2016) and have an important role in nutrient cycling and as primary 

producers, providing organic matter in the oligotrophic soils (Tscherko et al. 2003).
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Herein, we describe the new trebouxiophycean microalga Endolithella mcmurdoensis gen. et 

sp. nov, isolated from an endolithic habitat in the McMurdo Dry Valleys, Antarctica, that was found 

by pyrosequencing analysis to be dominated by cyanobacteria.

Methods

Sampling, isolation and culturing. 

Endolithic samples (Fig. 1, A and B) were collected during the K020 Mission, that took place in 

January 2013, on Victoria Valley, located in McMurdo Dry Valleys region, in South Victoria Land, 

Antarctica (7720.502 S; 16139.306 E). Collected samples were preserved at -80C in LifeGuard 

Solution (MoBio). Isolate LEGE Z-009 was obtained from an isolation process originally intended for 

isolating cyanobacteria (Rego et al. 2019). An aliquot of the endolithic sample was washed and 

centrifuged three times (4500g, 3 min) with nitrogen-free BG110 medium (Rippka 1988). It was then 

inoculated into a 100 mL Erlenmeyer flask with liquid Z8 medium (Kotai 1972) as an initial 

enrichment culture and placed at 19°C, under a 12:12 h light (25 μmol photons · m-2 · s-1) : dark cycle. 

When visible growth was detected, an aliquot was transferred and streaked onto a solid BG110 

medium plate (1.5% agar supplemented with 25 µL · L-1 of cycloheximide), and placed at 12°C. 

Single colonies were then microscopically inspected, selected and re-streaked aseptically in the same 

medium and/or in Z8, until isolation was achieved. The isolated strain was deposited in the LEGE 

Culture Collection in CIIMAR, and is maintained cryopreserved and at 12ºC and 19ºC, in liquid Z8 

medium, under the identification LEGE Z-009.

Pyrosequencing (16S rRNA-based) analysis of the endolithic community. 

Environmental DNA (eDNA) was extracted from the same Victoria Valley sample used for isolation 

of the microalga strain, by using a modification of the CTAB extraction protocol (Barrett et al. 2006). 

The 16S small subunit (SSU) rRNA gene was initially amplified by PCR using the universal primer 

pair 27F/1492R (Weisburg et al. 1991) and then sequenced by pyrosequencing technology. Briefly, 

the 16S rRNA gene was amplified for the V3/V4 hypervariable region with barcoded fusion primers 

containing the Roche-454 A and B Titanium sequencing adapters, an eight-base barcode sequence, 

the forward (5’– ACTCCTACGGGAGGCAG-3’) and reverse (5’– TACNVRRGTHTCTAATYC -3’) A
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primers (Wang and Qian 2009). Amplicons were quantified by fluorimetry with PicoGreen 

(Invitrogen), pooled at equimolar concentrations and sequenced in the A direction with GS 454 FLX 

Titanium chemistry, according to the manufacturer’s instructions (Roche, 454 Life Sciences) at 

Biocant (Cantanhede, Portugal). The 454-machine-generated FASTA (.fna) and quality score (.qual) 

files were processed using the QIIME (Quantitative insights into microbial ecology) pipeline 

(Caporaso et al. 2010). Initially, raw reads were demultiplexed and subjected to a quality filtering – 

sequences with a quality score below 25 were removed. The next step, Pick OTUs (Operational 

Taxonomic Units; Sneath and Sokal 1973) was performed using the pick_open_reference_otus.py 

workflow (open-reference method; i.e., unmatched sequences are clustered de novo and included in 

the downstream analysis). No action was undertaken to remove eventual plastid-derived sequences 

from the dataset. The OTU table obtained from the open-reference method was selected to the 

downstream analyses. Essentially, all sequences (average length 428 bp) were clustered into OTUs at 

97% sequence similarity using UCLUST (Edgar 2010) and the reads aligned to the Greengenes v13_8 

(GG; DeSantis et al. 2006) database using PyNAST. For the taxonomic assignment, the RDP 

Classifier 2.2 (Wang et al. 2007) was used with the UCLUST method. Sequencing reads from this 

study were deposited in the European Nucleotide Archive (ENA) under the accession number 

PRJEB34393.

Microscopy. 

The isolated strain was observed and photographed under a Leica DMLB microscope. Measurements 

of 40 cells from a growing-phase culture were performed using a dedicated software (Leica LAS EZ, 

Leica Microsystems). For TEM studies, BG11- and N-depleted BG110-grown microalgal cultures 

were centrifuged and the cells were fixed in 2.5% glutaraldehyde and 2% paraformaldehyde in 0.1 M 

sodium cacodylate buffer (pH 7.2) for at least two h, followed by a buffer wash (5 min) and overnight 

incubation with osmium tetroxide (2% w/v). A new buffer wash was performed, and samples were 

incubated overnight with 1% uranyl acetate (w/v). Dehydration was performed using an ethanol series 

(25-100%; v/v), and twice propylene oxide (10 min each). Subsequently, samples were embedded in 

mixtures of propylene oxide and Epon resin, followed by Epon for at least 24 h, before being placed 

in embedding moulds with Epon, and allowed to polymerize at 65ºC for 48 h. Ultrathin sections were A
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cut with an ultramicrotome Leica Reichert SuperNova, placed on electron microscopy grids, and 

visualized using an electron microscope (JEOL JEM-1400Plus).

Polyphosphate granules and DNA were visualized with DAPI staining according to previous 

standardized protocol (Mukherjee and Ray 2015). Preparations were visualized under Laser Scanning 

Confocal Microscope Leica SP2 AOBS SE (Leica Microsystems) using the following wavelength 

channels: 430-460 nm for DNA staining, 520-530 nm for polyphosphate granules and 640-680 nm for 

chlorophyll epifluorecescence. Images were merged using Adobe Photoshop software.

DNA extraction, PCR amplification and cloning. 

Genomic DNA extraction was performed with the DNeasy® Plant Mini Kit (QIAGEN) following the 

manufacturer’s instructions for plant DNA extraction. Plastid-encoded 16S small subunit (SSU) 

rDNA was amplified by PCR using the primers CYA106F, CYA359F, CYA781R (Nubel et al. 1997) 

and 1492R (Weisburg et al. 1991). Nuclear-encoded 18S SSU rDNA amplification was performed 

using the internal primers 18S402F, 18S895F, 18S919R, 18S1339R (Katana et al. 2001) and the 

external 18SF and 18SR primers (Moon-van der Staay et al. 2000). The nuclear internal transcribed 

spacer region (ITS1-5.8S-ITS2) was amplified using primers 18S895F and ITS055R (Marin et al. 

2003). All PCRs were performed according with the conditions originally reported for the used 

oligonucleotides. PCR products were separated in a 1.5% (w/v) agarose gel stained with GelRed™ 

(Biotium) and DNA fragments with the expected size were excised from the gel and purified using the 

NucleoSpin™ Gel and PCR Clean-up Kit (Macherey-Nagel). The purified 16S rDNA PCR product 

was sequenced (GATC Biotech) with CYA106F/1492R primers while purified 18S rDNA and ITS 

PCR products were TA cloned using a pGEM®-T Easy Vector System Kit (Promega), and 

transformed into Escherichia coli ONE SHOT® TOP10 chemically competent cells (Invitrogen). 

Colonies were selected by blue-white screening, and the presence of the appropriate insert was 

evaluated by colony PCR. Colonies with an insert of the expected size were grown overnight at 37C 

in liquid LB medium supplemented with 100 μg · mL-1 of ampicillin, with shaking. Plasmid DNA 

was isolated using the NZY Miniprep kit (NYZtech) and sequenced (GATC Biotech) using M13 

primers. All nucleotide sequences were manually inspected for quality, trimmed and assembled using 

the Geneious 8.1.9. software package (Biomatters Limited). Sequences obtained in this study were A
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deposited in the NCBI GenBank database under accession numbers MN394916 (16S rRNA gene), 

MK682757 (18S rRNA gene) and MK682753 (ITS).

Phylogenetic analysis. 

The 18S rRNA gene Maximum Likelihood (ML) and Bayesian inference (BI) trees presented here 

were constructed in two rounds. In the first round, to place our species within the Trebouxiophyceae 

tree, we performed a ML phylogeny with our sequence and with sequences of reference strains 

representing Chlorellales, Prasiolales and Trebouxiales. Then, we included sequences retrieved in 

GenBank by BLAST. In the second round, to obtain trees with higher phylogenetic support, we 

selected the phylogenetically most closely related taxa to Endolithella mcmurdoensis and performed 

ML and BI analysis. In the ITS2 phylogenies (ML and BI), we included the OTUs with available 

ITS2 sequences from our second round 18S rDNA phylogenies and sequences retrieved from 

GenBank by BLAST.

For all generated trees, sequences were aligned by ClustalW, and the GTR+G+I evolutionary 

model was selected by MEGA 7.0 (Kumar et al. 2016). The robustness of ML trees was estimated by 

bootstrap percentages, using 1000 replications in MEGA 7.0 (Kumar et al. 2016). Bayesian trees were 

constructed in two independent runs, with four chains each, for 5 × 105 generations using MrBayes 

(Ronquist and Huelsenbeck 2003) in Cipres Gateway (Miller et al. 2010). The outgroup used was 

Oocystis marssonii (AF228688).

Internal transcriber spacer 2 (ITS2) structures. 

The ITS2 region of Endolithella mcmurdoensis MK682757 (280 bp) and the phylogenetically closest 

related sequences: Auxenochlorella protothecoides FN298931 (354 bp) and A. protothecoides 

LN610704 (354 bp) were annotated using ITS2 database (Koetschan et al. 2010) and folded with 

Mfold (Zuker 2003). Images were built using 4SALE (Seibel et al. 2006).

Results

Diversity in the endolithic community and isolation of Endolithella mcmurdoensis LEGE Z-009. 
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To obtain an overview of the microbial composition of the endolithic sample, 16S rRNA-based 

pyrosequencing analysis was performed and revealed that the endolithic community collected from 

the McMurdo Dry Valleys sample (Fig. 1, A and B) was dominated by Cyanobacteria (44%) and 

Actinobacteria (30%), followed by lower abundances of Chloroflexi (10%) and Proteobacteria (6%). 

The photosynthetic microbial community was clearly dominated by an Acaryochloris-like unicellular 

cyanobacterium representing 99% of the cyanobacterial/chloroplast OTUs present in the sample (Fig. 

S1 in the Supporting Information), which is in line with our own microscopic examination that 

revealed a clear dominance by coccoid cyanobacteria (Fig. S2 in the Supporting Information). These 

results are in accordance with other endolithic communities previously characterized (Walker et al. 

2007), where oxygenic phototrophs, especially cyanobacteria, represented the major fraction of 

community, followed by Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, and 

Crenarchaeota. In addition, the dominance of Acaryochloris suggested a high level of adaptation to 

this type of environment, which may result from its high chlorophyll d content (Partensky et al. 2018).

Although, from our pyrosequencing analysis, we found no evidence for chloroplast-derived 

16S rRNA gene OTUs in the original endolithic sample, the strain Endolithella mcmurdoensis LEGE 

Z-009 was isolated from the sample, following repeated streaking in agar plates under laboratory 

conditions. 

Morphology. 

Endolithella mcmurdoensis was not detected by microscopic observation of the endolithic community 

sample; therefore, morphological analysis and taxon description were performed based only on the 

cultured isolate strain E. mcmurdoensis LEGE Z-009.

Description. Endolithella T.Martins, V.Ramos, Hentschke & Krienitz gen. nov.

Cells living in endolithic layers, solitary, ovoid, uninucleate. Cell wall two-layered. Asexual 

reproduction by autospores. The genus differs from other members of Chlorellaceae by its extreme 

habitat in the polar region, endolithic life style, 18S rRNA gene and ITS2 secondary structure. TYPE 

SPECIES: Endolithella mcmurdoensis T.Martins, V.Ramos, Hentschke & Krienitz.

ETYMOLOGY: The generic name reflects the endolithic habitat.A
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Endolithella mcmurdoensis T. Martins, V. Ramos, Hentschke & Krienitz sp. nov.

Figure 1, C-K

Individuals solitary, sometimes forming small chains with two to four cells. Mature vegetative cells 

spherical or sub-sphaerical, 3.2–5.2 μm in diameter (average: 4.42 μm), with double-layered cell wall 

covered by mucilage (Fig. 1C). Chloroplast cup-shaped, without pyrenoids (Fig. 1, D-F). From TEM 

analysis (Fig. 1, D-F), electron-dense bodies and polyphosphate granules present, the latter confirmed 

by fluorescence microscopy (Fig. 1, G-K). Reproduction by two (rarely) or four ovoid autospores 

with 2.0-3.8 μm in diameter (average: 3.1 μm). Sporangia sphaerical or sub-sphaerical, 4.4-6.6 μm in 

diameter (average: 5.3 μm). 

Comments: There is no diagnostic morphological character in Endolithella. The taxonomic 

identification is only possible considering the typical extreme habitat (endolithic in Antarctica) and 

the molecular data presented below. 

HOLOTYPE: authentic strain permanently cryopreserved, Endolithella mcmurdoensis LEGE Z-009, 

deposited in the Blue Biotechnology and Ecotoxicology Culture Collection (LEGEcc) at CIIMAR, 

Porto, Portugal (http:// lege.ciimar.up.pt), collected 01/23/2013, leg. Catarina Magalhães. The strain 

has been deposited in the same collection as an active culture. 

ISOTYPE: an air-dried herbarium specimen of the authentic strain LEGE Z-009 deposited at the 

Botanical Museum Berlin-Dahlem under the designation B 40 0043196. 

TYPE LOCALITY: Antarctica, South Victoria Land, Victoria Valley, located in McMurdo Dry 

Valleys region.

HABITAT: Endolithic.

ETYMOLOGY: The specific epithet refers to the geographic origin of the type strain.
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Phylogenetic position. 

The nuclear-encoded 18S rRNA gene (1796 bp) and the ITS2 were used for the molecular 

characterization of Endolithella mcmurdoensis LEGE Z-009. Blast searches against the GenBank 

database indicated best identity scores for Pseudochlorella pringsheimii KY364701 (95.89%) and 

Nannochloris AS 2-10 AY195968 (95.84%). Both sequences were included in the first round trees, 

but proved to be not phylogenetically closely related to E. mcmurdoensis, reinforcing supporting the 

description of the new genus.

An initial 18S rRNA gene phylogenetic tree (Fig. S3 in the Supporting Information), with a 

total of 87 OTUs and 1487 nucleotide analyzed positions and containing genera of Trebouxiales, 

Chlorellales and Prasiolales, was constructed. In this tree, Endolithella mcmurdoensis LEGE Z-009 is 

positioned within the family of Chlorellaceae, weakly supported at the base of a large clade 

containing (sequentially) the Nannochloris (bootstrap value 62), Parachlorella (bootstrap value 99) 

and Chlorella (bootstrap value 49) clades. Basal to this group (E. mcmurdoensis included) are the 

Auxenochlorella clade, as well as genera of Prasiolales and Trebouxiales. Endolithella mcmurdoensis 

LEGE Z-009 is positioned outside any of the already known clades of Chlorellaceae.

In subsequently constructed trees (Fig. 2, Fig. S4 in the Supporting Information), only the 

most phylogenetically closely-related taxa to Endolithella mcmurdoensis were included in the 

analysis. Again, the new taxon proved not to be phylogenetically closely related to any currently 

known clades of Trebouxiophyceae. In the ML tree, the new genus is positioned basal to 

Nannochloris (boostrap value 99), Parachlorella (bootstrap value 100) and Chlorella (bootstrap value 

100) clades, as also observed for the first round tree, but now with stronger phylogenetic support (Fig. 

S4). In the BI tree (Fig. 2), E. mcmurdoensis LEGE Z-009 is basal to the Auxenochlorella-clade and 

again, not phylogenetically related to the other clades of Trebouxiophyceae. The average standard 

deviation of split frequencies for this analysis was 0.009191 and the average potential scale reduction 

factor (PSRF) for parameter values was 0.998. In all first and second round trees, all genera present 

strong phylogenetic support. The ITS2 ML and BI phylogenies corroborate with these results showing 

Endolithella as a weak supported sister clade of Auxenochlorella (Fig. S5 in the Supporting 

Information). 

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

ITS2 secondary structure. 

The ITS2 secondary structures (Figs. 3, S6 and S7 in the Supporting Information) are consistent with 

the usual structures for eukaryotes with four helices, a pyrimidine-pyrimidine mismatch in helix II, an 

A-rich region between helices II and III and a TGGT motif 5’ in helix III, the longest one (Schultz et 

al. 2005). Comparisons between Endolithella mcmurdoensis LEGE Z-009 ITS2 secondary structure 

(280 bp, from MK682757) with the closest phylogenetic sequences showed that Endolithella presents 

a unique ITS2, differing in length and structure from Auxenochlorella protothecoides CCAP 211/7A 

(354 bp, from FN298931) and A. protothecoides CCAP 211/17 (354 bp, from LN610704). This 

analysis corroborates our 18S rDNA and ITS2 phylogenies in supporting Endolithella as a new genus.

Discussion

We described the new chlorellacean genus and species Endolithella mcmurdoensis based on 18S 

rRNA gene and ITS2 data from the strain LEGE Z-009. The isolate was obtained after repeated 

streaking in solid media, despite chloroplast sequences being absent from the pyrosequencing dataset, 

underpinning the importance of culture-dependent approaches to retrieve non-abundant biodiversity 

(Rego et al. 2019). From the morphological description presented here, E. mcmurdoensis LEGE Z-

009 can be related to Auxenochlorella, Pumilliosphaera and Meyerella by the absence of a pyrenoid. 

This character distinguished E. mcmurdoensis from Chlorella-like pyrenoid-bearing genera (Gaysina 

et al. 2013, Neustupa et al. 2013). Endolithella mcmurdoensis LEGE Z-009 presents electron-dense 

bodies and polyphosphate granules that play important roles as environmental stress adaptation 

structures. Electron-dense bodies in green algae, previously documented in Mychonastes 

homosphaera from lake Kinneret (Hanagata et al. 1999), are related to metabolite deposition, working 

usually as poly-P accumulation structures (Ota and Kawano 2018). For instance, under early sulfur-

depletion conditions, poly-P is accumulated in electron-dense bodies (Ota et al. 2016b), being 

hydrolized to Pi in a later stage, and  released to the cytosol, acting as a protein-protective chaperone 

(Gray et al. 2014, Gray and Jakob 2015). The accumulation of polyphosphate and other nutrients such 

as lipids is known to be considerably high in members of Chlorellaceae (Ota et al. 2016a), working as 

survival strategy in harsh, adverse conditions, such as strong UV radiation and temperature A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

fluctuations (Achbergerova and Nahalka 2011), but also under N deprivation (Chu et al. 2013), which 

is precisely the condition under which this alga was isolated.

Despite the lack of a diagnostic morphological character, our phylogenies and ITS2 secondary 

structure data confirm that Endolithella mcmurdoensis LEGE Z-009 is a new taxon, with an uncertain 

position among the already known clades of Chlorellaceae. Comparing the topologies of the BI and 

ML trees (Fig. 2 and Fig. S4, respectively), E. mcmurdoensis LEGE Z-009 is basal to Chlorella, 

Parachlorella and Nannochloris clades in the ML trees, but in the BI tree the new taxon is more 

closely related to the extremophile Auxenochlorella clade. In both trees, the phylogenetic 

relationships between E. mcmurdoensis LEGE Z-009 and the other clades are only weakly supported 

but it was possible to infer that Endolithella is a distinct genus. We hypothesize that E. mcmurdoensis 

LEGE Z-009 could be a new lineage in the Chlorellaceae family, a proposition that has to be 

confirmed by further studies.

Herein we are presenting only the BI tree (which includes ML bootstrap values), because this 

tree shows the close relationship between Endolithella mcmurdoensis LEGE Z-009 and the 

extremophile clade of Auxenochlorella and Prototheca. The last two genera were described from sap 

of trees samples and were characterized as being dependent of exogenous organic compounds (Ueno 

et al. 2005, Darienko and Pröschold 2015). Endolithella mcmurdoensis LEGE Z-009 is also an 

extremophile taxon, living in Antarctica cold desert sandstones. 

The potential of polar environments as collection sites for new microalgae taxa discoveries 

begins with the description of Chlorella antarctica in 1924 (Wille 1928). However, strains isolated 

from these environments were considered to be “non indigenous”, growing from spores that reached 

polar regions by wind dispersal. This view lasted until Friedmann and Ocampo (1976) reported 

endolithic microalgae growing in Antarctica. This was followed by the discovery of  many microalgae 

species (including Cyanobacteria) in polar regions (Nedbalová et al. 2017, Davey et al. 2019). Our 

endolithic sample, presenting a conspicous thick layer of different photosynthetic microorganisms 

inside a porous rock, is in line with an “indigenous” origin. Still, recent studies (Hodač et al. 2016) 

show that, within the same microalgae species, specimens from polar regions can show no 

Compensatory Base Changes in ITS2 secondary structures when compared to specimens from 
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temperate zones. In light of these findings, and despite the endolithic character of the LEGE Z-009 

isolate, we cannot fully attest to the Antarctic endemic character of Endolithella mcmurdoensis.

The identification of this new genus represents an important taxonomic novelty and it is in line 

with recent studies that point towards a much more extensive and interesting biodiversity in 

Antarctica than previously thought (Chown et al. 2015).

Finally, we highlight the importance of studies on polar microalgae communities due to their 

potential in biotechnological aplications like protection from UV radiation (Miao et al. 2002), energy 

production (Chen et al. 2012) or nanoparticle biosynthesis (Gallardo et al. 2014), considering their 

survival strategies and ability to grow and produce organic compounds in these extreme habitats with 

light, temperature and nutrient limitations.
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Figure legends

Fig. 1 – A,B -Colonization of the cryptoendolith-bearing sandstone in McMurdo Dry Valleys. C - 

Light photomicrographs of the chlorophyte microalga LEGE Z-009 (1000x magnification). D-F – 

TEM photomicrographs of the chlorophyte microalga LEGE Z-009 culture: th, thylakoids; db, 

electron-dense body; cw, cell wall; en, cell envelope; n, nucleus, vg – vegetative cell, sp - 

sporangium. G-K – Fluorescence photomicrographs of Endolithella mcmurdoensis LEGE Z-009 with 

DAPI staining;chloroplast epifluorescence (G), DAPI blue-fluorescence emission upon DNA binding 

(H), DAPI green-fluorescence emission (1000× magnification) upon polyphosphate granules binding 

(I), merged G, H and I (J) and merged H and I (K).

Fig. 2 –18S rRNA gene Bayesian phylogenetic analysis. Posterior probabilities and Bootstrap values 

(BI/ML, respectively) are indicated at nodes. “–“ denotes no support.

Fig. 3 - ITS2 secondary structure of Endolithella mcmurdoensis LEGE Z-009 (280 bp, from 

MK682757) visualized with 4SALE. ITS2 helices are numbered I–IV and typical motifs are 

highlighted (arrows): the pyrimidine–pyrimidine mismatch in helix II; the A-rich region between 

helices II and III, as well as the UGGU motif 5′ to the apex of helix III.

Figure S1 – (A) Taxonomy summary bar chart of relative frequency of 10 most abundant phyla in the 

initial sample, based on 16S rRNA gene sequences (B) Summary bar chart of the most abundant 

taxonomic frequency distributions at Genus level for the oxygenic photosynthetic community (both 

taxa are Cyanobacteria).

Figure S2 – Environmental sample photomicrographs. Bright field image (A) of the same optical 

field as in the fluorescence image (B).

Figure S3 –18S rRNA gene Maximum Likelihood phylogenetic analysis of trebouxyophycean 

strains. Bootstrap values are indicated at nodes. The analysis involved 87 nucleotide sequences and 

there were a total of 1487 positions in the final dataset.A
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Figure S4 – 18S rRNA gene Maximum Likelihood phylogenetic analysis of a selection of 

chlorellacean strains. Bootstrap values are indicated at nodes. The analysis involved 26 nucleotide 

sequences and there were a total of 1664 positions in the final dataset.  

Figure S5 - ITS2 secondary structure of Auxenochlorella protothecoides FN298931, visualized with 

4SALE.

Figure S6 - ITS2 secondary structure of Auxenochlorella protothecoides LN610704, visualized with 

4SALE.

Figure S7 - ITS2 secondary structure of Auxenochlorella protothecoides LN610704, visualized with 

4SALE. 
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