
Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

Automatic detection and classification of honey bee comb cells using deep
learning

Thiago S. Alvesa,b,⁎, M. Alice Pintoc, Paulo Venturac, Cátia J. Nevesc, David G. Birond,
Arnaldo C. Juniorb, Pedro L. De Paula Filhob, Pedro J. Rodriguesa,⁎

a Research Center in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
bDepartment of Computer Science, Federal Technological University of Paraná (UTFPR), Medianeira, Paraná, Brazil
c Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Portugal
d Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Université Clermont-Auvergne, Campus Universitaire des Cézeaux, France

A R T I C L E I N F O

Keywords:
Cell classification
Apis mellifera L.
Semantic segmentation
Machine learning
Deep learning
DeepBee software

A B S T R A C T

In a scenario of worldwide honey bee decline, assessing colony strength is becoming increasingly important for
sustainable beekeeping. Temporal counts of number of comb cells with brood and food reserves offers re-
searchers data for multiple applications, such as modelling colony dynamics, and beekeepers information on
colony strength, an indicator of colony health and honey yield. Counting cells manually in comb images is labour
intensive, tedious, and prone to error. Herein, we developed a free software, named DeepBee©, capable of au-
tomatically detecting cells in comb images and classifying their contents into seven classes. By distinguishing
cells occupied by eggs, larvae, capped brood, pollen, nectar, honey, and other, DeepBee© allows an un-
precedented level of accuracy in cell classification. Using Circle Hough Transform and the semantic segmen-
tation technique, we obtained a cell detection rate of 98.7%, which is 16.2% higher than the best result found in
the literature. For classification of comb cells, we trained and evaluated thirteen different convolutional neural
network (CNN) architectures, including: DenseNet (121, 169 and 201); InceptionResNetV2; InceptionV3;
MobileNet; MobileNetV2; NasNet; NasNetMobile; ResNet50; VGG (16 and 19) and Xception. MobileNet revealed
to be the best compromise between training cost, with ~9 s for processing all cells in a comb image, and
accuracy, with an F1-Score of 94.3%. We show the technical details to build a complete pipeline for classifying
and counting comb cells and we made the CNN models, source code, and datasets publicly available. With this
effort, we hope to have expanded the frontier of apicultural precision analysis by providing a tool with high
performance and source codes to foster improvement by third parties (https://github.com/AvsThiago/DeepBee-
source).

1. Introduction

In a scenario of worldwide honey bee (Apis mellifera L.) decline,
assessing colony strength is becoming increasingly important as it can
assist apiary management strategies and provide valuable information
for research purposes. Counts of comb cells with brood and food re-
serves offer beekeepers information on colony nutritional status, colony
health status, queen quality, honey yield, etc. The same data collected
across time can be used by researchers in multiple applications, in-
cluding assessment of queen genotypes, assessment of new treatments
against parasites and pathogens, modelling colony dynamics in re-
sponse to abiotic (pesticides) or biotic (parasites, pathogens, predators)
stressors, among others.

Delaplane et al. (2013) reviewed the methods for assessing colony
strength, among which is the Liebefeld method. This method has been
included in the HEALTHY-B toolbox compiled by EFSA (European Food
Safety Authority) for harmonising data collection on the health status of
honey bees in Europe (EFSA AHAW Panel, 2016). The Liebefeld method
is based on direct observations of comb frames in the apiary. Estimates
are made with the help of an eight-quadrant grid placed in front of each
frame. With the grid in place, the observer estimates the surface oc-
cupied by the targeted class (e.g., honey or capped brood) in every
quadrant. This method is prone to error, time-consuming and produces
data with a high level of subjectivity. Additionally, at least two well-
trained observers are required for gathering the data and for obtaining
better estimates through averaging the two subjective evaluations

https://doi.org/10.1016/j.compag.2020.105244
Received 29 April 2019; Received in revised form 13 November 2019; Accepted 22 January 2020

⁎ Corresponding authors at: Rua Mário Fontana, 1331, Toledo, Paraná CEP: 85910-190, Brazil.
E-mail addresses: alvest@alunos.utfpr.edu.br (T.S. Alves), apinto@ipb.pt (M.A. Pinto), catia.jose7@ipb.pt (C.J. Neves), biron@mpl.ird.fr (D.G. Biron),

arnaldoc@utfpr.edu.br (A.C. Junior), pedrol@utfpr.edu.br (P.L. De Paula Filho), pjsr@ipb.pt (P.J. Rodrigues).

Computers and Electronics in Agriculture 170 (2020) 105244

Available online 03 February 2020
0168-1699/ © 2020 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
https://doi.org/10.1016/j.compag.2020.105244
https://github.com/AvsThiago/DeepBee-source
https://github.com/AvsThiago/DeepBee-source
https://doi.org/10.1016/j.compag.2020.105244
mailto:alvest@alunos.utfpr.edu.br
mailto:apinto@ipb.pt
mailto:catia.jose7@ipb.pt
mailto:biron@mpl.ird.fr
mailto:arnaldoc@utfpr.edu.br
mailto:pedrol@utfpr.edu.br
mailto:pjsr@ipb.pt
https://doi.org/10.1016/j.compag.2020.105244
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2020.105244&domain=pdf

(Delaplane et al., 2013). In this context, semi-automatic or automatic
methods offer a better alternative for assessing colony strength as
subjectivity is eliminated.

Herein we developed a free software, DeepBee©, that can be readily
employed by honey bee researchers and apiculturists to assess colony
strength through analysis of comb images. DeepBee© is capable of
automatically detecting cells in comb images and classifying their
contents with an unprecedented discriminating power and level of ac-
curacy. DeepBee© evaluates a set of comb images at a high speed, al-
lows edition of the automatic predictions, if needed, and produces a
spreadsheet file for downstream analysis. While developing this tool,
we further contributed to a wider community including machine
learning, image processing and other software developers (i) by pro-
viding a method in the segmentation process to automatically readjust
the scale of the images driven by the size of the cells, (ii) by testing
different neural network architectures related to performance and
quality of results, (iii) by providing datasets that can be employed by
others when testing new methods, and (iv) by making available the
source codes enabling the reproducibility of our results.

1.1. Motivation

Several semi-automatic methods for assessing colony strength using
digital images of comb frames have been proposed in the last years
(reviewed below). When compared with manual methods, post-hoc
analysis of comb images reduces the time of information collection,
provides more accurate data, and assures reproducibility of results even
with different users. Furthermore, the images themselves are perma-
nent records of the data, representing an important step towards more
accountable and objective assessment of colony strength, as no record is
usually available after the commonly used visual estimation of combs.

Developing tools for analysis of comb images requires pre-defining
the cell classes that will be targeted. The higher the number of cell
classes to be distinguished in a comb image, the greater the complexity
of the classification model. During a colony lifetime, comb cells may be
(i) momentarily empty, (ii) occupied by the honey bee in its different
immature stages (egg, larva, pupa), or (iii) filled with food resources
(pollen, nectar, honey) required for colony development and main-
tenance (Fig. 1). To reflect the high level of cell-content diversity, at
least seven different classes should be pre-defined when developing
models for cell classification. In addition to class diversity, there might
be a wide array of colours and textures within each class, making cell
classification a challenging endeavour.

Previous works (reviewed below) have addressed this challenge by
developing tools for assessing only the number of capped brood cells
(Fig. 1c), a task that is greatly facilitated by the striking visual differ-
ences between capped brood and the remaining cells. Here, we devel-
oped a tool capable of assigning cell contents to seven different classes,
which represents an unprecedented level of accuracy in classification of
comb images.

1.2. Related works

Early works developed semi-automatic tools for assessing colony
strength by measuring the comb area occupied by brood (Emsen, 2006;
Yoshiyama et al., 2011). Emsen (2006) performed the segmentation
using mainly the selection tools of the software Adobe Photoshop® CS2.
Yoshiyama et al. (2011) developed an approach similar to that of Emsen
(2006) by using a tool similar to Adobe Photoshop® to create a semi-
supervised segmentation. The novelty was the plugin called LarvaeArea
created for the image processing software ImageJ (https://imagej.nih.
gov/ij/index.html). With this plugin, the user is able to open the pre-
viously segmented image and calculate automatically the area occupied
by both capped and uncapped cells.

Cornelissen et al. (2009) further advanced comb image assessment
by developing a semi-automatic method that counted the number of
capped brood cells, instead of measuring occupied area. This method
was on average 23 s slower than the Liebefeld method, as it required
human intervention during segmentation. However, the estimates of
capped cells were more accurate with the semi-automatic method
(correlation with the actual number of cells = 0.99) than with the
Liebefeld method (correlation with the actual number of cells = 0.91).

One of the first digital methods capable of detecting and counting
individual cells was developed by Liew et al. (2010). The authors used
pre-processing methods to highlight the edges and applied the Circle
Hough Transform (CHT) to detect the cells. They obtained a detector
with a cell detection rate of 82.6%.

More recently, Rodrigues et al. (2016) developed a method for au-
tomatic detection and counting of capped brood cells using circular
convolution. The circular mask has the same size of a comb cell, it stops
in each cell position, and it calculates the contrast between the pixels of
the cell edge and its interior. From this contrast, it is possible to know
whether there is a cell, and according to established thresholds, it is
possible to know whether the cell is capped or uncapped.

Meanwhile, various software packages have been developed for
comb assessment. In a presentation of the HoneybeeComplete, Wang &
Brewer (2013) showed the ability of this commercial software to cor-
rectly classify capped brood cells 97.4% of the time, with the rate in-
creasing up to 99.5% when the user pre-selects the search area. The
developers did not provide methodological details on software devel-
opment, only reporting the use of an unspecified set of pattern algo-
rithms.

The commercial HiveAnalyzer software, developed by Höferlin et al.
(2013), represented an important step forward in comb assessment by
classifying cells other than capped brood. The developers categorised
the comb cells into seven classes by using a cascade of classifiers based
on linear Support Vector Machines. The accuracy of the classifier was
94%, as measured on a subset of cells classified with high confidence.

More recently, Colin et al. (2018) developed the software Comb-
Count to assess capped brood and capped honey. Although the software
is able to detect both classes, it requires a user to distinguish the con-
tents using selection tools.

Fig. 1. Comb cell classes considered in this study: (a) egg, (b) larva (uncapped brood), (c) pupa (capped brood), (d) other (e.g. empty), (e) pollen, (f) nectar, (g) honey
(bee-processed nectar).

T.S. Alves, et al. Computers and Electronics in Agriculture 170 (2020) 105244

2

https://imagej.nih.gov/ij/index.html
https://imagej.nih.gov/ij/index.html

To the best of our knowledge, none of the studies published so far
has employed Neural Networks such as CNNs in honey bee comb image
analysis. Furthermore, most of the available methods are limited to
detecting capped brood, with only two of them being capable of as-
sessing food resources (Colin et al., 2018; Höferlin et al., 2013). As
such, there is an excellent opportunity for innovation using new
methods to address a major challenge in honey bee research, which is
assessing brood and food resources in the hive in a time- and cost-ef-
fective manner and with a high degree of accuracy.

1.3. Goal

The goal of this study is threefold: (i) to develop a pipeline capable
of detecting all cells in a comb image, (ii) to reliably classify the cells
into seven different classes, and (iii) to encapsulate this pipeline in a
free software. In accomplishing this goal, the following research ques-
tions will be addressed: (i) Is it possible to develop an image processing
method to detect cells in comb images, even when the edges are hard to
identify? (ii) Is it possible to develop computational models capable of
reliably classifying the contents of comb images using Deep Learning?
(iii) What are the implementation details to achieve the best functional
performance? (iv) Which neural models provide the best results for our
problem among many Deep Learning architectures available? Finally,
(v) How does the proposed approach compare to the related published
works?

2. Images capture and analysis

To assure image capture standardization, we developed a wooden
tunnel sealed for external light and with optimized dimensions (Fig. 2).
This tunnel had a retractable architecture for easy transportation,
having a length of 247 cm, when fully opened, and 92 cm, when re-
tracted. The comb frame and the camera were placed at the opposite
sides of the tunnel. The comb frame was positioned in two holders
(Fig. 2b). The holders had an angle of 11° (to make up for to the 9-13°
natural inclination of comb cells) for a better image capturing of the
interior of the comb cells (see the 3D model file in https://github.com/
AvsThiago/DeepBee-source). Close to the comb frame (40 cm from the
top), there was pair of Light-Emitting Diode (LED) sources, with 7 Watts
of power. The LEDs were turned to the walls at 45° to provide homo-
geneous light conditions and to avoid shadows during image acquisi-
tion. The camera was fixed with a screw on the opposite side of the
tunnel (Fig. 2c). Further details about the tunnel features are shown in
Appendix B.

In this study we used a digital camera Nikon D3300, with lens AF-S
DX VR Zoom-Nikon ED 55–200 mm F4-5.6G, and the following settings:
aperture− 10; ISO− 100; shutter speed− 1/60; autofocus - on; flash -
no; compression – JPEG; white balance - on. During image capturing,
the tunnel was closed on both sides and the camera was activated by an
external trigger. The images captured had a resolution of 24MPixels
(6000x4000px). Using these settings, 1,102 comb frames were photo-
graphed on both sides making a total of 2,204 images. The image da-
taset is available online at https://cloud.ipb.pt/d/
aa29c989ab1944aaa222/?p=/DS-COMB-PT.

3. Scale invariant detection and false detection removal

After obtaining the 2204 images, we searched for a method capable
of reliably detecting individual comb cells, a task that precedes cell
classification. Below, the different approaches and steps followed in this
study are described.

3.1. Circle Hough Transform

Duda and Hart (1972) developed the classical Hough Transform
method currently available. This method was originally developed for
detecting lines in images. Later on, it was discovered that it could also
be used for identifying arbitrary shapes, such as circles and ellipses,
even when they were partially occluded.

The Circle Hough Transform (CHT) method uses a voting process to
calculate the probability that a set of pixels form a circle. There are
several implementations of the method. Herein, we used the im-
plementation contained in the OpenCV v.4.0 library (https://github.
com/opencv/opencv/releases/tag/4.0.0). The parameters expected by
this method are: a grayscale image, size of an internal accumulator that
will store intermediate results, minimum distance between two detec-
tions centre, threshold to be applied to the internal Canny operator,
number of votes that a circle must have in the accumulator to be set as
true, minimum circle radius, and maximum circle radius.

3.2. Using CHT to detect cells

Prior to detecting comb cells using CHT, we applied a pre-proces-
sing method to normalise illumination, remove noise, and enhance cell
edges. The pre-processing pipeline was developed using empirical tests,
as follows: (i) extract only the red channel from the image; (ii) apply a
Contrast Limited Adaptive Histogram Equalization (CLAHE)
(Zuiderveld, 1994) with 8x8 tiles and clip limit of 2.0; (iii) remove the
noise keeping the edges by using the bilateral filter (Tomasi &
Manduchi, 1998) with diameter 5, sigma colour 50, and sigma space
50.

Having the pre-processing method defined, we started looking for
the best parameters combination for CHT. Typically, comb cells have
well-behaved diameters and distances and do not overlap. These fea-
tures greatly facilitated cell detection by the CHT method. On the other
hand, finding a combination of parameters to make CHT capable of
detecting uncapped and capped brood and honey cells revealed to be a
challenging task to be done by guessing and checking. Therefore, we
used a grid search-based algorithm to find the optimal combination.
The best result obtained from our images was: internal accumulator size
– 3, minimum distance – 51, Canny threshold – 100, minimum number
of votes – 25, minimum radius – 31, and maximum radius − 37.

With this combination of parameters, we were able to successfully
detect all different types of cells. However, setting fixed values for the
minimum distance, minimum radius and maximum radius makes de-
tection less generalist, requiring that images are acquired using a setup
like that described above. Therefore, to generalize the method, we
developed a scale-invariant detection method, which has two main
stages. First, the average cell size and the mean distance between them

Fig. 2. (a) Details of the interior of the tunnel. (b) Tunnel installed in an apiary showing the comb frame placed on holders. (c) Researcher adjusting the camera
before shooting.

T.S. Alves, et al. Computers and Electronics in Agriculture 170 (2020) 105244

3

https://github.com/AvsThiago/DeepBee-source
https://github.com/AvsThiago/DeepBee-source
https://cloud.ipb.pt/d/aa29c989ab1944aaa222/%3fp%3d/DS-COMB-PT
https://cloud.ipb.pt/d/aa29c989ab1944aaa222/%3fp%3d/DS-COMB-PT
https://github.com/opencv/opencv/releases/tag/4.0.0
https://github.com/opencv/opencv/releases/tag/4.0.0

are sought. Second, all cells are detected using the other parameters
discovered by the grid search. The detailed operation involved the
following steps (the distances are in pixels):

I. Detect cells with radius belonging to different ranges. In this
step, we only considered detections by the CHT method with high
levels of confidence (Fig. 3a). The fixed parameters were: internal
accumulator − 2, Canny − 145, minimum number of votes (con-
fidence) – 55, and minimum distance − 12. We also iterated a loop
with i ranging from 5 to 50 and step 5. At each iteration, the CHT
method was executed with the parameters minRadius = i + 1 and
maxRadius = i + 5. After running this method, a list with the
number of detections made for each radius i was returned (Fig. 3b).

II. Find the most frequent radius. In this step, we selected the most
frequent radius from the detections made on the given image with
different radius i. Fig. 3b shows how many radius-based circles were
found in the image. Most of the circles were detected with the ra-
dius 18, since it is the most frequent cell size for this image.

III. Define the minimum distance between two detections. Due to
different cell sizes and imperfections made by honey bees during
comb construction, in this step, we had to choose values for the
minimum distance parameter smaller than 2 × radius. After ana-
lysing the average distance between two cells of numerous frame
images of different sizes, we found that usually the minimum dis-
tance fits the Eq. (1), where r stands for radius.

= −minDist r r() 1.65 3, (1)

IV. Find the parameters minRadius and maxRadius for a given
radius. To deal with the natural variation of comb cell size and
with images taken from different distances, in this step, we created
a range based on the average cell radius. The range is defined by Eq.
(2).

= ± ⎧
⎨⎩

>
≤

range r r
r if r
if r

()
0.1 , 0.1 1

1, 0.1 1
,

(2)

V. Perform CHT with the obtained parameters. After obtaining the
parameters needed, we processed the images again with the CHT
method, but this time using the remaining parameters found by the
grid search (accumulator size, Canny threshold, minimum number
of votes).

Using parameters that accept more detections as true increases the
power of detecting different types of cells, even those with fuzzy edges
like honey cells (Fig. 3). However, by reducing the threshold for de-
tecting all true cells there is a risk of false detections (Fig. 4). To alle-
viate this problem, we developed a method based on CNNs, which is
described in the ensuing section.

3.3. Removing false detections using semantic segmentation

Semantic image segmentation, also called pixel-level classification,
is the task of clustering parts of an image together, which belong to the
same object class (Thoma, 2016). We used this technique for detecting
comb cells in the image and from this segmentation remove false cells
falling outside the comb area (Fig. 4). To that end, we used a CNN
encoder-decoder architecture based on U-Net (Ronneberger et al.,
2015).

3.3.1. Dataset creation for comb segmentation
We created the annotations using the Quick Selection Tool from the

software Adobe Photoshop® CS6. To define the classes, we painted white
the comb area and black the remaining area. We labelled 61 comb
images (Alves et al., 2019), which were selected to represent a high
diversity of cell content (e.g. honey, pollen, capped and uncapped
brood) and age (the older the comb the darker it gets). Fig. 5 illustrates
annotations made on those images. The annotations were split in three
sets: training (85%); validation (10%), and testing (5%).

Using the strategy proposed in Ronneberger et al. (2015), we di-
vided the input images and the labels in tiles, as shown in Fig. 6. Prior
to transforming each image in tiles, a mirrored border with size 184px
(top-bottom) by 148px (left-right) was added to create more space for
the tiles, and the images were resized to a constant size of
1000x1500px. During tiles extraction, overlaps between tiles were
taken into account to reduce border problems in the reassembly phase.
Using these processes, we transformed the 61 images into 7137 tiles.

Fig. 3. (a) Detection of cells with high confidence by the CHT method. (b) Number of cells detected f radius size.

Fig. 4. Comb cells, with different contents (honey, pollen, capped brood), de-
tected by our approach. Detected cells, including false detections outside of the
comb, are marked by a green hexagon. The close-up square shows honey cells
(on the left half) with fuzzy edges. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

T.S. Alves, et al. Computers and Electronics in Agriculture 170 (2020) 105244

4

3.3.2. Semantic segmentation architecture and training policy
The architecture had a depth of 5 convolutions with 3 × 3 filters

and layers of maximum pooling with 2 × 2 filters and a stride of 2, as
proposed by Ronneberger et al. (2015). Our modifications to the ori-
ginal model, made to obtain the best results in our semantic segmen-
tation dataset, were tuned using a trial-error approach and the fol-
lowing settings: input image with 128 × 128 resolution, dropout
(Srivastava et al., 2014) ranging from 0.1 to 0.3 between the con-
volution layers, use of Exponential Linear Units (ELU) activation
function (Clevert et al., 2015), and use of 16 filters (channels) in the
first layer, doubling the amount at each inner level and returning 16
filters in the penultimate layer with the last layer only having two di-
mensions. The CNN architecture is shown in Fig. 7.

We normalised the input images by dividing each pixel by 255. As
we only had two regions to be classified, we used the binary cross-
entropy as loss function. The network weights were initialised using the
He Normal initialisation (He et al., 2015). For the output layer, we
chose a sigmoid function, so we could easily transform the output in a
binary image applying a threshold, where values< 0.5 became zero
and the remaining became one. The best training was carried out using
the Adam optimiser (Kingma & Ba, 2014) with parameters β1 = 0.9
and β2 = 0.999. The Learning Rate (LR) was 10−3, which was pre-
served during 50 epochs. Due to the Early Stopping method used here,
the training may last less than 50 epochs. This method can halt the
training if a chosen metric does not improve after a pre-defined number
of epochs (6, in this study). The architecture was built using the fra-
mework Keras 2.1.4 with TensorFlow 1.4 as backend. The configura-
tions of the computer used for training were two GPUs: NVIDIA Ge-
Force GTX 1080Ti and NVIDIA GeForce GTX 1070; RAM: 16 GB; CPU:
Intel® Core™ i7-7700 K CPU @ 4.20 GHz × 8; operating system:
Ubuntu 17.10. All tests were performed in this computer.

3.3.3. Post-processing of comb segmentation
A post-processing step was undertaken so that the segmented image

could be used to minimize false detections. To have a binary output

after the CNN computation, we applied a threshold of 0.5 and the tiles
were reassembled. Subsequently, we found the largest contour using an
OpenCV method for finding contours and draw it filled using a method
to draw polygons (Fig. 8). Filtering using the largest contour helped
removing false segmentations inside and outside the comb, as shown in
Section 5.1.2.

3.4. Semantic segmentation experiments

In the first experiment, we assessed the quality of detections on an
independent set of 10 comb images, which were downloaded from the
Internet. This set was submitted to the scale-invariant cell detection
algorithm and the false detections removal method.

In the second experiment, we measured the cells detection rate of
our algorithm and compared with that proposed by Liew et al. (2010).
Following the methodology of Liew et al. (2010), we selected 10 images
from our dataset to be analysed by our detection algorithm. Subse-
quently, we evaluated manually the false positive (FP) and false nega-
tive (FN) detections. From these annotations, we collected the following
metrics: number of cells identified by humans; number of cells detected
by the algorithm; true positive (TP) detections; true cells detected
correctly; FP detections on inexistent cells; and FN cells undetected by
the algorithm. Finally, as in Liew et al. (2010), we calculated for each
image the cells detection rate using Eq. (3). This metric is based on the
total number of cells automatically detected, excluding the falsely
identified cells, divided by the manual count.

= − ×Cell Detection Rate Detection Count FP
Manual Count

100% (3)

4. Cells classification

The cell classification was carried out using CNNs. This supervised
approach gained momentum after the release of Krizhevsky et al.
(2012) work. At the time, this work was considered the state-of-the-art
in the ImageNet Large Scale Visual Recognition Challenge, where the
goal was to accurately classify more than a million images into 1000
distinct classes. After this seminal work, important advances have been
made in CNN architectures, with major consequential breakthroughs in
various fields of study such as agriculture (Kamilaris & Prenafeta-Boldú,
2018). A key feature for training a CNN architecture is the massive
amount of data needed. Following, we show how we gathered the cells
images for our dataset.

4.1. Dataset gathering for cells classification

The dataset created for classification should contain cells re-
presenting all different classes in different comb images. In this study,

Fig. 5. Samples from the dataset created for semantic segmentation: (a) original
image; (b) label.

Fig. 6. Tiles created from the original images and respective labels.

T.S. Alves, et al. Computers and Electronics in Agriculture 170 (2020) 105244

5

the annotations were made by an experienced beekeeper, assuring the
high quality required for developing the models. A piece of software
was developed to facilitate the beekeeper’s work. The software allowed
choosing a label corresponding to each class (nectar, honey, pollen, egg,
larva, capped brood, and other) and, at the same time, pointing the
centre of the cells, adjusting the contrast, brightness and gamma of the
images. A total of 71,915 cells were annotated on 1202 comb images,
with an average of 25 cells per image. The number of annotations by
class is shown in Fig. 9.

We divided the annotations in three sets for the training as follows:
80% of the original dataset for training, 20% of the training set for
validation, and 20% of the original dataset for testing. Then, we se-
lected 15 additional comb images and annotated all the cells. We made
a total of 39,533 new annotations and added them to the test set.

4.2. Transfer learning for cells classification

Using the transfer learning technique, it is possible to transfer the
weights of feature extraction layers (e.g. convolutions) from a trained

model over a dataset to another model that will be trained in a new
dataset (Oquab et al., 2014). Because the new model received kernels
already trained to recognise generic features, like lines and curves, it
will be easier for the model to generalise a new dataset being un-
necessary to learn the filters from scratch. We made a sanity check and
trained an architecture in our dataset with and without the transfer
learning before applying this approach to the next experiments. In this
experiment, we used the same policy in both trainings. We transferred
the weights from a pre-trained model on the ImageNet dataset (Deng
et al., 2009). We used the architecture InceptionV3 (Szegedy et al.,
2015) and, as shown in Fig. 10, the model converged faster, in a lower
number of epochs and with a higher accuracy with the transfer learning
than with training from scratch.

4.3. Finding the best region of interest (ROI) size to crop the cells

Before we defined the CNN architecture for the classifier, we needed
to find at which window size around the cells the image should be

Fig. 7. CNN architecture based on U-Net to handle comb segmentation.

Fig. 8. Process developed to reduce the number of false segmented areas.

Fig. 9. Number of annotations per class.

Fig. 10. Comparison between models trained in our dataset from scratch and
using pre-trained weights from ImageNet.

T.S. Alves, et al. Computers and Electronics in Agriculture 170 (2020) 105244

6

cropped. If we had cropped only the interior of the cells, our classifier
could have had difficulty in distinguishing between capped brood and
honey cells, as these classes typically exhibit a similar texture (Fig. 11).
To select the best input size, we created and tested 16 datasets, all of
them with the same annotations but with different ROI size. We defined
each dataset with 10% of the annotations from the main dataset. The
sizes (pixels) of the squared crops were 40, 50, 60, 80, 100, 120, 140,
160, 180, 200, 220, 240, 280, 298, 400 and 500.

The training framework for the tests was the Keras version 2.2 and
the InceptionV3 architecture (Szegedy et al., 2015). For the feature
extraction layers, we used weights pre-trained on the ImageNet dataset
using the transfer learning technique. The architecture and trained
weights were provided by Keras library. This architecture does not
allow inputs lower than 139 × 139px. Image datasets lower than
139 × 139px were resized to the minimum input size. We added three
layers at the end of the architecture to create the specific learning on
the classifier. The first one was a flattening layer applied to the network
output. Afterwards, we included two Dense layers (fully-connected)
with the last one having 7 neurons and a Softmax activation function to
represent our classes in a linear probabilistic domain. Details about the
architecture are shown in Fig. 12.

The classifiers were compiled using the Categorical Cross Entropy
loss function. We chose Adam with default parameters β1 = 0.9 and
β2 = 0.999 as the optimiser. The training started with the LR at 10−3

and using the technique Reduce Learning Rate on Plateau (He et al.,
2015a). We defined that the LR would be halved after 3 epochs without
improvement in the Loss metric, being the minimum value 10−6. We
established 50 for the maximum number of epochs. Again, we used the
Early Stopping technique with the maximum number of epochs,
without improvement, set at 5. We saved the model with the lowest
validation Loss in each dataset. The best results were provided by a
window size of 224 × 224px. We opted for 224 × 224px rather than

220 × 220px, for the reasons pointed out in Section 5.2.1.

4.4. Tests with different CNN architectures

After obtaining the best window size, as described previously, we
trained different CNN architectures with the input size 224 × 224px to
identify which one produced the best results on our dataset. We trained
13 distinct architectures selected by their superior performance in
image classification competitions in the past years. These architectures
included DenseNet 121, DenseNet 169, DenseNet201 (Huang et al.,
2016), InceptionResNetV2 (Szegedy et al., 2016), InceptionV3 (Szegedy
et al., 2015), MobileNet (Howard et al., 2017), MobileNetV2 (Sandler
et al., 2018), NasNet; NasNetMobile (Zoph et al., 2017), ResNet50 (He
et al., 2015a), VGG 16, VGG 19 (Simonyan & Zisserman, 2014), and
Xception.

Each architecture was trained using all training and validation
images from the core dataset. The images were extracted with the cell
centralised 224 × 224px. Before starting training each model, we made
some modification in the CNN architectures. We added a set of fully-
connected layers, as shown in Fig. 12. Prior to processing by the model,
the images were normalised by subtracting the ImageNet Mean Image
(103.939, 116.779, 123.68). The weights were transferred from pre-
vious ImageNet trainings. The training was performed with batches of
40 images. We defined the initial LR at 10−3 and used the Early
Stopping and Reduce LR on Plateau, as in Section 4.3. For comparing
the model, we extracted some information and metrics, including total
architecture parameters (weights), time to process an image batch,
training time, accuracy, loss, precision, recall and F1-score.

4.5. Data augmentation

It is not always possible to obtain large datasets for training CNNs,
either due to difficulties in gathering images with the object or in af-
fording human resources to annotate the datasets. One way to enlarge
the working dataset is through the Data Augmentation (DA) technique
(Krizhevsky et al., 2012). Using DA, it is possible to create virtual ex-
amples from a set of images. Different transformations with random
values are applied to these images and new ones are generated. Ex-
amples of transformations include changes in brightness, contrast,
translates, rotations, zoom, and perspective.

Based on the models with the best metrics discovered in the ex-
periment described in Section 4.3, we made a new training with addi-
tional data. We generated the new images using DA. Flips, brightness
changes, rotations, shift, and zoom were applied in the newly created
images. As a result, we generated a dataset of 250,000 images evenly
spread across the 7 different classes. These images were used in the
training set. Validation and test sets were kept with the original images.
We compared the resultant models using the metrics described in
Section 4.3. Fig. 13 shows several examples generated using DA.

Fig. 11. Comparison between (a) honey and (b) capped brood classes. In ad-
dition to the cells interior (a1, b1), the cells neighbourhood (a2, b2) was taken
into consideration to better define the two classes.

Fig. 12. Developed architecture based on InceptionV3. Fig. 13. Augmented examples generated from an original image.

T.S. Alves, et al. Computers and Electronics in Agriculture 170 (2020) 105244

7

5. Results and discussion

5.1. Cells detection and false detection removal

5.1.1. Cells detection
In the first cell detection experiment, we assessed the performance

of the developed algorithm in a set of independent images downloaded
from the internet. After selecting images that were captured under a
wide range of conditions, we generated the results, some of which are
illustrated in Fig. 14.

The algorithm successfully detected most comb cells of the selected
images (Fig. 14). These images represented a wide range of hive frame
type, cell size, cell content (e.g. honey, capped and uncapped brood),
and even varying illumination, texture and resolution, suggesting that
the algorithm developed in this study is robust.

5.1.2. False detection removal
The training of the CNN for segmentation was carried out with 23

epochs in 3.45 min on the computational architecture referred in
Section 3.3. Fig. 15 shows the evolution of accuracy and loss metrics in
the training and validation sets along the epochs. The model loss im-
proved quickly before the 10th epoch; after that, only small improve-
ments were achieved, even with the constant learning rate.

Using a CNN to segment the comb proved to be a robust solution, as
it delivered great results even on the independent set of images. Fig. 16
shows some examples of segmentations performed in the independent
and in our image sets. The downside is that CNN may have difficulty in
segmenting when the comb cells have not yet been developed (there is
only wax foundation) and when honey cells are very bright. The deci-
sion of selecting only the largest polygon and fill it to create a mask
contributed to removing false segmentations inside and outside the
comb area, as illustrated in Fig. 16. This approach has a poorer per-
formance on combs that are broken (see bottom image of Fig. 16a) or

have objects on front (see the thermohygro sensor on the top image of
Fig. 16a), for example. However, these comb defects are unusual.

5.1.3. Comparative analysis
To measure the quality of the detections using the segmentation, we

performed several tests, similar to those of Liew et al. (2010), on 10
selected images. The results of these tests are shown in Table 1. False
cell-related or noise-related detections were negligible in our tests, as
found by Liew et al. (2010). A factor that had a negative impact on the
results of Liew et al. (2010) work was the low contrast in some cells. As
detailed on Section 3.2, we dealt with this problem by applying the
CLAHE filter to our images before detecting the cells.

As in Liew et al. (2010), we calculated the cell detection rate for
each image using Eq. (3). The resulting detection rates varied between
97.35% and 99.9%, with an average of 98.7% (Table 2). These rates
were substantially higher than those reported by Liew et al. (2010).
However, the method of Liew et al. (2010) produced a lower number of
FP (5.1) than our method (22.5). This difference can be explained by
the fact that Liew et al. (2010) used more stringent parameters for CHT,
allowing only detections with a high level of confidence. On the other
hand, when we examined the number of FN, our approach produced
substantially better results (38.2 compared with 274.7; Table 2).
Overall, the method developed in this study revealed to be well ba-
lanced regarding FP and FN and these metrics had a small impact on
cell detection rate (98.7%).

5.2. Cells classification

5.2.1. Finding the optimal input image size
After training 16 different classification models, we obtained a plot

relating ROI size with cell classification accuracy (Fig. 17). The
trending line shows a steady increase in the accuracy as the ROI size
increases up to 300px; after that point the quality decreases.

Fig. 14. Cells detected with (a) radius 18 (leahybeekeeping.com), (b) radius 8 (mudsongs.org), and (c) radius 48 (beekeepercenter.com).

Fig. 15. Evolution of (a) accuracy and (b) loss during training of the comb semantic segmentation model. The vertical dashed line over the 20th epoch represents the
best calculated results (lowest loss).

T.S. Alves, et al. Computers and Electronics in Agriculture 170 (2020) 105244

8

Accordingly, input images with sizes between 200px and 300px should
be preferred as they tend to produce better results.

We chose 224 × 224px as the default input size for all the following
tests. We based this choice on the computational cost. Additionally,
although the best result in the test set was the one trained with
220 × 220px images, it was not possible to use this input size because
architectures like MobileNetV2 only had pre-trained weights in the
ImageNet dataset for sizes 128, 160, 192, or 224px (https://bit.ly/
2DhnLRb). To avoid the hassle of comparing models trained with
varying input sizes, we opted for using only 224 × 224px across all
tests.

5.2.2. Comparing different CNN architectures
During the training of different architectures with the 224 × 224px

input size, we faced some difficulties. We noticed that models VGG 16
and 19 were unable to converge over the used dataset (10% of our
original dataset), even after trying different LRs, loss functions and
optimisers. Therefore, we decided to remove these two models from the
tests. Another model that caused problems during the training stage
was NasNet (Large). This model suffers from a known bug (see https://
github.com/keras-team/keras/issues/8711#issuecomment-
354585187) and there are bypasses for it, but we decided to discard it
due to the large amount of time required for retraining.

Table 3 presents some metrics for the computational performance of
11 models. The MobileNet model produced the best results regarding
the number of epochs required for reaching convergence and the
average time per epoch. MobileNet weights number was also among the
lowest, only behind of its second version.

To better understand the performance of the models, we also

Fig. 16. (a) Original image, (b) segmentation mask provided by the CNN without post-processing, (c) segmentation mask applied to the original image, (d) largest
contour used as a mask, (e) largest contour applied to the original image.

Table 1
Comparison between cells detected automatically and cells detected automatically and manually corrected.

Image name Manual count Automatic count TP TP (%) FP FP (%) FN FN (%) CDR (%)

DSC_1940.JPG 3024 2949 2944 97.35 5 0.17 80 2.65 97.35
DSC_1992.JPG 2795 2742 2735 97.85 7 0.26 60 2.15 97.85
DSC_2832.JPG 2869 2833 2794 97.39 39 1.38 75 2.61 97.39
DSC_2839.JPG 3082 3062 3041 98.67 21 0.69 41 1.33 98.67
DSC_2864.JPG 2961 2982 2948 99.56 34 1.14 13 0.44 99.56
DSC_2951.JPG 2910 2889 2857 98.18 32 1.11 53 1.82 98.18
DSC_2443.JPG 2077 2088 2075 99.90 13 0.62 2 0.10 99.90
DSC_3475.JPG 2875 2876 2852 99.20 24 0.83 23 0.80 99.20
DSC_4326.JPG 3061 3092 3054 99.77 38 1.23 7 0.23 99.77
DSC_4496.JPG 3072 3056 3044 99.09 12 0.39 28 0.91 99.09

CDR – Cell detection rate; FP False Positive; FN False Negative; TP True Positive.

Table 2
Performance metrics for the detection methods developed in this study and in
Liew et al. (2010).

Method Min FP Max FP Avg FP Min FN Max FN Avg FN Avg CDR
(%)

Liew et al. 1 11 5.1 139 530 274.7 82.5
Ours 5 39 22.5 2 80 38.2 98.7

CDR – Cell detection rate; FP False Positive; FN False Negative.

Fig. 17. Testing accuracy according to the ROI size. The dashed green line
represents the trend. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

T.S. Alves, et al. Computers and Electronics in Agriculture 170 (2020) 105244

9

https://bit.ly/2DhnLRb
https://bit.ly/2DhnLRb
https://github.com/keras-team/keras/issues/8711%23issuecomment-354585187
https://github.com/keras-team/keras/issues/8711%23issuecomment-354585187
https://github.com/keras-team/keras/issues/8711%23issuecomment-354585187

analysed the loading time and the time to predict a batch of 100 images
(Fig. 18). These additional analyses were important to predict how the
models behave, regarding time-efficiency performance, when used after
training. Once again, MobileNet showed the best performance when
compared with the other models. Even though MobileNet had fewer
parameters than most models (Table 3), it was still the fast one to be
loaded into memory.

To evaluate the functional quality of the classifications, we first
compared the loss and accuracy of each model in their best epochs
(Table 4). The model ResNet50 showed a higher capacity to predict
training examples, but performed worse on the other sets, probably due
to overfitting. DenseNet201 exhibited the best accuracy in the valida-
tion and test sets, but its predictions were made with less confidence
when compared with MobileNet, which had the lowest loss score in the
validation and test sets.

Sometimes accuracy can be biased by the majority class. To better
understand this bias, we calculated precision, recall and F1-score for
each model on the test set. As shown in Fig. 19, InceptionResNetV2 had
the best performance, exhibiting a good balance between accuracy and
recall. DenseNet201 had the best accuracy in the test set, yet it was
positioned in seventh place for the F1-Score metric. This result suggests
that DenseNet201suffered by overfitting and favoured the majority
class.

In the per class analysis, we assessed how well each model classified
the comb cell contents into the seven established classes. As shown in
Fig. 20, the egg class exhibited the highest proportion of incorrect
predictions (15.88%) whereas the capped brood class was very close to
100% correct predictions, based on F1-Score. This is an expected result
as capped brood cells are simpler to classify due to their striking visual
differences when compared with the remaining classes (Fig. 9). The egg
class may have suffered from being the minority class. Eggs are small
objects placed at the bottom of the cells and are easily confused with
light reflections. Moreover, establishing thresholds for egg/empty and
egg/young larva cells is a challenging endeavour. This issue will be
further addressed in Section 5.2.5.

5.2.3. Data augmentation for cells classification
We chose four models to be trained using data augmentation (DA)

for the following reasons: InceptionResNetV2 and NasNetMobile for
having the best F1-score, MobileNet for having the lowest loss in the
validation and test sets, and DenseNet201 for having the best accuracy
in the validation and test sets. Fig. 21 presents the F1-score calculated
for the selected models trained on the dataset without and with DA.
Except for DenseNet201, all other models showed a higher F1-score
after training using DA. MobileNet outperformed more complex
models, with an F1-score over 94%.

Given that InceptionResNetV2 and MobileNet exhibited the highest
F1-score after training with DA, we decided to employ again the F1-
Score to compare the resources required to train and use these models
for each class. As shown in Fig. 22, while the difference between the
two models in the quality of results per class is modest, MobileNet re-
vealed to be superior for computational resources across all perfor-
mance metrics. The superior performance of MobileNet can be attrib-
uted to the lower number of trainable parameters. Hence, the model
complexity is reduced, regarding the number of training examples,
counteracting overfitting.

5.2.4. Comparison with methods from the literature
Here we compared our method with those reported in the literature,

although this endeavor may not always be fair for three main reasons:
(i) we classified a wider array of cell types, (ii) we do not have the same
dataset, and (iii) some works employed different classifiers.

Cornelissen et al. (2009) compared their semi-automatic method of
counting capped brood cells in comb images with the Liebefeld method.
While annotations with the Liebefeld method took 26 s per frame, the
semi-automatic approach took 19 s for image capturing plus 30 s for
image processing. This semi-automatic method consists of manual
segmentation of the capped brood area followed by automatic count of
cell number.

Fig. 23 presents the time distribution required by each phase of our
cell detection and classification approach. The results were obtained
from processing all 61 images of the segmentation dataset using the
scaled invariant detection algorithm and the MobileNet model trained
with DA. The time required to fully process an image varied between
~4 and ~16 s, with an average of 9.07 s. Considering only the average
value, the time to photograph a frame and process the image was
28.07 s using our setup, which was about 2 s slower than the Liebefeld
method for capped brood cells.

Cornelissen et al. (2009) reported a correlation of 99.37% between
the actual and the predicted number of cells, which was substantially
higher than the 90.85% obtained with the Liebefeld method. Our ap-
proach correctly detected 98.7% of the cells. Using CNNs, we obtained
an F1-Score of 99.47% and 99.77% for the capped brood class with the
MobileNet-DA model and the InceptionResNetV2-DA model, respec-
tively.

Our approach of cell detection and classification overcomes some
important challenges pointed out by Colin et al. (2018). By using a CNN

Table 3
Comparison among models regarding the training time and weights number.

Model name Epochs to
converge

Average time/epoch
(min)

Number of
weights

DenseNet121 16 362.77 8,094,279
DenseNet169 22 450.16 14,355,015
DenseNet201 21 577.14 20,296,263
InceptionResNetV2 19 606.31 55,917,799
InceptionV3 18 253.63 23,908,135
MobileNet 11 211.58 4,285,639
MobileNetV2 31 235.98 3,576,903
NASNet 28 2332.04 89,053,785
NasNetMobile 21 393.81 5,359,259
ResNet50 25 343.45 25,693,063
Xception 14 503.87 22,966,831

Fig. 18. (a) Comparison among models regarding (a) time to process 100 images of 224 × 224px and (b) time to be loaded in memory.

T.S. Alves, et al. Computers and Electronics in Agriculture 170 (2020) 105244

10

model, we were able to distinguish capped honey from capped brood.
Furthermore, by using a grid search for finding good parameters for the
CHT and the semantic segmentation, we dismissed the user interaction
for detecting the cells.

Rodrigues et al. (2016) obtained a precision of 99.04% and a recall
of 97.2% for the capped brood class. In our analyses, using the Mobi-
leNet DA model, we were able to improve those metrics up to 99.47%
and 99.41%, respectively.

Wang and Brewer (2013) reported a 97.4% hit rate with the Hon-
eybeeComplete commercial software developed for counting capped
brood cells. This value increased to 99.5% when the search area was
delineated by the user in the comb image. Herein, the MobileNet DA
architecture produced a value for the capped brood class very close
(99.47%) to that obtained by the HoneybeeComplete software, but
without human assistance.

The commercial software HiveAnalyzer (Höferlin et al. 2013), which
is able to classify detected comb cells into seven classes, achieved

Table 4
Comparison of loss and accuracy between models in different sets.

Model name Loss train Acc train Loss val Acc val Loss test Acc test

DenseNet121 0.00818 99.75% 0.05213 98.56% 0.25716 93.71%
DenseNet169 0.00159 99.95% 0.06365 98.58% 0.37087 93.12%
DenseNet201 0.00115 99.97% 0.05990 98.66% 0.31397 93.94%
InceptionResNetV2 0.00425 99.89% 0.05986 98.55% 0.29882 93.45%
InceptionV3 0.00415 99.90% 0.05594 98.58% 0.27237 93.47%
MobileNet 0.01563 99.57% 0.05106 98.48% 0.23944 93.31%
MobileNetV2 0.00942 99.69% 0.06468 98.57% 0.37828 93.02%
NasNetMobile 0.00162 99.94% 0.07417 98.56% 0.37836 93.79%
ResNet50 0.00033 99.99% 0.08845 98.44% 0.39329 92.99%
Xception 0.01173 99.73% 0.06574 98.54% 0.36011 92.70%

Fig. 19. Precision, recall and F1-score calculated using different models. The models are sorted by F1-Score.

Fig. 20. Average F1-score per class.

Fig. 21. Comparison of models trained with and without data augmentation.

T.S. Alves, et al. Computers and Electronics in Agriculture 170 (2020) 105244

11

94.3% accuracy on cells that were classified with high confidence (78%
of 20,000 analysed cells). In this study, we achieved 94.31% accuracy
(very close to the 94.3% F1-Score value) using the MobileNet model DA
on 100% of the test set (53,914 analysed cells). When we selected
predictions with confidence> 99.6% (corresponding to 42,410 cells
and 78.66% of the dataset), we obtained 99.35% accuracy, a sub-
stantially higher rate than that of Höferlin et al. (2013).

5.2.5. Further analyses on datasets creation and cells classification
The task of correctly classifying all the cells in a comb image is not

trivial because of the wide range of colours, shapes, and textures of cell
contents and wax types typically found in a hive. While working with
the datasets, we realized that comb classification is further challenging
due to the impact of some factors on the results quality. One such factor
was related with cell contents. Cells with multiple contents (e.g. pollen
and egg) or cells with contents in a transition stage, such as from larva
to pupa (capped cell) or from egg to larva, revealed to be problematic
(Fig. 24).

The co-occurrence of different cell contents makes evaluation of the
classifier less precise, as there may be cases where it hits one of the
classes but the alternative class has been defined as the ground truth of
the image. This problem has been handled in competitions of image
classification using Top-n accuracy (Krizhevsky et al., 2012). With this
methodology, the model earns credit for correctly classifying the image
in its Top N guesses. We evaluated our model using Top-2 accuracy,
which corrected the cell content if the correct class was between the
two more likely predictions. By reprocessing the test set with the Top-2
accuracy method, the quality of our results improved 5% on average
(Fig. 25).

Another factor affecting the quality of the results is related with the
positions most annotated by the beekeeper. We noticed that there was
an inverse relationship between the areas most frequently labelled by
the beekeeper and the areas where most incorrect predictions occur.
Due to the camera-optical behaviour, cells in different regions of the
comb may display different areas of their interior, as illustrated in
Fig. 26. This effect could impact cell classification if certain regions of
the images were favoured during the annotation process. One way to
alleviate this problem is to place the camera far from the frame and use
a uniform light to diminish shadows during image capture.

To test this effect, we assessed the distribution of the annotations
across comb regions. To that end, using the annotations of the main
dataset, we generated a heatmap plot displaying the areas of the comb
that were preferentially annotated. As shown in Fig. 27a, annotations
were more concentrated in the upper left area of the comb, suggesting
that models trained in this dataset would have a better classifying
performance in that region. Next, we predicted all cells that were

Fig. 22. Comparison between the models MobileNet and InceptionResNetV2 using (a) F1-score by class and (b) resources by DA model.

Fig. 23. Time distribution to detect and classify all cells in a comb image.

Fig. 24. (a) Transition from egg to young larva; (b) transition from old larva to
moulting, when cells will be capped; (c) transition from nectar to honey, when
cells will be capped; (d) central cell containing pollen and an egg.

Fig. 25. Accuracies obtained for the models Top-1, Top-2 and Top-3.

T.S. Alves, et al. Computers and Electronics in Agriculture 170 (2020) 105244

12

homogeneously annotated in the test set and generated a new heatmap
showing the location of most of the wrong predictions (Fig. 27b).

According to both heatmaps, incorrect predictions occurred mostly
in the lower-right regions of the comb, and this pattern was inversely
related with the regions where more annotations were made. This
spatial pattern of annotations becomes more striking in the heatmaps
generated by class (Fig. 28). Altogether, these results suggest that
training a good classifier requires not only a large number of annota-
tions but also a homogeneous distribution across the comb. Only then
the annotations can inform the model, during the training, about the
different angles that cells can present and help in the generalisation.

5.3. DeepBee© software

With all the methods developed and presented herein we built a
software that we named DeepBee© (Fig. 29). This software allows the
user to automatically process a batch of comb images. After processing
the images, the user can view the results, change prediction labels, if
needed, add and remove new detections, and export all results for
further analysis into a spreadsheet like excel. DeepBee© is freely
available at https://avsthiago.github.io/DeepBee/.

Fig. 26. Different cells interior captured in dif-
ferent regions due to lens effects (a) Upper left
cell; (b) Upper right cell; (c) Central cell; (d)
Lower left cell; (e) Lower right cell.

Fig. 27. Distribution of annotations in the comb. Comparison between (a) most annotated areas and (b) with more errors.

Fig. 28. Comparison among the most annotated areas and with more errors by
class.

Fig. 29. DeepBee© software developed for the interaction of the users with the predictions.

T.S. Alves, et al. Computers and Electronics in Agriculture 170 (2020) 105244

13

https://avsthiago.github.io/DeepBee/

6. Final remarks

In this study we developed a free software, DeepBee©, capable of
automatically detecting and classifying comb cells. We demonstrated
how we found a pre-processing pipeline able to enhance cells edges,
filtering colour channels and equalizing small image regions using the
CLAHE method. We demonstrated how we found parameters for the
Circle Hough Transform that enables the method to detect cells in a
comb even when it is difficult to visually distinguish the edges. We
demonstrated that by applying the semantic segmentation technique it
is possible to remove false detections that may occur on the back-
ground. Although we obtained a cell detection rate of 98.7%, we be-
lieve that the false positive rate may decrease by training the semantic
segmentation model with an input larger than 128 × 128px.

After we trained over thirty CNN models with different training
techniques, such as transfer learning and data augmentation, and
comparing them using different perspectives, we recommend
MobileNet. While InceptionResNetV2 showed the best results in our
dataset, the time performance of MobileNet was superior, due to 93%
fewer weights. Using MobileNet, we achieved 94.3% of correctness
with the metric F1-score weighted over the seven classes. We believe
this rate can be further improved using annotations more evenly spread
across comb images. The model learned some human biases during the
training and became better in classifying cells in some comb regions in
detriment of others.

To the best of our knowledge, the cell detection rate and the cell
classification accuracy of our model outperformed similar works re-
ported in the literature. Future work will focus on development of a
service that enables users to process images remotely. Using this web
service, even devices with less power, such as smartphones, will be able
to run DeepBee©. To deal with low resolution images from smart-
phones, we intend to create one composition of many images taken near
to the comb frame. With this web service, it will be possible to use
detection corrections of the users to improve future results by retraining
the classifier.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

This research was developed in the framework of the project
“BeeHope - Honeybee conservation centers in Western Europe: an in-
novative strategy using sustainable beekeeping to reduce honeybee
decline”, funded through the 2013-2014 BiodivERsA/FACCE-JPI Joint
call for research proposals, with the national funders FCT (Portugal),
CNRS (France), and MEC (Spain).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.compag.2020.105244.

References

Alves, T., Pinto, M.A., Candido Junior, A., De Paula Filho, P.L., Rodrigues, P.J.S., Ventura,
P., Neves, C., 2019. DS-COMB-SEG-BEEHOPE, Mendeley Data, v1 http://dx.doi.org/
10.17632/db35fj73x5.1.

Clevert, D.-A., Unterthiner, T., Hochreiter, S., 2015. Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs). CoRR, abs/1511.0. Retrieved from
http://arxiv.org/abs/1511.07289.

Colin, T., Bruce, J., Meikle, W.G., Barron, A.B., 2018. The development of honey bee
colonies assessed using a new semi-automated brood counting method: combcount.
PLoS ONE 13 (10), 1–14. https://doi.org/10.1371/journal.pone.0205816.

Cornelissen, B., Schmid, S., Henning, J., Der, J. Van, 2009. Estimating colony size using

digital photography. In: Proceedings of 41st International Apicultural Congress,
pp. 48.

Delaplane, K.S., Steen, J. Van Der, Guzman-novoa, E., 2013. Standard methods for esti-
mating strength parameters of Apis mellifera colonies Métodos estándar para estimar
parámetros sobre la fortaleza de las colonias de Apis mellifera. J. Apicult. Res., 52(1),
1–12. https://doi.org/10.3896/IBRA.1.52.1.03.

Deng, J.D.J., Dong, W.D.W., Socher, R., Li, L.-J.L.L.-J., Li, K.L.K., Fei-Fei, L.F.-F.L., 2009.
ImageNet: a large-scale hierarchical image database. IEEE Conference on Computer
Vision and Pattern Recognition 2–9. https://doi.org/10.1109/CVPR.2009.5206848.

Duda, R.O., Hart, P.E., 1972. Use of the hough transformation to detect lines and curves in
pictures. Commun. ACM 15 (1), 11–15. https://doi.org/10.1145/361237.361242.

EFSA AHAW Panel (EFSA Panel on Animal Health and Welfare), 2016. Scientific opinion
on assessing the health status of managed honeybee colonies (HEALTHY- B): a
toolbox to facilitate harmonised data collection. EFSA Journal 2016;14(10):4578,
241 pp. doi: 10.2903/j.efsa.2016.4578.

Emsen, B., 2006. Semi-automated measuring capped brood areas of honey bee colonies. J.
Anim. Veterin. Adv.

He, K., Zhang, X., Ren, S., Sun, J., 2015a. Deep residual learning for image recognition.
CoRR, abs/1512.03385. Retrieved from http://arxiv.org/abs/1512.03385.

He, K., Zhang, X., Ren, S., Sun, J., 2015b. Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. CoRR, abs/1502.0. Retrieved from
http://arxiv.org/abs/1502.01852.

Höferlin, B., Höferlin, M., Kleinhenz, M., Bargen, H., 2013. Automatic analysis of apis
mellifera comb photos and brood development. In: Association of Institutes for Bee
Research Report of the 60 th Seminar in Würzburg (Vol. 44, p. 19). Apidologie.
Retrieved from https://www.springer.com/cda/content/document/cda_
downloaddocument/AGIB-Abstracts 2013_Final.pdf?SGWID=0-0-45-1417002-
p174076256.

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al., 2017.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
https://doi.org/10.1016/S1507-1367(10)60022-3.

Huang, G., Liu, Z., Weinberger, K.Q., 2016. Densely connected convolutional networks.
CoRR, abs/1608.06993. Retrieved from http://arxiv.org/abs/1608.06993.

Kamilaris, A., Prenafeta-Boldú, F.X., 2018. Deep learning in agriculture: a survey.
Comput. Electron. Agric. 147, 70–90 https://doi.org/https://doi.org/10.1016/
j.compag.2018.02.016.

Kingma, D. P., Ba, J., 2014. Adam: {A} Method for Stochastic Optimization. CoRR, abs/
1412.6. Retrieved from http://arxiv.org/abs/1412.6980.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep
convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (Eds.), Advances in Neural Information Processing Systems 25 (pp. 1097–1105).
Curran Associates, Inc. Retrieved from http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf.

Liew, L.H., Lee, B.Y., Chan, M., 2010. Cell detection for bee comb images using Circular
hough transformation. CSSR 2010 - 2010 International Conference on Science and
Social Research, (Cssr), 191–195. https://doi.org/10.1109/CSSR.2010.5773764.

Oquab, M., Bottou, L., Laptev, I., Sivic, J., 2014. Learning and transferring mid-level
image representations using convolutional neural networks. In: 2014 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1717–1724. https://
doi.org/10.1109/CVPR.2014.222.

Rodrigues, P., Neves, C., Pinto, M.A., 2016. Geometric contrast feature for automatic
visual counting of honey bee brood capped cells. EURBEE 2016: 7th European
Conference of Apidology, 7. Retrieved from http://hdl.handle.net/10198/17318.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: convolutional networks for biome-
dical image segmentation. CoRR, abs/1505.0. Retrieved from http://arxiv.org/abs/
1505.04597.

Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.-C., 2018. Inverted residuals
and linear bottlenecks: mobile networks for classification, detection and segmenta-
tion. CoRR, abs/1801.04381. Retrieved from http://arxiv.org/abs/1801.04381.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale
image recognition, CoRR, abs/1409.1556. Retrieved from http://arxiv.org/abs/
1409.1556.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. Dropout:
a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15,
1929–1958 http://jmlr.org/papers/v15/srivastava14a.html.

Szegedy, C., Ioffe, S., Vanhoucke, V., 2016. Inception-v4, Inception-ResNet and the im-
pact of residual connections on learning. CoRR, abs/1602.07261. Retrieved from
http://arxiv.org/abs/1602.07261.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2015. Rethinking the inception
architecture for computer vision. CoRR, abs/1512.00567. Retrieved from http://
arxiv.org/abs/1512.00567.

Thoma, M., 2016. A survey of semantic segmentation. CoRR, abs/1602.0. Retrieved from
http://arxiv.org/abs/1602.06541.

Tomasi, C., Manduchi, R., 1998. Bilateral Filtering for Gray and Color Images. In:
Proceedings of the Sixth International Conference on Computer Vision (p. 839).
Washington, DC, USA: IEEE Computer Society. Retrieved from http://dl.acm.org/
citation.cfm?id=938978.939190.

Wang, M., Brewer, L., 2013. New computer methods for honeybee colony assessments. In:
8th SETAC Europe Special Science Symposium. Retrieved from http://sesss08.setac.
eu/embed/sesss08/Larry_Brewer_-_New_Computer_Methods_for_Honeybee_Colony_
Assessments.pdf.

Yoshiyama, M., Kimura, K., Saitoh, K., Iwata, H., 2011. Measuring colony development in
honey bees by simple digital image analysis. J. Apic. Res. 50 (2), 170–172. https://
doi.org/10.3896/IBRA.1.50.2.10.

Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V., 2017. Learning transferable architectures for
scalable image recognition. CoRR, abs/1707.07012. Retrieved from http://arxiv.org/
abs/1707.07012.

Zuiderveld, K., 1994. Graphics Gems IV. In: Heckbert, P.S. (Ed.) (pp. 474–485). San
Diego, CA, USA: Academic Press Professional, Inc. Retrieved from http://dl.acm.org/
citation.cfm?id=180895.180940.

T.S. Alves, et al. Computers and Electronics in Agriculture 170 (2020) 105244

14

https://doi.org/10.1016/j.compag.2020.105244
https://doi.org/10.1016/j.compag.2020.105244
https://doi.org/10.1371/journal.pone.0205816
http://refhub.elsevier.com/S0168-1699(19)30769-0/h0020
http://refhub.elsevier.com/S0168-1699(19)30769-0/h0020
http://refhub.elsevier.com/S0168-1699(19)30769-0/h0020
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/361237.361242
http://refhub.elsevier.com/S0168-1699(19)30769-0/h0045
http://refhub.elsevier.com/S0168-1699(19)30769-0/h0045
https://www.springer.com/cda/content/document/cda_downloaddocument/AGIB-Abstracts+Final.pdf%3fSGWID%3d0-0-45-1417002-p174076256
https://www.springer.com/cda/content/document/cda_downloaddocument/AGIB-Abstracts+Final.pdf%3fSGWID%3d0-0-45-1417002-p174076256
https://www.springer.com/cda/content/document/cda_downloaddocument/AGIB-Abstracts+Final.pdf%3fSGWID%3d0-0-45-1417002-p174076256
http://refhub.elsevier.com/S0168-1699(19)30769-0/h0075
http://refhub.elsevier.com/S0168-1699(19)30769-0/h0075
http://refhub.elsevier.com/S0168-1699(19)30769-0/h0075
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://refhub.elsevier.com/S0168-1699(19)30769-0/h0120
http://refhub.elsevier.com/S0168-1699(19)30769-0/h0120
http://refhub.elsevier.com/S0168-1699(19)30769-0/h0120
http://sesss08.setac.eu/embed/sesss08/Larry_Brewer_-_New_Computer_Methods_for_Honeybee_Colony_Assessments.pdf
http://sesss08.setac.eu/embed/sesss08/Larry_Brewer_-_New_Computer_Methods_for_Honeybee_Colony_Assessments.pdf
http://sesss08.setac.eu/embed/sesss08/Larry_Brewer_-_New_Computer_Methods_for_Honeybee_Colony_Assessments.pdf
https://doi.org/10.3896/IBRA.1.50.2.10
https://doi.org/10.3896/IBRA.1.50.2.10

	Automatic detection and classification of honey bee comb cells using deep learning
	Introduction
	Motivation
	Related works
	Goal

	Images capture and analysis
	Scale invariant detection and false detection removal
	Circle Hough Transform
	Using CHT to detect cells
	Removing false detections using semantic segmentation
	Dataset creation for comb segmentation
	Semantic segmentation architecture and training policy
	Post-processing of comb segmentation

	Semantic segmentation experiments

	Cells classification
	Dataset gathering for cells classification
	Transfer learning for cells classification
	Finding the best region of interest (ROI) size to crop the cells
	Tests with different CNN architectures
	Data augmentation

	Results and discussion
	Cells detection and false detection removal
	Cells detection
	False detection removal
	Comparative analysis

	Cells classification
	Finding the optimal input image size
	Comparing different CNN architectures
	Data augmentation for cells classification
	Comparison with methods from the literature
	Further analyses on datasets creation and cells classification

	DeepBee© software

	Final remarks
	mk:H1_33
	Acknowledgements
	Supplementary material
	References

