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Abstract: Polydimethylsiloxane (PDMS) is one of the most popular elastomers and has been used in
different fields, especially in biomechanics research. Among the many interesting features of this
material, its hyperelastic behavior stands out, which allows the use of PDMS in various applications,
like the ones that mimic soft tissues. However, the hyperelastic behavior is not linear and needs
detailed analysis, especially the characterization of shear strain. In this work, two approaches,
numerical and experimental, were proposed to characterize the effect of shear strain on PDMS.
The experimental method was implemented as a simple shear testing associated with 3D digital
image correlation and was made using two specimens with two thicknesses of PDMS (2 and 4 mm).
A finite element software was used to implement the numerical simulations, in which four different
simulations using the Mooney–Rivlin, Yeoh, Gent, and polynomial hyperelastic constitutive models
were performed. These approaches showed that the maximum value of shear strain occurred in the
central region of the PDMS, and higher values emerged for the 2 mm PDMS thickness. Qualitatively,
in the central area of the specimen, the numerical and experimental results have similar behaviors and
the values of shear strain are close. For higher values of displacement and thicknesses, the numerical
simulation results move further away from experimental values.

Keywords: polydimethylsiloxane; hyperelasticity; shear strain; 3D digital image correlation;
numerical simulation; finite element method; hyperelastic constitutive models

1. Introduction

In recent decades, elastomers have been studied by many researchers due to their interesting
characteristics, such as chemical stability, flexibility, and corrosion resistance. Among them,
polydimethylsiloxane (PDMS) is one of the most studied because it has many applications in several
industrial areas, from mechanics and electronics to the biomedical area, because it is an optically
transparent material [1], biocompatible [2], chemically and thermally stable, highly flexible and
viscoelastic [3]. PDMS has a high range of applications in mechanical sensors [4], flexible electronic
components [5], electrochemical sensors [6] and the biomedical field [7] and it is also frequently
found in microfluidic circuits [8], among others. In many of these applications, the elements are
subjected to shear stresses, such as sealing gaskets [9], microfluidic channels [10], aneurysm studies [11],
tactile sensors [12], robotics [13] and electronic components [14]. Among these, an area that recently
gained significant interest was the flexible microfluids and milifluids, where it is possible to analyze
the interaction between fluid and structure, which is an emerging area that may affect several areas of
research, such as electronics, biology and medicine [15]. These channels are subject to shear forces.
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Rodrigues et al. [11] carried out studies on flexible PDMS models to study the interaction between
fluids (blood analog) and the structure of the intracranial aneurysm. From this study, it was found that
the displacement value on the channel wall was very low, thus showing the need to determine values
for shear and tensile tests for small deformations. Therefore, there is a need to study and characterize
the mechanical behavior of PDMS under shear stress action and, in this sense, research work has been
developed [16,17] that refers to the implementation of tensile tests on simple lap joints associated with
digital image correlation (DIC) as well as the determination of their shear modulus [18].

To characterize the mechanical behavior of a material when it is subject to a shear loading, it is
usually required to perform shear tests. Typically, shear tests were implemented using specimens that
are fixed in two holding grips and incremental displacement values are applied in one of the holding
grips. Usually, the main objective of this test is to determine the shear strength, which corresponds to
the maximum shear stress that the material can withstand before rupture. However, in the study of
materials with high elasticity, as in the case of the hyperelastic materials, there is a great interest in
understanding how its deformation occurs when subjected to shear forces. In this case, it is necessary to
accompany the deformation during the test before breaking visually. Experimental optical techniques
are an interesting alternative. These techniques have the advantage of accessing displacement and strain
fields, are non-contact techniques, have high resolution and can use white light or laser illumination.
Optical methods, such as DIC [19], geometric or interferometric Moiré [20], and speckle or holographic
interferometry [21], are available with resolution up to the laser wavelength. Despite high resolution
of all interferometric techniques, image decorrelation for high deformation values frequently occurs.
This phenomenon usually occurs in tests of hyperelastic materials, as such, they are inadequate for
studying these materials. In contrast, DIC allows the measurement of displacement and strain fields
for high deformation values.

The experimental characterization of the mechanical behavior of hyperelastic materials, when
subjected to the action of shear forces, has the advantage of allowing more accurate and realistic results;
however, its implementation requires laboratory facilities and costly equipment. On the other hand,
there has been an exponential growth in the use of numerical tools based on the finite element method
(FEM) [22,23]. The appearance of computational tools applied to hyperelastic materials is due to lower
costs of the method and the increase in the calculation capacity of the computers. For numerical
simulation with hyperelastic materials, it is necessary to use constitutive models that are adequate to
the material under study and tensile tests (uni or biaxial) are usually required to better characterize
this material [24]. Considering the advantages of each approach, both experimental and numerical,
some researchers have developed hybrid methods that use experimental information in numerical
simulations [25].

The purpose of this work is to characterize the mechanical behavior of PDMS through an
experimental method using 3D DIC and comparing it with four different numerical constitutive models.
For this, two models with varying thicknesses of simple lap joints with PDMS were developed, and the
results of the experimental tests were compared with the numerical simulation. Thus, the information
contained in this work will serve to support the development of devices made in PDMS that are subject
to shear loads, as for example in recent applications in flexible microfluids [15].

2. Numerical Constitutive Models

Currently, FEM has been used to study the mechanical behavior of hyperelastic materials.
These studies are based on mechanical models obtained from experimental uniaxial tests. To numerically
reproduce the nonlinear hyperelastic behavior of this material, it is necessary to develop new and
more accurate constitutive models. The developments of hyperelastic models are supported in two
different theories, the micromechanical and macro mechanical models. Micromechanical models are
developed from chemical manufacture and are based on the concept of the unit cell. The second theory,
phenomenological models are based on the material behavior observed during experimental tests.
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For developing these models, it is necessary to know the mechanical behavior of the material through
the experimental tensile test [26].

Hyperelastic materials are known to have a nonlinear relationship between stress and strain.
Thus, hyperelastic material behavior is usually defined based on strain energy or stored energy.

Hyperelastic materials are commonly defined as having nonlinear mechanical properties,
presenting high deformation rates. The theory of hyperelastic material behavior, also known as
Green elastic material, is defined as a function of the Helmholtz free energy, also called the strain energy
or stored energy (Ψ). This describes the behavior of this class of materials in terms of mechanical
energy and can be defined according to the following equation:

P =
∂Ψ
∂F

(1)

or, more generally:

P = −pFT +
∂Ψ
∂F

(2)

where P is the first stress tensor of Piola-Kirchhoff, FT is the transposed deformation gradient and p is a
multiple of Lagrange obtained according to the state of tension T.

Helmholtz free energy (Ψ) is a thermodynamic potential that measures the useful work for a
closed thermodynamic system with constant temperature and volume [27].

A model of hyperelastic materials depends on the definition of the strain energy function,
which assumes different shapes, according to the material or class of materials considered. This function
is obtained from symmetry and thermodynamic energy considerations [27].

For simplicity, it is assumed that the material is isotropic and incompressible. As an isotropic
material, the strain energy function (Ψ) depends on the invariants of the deformation:

Ψisotropic = Ψ(I1, I2, I3) (3)

where the invariants are defined as:

I1 =
3∑

i=1
λ2

i

I2 =
3∑

i, j=1
λ2

i λ
2
j i , j

I3 =
3∏

i=1
λ2

i

(4)

where λ1, λ2 and λ3 are the principal deformations.
If the material is too incompressible, the third invariant, I3, is 1 and Equation (5) is defined as:

Ψ1 = Ψ(I1, I2) (5)

The constitutive equations of hyperelastic models are determined from the Cauchy tensor equation
and the calibration of the main experimental tensile tests (uniaxial and biaxial). There are several
constitutive equations for hyperelastic models, the most used models being the Yeoh, Mooney–Rivlin,
polynomial, and Gent models.

Yeoh’s constitutive model is the most suitable for situations of an incompressible material, it was
first presented in the early 1990s [28]. Moreover, the Yeoh model of hyperelastic materials has proved
popular because it depends only on the first invariant deformation, (I1).
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The Yeoh energy density function is given by [29]:

Ψ =
3∑

i=1

Ci(I1 − 3)i (6)

where C1, C2 and C3 are constants of the material that are determined from the experimental tests.
The Mooney–Rivlin model is one of the most known and used hyperelastic models, mainly

in numerical simulations of rubbers and their derivates. This model is very widespread because it
presents good convergence for a relatively large range of deformation [30].

Besides that, the classical Mooney–Rivlin stress-energy formula is used for incompressible
hyperelastic materials and in the description of the behavior of incompressible isotropic materials like
soft tissue [31].

The constitutive law Mooney–Rivlin derived for hyperelastic incompressible material is described
as follows [31]:

Ψ = C10(I1 − 3) + C01(I2 − 3) (7)

where Ψ is the strain energy density function, I1 and I2 are the constant strain and C10 and C01 are the
material constants.

The Ogden model is used to describe the nonlinear behavior of complex materials such as rubber,
polymers and biological tissues. This model is described by the following expression:

Ψ =
N∑

i=1

µi

αi

(
λαi

1 + λαi
2 + λαi

3 − 3
)

where N is the total number of terms in the series and µi and αi are material constants that can be
positive, negative, integer or not.

The polynomial model is also called the generalized Rivlin model [32,33]; this model was
introduced by Rivlin and Saunders (1951). It was formulated in terms of two strain invariants, I1 and I2,
of the left Cauchy-Green deformation tensor, with Cij denoting material constants. The strain energy is
given by [34]:

Ψ = −
µ

2
Jm ln

(
1−

I1 − 3
Jm

)
(8)

where µ is the initial shear modulus and Jm is the constant limiting value for I1 − 3.

3. Materials and Methods

3.1. Experimental Tests

It was necessary to manufacture two molds in which the resin of the elastomeric polymer will be
cast before polymerization to produce the tensile and shear specimens. The molds to obtain tensile
and shear specimens were manufactured in an aluminium alloy (2011-T3) by a CNC milling machine
(Deckel Maho—DMU 60 T from Germany); each mold had three and two cavities for tensile and shear
specimens, respectively. The geometry and dimensions of tensile specimens were chosen to match the
American Society for Testing of Materials ASTM D412 TYPE C standard [35].

The accuracy of tensile testing results is very depending of the dimensional and geometric
precision of the specimen [36,37] which is depending of the stress state of the material namely the
level of residual stresses of the material that will be machining. There are some authors who showed
that for materials with a high level of residual stresses after a machining process the final dimensions
and geometry could change significantly [38]. For this reason, after mold machining was controlled
dimensional accuracy, surface finish and defects follow the recommendations of Dixit et al. [39].
This evaluation allows us to guarantee that the geometric and dimensional tolerances are within those
recommended by the ASTM D412 TYPE C standard.
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The polydimethylsiloxane (PDMS) used was Sylgard 184 ® by enterprise Dow Corning from
Wiesbaden, Germany, To obtain the PDMS resin, it was necessary to mix the curing agent with the
prepolymer; for each 10 g of prepolymer, 1 g of the curing agent was added (10: 1).

The mixture was placed under vacuum conditions for 40 min in a desiccator connected to a
vacuum pump to eliminate air bubbles present in the uncured mixture. After removing all air bubbles,
the mixture was poured into the tensile and shear molds, and the molds were placed back in the
desiccator for approximately 30 min to ensure that all remaining bubbles were removed entirely. Part of
this PDMS mixture was taken to measure the density using the pycnometer method, and the value of
1059 (kg/m3) was determined which is very similar to other references [40].

At the end of the process, the tensile and shear molds were taken to a temperature- and
time-controlled oven, the mixture was cured at 80 ◦C for 45 min. A total of 3 samples were prepared
for the tensile tests and three samples for each thickness of the simple shear test.

To verify the absence of voids (bubbles) with sizes that could influence the experimental tests,
a scan was made in different regions of the specimen to identify any bubbles present inside it. For this,
an inverted microscope CKX41 by Olympus Iberia from Japan, with an objective lens NCHROPLAN,
32× by ZEISS from Oberkochen (Germany) was used. After the images obtained, the imageJ software
was used to check the bubble sizes found in the specimen, Figure 1 shows the microbubbles found.
Through this test, it was found that the dimensions of the bubbles found were small (<5 µm),
not significantly influencing the results obtained in the tensile tests.
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Figure 1. Bubbles measurement in the specimen.

3.1.1. Tensile Testing

Adequate deformation measurement techniques are required to identify the mechanical properties
of the materials. This test aims to characterize the mechanical behavior of the PDMS relative to the
stress-strain curve and verify that it is non-linear and hyperelastic behavior.

The tensile test was started by placing the test specimen in the holding grip on both sides of the
universal INSTRON E1000 tensile test machine from Norwood, United States of America (Figure 2a).
The height was manually adjusted, ensuring that the test body was not drawn, that the claws were
aligned, and that there was no force acting on the body. The test speed was 2 mm/min. Three tensile
tests were implemented, and the average curve was used in the simulations, and a very similar trend
was verified.

From the stress-strain curve analysis, the tested material (PDMS) has a high deformation
at relatively low-stress levels (ex. 20,000 Pa imposes 18.5% of strain), which corresponds to the
characteristic behavior of a hyperelastic material. Figure 2b shows the stress-strain curve of one of the
tensile tests that was compared with the numerical tests.

The tensile test did not occur until rupture because the expected values of stress in shear tests
were lower than the ultimate strength [20] and the most important reason to implement this test is to
obtain the tensile stress-strain curve for use in numerical simulations of the shear test.
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3.1.2. Shear Testing

In preparing the shear test specimen, two steel (DIN-Ck45) bars with 100× 20× 1.5 mm3 dimensions
were used. The bars’ surfaces were sanded and degreased with acetone to improve the adhesion of the
PDMS to the steel. After the cleaning, the PDMS bonding was done using a cyanoacrylate structural
adhesive Locttice Super Glue 3 (Germany), presenting the following configuration Figure 3.
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Figure 3. The specimen used in the simple shear test.

The bonded region of the steel plates had a superficial treatment. The process consisted of
abrading the steel plate surfaces at the overlap region with fine sandpaper and cleaning with acetone
before the application of the cyanoacrylate adhesive. To control and guarantee adhesive thickness,
the test specimen (single-lap joint) was manufactured in a mold. The applied cure cycle was 24 h at
room temperature.

For this test, two PDMS test samples with different thicknesses (2 and 4 mm) were tested.
The equipment and procedure were like the tensile test, distinguished in that this test used different
test pieces (simple lap joints). During the tensile test of the samples, a commercial Vic-3D by Correlated
Solutions ® DIC system made it Dutchman Blvd. Irmo, SC, USA was used to measure the strain field
in-plane and out-plane of the PDMS surface.

The DIC equipment used consisted of two high-resolution digital cameras (Point Gray
GZL-CL-41C6M-C 2048 × 2048 pixels), using 80 mm LINOS objective lenses, a computer with
Vic- 3D and a cold lighting bulb. The experimental set up used in this assay is shown in Figure 4.
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For a good use of the DIC method, the specimen must be covered with a speckle pattern [41].
A random speckle pattern was artificially created on the PDMS specimen surface. The speckle pattern
was produced using an airbrush with an internal mixture of air and paint, connected to a low-pressure
compressor. First, the specimen surface was covered with white matte paint (the airbrush nozzle was
adjusted to be approximately 0.3 m from the specimen). After drying the first layer, a second fine layer
of small black paint dots was applied with the airbrush to produce the high-contrast speckle pattern.
The size and density of the speckle were defined to guarantee high fluctuation of the image intensity;
thus, higher accuracy measurements could be obtained.

System calibration was done first; this procedure is necessary to provide numerical factors that
will aid in the analysis of the data and to size the displacement unit. However, the calibration process
of the VIC-3D system is direct and almost automatic. For 3D fields, it is necessary to use a standard
calibration target; this target is positioned in front of the cameras in different positions, and several
images are captured that are used to calculate the intrinsic and extrinsic parameters of the cameras.
This procedure removes distortions of the lenses and defines a three-dimensional coordinate system on
the surface of the sample. These parameters will subsequently be used to determine the displacement
values. The two CCD cameras were positioned at 341 millimetres and a 12.5◦ angulation of the
specimen, and the correlation equipment was adjusted so that two photos of the sample were captured
per second. Once the adjustment was made, the specimen was clamped between the universal machine
claws. Two alignment guides were positioned to restrict lateral movement, thus ensuring that the
deformation occurred only in the PDMS plane.

Then, the tensile test was carried out until specimen rupture occurred. The software that controls
the universal test machine controlled the speed of the test (2 mm/min). The room temperature was
25 ◦C. The DIC system was synchronized with the universal machine, the reference image was captured
a few seconds before the shear test, and the cameras’ triggers were initiated when the test began, at an
acquisition rate of two images per second. The captured images were saved to the hard-disc of the
DIC computer.

To analyse the influence of cyanoacrylate in rupture process was implemented a shear test using a
similar specimen (simple overlap joint). The adherents have the same dimensions and material (steel)
and the adhesive was the same type of cyanoacrylate (Locttice Super Glue 3) with a thickness of 0.3 mm.
Was applied the speed test of 2 mm/min and the test occurred until the rupture. Were implemented
two tests.

3.2. Numerical Simulation

The numerical simulation was executed using a commercial finite element method (FEM) software
ANSYS ® R18.1 academic research mechanical license.

A model with a geometry similar to the specimens, boundary conditions matching the experimental
testing and a discretized domain finite element mesh were required to perform the numerical simulation.
The loading and kinematic conditions were identical to those used in the experimental test. Nonlinear
hyperelastic behaviors based on the constitutive models of Mooney–Rivlin, Yeoh, polynomial and
Gent were considered for the PDMS material. Many authors recommend these models for simulating
PDMS materials [19,42]. The application of these models required determining several constants,
which were identified from the experimental curves of the tensile tests. However, the steel bars were
considered to have a linear elastic behavior and the mechanical properties used were Young’s modulus
of 210 GPa and Poisson’s ratio of 0.3. In the present simulation, the PLANE183 element considering
the plane stress condition was used. PLANE183 is a higher-order 2-D, 8-node element with two
degrees of freedom at each node and a quadratic displacement behavior well suited for the hyperelastic
application and modelling irregular meshes.

As with the previous equations, all the present constitutive models need to have specific constants
and coefficients determined, and for that, the experimental stress-strain curve is used. The constants
and coefficients of the material are estimated from hyperelastic curve-fitting. Figure 5 shows the
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curve-fitting for the constitutive models used in this work. The black circle represents the experimental
data, and the others represent the constitutive models.
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The geometry of the specimen was experimentally tested to implement the numerical solution.
With the same dimensions and conditions as the experimental study, the boundary conditions were
the bottom edge clamped and constant displacements in the vertical direction on the upper edge of
the model.

Table 1 presents the applied displacements in the numerical simulations for both geometries.
Numerical simulation 1 corresponds to the 2 mm PDMS thickness and numerical simulation 2 is 4 mm
PDMS thickness. The displacement values were the same that were used in experimental tests.

Table 1. Displacements for the numerical simulations.

Numerical Simulation Displacement [mm]

1 0.5
2 0.2

For the shear-stress study, the four constitutive models presented before were used to describe
the properties of the sample, Mooney–Rivlin 3 parameter, Yeoh 3rd Order, polynomial 3rd Order, and
Gent. All the models converged to a similar response.

For this study, as the focus is on the reaction of the central region of PDMS to the shear test, a path
operation command was defined in the numerical simulation. This function makes it possible to trace
a path and analyse the mechanical behavior in a specific region. The defined path is shown in Figure 6,
where XY shear strain was studied in both samples, on the 41 nodes selected.
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The numerical simulations were used as a mesh divergence with 20 finite elements horizontally
spaced equally in the PDMS region. Five different areas were created in the geometric model to obtain
a better result refinement at the sample.

In the discretization of the areas adjacent to the PDMS, a 0.5 mm ratio was used for the elements
to create a greater convergence in the model. The mesh has 1000 elements and 3161 nodes.
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In the analysis option, the large displacement static was chosen because the maximum number of
sub-steps was defined as 150 and the minimum as 100.

It is necessary to define a convergence criterion to solve this type of nonlinear structural
analysis. In the present study, convergence was met by combining the static modal forces through the
Newton–Raphson method.

4. Results and Discussion

4.1. Experimental

Figure 7 shows the force-displacement curves obtained from the shear tests. The red line represents
the results of the specimen with 4 mm PDMS thickness, and the blue one corresponds to the 2 mm
thickness. The rupture of the specimen with 4 mm PDMS thickness occurred at higher values of force
and displacement, 154 N and 2.8 mm, respectively. The specimen with 2 mm PDMS thickness, broke up
for low values of force and displacement, 80 N and 0.8 mm, respectively. Despite the linear curve for
both specimens, in the specimen with 2 mm, PDMS thickness an initial disruption happened before the
complete rupture of the specimen.
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Figure 7. Force-displacement curve for the shear test.

Figures 8 and 9 show the details of the PDMS region of the specimens for different test
phases. Figures 8a and 9a are the images of the specimens before the deformation (reference
image), Figures 8b and 9b show the beginning of rupture and, finally, Figures 8c and 9c present the
specimen after rupture.
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Figure 9. Image of 4 mm PDMS thickness: (a) before deformation; (b) beginning of rupture;
(c) after rupture.

For both specimens, the rupture happened in the interface between the metallic plate and the
PDMS surface. That is, the rupture occurs in the adhesive region, which is the weakest element of
the specimens. It was verified that all ruptures occurred in the interface between the PDMS and the
cyanoacrylate. However, for cyanoacrylate shear tests the average of rupture force obtained was
1715 N which indicates that the cyanoacrylate strength is higher when the interface is the steel than
when the interface is the PDMS. Another detail was that the rupture always happened in the PDMS
surface that was in contact with air, not the surface in contact with the mold, probably because the
surface roughness was lower. The authors believe that if they used a primer on the PDMS surface plate,
the mechanical strength could improve. However, the goal of this work only analysed the displacement
and shear strain before the rupture.

Figure 10a,b presents the shear strain field for the specimens with a 2 mm thickness PDMS plate
and with a 4 mm thickness PDMS plate, respectively. These two images were captured in two different
moments of the shear test or, in other words, for two different values of displacement. Figure 10a was
obtained when the shear test reached 0.5 mm displacement, and Figure 10b shows the shear test when
the displacement value was 0.2 mm. From Figure 10, the maximum shear strain happened in the central
region of PDMS for both thicknesses of PDMS plate. However, the maximum shear strain values are
different. That is, on the specimen with the smallest thickness, the value was −0.1025 [mm/mm], while
the values decreased to −0.0213 [mm/mm] for the specimen with a 4 mm PDMS thickness.
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Figure 10. (a) Shear strain field for a 2 mm thickness PDMS plate; (b) Shear strain field for a 4 mm
thickness PDMS plate.
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4.2. Numerical

As previously mentioned, the four constitutive models presented were implemented in the
numerical analysis. Although all the hyperelastic constitutive models present similarities in their
results, it is essential to highlight the main differences. For example, Figure 11 shows the shear strain
field determined numerically (Mooney–Rivlin constitutive model) for both simulations (2 mm and
4 mm of PDMS thickness). The steel is much more rigid than PDMS, and for this reason, the values of
shear strain in the steel plates are small when compared with the PDMS plate. The values of shear strain
in the top and bottom of the PDMS plate are lower than in the central region due to the edge effect.
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model. (a) 2 mm and (b) 4 mm of PDMS thickness.

Figure 12 shows the evolution of shear strain (Exy) along y-direction for 2 mm PDMS thickness.
The average value for shear strain from the Yeoh, polynomial, and Gent models presented the same
result, −0.09680. However, the Mooney–Rivlin constitutive model resulted in −0.09684, a difference of
0.4 × 10−3.

Figure 13 shows the results found of shear strain for a 4 mm thickness PDMS. The constitutive
models of Yeoh, polynomial and Gent presented the same result, −0.02060. While the Mooney–Rivlin
Model gives −0.02056, again showing the same difference as the previous simulation.

The results of maximum, minimum, and average values of shear strain found in the FEM
simulation are shown in Table 2. For the simulation with 2 mm of PDMS, the highest and lowest
values of shear strain were found for the polynomial 3rd Order constitutive model. In the case of
the simulation involving 4 mm of PDMS, all constitutive models presented the same maximum and
minimum value for the shear strain. In terms of percentage is possible is possible to observe that for
simulation with 2 mm of PDMS have an average around 9.968% while for 4 mm of PDMS the average
shear strain decreases to 2.056%.

It is important to emphasize, as shown in Figure 5, the most suitable hyperelastic models are the
Mooney–Rivlin and polynomial models. The constitutive model of Gent tends to move away at the
end of the curve, which means that the values of shear strain found by the hyperelastic Gent model can
be higher than the experimental ones, and some points are slightly above or below the experimental
result at the end of the Yeoh curve. However, the results from in the Mooney–Rivlin and polynomial
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hyperelastic models more adequately characterize the hyperelastic behavior when compared with the
experimental specimens. This statement is corroborated by other studies [42,43].
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of PDMS.

Table 2. Average, maximum and minimum shear strain values obtained by simulation.

Constitutive Model Average Minimum Maximum

Mooney-Rivlin 3
parameter −0.09684 −0.04678 −0.10238

PDMS Thickness 2 mmYeoh 3rd Order −0.09680 −0.04722 −0.10237
Polynomial 3rd Order −0.09680 −0.04362 −0.10514
Gent −0.09680 −0.04709 −0.10240

Mooney-Rivlin 3
parameter −0.02056 −0.00585 −0.02128

PDMS Thickness 4 mmYeoh 3rd Order −0.02060 −0.00585 −0.02128
Polynomial 3rd Order −.02060 −0.00585 −0.02128
Gent −0.02060 −0.00585 −0.02128
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4.3. Comparison

The comparison between the numerical and experimental results was made along the y-direction
for the specimens (experimental) and the models (numerical), Figures 10 and 11, respectively.
Figures 12 and 13 show that, qualitatively, the numerical and experimental results are close. However,
the maximum relative error between the numerical and experimental results is very different for the
two thickness values. For the 2 mm PDMS, the maximum relative error is 4.1%, and for the 4 mm
thickness, it is 31.4%. This result shows that, for higher values of displacement and thicknesses,
the numerical simulation results move further away from experimental values.

5. Conclusions

In this work, by the mechanical behavior of PDMS was characterized through an experimental
method associating 3D DIC and compared with numerical simulations using four different numerical
constitutive models. The main points that we have conclude were:

• From experimental tests, the hyperelastic behavior of PDMS was verified using a simple shear
test. The DIC tests showed that the most significant shear strain occurred in the centre of the
PDMS plate. These experimental tests also verified that the PDMS rupture occurred at the
bonding interface between the steel and PDMS plates. The rupture happened for different PDMS
thicknesses. For 4 mm of PDMS, the specimen broke up at a 154 N of shear force. The specimen
with 2 mm of PDMS suffered rupture at a shear force of 80 N. For an equal value of shear force,
a higher value of displacement happened for the higher PDMS thickness.

• The numerical simulations were done using four hyperelastic constitutive models (Mooney–Rivlin,
Yeoh, Gent and polynomial). All the hyperelastic constitutive models presented similar results
despite some critical differences. The main reason to obtain similar results in shear stress was due
to the appliance of low displacement values and the constitutive models, for this displacement
level, have identical behavior. The values that show a greater difference in shear strain occurred
for the Mooney–Rivlin constitutive model when compared with the other constitutive models (see
Table 2). The numerical model with 2 mm of PDMS results in higher values of shear strain than
with 4 mm. So, for low displacement levels it is possible to use any of the hyperelastic constitutive
to simulate the shear test.

• Qualitatively, in the central region of the specimen, the numerical and experimental results have
similar behavior, and the values of shear strain are close. Nevertheless, the maximum relative
error between the numerical and experimental results is very different for the two thickness values.
It is possible to conclude that, for higher values of displacement and thicknesses, the numerical
simulation results move further away from experimental values.
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