
This is a repository copy of Memetic algorithms outperform evolutionary algorithms in
multimodal optimisation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/162048/

Version: Accepted Version

Article:

Nguyen, P.T.H. and Sudholt, D. orcid.org/0000-0001-6020-1646 (2020) Memetic
algorithms outperform evolutionary algorithms in multimodal optimisation. Artificial
Intelligence, 287. 103345. ISSN 0004-3702

https://doi.org/10.1016/j.artint.2020.103345

Article available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/326253458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Memetic Algorithms Outperform Evolutionary

Algorithms in Multimodal Optimisation⋆

Phan Trung Hai Nguyena, Dirk Sudholtb,∗

aSchool of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K.
bDepartment of Computer Science, University of Sheffield, Sheffield S1 4DP, U.K.

Abstract

Memetic algorithms integrate local search into an evolutionary algorithm to
combine the advantages of rapid exploitation and global optimisation. We provide
a rigorous runtime analysis of memetic algorithms on the Hurdle problem, a
landscape class of tuneable difficulty with a “big valley structure”, a characteristic
feature of many hard combinatorial optimisation problems. A parameter called
hurdle width describes the length of fitness valleys that need to be overcome.
We show that the expected runtime of plain evolutionary algorithms like the
(1+1) EA increases steeply with the hurdle width, yielding superpolynomial
times to find the optimum, whereas a simple memetic algorithm, (1+1) MA,
only needs polynomial expected time. Surprisingly, while increasing the hurdle
width makes the problem harder for evolutionary algorithms, it becomes easier
for memetic algorithms.

We further give the first rigorous proof that crossover can decrease the
expected runtime in memetic algorithms. A (2+1) MA using mutation, crossover
and local search outperforms any other combination of these operators. Our
results demonstrate the power of memetic algorithms for problems with big
valley structures and the benefits of hybridising multiple search operators.

Keywords: Search heuristics, hybridisation, evolutionary algorithms, black-box
optimisation, memetic algorithms, time complexity

1. Introduction

1.1. Motivation

Memetic Algorithms (MAs) are hybrid evolutionary search methods that
incorporate local search into the search process of an evolutionary algorithm.
They are known by various other names, including evolutionary local search [2],
genetic local search [3, 4] or global-local search hybrids [5], to combine the
exploration capabilities of evolutionary algorithms with the rapid exploitation
provided by local search. There are many examples where this strategy has

⋆This paper extends results presented at the 2018 Genetic and Evolutionary Computation
Conference (GECCO 2018) [1]. Part of the work was done when the first author was a student
at the University of Sheffield.

∗Corresponding author
Email address: d.sudholt@sheffield.ac.uk (Dirk Sudholt)

Preprint submitted to Artificial Intelligence Journal December 18, 2019

proven effective, including many hard problems like the Quadratic Assignment
Problem [6], arc routing problems [7], job shop scheduling problems [8] and
generating test inputs in software testing [9], just to name a few; further references
can be found in books and surveys [10, 11, 12, 13].

The motivation for using local search is that it can quickly find improvements
of new offspring, enabling evolution to rapidly find high-fitness individuals. Local
search can include problem-specific aspects to boost exploitation. This is even
possible for complex problems where it is hard to design a global search strategy.

The search dynamics of memetic algorithms can differ significantly from plain
evolutionary algorithms. When new offspring are created, the selection is only
performed after a local search has refined the offspring to higher fitness. This is
particularly beneficial for offspring of poor fitness that is located in the basin
of attraction of a local optimum with a high fitness as in a plain evolutionary
algorithm such an offspring would be quickly removed during selection. For
constrained problems with penalties for violated constraints, local search can
effectively act as a repair mechanism [13].

One particular subclass of memetic algorithms is called iterated local search [14].
Iterated local search algorithms maintain a population (or a single search point)
and apply mutation followed by local search. Local search is applied in every
iteration, usually until a local optimum has been reached. This means that local
search always produces a local optimum, the population always consists of local
optima and evolution thus acts on the sub-space of local optima. The hope is
that mutation can help an MA to leave its current local optimum and to reach
the basin of attraction of a better one.

A major challenge when designing MAs is to find an effective combination
of different search operators like mutation, crossover and selection as well as
an effective local search. The performance of MAs is often determined by the
interplay of different operators. The outcome and effectiveness of local search
applications crucially depend on the result of variation operators like mutation
or crossover followed by mutation. The output of local search, after selection,
yields the next generation to which further variation operators are applied. This
yields intricate search dynamics that are hard to predict as the execution of
different search operators, including local search, is intertwined in non-trivial
ways.

It is therefore not well understood when memetic algorithms perform well
and why. Most work in this area is empirical, and the reasons for the success
(or failure) of memetic algorithms are often not clear. As put in [15], “While
memetic algorithms have achieved remarkable success in a wide range of real-
world applications, the key to successful exploration-exploitation synergies still
remains obscure.” The field is lacking a solid understanding of how memetic
algorithms work and how to design effective memetic algorithms in an informed
fashion.

We make a significant step towards establishing a rigorous theoretical foun-
dation of memetic algorithms by analysing the performance of simple memetic
algorithms on a class of multimodal problems that resemble a “big valley struc-
ture” found in many combinatorial problems [16, 17]. Our main contribution is a
runtime analysis of memetic algorithms showing that—and how—these hybrids
can drastically outperform their algorithmic components.

We further address an issue highlighted in a survey on hot topics in evolu-
tionary computation at AAAI 2017 [18]: “The role of crossover in evolutionary

2

computation is still a major open problem in the theory of evolutionary algo-
rithms.” We make a step forward towards solving this long-standing open
problem by providing the first runtime analysis of a crossover-based memetic
algorithm. We give a rigorous proof that crossover (followed by mutation) can
significantly improve performance compared to memetic algorithms using only
mutation as variation operator.

More specifically, we consider a class of problems introduced by Prügel-
Bennett [19] as example problems where genetic algorithms using crossover
perform better than hill climbers. The Hurdle problem class (formally defined
in Section 3) is a function of unitation, that only depends on the number of ones,
with an underlying gradient leading towards the global optimum and several
“hurdles” that need to be overcome. These hurdles consist of a local optimum
and a fitness valley that has to be traversed to reach the next local optimum.
The width of these fitness valleys is determined by a parameter w called the
hurdle width. For simple EAs like the (1+1) EA, a larger hurdle width makes the
problem harder. This effect was analysed in [19] with non-rigorous arguments
based on simplifying assumptions that led to approximations of the expected
time for finding the unique global optimum.

1.2. Our Contributions

We provide a rigorous analysis of the expected runtime (synonymously,
optimisation time), which is the number of function evaluations1 needed until a
global optimum is seen for the first time.

For the (1+1) EA we give a tight bound of Θ(nw) for the expected runtime,
confirming that the performance degrades very rapidly with increasing hurdle
width w. For hurdle widths growing with n, i.e., w = ω(1), this expected runtime
is superpolynomial. The latter still holds when increasing the mutation rate
from the default value 1/n to the optimal value w/n.

We also show that the local searches on their own perform very poorly. Even
when appropriate restart strategies are being used, they require exponential
runtime.

In contrast, we show that MAs perform very effectively on this problem class,
owing to the combination of evolutionary operators and local search. We study
a simple iterated local search algorithm called (1+1) MA that evolves a single
search point by using only mutation and local search. We consider two different
local searches: First-Improvement Local Search (FILS) searches all Hamming
neighbours of the current search point and moves to the first improvement it
finds in this way. Best-Improvement Local Search (BILS) [20] on the other hand
first evaluates the whole neighbourhood and then selects a best improvement
found. Both local searches stop when no improvement can be found. We show
that the (1+1) MA with BILS takes expected time Θ(n2 + n3/w2), and the
(1+1) MA with FILS takes expected time Θ(n3/w2) to find the optimum on
Hurdle. These times are polynomial for all choices of the hurdle width.

1Considering function evaluations is motivated by the fact that these are often the most
expensive operations, whereas other operators can usually be executed very quickly. For
steady-state algorithms like the simple (1+1) EA, the number of function evaluations equals
the number of iterations. For MAs, we further need to account for the number of function
evaluations made during local search.

3

Another major contribution of this work lies in presenting the first rigorous
proof that crossover is beneficial in memetic algorithms. To this end, we consider
a simple (2+1) MA that uses mutation, uniform crossover and local search. The
(2+1) MA with FILS takes an expected runtime of O

(

n2 log(n/w)/w
)

, while the

(2+1) MA with BILS requires time O
(

n2 + n2 log(n/w)/w
)

in expectation on
Hurdle. These results show that crossover provides a substantial advantage over
the (1+1) EA and (1+1) MA, leading to speedups of Ω(n/ log n) for w = O(1).

Note that the terms n3/w2 and n2 log(n/w)/w decrease with the hurdle
width w; hence, the surprising conclusion is that larger hurdle widths make
the problem much harder for EAs, while making the problem easier for MAs.
As our analysis will show, the reason behind this effect is that for MAs it is
sufficient to flip two 0-bits to escape from the basin of attraction of a local
optimum and to reach the basin of attraction of a better local optimum. This
way, MAs can efficiently progress from one local optimum to the next. For the
most difficult local optimum, the number of 0-bits equals the hurdle width w.
A larger hurdle width provides more opportunities for flipping two 0-bits and
increases the probability of such a jump being made. This explains why for MAs,
a larger hurdle width makes the problem easier.

Our findings are particularly significant when regarded in the light of big
valley structures, an important characteristic of many hard problems from
combinatorial optimisation [16, 17], where “many local optima may exist, but
they are easy to escape and the gradient, when viewed at a coarse level, leads to
the global optimum” [21]. The Hurdle problem (albeit having been defined for
a very different purpose [19]) is a perfect and very illustrative example of a big
valley landscape. By studying the (1+1) MA on the Hurdle problem class, we
hope to gain insights into how MAs perform on big valley structures, which in
turn may explain why state-of-the-art MAs perform well on problems with big
valley structures [22, 23].

1.3. Related Work

There are other examples of functions where MAs were theoretically proven
to perform well (see Sudholt [13] for a more extensive survey). In [24], examples
of constructed functions were given where the (1+1) EA, the (1+1) MA, and
Randomised Local Search (RLS) can mutually outperform each other. The
paper [25] investigates the impact of the local search depth, which is often used
to limit the number of iterations local search is run for. The author gives a
class of example functions where only specific choices for the local search depth
are effective, and other parameter settings, including plain EAs without local
search, fail badly. Similar results were obtained for the choice of the local search
frequency, that is, how often local search is run [26].

Sudholt [27] showed for certain instances of classical problems from combi-
natorial optimisation, MinCut, Knapsack and MaxSat, that MAs with a
different kind of local search, variable-depth local search, can efficiently cross
huge fitness valleys that are nearly impossible to cross with EAs. Exponential
times are reduced to polynomial expected times. Witt [28] analysed the perfor-
mance of an MA, iterated local search, for the Vertex Cover problem. He
showed that the algorithm can find optimal vertex covers on sparse random
graphs in polynomial time, with probability 1− Ω(1). Sudholt and Zarges [29]
investigated the use of MAs for the graph colouring problem and showed that

4

MAs can efficiently colour bipartite graphs with 2 colours and colour planar
graphs with maximum degree up to 6 with up to 5 colours. Wei and Dinneen
analysed MAs for solving the Clique problem, investigating the choice of the
fitness function [30] as well as the choice of the local search operator [31]. They
gave families of graphs where one choice of fitness function outperforms another
and where the (1+1) MA with first-improvement local search (FILS) and the
(1+1) MA with best-improvement local search (BILS) outperform one another.

Gießen [32] presented another example function class based on a discretised
version of the well-known Rastrigin function. He designed an MA using a new
local search method called opportunistic local search, where the search direction
switches between minimisation and maximisation whenever a local optimum is
reached. This function also resembles a big valley structure in two dimensions
as the bit string is mapped onto a two-dimensional space.

Memetic algorithms also include adaptive memetic algorithms that combine
different operators (“memes”) and learn which one performs best throughout the
algorithm run; such algorithms are also known as hyperheuristics [33]. Alanazi
and Lehre [34] demonstrated the usefulness of hyperheuristics for the well-known
unimodal LeadingOnes function. Lissovoi et al. [35] showed that selection
hyperheuristics that can switch between elitist and non-elitist heuristics can be
very beneficial on multimodal optimisation problems such as the function class
Cliff. Cliff functions are related to the Hurdle problem as both feature local
optima on an underlying gradient towards the optimum. However, Cliff only
has local optima in one location whereas on Hurdle a sequence of many local
optima has to be overcome. The latter authors [36] as well as Doerr et al. [37]
presented novel, provably efficient hyperheuristic algorithms for LeadingOnes.
The difference to MAs is that while hyperheuristics typically apply one operator,
while learning which operator performs best, MAs apply different operators,
variation and local search, in sequence. The interplay of variation and local
search is a major challenge when analysing MAs.

In terms of crossover, to our knowledge, there are no rigorous runtime analyses
of MAs using crossover. Despite a long-standing debate on the usefulness of
crossover in evolutionary computation, only a few papers were able to rigorously
prove that crossover is beneficial in evolutionary computation.

Jansen and Wegener [38] gave the first examples where crossover can reduce
a superpolynomial expected time towards a polynomial time for the function
Jump. These results were later refined in [39, 40]. Dang et al. [41] showed that
further improvements can be obtained by using explicit diversity mechanisms.
Jansen and Wegener [42] also defined so-called Real Royal Road functions
where crossover makes a difference between polynomial and exponential times.
While these functions require a linear population size, Storch and Wegener [43]
defined examples where constant population size is sufficient to achieve similar
performance gaps. Fischer and Wegener [44] showed that crossover can improve
performance on a simple vertex colouring problem inspired by the Ising model
in physics, on cycle graphs. Sudholt [45] proved an exponential performance gap
for the Ising model on binary trees. Doerr et al. [46, 47] proved that crossover
can speed up finding all-pairs shortest paths. Sudholt [48, 49] and Doerr et
al. [50] showed that crossover can speed up hill climbing on the simple function
OneMax. The former results were later improved by Corus and Oliveto [51]
as well as Carvalho Pinto and Doerr [52]. Lengler [53] showed that crossover
makes evolutionary algorithms more robust: on monotone functions, a (µ+1) GA

5

with crossover can deal with arbitrary mutation strengths, whereas evolutionary
algorithms without crossover fail badly [53, 54]. Moreover, crossover has also
been proven to be useful in the context of island models [55] and ant colony
optimisers [56].

1.4. Outline

The paper is structured as follows. Section 2 defines the algorithms studied
in this work, including (1+1) EA, (1+1) MA, (2+1) MA with crossover as well
as the two local search schemes, i.e., FILS and BILS. Section 3 formally describes
the class of Hurdle problems and some of their important properties. Our
analysis begins in Section 4, where we answer the question of why hybridisation
is needed by investigating the expected runtimes of local search algorithms and
the (1+1) EA on the Hurdle problems. The efficiency of the (1+1) MA over
alternative search methods is then shown in Section 5. In Section 6, we study
the effect of crossover in the (2+1) MA and show that it provides a substantial
advantage over the mutation-only (1+1) MA. We then discuss the benefits of
different search operators and their combinations in Section 7, followed by an
empirical study in Section 8 in order to complement the theoretical analyses in
previous sections.

2. Preliminaries

Let X := {0, 1}n denote the finite binary search space of dimension n (also
called the problem instance size). Each bitstring x = (x1, x2, . . . , xn) ∈ X is
called an individual (or search point), where xi ∈ {0, 1} for each i ∈ {1, 2, . . . , n}.
A population is a multiset of individuals. We aim at maximising an objective
function f : X → R, also called fitness function. Note that we can easily deal
with minimisation problems as well by maximising the function −f . Moreover,
the ceiling and floor functions are denoted as ⌈·⌉ and ⌊·⌋, respectively. The
natural logarithm is denoted as ln(·), while log(·) represents the logarithm with
base 2.

To focus on the main differences between EAs and MAs, and to facilitate
a rigorous theoretical analysis, we consider simple bare-bones algorithms from
these two paradigms.

2.1. (1+1) Evolutionary Algorithm

The (1+1) EA, defined in Algorithm 1, is the simplest EA as it operates on a
single individual. The algorithm follows an iterative process and starts with an
initial individual that is sampled uniformly at random. In each iteration, bits in
the bitstring are flipped independently with probability pm (also called mutation
rate), and the newly generated offspring replaces the current search point if its
fitness is not less than that of the current search point. The default mutation
rate is pm = 1/n, but we will also consider a larger mutation rate of pm = w/n.

As a common practice in theoretical investigations, we do not specify a
stopping criterion. Instead, we consider the algorithms as infinite processes as
we are only interested in analysing the time until the global optimum is found.

6

Algorithm 1: (1+1) EA

1 sample an initial individual x uniformly at random
2 repeat
3 create y by flipping each bit in x independently with probability pm
4 if f(y) ≥ f(x) then update x to y

5 until stopping condition is fulfilled.

2.2. Memetic Algorithms

The (1+1) MA, defined in Algorithm 2 [31], is considered the simplest MA,
as it works on a single individual and creates an offspring in each iteration
by flipping each bit independently with a mutation rate of 1/n. Unlike the
(1+1) EA, the newly generated offspring is refined further using a local search
algorithm. We note that any local search algorithm can fit into this framework.
Although the (1+1) MA looks quite simple, it captures the fundamental working
principles of MAs. Analysing it can reveal insights into how general MAs operate
and when and why they are effective.

Algorithm 2: (1+1) MA

1 sample an individual x uniformly at random from X
2 repeat
3 create y by flipping each bit in x independently with probability 1/n
4 create z by calling a local search algorithm on y
5 if f(z) ≥ f(x) then update x to z

6 until stopping condition is fulfilled.

We note that the (1+1) MA uses mutation as the only genetic operator. We
are also interested in crossover and thus introduce the (2+1) MA, defined in
Algorithm 3. The algorithm operates on a population of two individuals2 and
uses both mutation and uniform crossover to produce an offspring. Recall that
in a uniform crossover, each bit from the offspring’s bitstring is independently
chosen from either parent with equal probability [57]. Then, the two fittest
individuals among the parents and the offspring are selected to form the next
population. In case of ties, by which we mean that parents and offspring all
having the same fitness, the offspring is rejected if it is a duplicate of a parent
(if not, ties are broken arbitrarily). This allows different individuals of equal
fitness to survive.

2.3. Local Search Algorithms

Local search algorithms employ a move operator in order to examine neigh-
bours of the current search point on the search space. Here, the move operator
flips a single bit in the bit string (i.e. one-bit mutation). By doing that, it can
visit all Hamming neighbours in order to guide the search to a local optimum.

2A population of size two is chosen as this is the smallest population size enabling the use
of crossover. For our runtime bounds, there is no advantage in using a larger population.

7

Algorithm 3: (2+1) MA with crossover

1 initialise population P of size two uniformly at random
2 repeat
3 select x1 and x2 independently and uniformly at random from P
4 create y by a crossover of x1 and x2

5 create z by flipping each bit in y independently with probability 1/n
6 refine z using a local search algorithm
7 let P contain the two fittest individuals from P ∪ {z}; if all have the

same fitness, reject z if it is identical to at least one of its parents

8 until stopping condition is fulfilled.

We consider two local search algorithms in the context of the (1+1) MA. Both
are common practice and have also been analysed in [31].

Algorithm 4: FILS

input : an individual x ∈ X
1 t← 0
2 while t ≤ δ do
3 create a random permutation Per of the set [n]
4 set Flag to 0
5 for i = 1, 2, . . . , n do
6 create y by flipping bit Per[i] in x
7 if f(y) > f(x) then
8 update x to y
9 set Flag to 1

10 increment t
11 if t = δ return x

12 if Flag = 0 then return x

13 return x

2.3.1. First-Improvement Local Search

The local search algorithm, defined in Algorithm 4 [31], takes advantage of
the first improvement it obtains while searching the Hamming neighbourhood.
The algorithm makes at most δ moves, a common strategy in memetic algorithms;
the parameter δ is called local search depth. The algorithm flips bits according
to a random permutation Per of length n. This is done to make sure all bits
are treated equally and that the search does not depend on the bit positions.
The behaviour of the local search only depends on the number of 0-bits and
it is irrelevant which bits are set to 0. The fitness function then evaluates
new offspring, and the current search point is replaced by the first neighbour
discovered with better fitness. The algorithm terminates after either δ moves
have been made or after visiting n neighbours of the current search point without
finding an improvement.

8

Algorithm 5: BILS

input : an individual x ∈ X
1 for δ iterations do
2 CurBestInds← ∅; CurBestFit← f(x)
3 for i = 1, 2, . . . , n do
4 create y by flipping bit i in x
5 if f(y) > CurBestFit then
6 CurBestInds← {y}; CurBestFit← f(y)
7 else if f(y) = CurBestFit then
8 CurBestInds← CurBestInds ∪ {y}

9 if CurBestInds = ∅ then return x; otherwise, select x uniformly at
random from the set CurBestInds

10 return x

2.3.2. Best-Improvement Local Search

The local search algorithm, defined in Algorithm 5 [31], searches all neighbours
(with a Hamming distance of one). The algorithm runs for at most δ iterations,
and in each iteration, a neighbour with the largest fitness improvement replaces
the current search point. To keep track of the progress so far, it records the best
neighbour(s) and their fitness in CurBestInds and CurBestFit, respectively.
Whenever the algorithm finds a neighbour with improved fitness compared to
CurBestFit, it updates the two variables. At the end of an iteration, if there
is more than one neighbour with equal fitness improvements, ties are broken
uniformly at random.

3. Class of Hurdle Problems

TheHurdle function class was introduced back in 2004 by Prügel-Bennett [19]
as an example class where genetic algorithms with crossover outperform hill
climbers.

We start by providing a formal definition and then discuss basic properties
of the function that will be used in the subsequent analyses.

The objective of the Hurdle problem is to maximise an objective function
f : X → R that is formally defined as follows [19].

f(x) = −
⌈

z(x)

w

⌉

− rem(z(x), w)

w
,

where z(x) denotes the number of zeros in the bitstring x and w ∈ {2, 3, . . . , n},
called the hurdle width, is the only parameter of the problems. We note that
w = w(n) may be a function of n, and rem(z(x), w) is the remainder of z(x)
divided by w.

An initial observation is that the global optimum for the Hurdle problem
is the all-ones bitstring, i.e., 1n, with the maximum fitness of 0 since for every
x ∈ X , we know that z(x) ≥ 0 and rem(z(x), w) ≥ 0, so f(x) ≤ 0. The equality
holds if and only if z(x) = 0 and rem(z(x), w) = 0, which correspond to x = 1n.

We also note that z(x) is the Hamming distance H(x, 1n) between the current
search point x and the all-ones optimum. Fig. 1 illustrates the fitness landscapes

9

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

0 10 20 30 40 50

−
1
5

−
1
0

−
5

0

Number of 0−bits

H
u

rd
le

 v
a

lu
e

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

0 10 20 30 40 50

−
6

−
5

−
4

−
3

−
2

−
1

0

Number of 0−bits

H
u

rd
le

 v
a

lu
e

Figure 1: Fitness landscapes for a problem of size n = 50 with hurdle width w = 3 (left) and
w = 10 (right).

close to the global optimum, which coincides with the origin where we get
z(1n) = 0 and f(1n) = 0.

The following lemma shows that from any local optimum, the only search
points of better fitness are those that have at least w zeros less.

Lemma 1. Given a Hurdle problem with hurdle width w and a local optimum
x 6= 1n as the current search point, the set of search points with fitness larger
than f(x) is equal to the set {x′ ∈ X : z(x′) ≤ z(x)− w}.

Proof. Assume that we are currently at a local optimum x 6= 1n that contains
z(x) = kw zeros, where k ∈ N\{0}. Then f(x) = −⌈z(x)/w⌉−rem(z(x), w)/w =
−⌈k⌉ − 0/w = −k.

We now consider a search point xm with z(xm) = kw −m < z(x), where
m > 0. We make a case distinction via m: if m ≥ w, then f(xm) =
−⌈kw −m⌉ − rem(kw − m,w)/w ≥ −(k − 1) − rem(kw − m,w)/w > −k as
rem(kw −m,w)/w < 1. Otherwise, ⌈kw −m⌉ = k and rem(kw − m,w) =
w −m > 0, yielding f(xm) = −k − rem(kw −m,w)/w < f(x).

Therefore, when m ≥ w, we obtain f(xm) > f(x); otherwise, f(xm) < f(x).
This result implies that search points that have a better fitness than that of a
current local optimum x 6= 1n are those in the set {x′ ∈ X : z(x′) ≤ z(x)−w}.

We remark that Hurdle functions can be optimised efficiently by non-elitist
algorithms. Sudholt [58] recently showed that Randomised Local Search (RLS)
can efficiently optimise Hurdle functions in the presence of noise. These results
may be viewed in a different light: if we imagine an algorithm that simulates
said noise and runs RLS under simulated noise, the results from [58] apply to a
non-elitist algorithm in a noise-free setting. In the following, we restrict ourselves
to elitist algorithms.

10

4. Why Hybridisation is Necessary

4.1. Local Search Algorithms

We show that local search algorithms, when applied on their own, are
inefficient, even when using appropriate restart strategies. It is obvious that if
the number of zeros z in the initial search point is at least w then all considered
local search algorithms will get stuck in a suboptimal local optimum forever. If
w ≪ n/2 then z ≥ w holds with very high probability. One way to overcome
this problem is to employ a restart mechanism, which restarts the local search
algorithm once a local optimum has been found.

We focus on w ≤ cn for some constant c < 1/2 as, if w ≥ c′n for some
constant c′ > 1/2, with overwhelming probability the initial search point would
lie in the basin of attraction of the global optimum and the algorithm would
never face any hurdles.

Theorem 2. The expected runtime of local search algorithms BILS and FILS
with δ ≥ w, restarting after δ iterations of the local search, on Hurdle problems
with hurdle width w ≤ cn for some constant c < 1/2 is 2Ω(n).

Proof. The local search algorithm flips one bit and only accepts new search
points with strictly better fitness value compared to the current one in each
iteration; therefore, the initial search point decides whether the global optimum
can be reached. It is clear that this search point needs to have at most w − 1
zeros in order for the global optimum to be reached, i.e., lies on the basin of
attraction of the global optimum (see Fig. 1). By initialisation, the number of
zeros in the initial search point is binomially distributed with n trials and success
probability 1/2. In expectation, there are n/2 zeros, and by Chernoff bounds [59,
p. 70], a search point with at most w − 1 ≤ cn− 1 = (1− δ)(n/2) zeros, where
δ = 1 − 2c + 2/n = 1 − 2c + o(1) > 0 as c < 1/2, is sampled with probability

at most e−((1−2c+o(1))2/2)·(n/2) = 2−Ω(n). This means that the expected number
of restarts until this event happens is at least 2Ω(n). The proof is completed by
noting that every restart leads to at least one function evaluation.

4.2. (1+1) Evolutionary Algorithm

We show in this section a tight bound Θ(nw) on the expected runtime of the
(1+1) EA on the Hurdle problems with an arbitrary hurdle width 2 ≤ w ≤ n/2.
This result implies that the (1+1) EA is not efficient on Hurdle unless the
hurdle width w is very small. Our rigorous analysis complements the non-rigorous
arguments given in [19].

Theorem 3. The expected runtime of the (1+1) EA with pm = 1/n on Hurdle

with hurdle width w ≥ 2 is O(nw).

Proof. For a current search point with z zeros, let pz denote the probability of
finding a strictly better search point through mutation. Hence the expected
waiting time to find a better search point is 1/pz. Owing to elitism, such a step
is required at most once as the algorithm will never return to a search point
with z zeros. This is the essence of the well-known fitness-level method [60], and

it shows that the expected runtime is bounded from above by
∑n−1

z=1 1/pz.
We estimate pz from below. If rem(z, w) > 0 then the fitness can be improved

by mutation flipping only a single zero. This happens with probability pz ≥
z/n · (1− 1/n)

n−1 ≥ z/(en).

11

Now assume that rem(z, w) = w and z > 0 (that is, z = iw for some integer i
with 1 ≤ i ≤ ⌊n/w⌋). Lemma 1 yields that all search points with at most z − w
zeros have a strictly larger fitness. For such a mutation we just need to flip
at least w zeros simultaneously and maintain the n − w remaining bits. The
former event happens with probability (1/n)

w
, while it is (1− 1/n)

n−w
for the

latter. Hence, the probability of obtaining a better solution is lower bounded by
pz ≥

(

z
w

)

(1/n)w(1− 1/n)n−w ≥ (1/enw)(z/w)w since (1− 1/n)n−1 ≥ 1/e for all

n ≥ 1 [59, p. 435] and
(

z
w

)

≥ (z/w)w [59, p. 434].
Together, we obtain an upper bound of

n
∑

z=1

1

pz
≤

n
∑

z=1

en

z
+

⌊n/w⌋
∑

i=1

enw
(w

iw

)w

= en

n
∑

z=1

1

z
+ enw

⌊n/w⌋
∑

i=1

1

iw

≤ O(n log n) + enw
∞
∑

i=1

1

i2
= O(nw),

where in the last line we used
∑n

z=1 1/z = O(log n) and ∑∞
i=1 1/i

2 = π2/6.

To derive the lower bound, we again focus on w ≤ n/2 for the same line of
arguments as in Theorem 2.

Theorem 4. The expected runtime of the (1+1) EA using pm = 1/n on Hurdle

with 2 ≤ w ≤ n/2 is Ω(nw).

Proof. The main observation is that, once the (1+1) EA has reached a search
point with w zeros, the optimum is the only other search point that will be
accepted. The probability of creating the optimum from any search point with
w zeros is (1/n)w(1− 1/n)n−w ≤ (1/n)w and the expected waiting time for this
event is at least nw.

The claim follows if we can show that a search point with w zeros is reached
with probability Ω(1) as then by the law of total expectation the expected time
is Ω(1) · nw = Ω(nw).

The number of zeros in the initial search point is at least n/2 ≥ w with
probability at least 1/2 (by the symmetry of the binomial distribution [61]). We
now assume that this event happens and consider the first point in time where
the (1+1) EA discovers a search point with at most w zeros (we pessimistically
ignore the time it takes to get there). Note that if the (1+1) EA makes a jump
from a search point with i > w zeros to a search point with j < w zeros, the
algorithm may avoid the hurdle at w zeros altogether. Hence we need to argue
that with probability Ω(1) the (1+1) EA does not “jump over” the hurdle at w
zeros.

Let x be the first search point with z(x) ≤ w and let i > w denote the
number of zeros in the previous search point. Following [62] we use the notation
mut(n − i, n − j) to denote the probability that a mutation of a search point
with n− i ones creates an offspring with n− j ones.

Then, using Lemma 9 in [62] in the last step,

Pr (z(x) = w | z(x) ≤ w) =
Pr (z(x) = w)

Pr (z(x) ≤ w)
=

mut(n− i, n− w)
∑n

j=n−w mut(n− i, j)
≥ 1

2
.

12

This shows that a search point with w zeros is reached with probability at least
Ω(1), completing the proof.

Theorems 3 and 4 together provide a tight bound on the expected runtime
of the (1+1) EA on the Hurdle problem.

Theorem 5. The expected runtime of the (1+1) EA using pm = 1/n on Hurdle

with 2 ≤ w ≤ n/2 is Θ(nw).

We remark that increasing the mutation rate can speed up the (1+1) EA. As
the above analysis has shown, the expected run time is dominated by the time
to locate the global optimum from a search point with Hamming distance w to
it (also referred to as the final hurdle). From this starting point, a mutation rate
of w/n maximises the probability of flipping exactly w bits. This mutation rate
was also proven in [63] to be optimal for the Jumpw function, where the same
“jump” is required in case of Hurdle.

This insight is not new, and a mutation rate of w/n was already used in [19]
for the (1+1) EA on Hurdle. However, even choosing an optimal mutation rate
does not help much as we will show in the following. We first show an upper
bound for the (1+1) EA with mutation rate pm = w/n.

Theorem 6. The expected runtime of the (1+1) EA using pm = w/n on
Hurdle with hurdle width 2 ≤ w ≤ n/3 is O(nw · (e/w)w).

Proof. We define and estimate pz as in the proof of Theorem 3. If rem(z, w) >
0 then we again rely on mutations flipping a single zero, which occur with
probability at least

pz ≥ z · w
n
·
(

1− w

n

)n−1

≥ zw

n
·
(

1− w

n

)2(n−w)

≥ zwe−2w

n

From a current local optimum with z > 0 zeros, rem(z, w) = 0, the algorithm
flips at least w bits (and keeps other bits unchanged) to reach a better fitness
value. The probability of this event is

(

z
w

)

(w/n)w(1− w/n)n−w ≥ zw/(ewnw),
and the waiting time until this happens is at most (en/z)w. By the fitness-level
method, the expected number of iterations until the global optimum is found is
at most

e2w(n/w)
n
∑

z=1

1

z
+
(en

w

)w
⌊n/w⌋
∑

i=1

1

iw
= O(e2w(n log(n)/w) + (en/w)w).

The proof is completed by arguing that the term (en/w)w dominates the overall
expression. More formally, we claim (n/(ew))w = ω(n log n) for all 2 ≤ w ≤ n/3,
which implies O(e2w(n log(n)/w) + (en/w)w) = O((en/w)w). The derivative of
the function (n/(ew))w of w is (n/(ew))w · ln(n/(e2w)), hence the function is
increasing with w in the interval [2, n/e2] and decreasing in [n/e2, n/3]. The
claim (n/(ew))w = ω(n log n) is easily verified for both w = 2 and w = n/3,
hence it holds for all 2 ≤ w ≤ n/3.

For the lower bound, we need to generalise the result of Lemma 9 in [62]
for mutation rate pm = w/n. We reuse the notation mut(i, i + k) for each
0 ≤ i ≤ n as in [62] to denote the probability that a global mutation (with

13

mutation rate pm) of a search point with i ones creates an offspring with i+ k
ones. Note that this is the probability of obtaining an offspring with n− (i+ k)
zeros from an individual with n− i < n− (i+ k) zeros via mutation. For our
purpose, we focus only on the final hurdle, and the following lemma shows that
the probability of ending up at a local optimum with w zeros, given that a search
point with at most w zeros is reached, is at least 1/2 when the hurdle width is
chosen appropriately.

Lemma 7. Consider mutation rate pm = w/n, where 2 ≤ w ≤ √n− 1/2. For
all 0 ≤ i < n− w ≤ j ≤ n,

mut(i, j)
∑n

k=j mut(i, k)
≥ 1

2
.

Proof. We also note that an offspring with j + 1 ones is created if and only if
there is an integer ℓ ∈ N such that ℓ ones and j+1−i+ℓ zeros are simultaneously
flipped. For simplicity, let χ(ℓ) := (n − j − ℓ)/(j − i + 1 + ℓ), and note that
χ(ℓ) ≤ χ∗ := (n− j)/(j− i+1) for all ℓ ≥ 0. The probability of the said event is

mut(i, j + 1) =

n
∑

ℓ=0

(

i

ℓ

)(

n− i

j + 1− i+ ℓ

)

pj+1−i+2ℓ
m (1− pm)n−j−1+i−2ℓ

=

n
∑

ℓ=0

(

i

ℓ

)(

n− i

j − i+ ℓ

)

pmχ(ℓ)

1− pm
pj−i+2ℓ
m (1− pm)n−j+i−2ℓ

≤
n
∑

ℓ=0

(

i

ℓ

)(

n− i

j − i+ ℓ

)

pmχ∗

1− pm
pj−i+2ℓ
m (1− pm)n−j+i−2ℓ

=
pmχ∗

1− pm

n
∑

ℓ=0

(

i

ℓ

)(

n− i

j − i+ ℓ

)

pj−i+2ℓ
m (1− pm)n−j+i−2ℓ

=
(n− j)pm

(j − i+ 1)(1− pm)
·mut(i, j)

≤ w2

2(n− w)
·mut(i, j)

since n − j ≤ w, j − i ≥ (n − w) − (n − w − 1) = 1 and pm = w/n. Because
w ≤ √n− 1/2 ≤

√

n+ 1/4− 1/2, we then get w2 ≤ n− w, which is equivalent
to w2/(2(n−w)) ≤ 1/2. Therefore, we get mut(i, j + 1) ≤ (1/2) ·mut(i, j), and,
by induction, mut(i, j + k) ≤ 2−k ·mut(i, j) for any 0 ≤ k ≤ n− j. This leads to

mut(i, j)
∑n

m=j mut(i,m)
=

mut(i, j)
∑n−j

k=0 mut(i, j + k)

≥ mut(i, j)
∑n−j

k=0 2
−kmut(i, j)

=
1

∑n−j
k=0 2

−k
≥ 1

∑∞
k=0 2

−k
=

1

2
,

which proves the lemma.

Theorem 8. The expected runtime of the (1+1) EA using pm = w/n on
Hurdle with 2 ≤ w ≤ √n− 1/2 is Ω(nw · (e/w)w).

14

Proof. Following Theorem 4, the probability of ending up with a search point
having at least w zeros is at least 1/2. By Lemma 7 we obtain a lower bound
of 1/2 on the probability of ending up at a local optimum with w zeros, given
that a search point with at most w zeros is reached. Thus, with probability
Ω(1) we reach the local optimum with w zeros. Assume that this has actually
happened, the global optimum is the only search point with an improved fitness
(by Lemma 1) and the probability of creating the optimum by mutation is
(w/n)w(1− w/n)n−w = O((w/(en))w, where the inequality follows from (1 −
w/n)n−w =

(

(1− w/n)n/w
)w

(1− w/n)−w ≤ e−w(1 − 1/
√
n)−

√
n = O(e−w).

The expected waiting time for such a mutation is Ω((en/w)w) and, by the
law of total expectation, the expected runtime is at least Ω(1) · Ω((en/w)w) =
Ω((en/w)w).

We are ready to conclude a tight bound on the expected runtime of the
(1+1) EA on Hurdle problem with 2 ≤ w = O(√n). Asymptotically speaking,
the optimal mutation rate pm = w/n does speed up the optimisation process
since it results in an improvement by a factor of (e/w)w, which is smaller than
one if the hurdle width is w ≥ 3 > e. However, the expected runtime is still
superpolynomial for all w = ω(1) with w ≤ n/2.

Theorem 9. The expected runtime of the (1+1) EA using mutation rate pm =
w/n on Hurdle with 2 ≤ w ≤ √n − 1/2 is Θ(nw · (e/w)w). For

√
n − 1/2 ≤

w ≤ n/2 it is Ω(ew).

Proof. The first statement follows from Theorems 6 and 8. For the second
statement the probability of creating the optimum by mutation from any non-
optimal search point with z zeros is at most (w/n)z(1−w/n)n−z ≤ (1−w/n)n ≤
e−w where the last term holds irrespective of z. Hence the expected waiting
time to generate the optimum is at least ew. Along with the fact that we start
in a non-optimal search point with probability 1 − 2−n = Ω(1), this proves a
lower bound of Ω(ew).

5. The (1+1) MA is Efficient

We now show that, in contrast to local search on its own and the (1+1) EA,
the (1+1) MA can find the global optimum efficiently, for both BILS and FILS.
Note in particular we consider BILS and FILS with local search depth δ ≥ w
as this is sufficient to run into local optima from anywhere in the search space.
Otherwise, local search may finish short of the next local optimum, unless
mutation flips many 0-bits to 1. We will discuss this at the end of this section.

We first provide an upper bound on the expected number of iterations needed.
This does not include the function evaluations made during local search, which
will be bounded separately.

Theorem 10. The expected number of iterations of the (1+1) MA using BILS
or FILS with δ ≥ w on Hurdle with any hurdle width 2 ≤ w ≤ n is O

(

n2/w2
)

.

Proof. Assume that an optimum x 6= 1n is the current search point with z zeros.
By Lemma 1, we know that all search points with up to z−w zeros have a better
fitness than f(x). Such a search point can be reached if the (1+1) MA flips at
least two zeros to jump from x to another search point with at most z − 2 zeros

15

with probability pz =
(

z
2

)

(1/n)2(1− 1/n)n−2 ≥ z(z − 1)/(2en2), as then a local
search algorithm hill-climbs to locate a local optimum with z−w zeros. Hence, the
probability of reaching a better local optimum from x is bounded from below by
pz, and the expected waiting time until this happens is at most 1/pz. By summing
up for all hurdles, that is, z = iw with 1 ≤ i ≤ ⌊n/w⌋, the expected number of

iterations until the global optimum is found is
∑⌊n/w⌋

i=1 2en2/(iw(iw − 1)). By
noting the identity

∑∞
i=1 1/i

2 = π2/6, we then get

∞
∑

i=1

1

iw(iw − 1)
≤

∞
∑

i=1

1

iw(iw − iw/2)
=

2

w2

∞
∑

i=1

1

i2
=

π2

3w2
.

Hence, the expected runtime is at most 2en2π2/(3w2) = O
(

n2/w2
)

.

To bound the number of function evaluations made during local search, we
distinguish between local searches that result in a strict improvement over the
previous current search point (referred to as improving local searches), and those
that do not (non-improving local searches). This is an example of the accounting
method [64, Chapter 17.2], where function evaluations are charged to one of two
accounts and the total costs are bounded separately for each account. Adding
the two bounds will yield an upper bound on the total number of function
evaluations made during local search.

We first bound the number of function evaluations spent in any improving
local search. The following lemma gives a general bound for the number of
evaluations in any local search, regardless of the starting point and whether it is
improving or non-improving.

Lemma 11. The number of function evaluations spent in any local search call
on Hurdle with hurdle width w and δ ≥ w, from every initial search point, is
at most wn for BILS and at most 2n for FILS.

Proof. Recall that Hurdle is a function of unitation, that is, all search points
with the same number of zeros have the same fitness. Hence if a local move from
a search point with i zeros finds a strictly better fitness for a search point with
i− 1 or i+ 1 zeros, local search will never return to a search point with i zeros.
This means that local search will either always increase the number of zeros or
it will always decrease the number of zeros until a local optimum is found. In
both cases, a local optimum will be found after at most w − 1 iterations and
then local search stops after at most n further evaluations.

As BILS makes n function evaluations in every iteration, it makes at most
n(w − 1) + n = wn function evaluations in total. For FILS, after one iteration
of the outer for loop (see Algorithm 4) a local optimum will be found, and it
will stop after n further evaluations.

The expected number of function evaluations for non-improving local searches
(particularly BILS) can be bounded more tightly as follows. In contrast to
Lemma 11, the following lemma is tailored to the (1+1) MA. It exploits that
mutations of a local optimum usually stay close to local optima. Hence if local
search runs back into a local optimum of the same quality, local search tends to
terminate quickly.

16

Lemma 12. Considering the (1+1) MA on Hurdle, the expected number of
function evaluations spent by BILS and FILS during any non-improving local
search is Θ(n).

Proof. The lower bound Ω(n) is trivial as both local searches make at least n
function evaluations before stopping.

Let i denote the number of zeros in the current search point of the (1+1) MA
and j denote the number of zeros in the search point after mutation, from which
local search is called.

If rem(i, w) = 0, that is, i is a local optimum, j < i − 1 will lead to an
improving local search (see Fig. 1), and j = i− 1 may either be improving or go
back to a search point with i zeros in one iteration. If j ≥ i then local search
will make at most j − i iterations.

If rem(i, w) > 0, that is, i is not a local optimum, j < w · ⌈i/w⌉ leads to
an improving local search, whereas j ≥ w · ⌈i/w⌉ will stop after at most j − i
iterations.

In all these cases, local search is either improving, or it makes at most |j − i|
iterations. Note that a necessary condition of mutating a search point with i
zeros into one with j zeros is that at least |j− i| bits flip. The probability for this
event is at most

(

n
|j−i|

)

n−|j−i| ≤ 1/(|j − i|!). The expected number of iterations

in a non-improving local search is thus at most

n
∑

j=0

|j − i| · 1

|j − i|! ≤ 2
∞
∑

d=1

d · 1
d!

= 2
∞
∑

d=0

1

d!
= 2e.

The number of function evaluations made during a local search that stops after s
iterations is at most (s+1)n. Hence the expected number of function evaluations
is at most (2e+ 1)n.

Now we are ready to show an upper bound on the expected runtime of the
(1+1) MA on the Hurdle problem.

Theorem 13. The expected number of function evaluations of the (1+1) MA
on Hurdle with any hurdle width 2 ≤ w ≤ n/2 and δ ≥ w is O

(

n2 + n3/w2
)

when using BILS and O
(

n3/w2
)

when using FILS.

Note that if the hurdle width is w = Ω(n), the expected runtime of the
(1+1) MA with FILS is only O(n). Then the algorithm is as efficient on Hurdle

as on the underlying function OneMax without any hurdles.

Proof of Theorem 13. By Theorem 10 the expected number of iterations is
bounded by O

(

n2/w2
)

. The expected number of function evaluations spent in
any non-improving local search is O(n) according to Lemma 12. Together, the
number of function evaluations in all non-improving local searches is at most
O
(

n3/w2
)

.
By Lemma 11, the number of function evaluations in any improving local

search is at most wn when using BILS and at most 2n when using FILS. Since
every improving local search ends in a local optimum with better fitness than
the current search point of the (1+1) MA, there can only be O(n/w) improving
local searches as this is a bound on the number of fitness levels containing local
optima. Hence the effort in all improving local searches is bounded by O

(

n2
)

17

when using BILS and O
(

n2/w
)

when using FILS. Hence the overall number

of function evaluations is bounded by O
(

n2 + n3/w2
)

when using BILS and

O
(

n2/w + n3/w2
)

= O
(

n3/w2
)

when using FILS.

We also show matching lower bounds for the (1+1) MA with both local
searches. We first show a very general lower bound of Ω(n2) for the (1+1) MA
with BILS. It holds for all functions with a unique global optimum and may be
of independent interest.

Theorem 14. The (1+1) MA using BILS makes at least Ω(n2) function evalu-
ations, with probability 1 − 2−Ω(n) and in expectation, on any function with a
unique global optimum.

Proof. It suffices to show the high-probability statement as the expectation is at
least (1− 2−Ω(n)) · Ω(n2) = Ω(n2). We show that with probability 1− 2−Ω(n)

one of the following events occurs.

A: The (1+1) MA spends at least n/12 iterations before finding the optimum.

B: BILS makes a total of at least n/6 iterations before finding the optimum.

Each event implies a lower bound of Ω(n2) as each iteration of BILS makes n
function evaluations, and each iteration leads to at least one iteration of BILS.
For none of these events to occur, the (1+1) MA must find the optimum within
n/12 iterations, using fewer than n/6 iterations of BILS in total. For this to
happen, one of the following rare events must occur:

E1: the (1+1) MA is initialised with a search point that has a Hamming
distance less than n/3 to the unique optimum or

E2: the initial search point has a Hamming distance of at least n/3 to the
optimum, and the algorithm decreases this distance to 0 during the first
n/12 iterations, using fewer than n/6 iterations of BILS.

The reason is that, if none of the events E1 and E2 occurs, then this implies A∪B.
By contraposition, A ∪B ⇒ E1 ∪ E2 and Prob

(

A ∪B
)

≤ Prob (E1 ∪ E2) ≤
Prob (E1) + Prob (E2) by the union bound (also called Boole’s inequality [59,
p. 44]). Event E1 has probability Prob (E1) ≤ 2−Ω(n) by Chernoff bounds. For
E2, note that each iteration of local search can decrease the Hamming distance
to the optimum by at most 1. Hence all iterations of BILS can only decrease
the Hamming distance to the optimum by n/6 in total, and so the remaining
distance of n/3− n/6 = n/6 needs to be covered by mutations. Each flipping
bit can decrease the distance to the optimum by at most 1. We have at most
n/12 mutations, hence the expected number of flipping bits is at most n/12.
The probability that at least n/6 bits flip during at most n/12 mutations is
2−Ω(n), which follows from applying Chernoff bounds to i.i.d. indicator variables
Xi,t ∈ {0, 1} that describe whether the i-th bit is flipped during iteration t or
not. Hence Prob (E2) ≤ 2−Ω(n). Together, we have by the union bound,

Prob
(

A ∪B
)

≤ Prob (E1) + Prob (E2)

≤ 2−Ω(n) + 2−Ω(n) ≤ 2−Ω(n).

This completes the proof.

18

Theorem 15. The expected number of function evaluations of the (1+1) MA
on the Hurdle problems with 3 ≤ w ≤ n/2 and δ ≥ w is bounded from below by
Ω(n2 + n3/w2) when using BILS and Ω(n3/w2) when using FILS.

Proof. A bound of Ω(n2) for the (1+1) MA with BILS follows from Theorem 14.
We prove lower bounds Ω(n3/w2) for both local searches by considering the

remaining time when the (1+1) MA has reached a local optimum with w zeros.
The proof of Theorem 4 has revealed that the (1+1) EA reaches such a local
optimum with probability Ω(1), and it is obvious that the same statement also
holds for the (1+1) MA as local search can never “jump over” the hurdle with w
zeros. Then a lower bound of Ω(n3/w2) follows from showing that the expected
number of function evaluations starting with a local optimum having w zeros is
Ω(n3/w2).

From such a local optimum, the (1+1) MA with BILS has to flip at least
two zeros in one mutation. Otherwise, the offspring will have at least w − 1
zeros, and, since w ≥ 3, BILS will run back into a local optimum with w zeros
(or a worse local optimum). The probability for such a mutation is at most
(

w
2

)

· 1/n2 = O
(

w2/n2
)

, and the expected number of iterations, until such a
mutation happens, is at least Ω(n2/w2).

The same statement holds for the (1+1) MA with FILS: here it is necessary to
either flip at least two zeros as above or to create a search point with w− 1 zeros
and to have FILS find a search point with w − 2 zeros as the first improvement.
In the latter case, FILS will find the global optimum. The probability of creating
a search point with w − 1 zeros is at most w/n as it is necessary to flip one
of w zeros. In this case, FILS creates a search point with w − 2 zeros as first
improvement if and only if the first bit to be flipped is a zero. Since there are
w − 1 zeros, and each bit has the same probability of 1/n of being the first bit
flipped, the probability of the first improvement decreasing the number of zeros is
(w− 1)/n. Together, the probability of an iteration creating the global optimum
is still O

(

w2/n2
)

, and the expected number of iterations is still at least Ω(n2/w2).
In every iteration, both BILS and FILS make at least n evaluations. Hence we
obtain Ω(n3/w2) as a lower bound on the number of function evaluations.

Theorems 13 and 15 now give tight bounds on the expected runtime of the
(1+1) MA on the Hurdle problem.

Theorem 16. The expected number of function evaluations of the (1+1) MA
on Hurdle with any hurdle width 3 ≤ w ≤ n/2 and δ ≥ w is Θ(n2 + n3/w2)
when using BILS and Θ(n3/w2) when using FILS.

Note that the results for the (1+1) MA hold for the standard mutation rate
pm = 1/n. For the (1+1) EA, an increased mutation rate of pm = w/n was
shown to yield better performance as it increased the chance to flip w bits in
one mutation. For the (1+1) MA on Hurdle this is not necessary; as our
analysis has shown, mutation only needs to flip 1 or 2 bits to reach the basin of
attraction of the next local optimum, and then local search produces a better
local optimum.

So far we always assumed that the local search depth δ is chosen as δ ≥ w
for the local search algorithm to run into a local optimum. We remark that
this parameter can have a huge impact on the success of the (1+1) MA. More
specifically, when δ < w and we are at a local optimum with iw zeros (where

19

i ∈ N \ {0}), the algorithm has to flip at least w − δ zeros (while maintaining
others unchanged) to obtain a search point with (i− 1)w + δ zeros, from which
the next local optimum can be found. Otherwise, the local search will end up
at a search point whose fitness is worse than that of the current local optimum,
and eventually the move will be rejected.

6. A Proof that Crossover in Memetic Algorithms is Beneficial

In evolutionary computation, there is an ongoing debate started decades ago,
about the usefulness of crossover (see, e. g. [65, 66] for recent viewpoints that
have been discussed controversially). Since then, many experimental studies
showed a substantial benefit of crossover and more effort has been devoted
to understand the effect of crossover via rigorous theoretical proofs, including
artificially constructed functions [38, 42, 40], colouring problems [44, 45], all-pairs
shortest paths [46] and on OneMax as a simple hill-climbing task [50, 49, 51, 52].

Despite these works, to the best of our knowledge, there is no runtime
analysis of memetic algorithms that use crossover. This leaves open the question
of whether crossover is beneficial in MAs. In this section, we show for the
first time that crossover can speed up MAs, leading to a significant speedup on
Hurdle. To this end, we consider the (2+1) MA with a uniform crossover as
defined in Algorithm 3.

The following theorem gives our main result for this section.

Theorem 17. The expected runtime of the (2+1) MA with crossover on the
Hurdle problem with hurdle width 2 ≤ w ≤ n/2 and δ ≥ w is bounded by
O(n2 + n2 log(n/w)/w) when using BILS and O

(

n2 log(n/w)/w
)

when using
FILS.

In comparison to the tight bounds for the (1+1) MA, in the bound for the
(2+1) MA with FILS, a factor of n/w is replaced by a factor of log(n/w). This
speedup is non-increasing with w and it is Ω(n/ log n) for w = O(1). In the
(2+1) MA with BILS the same change applies to the second summand in the
runtime bounds. The same speedup compared to the (1+1) MA with BILS
applies if w = O(log n). For w = ω(log n) and w = o(

√
n) the expected time

reduces from Θ(n3/w2) = ω(n2) to O(n2), saving a factor of Ω(n/w2) = ω(1).
For w = Ω(

√
n), the expected time is O(n2) for both the (1+1) MA and the

(2+1) MA.
Note that the upper bound for the (2+1) MA with BILS can be simplified

from O(n2 + n2 log(n/w)/w) to O(n2 + n2 log(n)/w) as the second summand
only dominates if w = O(log n), and then log(n/w) = Θ(log n). We stick to the
non-simplified formula for consistency with the (2+1) MA using FILS.

Proof of Theorem 17. It is easy to see that within expected O(1) iterations, all
population members will be local optima. This is because for each individual
there is a probability of 1/4 · (1− 1/n)n = Ω(1) of selecting it twice as a parent
and for mutation not flipping any bits, which implies that local search will run
into a local optimum of better fitness. By Lemma 11, the expected number of
evaluations in this initial phase is at most O(wn) with BILS and at most O(n)
with FILS.

Afterwards, since both local searches always stop in a local optimum, the
population will always only contain local optima. We, therefore, focus on

20

estimating the number of function evaluations while the population consists of
local optima. In other words, every search point has iw zeros for some integer i
with 1 ≤ i ≤ ⌊n/w⌋.

The main observation is that crossover can speed up the expected time for
reaching the basin of attraction of better local optima. However, this crucially
depends on the state of the current population. A requirement for crossover
to be effective is that the population contains some amount of diversity. If the
population contains two copies of the same search point, crossover has no effect
and the algorithm effectively just performs mutation and local search as in the
(1+1) MA. Likewise, if the population contains local optima of different fitness,
it is hard to show how the best fitness might be improved. As we will show,
crossover does work provably effectively if the population contains two search
points that have the same number of zeros but different genotypes.

In such a population, crossover can make larger jumps than mutation on
the scale given by the number of zeros. The ability of larger jumps is a double-
edged sword, though. While it can reduce the time needed to jump closer to
the optimum and reaching the basin of attraction of a better local optimum,
crossover can also lead to larger jumps away from the optimum. This can increase
the number of function evaluations required by BILS in a non-improving local
search. (This issue does not concern FILS as by Lemma 11 it always terminates
in O(n) function evaluations.) Recall that for the (1+1) MA, in Lemma 12 we
argued that the time spent in a non-improving local search is Θ(n) and the
proof revealed that this is because mutation typically only makes small jumps.
This argument does not apply when performing a crossover of diverse parents;
in this case, we only have an upper bound of wn evaluations during BILS from
Lemma 11. On balance, though, crossover leads to the claimed speedup. This
discussion shows that careful analysis is needed.

In the following, we use the accounting method again, but different compared
to our analysis of the (1+1) MA. We consider the number of function evaluations
spent in certain iterations, distinguishing the following cases:

1. the population contains two individuals with different fitness values,

2. the population contains two identical genotypes,

3. the population contains two individuals with the same number of zeros
and Hamming distance 2, and

4. the population contains two individuals with the same number of zeros
and Hamming distance at least 4.

Note that the Hamming distance of two individuals with the same number of
zeros must be an even value. Hence, after the initial phase, every population
will fall in one of these cases. So all evaluations are accounted for and the total
expected runtime is bounded by the sum of (bounds of) times spent in these
four cases (and in the initial phase).

The following lemmas bound the total number of evaluations the algorithm
spends in these four cases. Note that in the second and third case there is no
diversity or only a small amount of diversity in the population, hence crossover
will have no effect or only make small jumps. In the first and the last case, we
have no bound on the jump length during crossover, but we will show that in
both these cases improvements over the worst parent can be found quickly.

21

Lemma 18. In the context of Theorem 17, the expected number of function
evaluations spent in all iterations where the population contains two individuals
of different fitness values is O(n2) with BILS and O(n2/w) with FILS.

Proof. Let iw be the maximum number of zeros in the population and jw < iw
be the number of zeros in the other local optimum.

With probability 1/4, parent selection picks the fitter parent twice. If the
subsequent mutation does not flip any bits then another search point with jw
zeros is created and the maximum number of zeros in the population decreases
for good. The probability of this sequence of events is 1/4 · (1− 1/n)n = Ω(1).

Hence the expected number of iterations for every fixed i is O(1). There are
only O(n/w) values for i and by Lemma 11 every iteration leads to at most wn
evaluations during BILS and at most 2n evaluations during FILS. Multiplying
the latter with O(n/w) proves the claim.

Lemma 19. In the context of Theorem 17, the expected number of function
evaluations spent in all iterations where the population contains two identical
search points is O(n2 + (n2 log(n/w))/w) with BILS and O((n2 log(n/w))/w)
with FILS.

Proof. Let iw be the number of zeros in the two individuals. Note that if a
different individual with iw zeros is generated, the algorithm will never return
to two identical individuals with iw zeros as the tie-breaking rule in the survival
selection will prevent such a duplicate from entering the population. Also note
that crossover has no effect since the parents are identical. Hence the algorithm
temporarily behaves like the (1+1) MA.

Now, flipping exactly a zero and a one will create a new search point with a
different genotype and equal fitness. The probability for such a mutation is at
least iw(n− iw)/(en2) and the expected number of iterations until this happens
is at most en2/(iw(n− iw)).

Since the algorithm temporarily behaves like the (1+1) MA, we can apply
Lemma 12 to bound the number of evaluations spent in non-improving iterations.
Invoking said lemma yields that the expected number of function evaluations
in all non-improving local searches, for any fixed i, is O(n3/(iw(n− iw))). By
noting that

⌊n/w⌋
∑

i=1

1

iw(n− iw)
≤ 2

⌈n/(2w)⌉
∑

i=1

1

iw(n− iw)
≤ 4

n

⌈n/(2w)⌉
∑

i=1

1

iw
,

the sum over all states i is

⌊n/w⌋
∑

i=1

O(n3)

iw(n− iw)
≤ O(n2)

⌈n/(2w)⌉
∑

i=1

1

iw

= O
(

n2

w

) ⌈n/(2w)⌉
∑

i=1

1

i
= O

(

n2 log(n/w)

w

)

.

Considering the number of evaluations in improving local searches, by Lemma 11,
adds a further O(n/w) · wn = O(n2) evaluations for BILS and O(n/w) · 2n =
O(n2/w) evaluations for FILS.

22

Lemma 20. In the context of Theorem 17, the expected number of function eval-
uations spent in all iterations where the population contains two individuals with
the same number of zeros and Hamming distance 2 is O(n2 + (n2 log(n/w))/w)
with BILS and O((n2 log(n/w))/w) with FILS.

Proof. Let iw be the number of zeros in both individuals. If crossover and
mutation create an offspring with at most iw − 2 zeros, local search will find
a better local optimum. We estimate the probability of this event. With
probability at least 1/2, the parents selected for crossover will be different. Then
with probability 1/4, both differing bits will be set to 1 in the crossover. With
probability at least (iw− 1)/(en) mutation then flips a further zero and no other
bits. Hence the probability of crossover and mutation creating an offspring with
at most iw−2 zeros is at least (iw−1)/(8en). The expected number of iterations
until a better local optimum is found is thus at most 8en/(iw − 1) = O(n/(iw)).

The number of evaluations made during non-improving local searches can
be estimated as in Lemma 12; the only difference is that crossover can increase
the difference in the number of zeros between the input for local search and
the original parent. However, since both parents have Hamming distance 2,
this difference can only increase by at most 2, leading to an additional term
of at most 2n evaluations, compared to the statement of Lemma 12. Thus the
expected number of function evaluations in any iteration is still bounded by
O(n) for both local searches.

The total expected number of evaluations across all values of i is at most

⌊n/w⌋
∑

i=1

O
(

n2

iw

)

= O
(

n2

w

) ⌊n/w⌋
∑

i=1

1

i
= O

(

n2 log(n/w)

w

)

.

Considering the number of evaluations in improving local searches as in Lemma 19
completes the proof.

Lemma 21. In the context of Theorem 17, the expected number of function
evaluations spent in all iterations where the population contains two individuals
with the same number of zeros and Hamming distance at least 4 is O(n2) with
BILS and O(n2/w) with FILS.

Proof. Let iw again be the number of zeros in the two individuals. Recall that
if crossover and mutation create an offspring with at most iw − 2 zeros, local
search will find a better local optimum. The remainder of the proof uses and
extends arguments from the proof of Theorem 4 in [49]. We denote by 2d ≥ 4
the Hamming distance between the two parents and by X the number of these
bits set to 1 during the uniform crossover. Note that X follows a binomial
distribution with parameters 2d and 1/2, with an expectation of d. We argue
that crossover creates a surplus of at least 2 ones with probability at least 1/16.
By symmetry, Pr (X > d) = Pr (X < d) [61] and thus

Pr (X ≥ d+ 2) =
1

2
· Pr (X 6= d)− Pr (X = d+ 1)

=
1

2

(

1− 2−2d

(

2d

d

))

− 2−2d

(

2d

d+ 1

)

23

Since both 2−2d
(

2d
d

)

and 2−2d
(

2d
d+1

)

are non-increasing in d, the worst case is
attained for 2d = 4. Plugging this in, we bound Pr (X ≥ d+ 2) from below by

1

2

(

1− 2−4

(

4

2

))

− 2−4

(

4

3

)

=
1

2

(

1− 6

16

)

− 1

4
=

1

16
.

Mutation does not flip any bits with probability (1 − 1/n)n = Ω(1) and thus
the expected number of iterations until a better local optimum is found is O(1).
Since there are O(n/w) values of i and every local search call (improving or not)
requires at most wn evaluations for BILS and at most 2n evaluations for FILS
by Lemma 12, this implies the claimed bounds.

Adding up all times from Lemmas 18, 19, 20, 21 as well as the number of
evaluations in the initial phase completes the proof of Theorem 17.

We believe that the upper bound of O
(

n2 log(n/w)/w
)

for the (2+1) MA

with FILS is tight and that a lower bound of Ω
(

n2 log(n/w)/w
)

applies when
using either FILS or BILS. If the population contains two identical individuals
with iw zeros, for an integer i ∈ N, progress towards higher fitness values can
only be made if mutation flips a 0-bit to 1. This has probability at most iw/n
and requires at least n/(iw) iterations. This makes n2/(iw) function evaluations
as every local search call makes at least n evaluations. If, with probability Ω(1),
this situation occurs on all hurdles with iw ≤ imaxw zeros with imaxw = Ω(nε),
for any positive constant ε, the claimed lower bound follows. The challenge
is showing that this assumption holds, which involves handling populations of
non-identical individuals and showing that the population frequently collapses
to identical local optima. We also believe that a lower bound of Ω(n2) applies
to the (2+1) MA with BILS, however, the analysis of Theorem 14 would need
to be adapted to handle potential large jumps through crossover. Since we are
mainly interested in upper bounds, we leave this for future work.

7. All Operators are Necessary for Optimal Performance

The success of the (2+1) MA is down to the combination of mutation,
crossover and local search. We argue that, when considering elitist (µ+λ)-type
algorithms, every other combination of operators performs worse.

We have rigorously proved that mutation alone in the (1+1) EA3 and local
search alone are inefficient, and while mutation and local search is a lot more
efficient, the expected runtimes are generally larger than the times stated in
Theorem 17 for the (2+1) MA. Crossover by itself can get stuck if a bit emerges
that is different from the optimum in all members of the population or if
the population collapses to copies of the same genotype. There is a positive

3We do not have a negative result for arbitrary (µ+λ) EAs. As observed in [25, p. 2520],
populations can help to escape from local optima if mutation creates an offspring that is worse
than a locally optimal parent and the population contains a search point that is even worse
than the offspring, allowing the offspring to survive. For reasonable values of w and µ it is,
however, unlikely that this effect decreases the expected runtime as the population quickly
tends to gather around the best local optimum [25, p. 2520]. For w = ω(logn) we get a
superpolynomial expected runtime if a population where all search points have w zeros is
reached with a polynomially small probability.

24

probability that this already happens during initialisation, which establishes an
infinite expected runtime4. The same holds for crossover and local search if the
population collapses to copies of the same local optimum as then crossover and
local search have no effect.

We believe that mutation and uniform crossover without local search cannot
match the bounds from Theorem 17 either, at least not for arbitrary hurdle widths.
In the seminal paper that introduced Hurdle, Prügel-Bennett empirically
showed an advantage for a Genetic Algorithm with mutation and uniform
crossover for w = 2 [19]. However, for larger w we believe that the performance
will deteriorate quickly with growing w.

For instance, if the whole population in a (µ+λ) Genetic Algorithm consists
of search points with w zeros5, crossover and mutation need to generate the
global optimum 1n as any other search point will be rejected. The best-case
scenario, in this case, is that two parents are chosen for a crossover that do not
share a zero, that is, all zeros are in mutually different positions (cf. Lemma 2
in [40] for the equivalent scenario on Jumpw). The probability that these 2w
zeros will be set to 1 in the crossover is only 2−2w = 4−w. Thus, the expected
remaining time to find an optimum from a population where all search points
have w zeros is at least 4w, which is superpolynomial for w = ω(log n). If the
probability of reaching such a population is Ω(1), or polynomially small, the
overall expected time is superpolynomial.

Figure 2 illustrates all possible combinations of operators and the expected
runtimes for the respective algorithms, for Hurdle problems with hurdle width
w = ω(log n). We conclude that onHurdle a combination of mutation, crossover
and local search is vital to achieving the best possible performance.

8. Experiments

We provide additional experiments to investigate the runtime for realistic
problem sizes and to get further insights into the constant factors and lower-order
terms hidden in our asymptotic expressions. Although we have been looking
at the expected runtime of the algorithms (denoted as E[T]), there is no way
to estimate it from experimental results. However, we can approximate it by
averaging runtimes of a large number of independent runs of the algorithm (also
called empirical runtime, denoted by T).

Note that although our theoretical results also cover the local search algo-
rithms by themselves, we do not empirically study them here because their
limitations on Hurdle are obvious. We only consider the (1+1) EA, the
(1+1) MA (using mutation only) and the (2+1) MA with uniform crossover.

4We remark that, despite an infinite expectation, there is still a possibility that an algorithm
will succeed in polynomial time with high probability if the population size is large enough.
Such a result was shown on OneMax by Prugel-Bennett, Rowe and Shapiro [67].

5We do not have a formal analysis of the probability that this happens. If w is not very
small, we believe that it is quite high as then it is very likely that at least one individual will
eventually reach a local optimum with w zeros and then quickly take over the whole population
(cf. Lemma 2 in [49]).

25

mutation

crossover

local search

superpoly

∞

∞

∞

superpoly

Θ(n3/w2)

O(n2 log(n/w)/w)

Figure 2: Overview of expected runtimes for all combinations of operators on Hurdle problems
with hurdle width w = ω(logn). For local search we show results for FILS as the better
performing operator; results for BILS include an additional term of n2. The lower bounds
for mutation and that for mutation and crossover assume that a population where all search
points have w zeros is reached with at least polynomially small probability.

8.1. (1+1) EA

For the (1+1) EA, we are interested in how the empirical runtime grows with
problem instance size n. To do this, we run the algorithm with mutation rate
1/n and w ∈ {2, 3, 4} for n ∈ {10, 15, . . . , 50}. For each value of n, the algorithm
is run 100 times. The empirical runtimes and their best-fit models are described
in Fig. 3.

2.5 3.0 3.5

5
1

0
1

5
2

0

log(n)

lo
g
(T

)

2.093*log(n)+0.828

3.188*log(n)+0.341

4.274*log(n)−0.052

w=2
w=3
w=4

Figure 3: Empirical runtime (log T against logn) of the (1+1) EA with pm = 1/n on Hurdle.
The best-fit model for each hurdle width w ∈ {2, 3, 4} and the standard deviation for each
data point are also plotted.

We have rigorously proven an expected runtime of Θ(nw) for the (1+1) EA
on the Hurdle problem in Theorem 5. On a logarithmic scale, a runtime of
c · nw (for some constant c > 0) becomes w · log(n) + log(c). Thus, we fit a
function of a · log(n) + b to the empirical data to check in particular in how
far the empirical results correctly reveal the exponent a = w (and also the

26

multiplicative constant c > 0 satisfying b = log(c)). Figure 3 plots the logarithm
of the empirical runtime against the logarithm of the problem instance size n.
We observe that the linear models (w.r.t. log(n)) fit well to the empirical data.
Especially, for the smallest hurdle width w = 2, the slope a is very close to the
hurdle width, i.e., a ≈ 2.093. For other values of w ∈ {3, 4}, the values of a are
still reasonably close to the true values of 3 and 4, respectively. We believe that
a better fit could be obtained by increasing the number of independent runs of
the algorithm and by increasing the range of problem instance sizes to reduce the
possible impact of small-order terms. This highlights the limitations of empirical
research and the benefits of rigorous theorems that hold for arbitrary problem
sizes and hurdle widths.

8.2. (1+1) MA

We first examine how different mutation rates affect the empirical runtime of
the (1+1) MA on Hurdle. To do this, we fix n = 50 and set pm = c/n, where
c ∈ {1, 2, . . . , 7} on Hurdle with w = 4. For each value of c, we average the
runtimes from 100 independent runs of the algorithm. The result is described in
the left plot in Fig. 4. Note that we also consider the (1+1) EA and observe
that the mutation rate w/n yields the best empirical runtime, which matches
our analyses in Theorem 9. For the (1+1) MA with FILS the optimal mutation
rate is 1/n because to leave a local optimum the algorithm only needs to flip a
zero and the mutation rate 1/n maximises this probability. On the other hand,
the mutation rate 2/n yields the best empirical runtime for the (1+1) MA with
BILS since this mutation rate maximises the probability of flipping two zeros to
leave a local optimum.

1 2 3 4 5 6 7

4
6

8
1

0
1

2
1

4

Mutation rate (/n)

lo
g
(T

)

(1+1)EA
(1+1)MA−FILS
(1+1)MA−BILS

2 4 6 8 10

0
1

0
0

0
0

0
0

2
0

0
0

0
0

0
3

0
0

0
0

0
0

w

T

(1+1)EA
(1+1)MA−FILS
(1+1)MA−BILS

Figure 4: Empirical runtime of the (1+1) EA and (1+1) MA on Hurdle. Left: different
mutation rates c/n for c ∈ {1, 2, . . . , 7}, w = 4 and n = 50. The arrows show the value of the
mutation rate (in the chosen range) where the empirical runtime is minimised. Right: different
hurdle width w ∈ {2, 3, . . . , 10}, n = 100 and mutation rate 1/n.

Moreover, we discover that increasing the hurdle width makes the problem
more difficult for the (1+1) EA but easier for the (1+1) MA. To verify this, we
run the algorithms under different hurdle widths w ∈ {2, 3, . . . , 10}, n = 100
and fixed mutation rate 1/n. The empirical runtime is described in the right

27

10 20 30 40 50 60 70 80 90

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

(1+1) MA−BILS, w=log(n)

n

T
(n

3
w

2
)

10 20 30 40 50 60 70 80 90

0
5

1
0

1
5

2
0

2
5

3
0

(1+1) MA−FILS, w=log(n)

n

T
(n

3
w

2
)

10 20 30 40 50 60 70 80 90

0
2
0

4
0

6
0

8
0

1
0
0

(1+1) MA−BILS, w= n

n

T
n

2

10 20 30 40 50 60 70 80 90

0
5

1
0

1
5

2
0

(1+1) MA−FILS, w= n

n

T
n

2

Figure 5: Boxplots of the scaled runtime of the (1+1) MA with different local search schemes
and mutation rate pm = 1/n on Hurdle with w = logn (small) and w =

√
n (large).

plot in Fig. 4. We observe that the empirical runtime of the (1+1) EA grows
exponentially fast even for small hurdle width w ∈ {2, 3}6, whereas the runtimes
of the (1+1) MA with FILS and BILS decrease when w becomes larger. Note that
the (1+1) MA with BILS is surprisingly efficient for w = 2, which is not covered
by Theorem 16. The reason is that with w = 2, if mutation of a local optimum
decreases the number of zeros by 1, BILS will run into the next local optimum
(in contrast to w ≥ 3 where it will return to the previous local optimum). The
(1+1) MA with FILS is also more likely to run back into the previous local
optimum if the number of zeros is small, as then all Hamming neighbours have
better fitness and the first bit-flip will be accepted. If the number of zeros is
small, it is likely to increase during the first step of FILS. This explains why

6We only plot the runtime of the (1+1) EA for w ∈ {2, 3} because the runtime grows
exponentially fast in the hurdle width w. For example, when w = 4, the average number of
function evaluations of 10 independent runs of the (1+1) EA was larger than 3.9 · 108. Adding
such a point to the graph would make it harder to visually follow the change in the runtime of
the MAs for different hurdle widths.

28

BILS is a better choice for w = 2.
Finally, in Section 5, we showed that the (1+1) MA requires expected runtimes

of Θ(n2 + n3/w2) with BILS and Θ(n3/w2) with FILS on Hurdle. We are
interested in the effect of the n2 and n3/w2 terms. It is clear that if w = o(

√
n),

the latter dominates the former, resulting in an expected runtime of Θ(n3/w2);
otherwise, the runtime will be Θ(n2). We now consider two regimes of the hurdle
width: w = log n ∈ o(

√
n) (small) and w =

√
n (large). For other parameters,

we use mutation rate 1/n and n ∈ {10, 20, . . . , 100}. For each value of n, we run
the algorithm 100 times independently.

We note that, for a small hurdle width w = log n, Theorem 16 shows
that the algorithm with either FILS or BILS takes an expected runtime of
E[T] = Θ(n3/w2). This means that E[T]/(n3/w2) = Θ(1) for sufficiently
large n. The relationship between T/(n3/w2) against n is described in the
top two plots in Fig. 5, where we obtain horizontal lines, which match very well
with the theoretical expected runtime. Furthermore, for larger hurdle width
w =

√
n, Theorem 16 shows that the (1+1) MA with either FILS or BILS

requires an expected runtime E[T] = Θ(n2) on Hurdle, which is equivalent
to E[T]/n2 = Θ(1). Similarly, the relationship between T/n2 against n is also
described in the two remaining plots in Fig. 5. Again, we obtain horizontal lines,
well matching our theoretical results.

8.3. (2+1) MA

We also carry out experiments to examine the advantage of (uniform)
crossover for the (2+1) MA. We fix n = 100, mutation rate of 1/n and run the
algorithms on Hurdle instances with w ∈ {2, 3, . . . , 10}. For each value of n, we
run the algorithm 100 times and calculate the average runtime. The results are
described in Fig. 6. The figure shows that the (2+1) MA with any local search
scheme outperforms the (1+1) MA. Furthermore, the empirical runtimes for
the (2+1) MA decrease as the hurdle width increases, i.e., the problem becomes
easier. This matches the observation obtained from our theoretical analyses in
Section 6.

9. Conclusions

We have provided a rigorous runtime analysis, comparing the simple (1+1) EA
with the (1+1) MA using two local search algorithms, FILS and BILS, on the
class of Hurdle problems. Our main results are tight bounds of Θ(n2 + n3/w2)
on the expected number of function evaluations of the (1+1) MA using BILS
and Θ(n3/w2) for the (1+1) MA using FILS. On the other hand, the (1+1) EA
and local search algorithms on their own take expected time Θ(nw) and 2Ω(n),
respectively. For w = ω(1) the latter times are superpolynomial, whereas the
expected number of function evaluations for the (1+1) MA is always polynomial,
regardless of the hurdle width w. This still holds when considering the (1+1) EA
with the optimal mutation rate w/n, where the expected runtime is Θ(nw ·(e/w)w)
for 2 ≤ w ≤ √n− 1/2.

Another major contribution was investigating the effect of crossover and
giving the first rigorous proof that crossover can have a substantial advantage
over using mutation only. More specifically, the (2+1) MA optimises the Hurdle

problem within expected runtimes of O
(

n2 + (n2 log(n/w))/w
)

using BILS and

29

2 4 6 8 10

0
5

0
0

0
0

0
1

5
0

0
0

0
0

w

T
(1+1)MA−FILS

(1+1)MA−BILS

(2+1)MA−FILS

(2+1)MA−BILS

2 4 6 8 10

2
4

6
8

1
0

w

s
p

e
e

d
u

p
 (

ti
m

e
s
)

MA−BILS

MA−FILS

Figure 6: Empirical runtime of the (1+1) MA and the (2+1) MA with different local search
schemes for mutation rate pm = 1/n and n = 100 on Hurdle with w ∈ {2, 3, . . . , 10}. The
right-hand side shows the speedup of the (2+1) MA over the (1+1) MA as the ratio of the
respective average runtimes.

of O
(

(n2 log(n/w))/w
)

using FILS. We observe that crossover speeds up the
optimisation process by replacing the term n/w on the expected runtimes of the
(1+1) MA by log(n/w), yielding speedups of a factor of Ω(n/ log n) for constant
hurdle widths, w = O(1).

A surprising conclusion is also that the Hurdle problem class becomes
easier for the (1+1) MA as the hurdle width w grows. The reason is that
while the (1+1) EA has to jump to a better local optimum by mutation, for
the (1+1) MA it suffices to jump into the basin of attraction of a better local
optimum. Increasing the hurdle width w makes it harder for the (1+1) EA
to make this jump, but it also increases the size of the basin of attraction of
every local optimum, effectively giving the (1+1) MA a bigger target to jump to.
Crossover is useful in this setting as it increases the chances to jump into the
basin of attraction of a better local optimum if the population contains a small
amount of diversity.

ForHurdle we found that using mutation, crossover and local search together
gives provably better runtime guarantees than using any proper subset of these
operators. This demonstrates the benefit of hybridisation in memetic algorithms.

Acknowledgements

The authors thank all anonymous reviewers for their many constructive
comments that helped to improve the manuscript.

References

[1] P. T. H. Nguyen, D. Sudholt, Memetic algorithms beat evolutionary al-
gorithms on the class of hurdle problems, in: Proc. GECCO, ACM Press,
2018, pp. 1071–1078.

[2] S. Wolf, P. Merz, Evolutionary local search for the super-peer selection
problem and the p-hub median problem, in: T. Bartz-Beielstein, M. J.

30

Blesa Aguilera, C. Blum, B. Naujoks, A. Roli, G. Rudolph, M. Sampels
(Eds.), Hybrid Metaheuristics, Springer Berlin Heidelberg, 2007, pp. 1–15.

[3] R. Dorne, J.-K. Hao, A new genetic local search algorithm for graph coloring,
in: A. E. Eiben, T. Bäck, M. Schoenauer, H.-P. Schwefel (Eds.), Parallel
Problem Solving from Nature — PPSN V, 1998, pp. 745–754.

[4] B. Freisleben, P. Merz, A genetic local search algorithm for solving symmetric
and asymmetric traveling salesman problems, in: Proceedings of IEEE
International Conference on Evolutionary Computation, 1996, pp. 616–621.

[5] F. Neri, N. Kotilainen, M. Vapa, An adaptive global-local memetic algorithm
to discover resources in p2p networks, in: M. Giacobini (Ed.), Applications
of Evolutionary Computing, 2007, pp. 61–70.

[6] U. Benlic, J.-K. Hao, Memetic search for the quadratic assignment problem,
Expert Syst. Appl. 42 (1) (2015) 584–595.

[7] Y. Mei, K. Tang, X. Yao, Decomposition-based memetic algorithm for
multiobjective capacitated arc routing problem, IEEE Trans. Evol. Comput.
15 (2) (2011) 151–165.

[8] R. Menca, M. R. Sierra, C. Menca, R. Varela, Memetic algorithms for the
job shop scheduling problem with operators, Appl. Soft Comput. 34 (2015)
94–105.

[9] G. Fraser, A. Arcuri, P. McMinn, A memetic algorithm for whole test suite
generation, J. Syst. Software 103 (2015) 311–327.

[10] F. Neri, C. Cotta, P. Moscato (Eds.), Handbook of Memetic Algorithms,
Vol. 379 of Studies in Computational Intelligence, Springer, 2012.

[11] F. Neri, C. Cotta, Memetic algorithms and memetic computing optimization:
A literature review, Swarm Evol. Comput. 2 (2012) 1–14.

[12] X. Chen, Y. Ong, M. Lim, K. C. Tan, A multi-facet survey on memetic
computation, IEEE Trans. Evol. Comput. 15 (5) (2011) 591–607.

[13] D. Sudholt, Memetic evolutionary algorithms, in: A. Auger, B. Doerr
(Eds.), Theory of Randomized Search Heuristics – Foundations and Recent
Developments, no. 1 in Series on Theor. Comput. Sci., World Scientific,
2011, pp. 141–169.

[14] H. R. Lourenço, O. C. Martin, T. Stützle, Iterated local search, in: Handbook
of Metaheuristics, Vol. 57 of International Series in Oper. Res. & Manag.
Sci., Kluwer Academic Publishers, Norwell, MA, 2002, pp. 321–353.

[15] J. Lin, Y. Chen, Analysis on the collaboration between global search and
local search in memetic computation, IEEE Trans. Evol. Comput. 15 (5)
(2011) 608–623.

[16] G. Ochoa, N. Veerapen, Deconstructing the big valley search space hypoth-
esis, in: Proc. EvoCOP, Springer, 2016, pp. 58–73.

31

[17] C. R. Reeves, Landscapes, operators and heuristic search, Ann. Oper. Res.
86 (0) (1999) 473–490.

[18] T. Friedrich, F. Neumann, What’s hot in evolutionary computation, in:
Conference on Artificial Intelligence (AAAI), 2017, pp. 5064–5066.

[19] A. Prügel-Bennett, When a genetic algorithm outperforms hill-climbing,
Theor. Comput. Sci. 320 (1) (2004) 135 – 153.

[20] M. J. Dinneen, K. Wei, On the analysis of a (1+1) adaptive memetic
algorithm, in: IEEE Workshop on Memetic Comput. (MC), 2013, pp.
24–31.

[21] D. R. Hains, D. L. Whitley, A. E. Howe, Revisiting the big valley search
space structure in the TSP, J. Oper. Res. Soc. 62 (2) (2011) 305–312.

[22] P. Merz, B. Freisleben, Memetic algorithms and the fitness landscape of the
graph bi-partitioning problem, in: Parallel Problem Solving From Nature
V, Springer Berlin Heidelberg, 1998, pp. 765–774.

[23] J. Shi, Q. Zhang, E. Tsang, EB-GLS: an improved guided local search based
on the big valley structure, Memetic Comput. 10 (3) (2018) 333–350.

[24] D. Sudholt, On the analysis of the (1+1) memetic algorithm, in: Proc.
GECCO, ACM Press, 2006, pp. 493–500.

[25] D. Sudholt, The impact of parametrization in memetic evolutionary algo-
rithms, Theor. Comput. Sci. 410 (26) (2009) 2511–2528.

[26] D. Sudholt, Local search in evolutionary algorithms: the impact of the local
search frequency, in: Proc. ISAAC, Vol. 4288 of LNCS, Springer, 2006, pp.
359–368.

[27] D. Sudholt, Hybridizing evolutionary algorithms with variable-depth search
to overcome local optima, Algorithmica 59 (3) (2011) 343–368.

[28] C. Witt, Analysis of an iterated local search algorithm for vertex cover in
sparse random graphs, Theor. Comput. Sci. 425 (0) (2012) 117–125.

[29] D. Sudholt, C. Zarges, Analysis of an iterated local search algorithm for
vertex coloring, in: Proc. ISAAC, Vol. 6506 of LNCS, Springer, 2010, pp.
340–352.

[30] K. Wei, M. J. Dinneen, Runtime analysis comparison of two fitness functions
on a memetic algorithm for the clique problem, in: Proc. CEC, IEEE, 2014,
pp. 133–140.

[31] K. Wei, M. J. Dinneen, Runtime analysis to compare best-improvement and
first-improvement in memetic algorithms, in: Proc. GECCO, ACM Press,
2014, pp. 1439–1446.

[32] C. Gießen, Hybridizing evolutionary algorithms with opportunistic local
search, in: Proc. GECCO, ACM Press, 2013, pp. 797–804.

32

[33] Y.-S. Ong, M.-H. Lim, N. Zhu, K.-W. Wong, Classification of adaptive
memetic algorithms: a comparative study, IEEE Transactions on Systems,
Man, and Cybernetics, Part B 36 (1) (2006) 141–152.

[34] F. Alanazi, P. K. Lehre, Runtime analysis of selection hyper-heuristics with
classical learning mechanisms, in: Proc. CEC, IEEE, 2014, pp. 2515–2523.

[35] A. Lissovoi, P. S. Oliveto, J. A. Warwicker, On the time complexity of
algorithm selection hyper-heuristics for multimodal optimisation, in: Proc.
AAAI, AAAI Press, 2019, pp. 2322–2329.

[36] A. Lissovoi, P. S. Oliveto, J. A. Warwicker, On the runtime analysis of
generalised selection hyper-heuristics for pseudo-boolean optimisation, in:
Proc. GECCO, ACM Press, 2017, pp. 849–856.

[37] B. Doerr, A. Lissovoi, P. S. Oliveto, J. A. Warwicker, On the runtime
analysis of selection hyper-heuristics with adaptive learning periods, in:
Proc. GECCO, ACM Press, 2018, pp. 1015–1022.

[38] T. Jansen, I. Wegener, On the analysis of evolutionary algorithms—a proof
that crossover really can help, Algorithmica 34 (1) (2002) 47–66.

[39] T. Kötzing, D. Sudholt, M. Theile, How crossover helps in pseudo-Boolean
optimization, in: Proc. GECCO, ACM Press, 2011, pp. 989–996.

[40] D.-C. Dang, T. Friedrich, T. Kötzing, M. S. Krejca, P. K. Lehre, P. S.
Oliveto, D. Sudholt, A. M. Sutton, Escaping local optima using crossover
with emergent diversity, IEEE Trans. Evol. Comput. 22 (3) (2018) 484–497.

[41] D.-C. Dang, T. Friedrich, M. S. Krejca, T. Kötzing, P. K. Lehre, P. S.
Oliveto, D. Sudholt, A. M. Sutton, Escaping Local Optima with Diversity-
Mechanisms and Crossover, in: Proc. GECCO, ACM Press, pp. 645–652.

[42] T. Jansen, I. Wegener, Real royal road functions—where crossover provably
is essential, Discrete Appl. Math. 149 (2005) 111–125.

[43] T. Storch, I. Wegener, Real royal road functions for constant population
size, Theor. Comput. Sci. 320 (2004) 123–134.

[44] S. Fischer, I. Wegener, The one-dimensional Ising model: Mutation versus
recombination, Theor. Comput. Sci. 344 (2–3) (2005) 208–225.

[45] D. Sudholt, Crossover is provably essential for the Ising model on trees, in:
Proc. GECCO, ACM Press, 2005, pp. 1161–1167.

[46] B. Doerr, E. Happ, C. Klein, Crossover can provably be useful in evolutionary
computation, Theor. Comput. Sci. 425 (0) (2012) 17–33.

[47] B. Doerr, D. Johannsen, T. Ktzing, F. Neumann, M. Theile, More effective
crossover operators for the all-pairs shortest path problem, Theoretical
Computer Science 471 (2013) 12–26.

[48] D. Sudholt, Crossover speeds up building-block assembly, in: Proc. GECCO,
ACM Press, 2012, pp. 689–696.

33

[49] D. Sudholt, How crossover speeds up building-block assembly in genetic
algorithms, Evol. Comput. 25 (2) 237–274.

[50] B. Doerr, C. Doerr, F. Ebel, From Black-Box Complexity to Designing New
Genetic Algorithms, Theor. Comput. Sci. 567 (0) (2015) 87–104.

[51] D. Corus, P. S. Oliveto, Standard steady state genetic algorithms can
hillclimb faster than mutation-only evolutionary algorithms, IEEE Trans.
Evol. Comput. 22 (5) (2018) 720–732.

[52] E. C. Pinto, C. Doerr, A simple proof for the usefulness of crossover in black-
box optimization, in: A. Auger, C. M. Fonseca, N. Lourenço, P. Machado,
L. Paquete, D. Whitley (Eds.), Parallel Problem Solving From Nature, Vol.
11102 of LNCS, Springer, 2018, pp. 29–41.

[53] J. Lengler, A general dichotomy of evolutionary algorithms on monotone
functions, IEEE Trans. Evol. Comput. To appear.

[54] J. Lengler, X. Zou, Exponential slowdown for larger populations:
The (µ+1)-EA on monotone functions, in: Proceedings of the 15th
ACM/SIGEVO Conference on Foundations of Genetic Algorithms
(FOGA ’19), ACM, 2019, pp. 87–101.

[55] F. Neumann, P. S. Oliveto, G. Rudolph, D. Sudholt, On the effectiveness
of crossover for migration in parallel evolutionary algorithms, in: Proc.
GECCO, ACM Press, 2011, pp. 1587–1594.

[56] D. Sudholt, C. Thyssen, Running time analysis of ant colony optimization
for shortest path problems, J. Discrete Algor. 10 (2012) 165–180.

[57] A. E. Eiben, J. E. Smith, Introduction to Evolutionary Computing, 2nd
Edition, Springer, 2015.

[58] D. Sudholt, On the robustness of evolutionary algorithms to noise: Refined
results and an example where noise helps, in: Proc. GECCO, ACM Press,
2018, pp. 1523–1530.

[59] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University
Press, 1995.

[60] I. Wegener, Methods for the analysis of evolutionary algorithms on pseudo-
Boolean functions, in: R. Sarker, X. Yao, M. Mohammadian (Eds.), Evol.
Optim., Kluwer, 2002, pp. 349–369.

[61] R. Kaas, J. Buhrman, Mean, median and mode in binomial distributions,
Statistica Neerlandica 34 (1) (1980) 13–18.

[62] T. Paixão, J. Pérez Heredia, D. Sudholt, B. Trubenová, Towards a runtime
comparison of natural and artificial evolution, Algorithmica 78 (2) (2017)
681–713.

[63] B. Doerr, H. P. Le, R. Makhmara, T. D. Nguyen, Fast genetic algorithms,
in: Proc. GECCO, ACM Press, 2017, pp. 777–784.

34

[64] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, 3rd Edition, The MIT Press, 2009.

[65] K. M. Burjorjee, Hypomixability elimination in evolutionary systems, in:
Proceedings of the 2015 ACM Conference on Foundations of Genetic Algo-
rithms (FOGA ’15), ACM, 2015, pp. 163–175.

[66] A. Livnat, C. Papadimitriou, Sex as an algorithm: The theory of evolution
under the lens of computation, Commun. ACM 59 (11) (2016) 84–93.

[67] A. Prügel-Bennett, J. Rowe, J. Shapiro, Run-time analysis of population-
based evolutionary algorithm in noisy environments, in: Proceedings of the
2015 ACM Press Conference on Foundations of Genetic Algorithms (FOGA
2015), 2015, pp. 69–75.

35

	Introduction
	Motivation
	Our Contributions
	Related Work
	Outline

	Preliminaries
	(1+1) Evolutionary Algorithm
	Memetic Algorithms
	Local Search Algorithms
	First-Improvement Local Search
	Best-Improvement Local Search

	Class of Hurdle Problems
	Why Hybridisation is Necessary
	Local Search Algorithms
	(1+1) Evolutionary Algorithm

	The (1+1) MA is Efficient
	A Proof that Crossover in Memetic Algorithms is Beneficial
	All Operators are Necessary for Optimal Performance
	Experiments
	(1+1) EA
	(1+1) MA
	(2+1) MA

	Conclusions

