
This is a repository copy of Global, decaying solutions of a focusing energy-critical heat 
equation in R^4.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/161952/

Version: Accepted Version

Article:

Gustafson, S. and Roxanas, D. (2018) Global, decaying solutions of a focusing 
energy-critical heat equation in R^4. Journal of Differential Equations, 264 (9). pp. 
5894-5927. ISSN 0022-0396 

https://doi.org/10.1016/j.jde.2018.01.023

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Global, decaying solutions of a focusing

energy-critical heat equation in R
4

Stephen Gustafson, Dimitrios Roxanas

Department of Mathematics
University of British Columbia
V6T 1Z2 Vancouver, Canada

gustaf@math.ubc.ca, droxanas@math.ubc.ca

Abstract

We study solutions of the focusing energy-critical nonlinear heat
equation ut = ∆u − |u|2u in R

4. We show that solutions emanating
from initial data with energy and Ḣ1−norm below those of the station-
ary solution W are global and decay to zero, via the “concentration-
compactness plus rigidity” strategy of Kenig-Merle [35, 36]. First,
global such solutions are shown to dissipate to zero, using a refine-
ment of the small data theory and the L2-dissipation relation. Finite-
time blow-up is then ruled out using the backwards-uniqueness of
Escauriaza-Seregin-Šverák [17, 18] in an argument similar to that of
Kenig-Koch [34] for the Navier-Stokes equations.
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1 Introduction

We consider here the Cauchy problem for the focusing, energy-critical non-
linear heat equation in four space dimensions:

{

ut = ∆u+ |u|2u
u(0, x) = u0(x) ∈ Ḣ1(R4)

(1.1)

for u(t, x) ∈ C with initial data in the energy space

Ḣ1(R4) = {u ∈ L4(R4;C)
∣

∣ ‖u‖2
Ḣ1 =

∫

R4

|∇u(x)|2 dx <∞}.

This is the L2 gradient-flow equation for an energy, defined for u ∈ Ḣ1 as

E(u) =

∫

R4

(

1

2
|∇u|2 − 1

4
|u|4
)

dx,

and so in particular the energy is (formally) dissipated along solutions of (1.1):

d

dt
E(u(t)) = −

∫

R4

|ut|2 dx ≤ 0. (1.2)

We refer to the gradient term in E as the kinetic energy, and the second
term as the potential energy. The fact that the potential energy is negative

2



expresses the focusing nature of the nonlinearity. Problem (1.1) is energy-
critical in the sense that the scaling

uλ(t, x) = λu(λ2t, λx), λ > 0 (1.3)

leaves invariant the equation, the potential energy, and in particular the ki-
netic energy, which is the square of the energy norm ‖ · ‖Ḣ1 .

Static solutions of (1.1), which play a key role here, solve the elliptic
equation

∆W + |W |2W = 0. (1.4)

The function

W = W (x) =
1

(1 + |x|2
8
)

∈ Ḣ1(R4), 6∈ L2(R4)

is a well-known solution. Its scalings by (1.3), and spatial translations of
these are again static solutions, and multiples of these are well-known [1, 56]
to be the unique extremizers of the Sobolev inequality

∀u ∈ Ḣ1, ‖u‖L4 ≤ C‖∇u‖L2 , C =
‖W‖L4

‖∇W‖L2

= ‖∇W‖−
1
2

L2 the best constant.

(1.5)
As for time-dependent solutions, a suitable local existence theory – see

Theorem 2.1 for details – ensures the existence of a unique smooth solution
u ∈ C(I; Ḣ1(R4)) on a maximal time interval I = [0, Tmax(u0)). The main
result of this paper states that initial data lying “below” W gives rise to
global smooth solutions of (1.1) which decay to zero:

Theorem 1.1. Let u0 ∈ Ḣ1(R4) satisfy

E(u0) ≤ E(W ), ‖∇u0‖L2 < ‖∇W‖L2 . (1.6)

Then the solution u of (1.1) is global (Tmax(u0) = ∞) and satisfies

lim
t→∞

‖u(t)‖Ḣ1 = 0. (1.7)

The conditions (1.6) define a non-empty set, since by the Sobolev in-
equality (1.5) it includes all initial data of sufficiently small kinetic energy.
Moreover, conditions (1.6) are sharp for global existence and decay in several
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senses. Firstly, if the kinetic energy inequality is replaced by equality, W it-
self provides a non-decaying (though still global) solution. Secondly, if the
kinetic energy inequality is reversed, and under the additional assumption
u0 ∈ L2(R4), by a slight variant of a classical argument [39] we find that the
solution blows up in finite time:

Theorem 1.2. Let u0 ∈ H1(R4) with

E(u0) < E(W ), ‖∇u0‖L2 ≥ ‖∇W‖L2 .

Then the solution u of (1.1) has finite maximal lifespan: Tmax(u0) <∞.

Thirdly, for any a∗ > 0, [52] constructed finite-time blow-up solutions
with initial data u0 ∈ H1(R4) satisfying E(W ) < E(u0) < E(W ) + a∗. See
also [20] for formal constructions of blow-up solutions close to W .

It follows from classical variational bounds – see Lemma 2.1 – and energy
dissipation (1.2), that any solution u on a time interval I = [0, T ) whose
initial data satisfies (1.6), necessarily satisfies

sup
t∈I

‖∇u‖L2 < ‖∇W‖L2 . (1.8)

So it will suffice to show that the conclusions of Theorem 1.1 hold for any
solution satisfying (1.8). Indeed, we will prove:

1. If I = [0,∞) and (1.8) holds, then lim
t→∞

‖∇u(t)‖L2 = 0. This is given

as Theorem 3.1.

2. For any solution satisfying (1.8), Tmax(u(0)) = ∞. This is given as
Corollary 1.

That static solutions provide the natural threshold for global existence
and decay, as in (1.8), is a classical phenomenon (eg. [53]) for critical equa-
tions, particularly well-studied in the setting of parabolic problems, mostly
on compact domains, (e.g., [16, 28, 40, 57]) via “blow-up”-type arguments:
first, failure of a solution to extend smoothly is shown, by a local regu-
larity estimate, to imply (kinetic) energy concentration; then, near a point
of concentration, rescaled subsequences are shown to converge locally to a
non-trivial static solution; finally, elliptic/variational considerations prohibit
non-trivial static solutions below the threshold.
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The main purpose of our work is twofold: first, to establish the global-
regularity-below-threshold result Theorem 1.1 on the full space R

4; second,
to do so not by way of the classical strategy sketched above, but instead via
Kenig-Merle’s [35, 36] “concentration-compactness plus rigidity” approach to
critical dispersive equations, similar to Kenig-Koch’s [34] implementation for
the Navier-Stokes equations.

The argument is structured as follows. First, in Section 3, we prove the
energy-norm decay of global solutions which satisfy (1.8). This is the content
of Theorem 3.1. The strategy is that employed for the Navier-Stokes equa-
tions in [23]: reduce the problem to establishing the decay of small solutions
(which is a refinement of the local theory) by exploiting the L2−dissipation
relation, using a solution-splitting argument to overcome the fact that the
solution fails to lie in L2.

Second, in Section 4, we prove the existence and compactness (modulo
symmetries) of a “critical” element – a counterexample to global existence
and decay, which is minimal with respect to sup

t
‖∇u(t)‖L2 , following closely

the work [37]. See Theorem 4.1. The technical tools are a profile decom-
position compatible with the heat equation (described in Section 2.2) and a
perturbation result for the linear heat equation, based on the local theory
(Proposition 2.1).

Finally, in Section 5, we exclude the possibility of a compact solution
with finite maximal existence time in Theorem 5.1. In fact this is a much
stronger conclusion than required for the proof of Theorem 1.1, since it ex-
cludes compact finite-time blowup at any kinetic energy level – that is, it
does not use (1.8). This part is based on classical parabolic tools. We first
show that the centre of compactness remains bounded, by exploiting energy
dissipation. Then a local small-energy regularity criterion, together with
backwards uniqueness and unique continuation theorems of [17, 18], as in
[34], imply the triviality of the critical element.

There is a vast literature on the semilinear heat equation ut = ∆u +
|u|p−1u. We content ourselves here with a brief review focused on the case
of domain R

d, and refer the reader to the recent book [50] for a more com-
prehensive review of the literature. For treatments of the Cauchy problem
in Lp and Sobolev spaces under various assumptions on the nonlinearity and
the initial data, see [59, 60, 6].

Much of the work concerns (energy) subcritical (p < d+2
d−2

) problems. The
seminal papers [29, 30, 31] introduced the study of heat equations through
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similarity variables and characterized blow-up solutions. In continuation of
these works, [42] gave a first construction of a solution with arbitrarily given
blow-up points, and see [48] (and references therein) for estimates of the blow-
up rate, descriptions of the blow-up set, and stability results for the blow-up
profile. We remark that blow-up in the subcritical case for L∞−solutions is

known to be of Type I, in the sense that lim sup
t→Tmax

(Tmax − t)
1

p−1‖u(·, t)‖L∞ <

+∞, and Type I blow-up solutions are known to behave like self-similar
solutions near the blow-up point. For a different set of criteria for global
existence/blow-up in terms of the initial data we refer the reader to [9]. For
results on the relation between the regularity of the nonlinear term and the
regularity of the corresponding solutions, see [10].

For supercritical problems, [43, 44, 45] show that there is no Type II
blow-up for 3 ≤ d ≤ 10, while for d ≥ 11 it is possible if p is large enough.
It is also shown that a Type I blow-up solution behaves like a self-similar
solution, while a Type II converges (in some sense) to a stationary solution.
We also refer to the recent results [11] (d ≥ 11, bounded domain), and [12]
and to the preprint [4] for results in Morrey spaces.

For the critical case, we have already mentioned the finite-time blow-up
constructions [20, 52], and we point to recent constructions of infinite-time
blowup (bubbling) on bounded domains (d ≥ 5) [13], and on R

3 [47]. The
work [21] deals with the continuation problem for reaction-diffusion equa-
tions. We finally mention the recent result [14], where a complete classifica-
tion of solutions sufficiently close to the stationary solution W is provided
for d ≥ 7: such solutions either exhibit Type-I blow-up, dissipate to zero,
or converge to (a slightly rescaled, translated) W . In particular, Type II
blow-up is ruled out in d ≥ 7 near W. We also refer to our work [32] for a
critical case of the m-corotational Harmonic Map Heat Flow.

Remark 1.1. We expect Theorem 1.1 to extend to the energy critical problem
for the nonlinear heat equation in general dimension d ≥ 3:

ut = ∆u+ |u| 4
d−2u

u(t0, x) = u0(x) ∈ Ḣ1(Rd).
(1.9)

For simplicity of presentation, we will give the proof only for the case d = 4.
As will be apparent from the proof, the result can be easily transferred to
solutions of (1.9) for d = 3. The proof should also carry over to d ≥ 5 with
some extra work to estimate the low-power nonlinearity as in [58].
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Remark 1.2. Our proof makes no use of any parabolic comparison prin-
ciples, and so applies to complex-valued solutions. That said, for ease of
writing some estimates we will sometimes replace the nonlinearity |u|2u with
u3 though the estimates remain true in the C-valued case.

2 Some analytical ingredients

2.1 Local theory

We first make precise what we mean by a solution in the energy space:

Definition 2.1. A function u : I × R
4 → C on a time interval I = [0, T )

(0 < T ≤ ∞) is a solution of (1.1) if u ∈ (CtḢ
1
x ∩ L6

t,x)([0, t] × R
4); ∇u ∈

L3
x,t([0, t] × R

4); D2u, ut ∈ L2
tL

2
x([0, t] × R

4) for all t ∈ I; and the Duhamel
formula

u(t) = et∆u0 +

∫ t

0

e(t−s)∆F (u(s))ds, (2.1)

is satisfied for all t ∈ I, where F (u) = |u|2u. We refer to the interval I as
the lifespan of u. We say that u is a maximal-lifespan solution if the solution
cannot be extended to any strictly larger interval. We say that u is a global
solution if I = R

+ := [0,+∞).

We will often measure the space-time size of solutions on a time interval
I in L6

x,t, denoting

SI(u) :=

∫

I

∫

R4

|u(t, x)|6dxdt, ‖u‖S(I) := SI(u)
1
6 =

(
∫

I

∫

R4

|u(t, x)|6dxdt
)

1
6

.

A local wellposedness theory in the energy space Ḣ1(R4), analogous to
that for the corresponding critical nonlinear Schrödinger equation (see e.g.
[15]), is easily constructed, based on the Sobolev inequality and space-time
estimates for the heat equation on R

4 ([27]),

‖et∆φ‖Lp
x(R4) . t−2(1/a−1/p)‖φ‖La , 1 ≤ a ≤ p ≤ ∞

‖et∆φ‖Lq
tL

p
x(R+×R4) . ‖φ‖La ,

1

q
+

2

p
=

2

a
, 1 < a ≤ q

‖
∫ t

0

e(t−s)∆f(s)ds‖Lq
tL

p
x(R+×R4) . ‖f‖

Lq̃′

t Lp̃′
x (R+×R4)

,

1

q
+

2

p
=

1

q̃
+

2

p̃
= 1,

1

q
+

1

q′
=

1

p
+

1

p′
= 1,

(2.2)
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and (q̃′, p̃′) the dual to any admissible pair (q̃, p̃).
We also refer the reader to [5, 59] for a treatment of the Cauchy problem

in the critical Lebesque space L
2d
d−2 ; the arguments directly adapt to show

wellposedness in Ḣ1. One can use a fixed-point argument to construct local-
in-time solutions for arbitrary initial data in Ḣ1(R4); however, as usual when
working in critical scaling spaces, the time of existence depends on the profile
of the initial data, not merely on its Ḣ1-norm. We summarize:

Theorem 2.1. (Local well-posedness) Assume u0 ∈ Ḣ1(R4).

1. (Local existence) There exists a unique, maximal-lifespan solution to
the Cauchy Problem (1.1) in I × R

4, I = [0, Tmax(u0)).

2. (Continuous dependence) The solution depends continuously on the ini-
tial data (in both the Ḣ1 and the SI-induced topologies). Furthermore,
Tmax is a lower-semicontinuous function of the initial data.

3. (Blow-up criterion) If Tmax(u0) < +∞, then ‖u‖S([0,Tmax(u0))) = +∞.

4. (Energy dissipation) The energy E(u(t)) is a non-increasing function
in time. More precisely, for 0 < t < Tmax,

E(u(t)) +

∫ t

0

∫

R4

|ut|2 dx dt = E(u0). (2.3)

5. (Small data global existence) There is ǫ0 > 0 such that if ‖et∆u0‖S(R+) ≤
ǫ0, the solution u is global, Tmax(u0) = ∞, and moreover

‖u‖S(R+) + ‖∇u‖(L∞

t L2
x∩L3

x,t)(R
+×R4) + ‖D2u‖L2

x,t(R
+×R4) . ǫ0. (2.4)

This occurs in particular when ‖u0‖Ḣ1(R4) is sufficiently small.

An extension of the proof of the local existence theorem implies the fol-
lowing stability result (see, e.g., [38]):

Proposition 2.1. (Perturbation result)
For every E,L > 0 and ǫ > 0 there exists δ > 0 with the following property:
assume ũ : I × R

4 → R, I = [0, T ), is an approximate solution to (1.1) in
the sense that

‖∇e‖
L

3
2
t,x(I×R4)

≤ δ, e := ũt −∆ũ− |ũ|2ũ,
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and also
‖ũ‖L∞

t Ḣ1
x(I×R4) ≤ E and ‖ũ‖S(I) ≤ L,

then if u0 ∈ Ḣ1
x(R

4) is such that

‖u0 − ũ(0)‖Ḣ1
x(R

4) ≤ δ,

there exists a solution u : I ×R
4 → R of (1.1) with u(0) = u0, and such that

‖u− ũ‖L∞

t Ḣ1
x(I×R4) + ‖u− ũ‖S(I) ≤ ǫ.

2.2 Profile decomposition

The following proposition is the main tool (along with the Perturbation
Proposition 2.1) used to establish the existence of a critical element. The
idea is to characterize the loss of compactness in some critical embedding; it
can be traced back to ideas in [41], [6], [54], [55] and their modern “evolution”
counterparts [2], [35] and [36].

Proposition 2.2. (Profile Decomposition) Let {un}n be a bounded sequence
of functions in Ḣ1(R4). Then, after possibly passing to a subsequence (in
which case, we rename it un), there exists a family of functions {φj}∞j=1 ⊂ Ḣ1,

scales λjn > 0 and centers xjn ∈ R
4 such that:

un(x) =
J
∑

j=1

1

λ
j
n

φj(
x− xjn

λ
j
n

) + wJ
n(x),

wJ
n ∈ Ḣ1(R4) is such that:

lim
J→∞

lim sup
n

‖et∆wJ
n‖L6

t,x(R
+×R4) = 0, (2.5)

λjnw
J
n(λ

j
nx+ xjn)⇀ 0, in Ḣ1(R4), ∀j ≤ J. (2.6)

Moreover, the scales are asymptotically orthogonal, in the sense that

λjn
λin

+
λin

λ
j
n

+
|xin − xjn|2
λ
j
nλin

→ +∞, ∀i 6= j. (2.7)

Furthermore, for all J ≥ 1 we have the following decoupling properties:

‖un‖2Ḣ1 =
J
∑

j=1

‖φj‖2
Ḣ1 + ‖wJ

n‖2Ḣ1 + on(1) (2.8)
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and

E(un) =
J
∑

j=1

E(φj) + E(wJ
n) + on(1). (2.9)

The ideas behind such results are by now standard so we will skip the
proof of the proposition. Let us just remark that the starting point is the
static profile decomposition of [26] (also see [7], and Section 4 in [38]), and the
main task becomes to show the (asymptotic) “smallness” of the remainder
wJ

n , in the space-time sense of (2.5). The proof makes use of a refined Sobolev
inequality and standard heat estimates. For details about this step we refer
to Chapter 2 in [51].

2.3 Variational estimates

The elementary variational inequalities we use are summarized here:

Lemma 2.1. (Variational Estimates)

1. If
‖∇u0‖2L2 ≤ ‖∇W‖2L2 , E(u0) ≤ (1− δ0)E(W ), δ0 > 0,

then there exists δ̄ = δ̄(δ0) > 0 such that for all t ∈ [0, Tmax(u0)), the
solution of (1.1) satisfies

∫

|∇u(t)|2 ≤ (1− δ̄)

∫

|∇W |2. (2.10)

2. If (2.10) holds, then
∫

(|∇u(t)|2 − |u(t)|4)dx ≥ δ̄

∫

|∇u(t)|2 (2.11)

and moreover E(u(t)) ≥ 0.

Proof. The second statements are an immediate consequence of the sharp
Sobolev inequality (1.5):

∫

(|∇u(t)|2 − |u(t)|4)dx ≥
[

1−
(‖∇u(t)‖L2

‖∇W‖L2

)2
]

‖∇u‖2L2 & ‖∇u‖2L2

while the first follows easily from Sobolev and energy dissipation (2.3); see,
e.g., Lemma 3.4/Theorem 3.9 in [35].
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3 Asymptotic decay of global solutions

In this section we prove the following theorem:

Theorem 3.1. If u ∈ C([0,∞); Ḣ1(R4)) is a solution to equation (1.1) which
moreover satisfies

sup
t≥0

‖∇u(t)‖L2 < ‖∇W‖L2 , (3.1)

then
SR+(u) <∞ and lim

t→∞
‖u(t)‖Ḣ1 = 0.

Proof. The general strategy, drawn from the techniques of [23] for the Navier-
Stokes equations, is as follows. We first show that global solutions for which
SR+(u) <∞ – which includes small solutions by the small data theory (2.4)
– decay to zero in the Ḣ1−norm. Second, we impose the extra assumption
of H1− data, so that we may exploit the L2−dissipation relation to show
finiteness of ‖∇u‖L2

x,t
, which in turns allows us to reduce matters to the case

of small Ḣ1 data. Finally, to remove this extra assumption, we split the
initial data in frequency, and estimate a perturbed equation.

Proposition 3.1. If u is a global solution of (1.1) with SR+(u) <∞, then

lim
t→∞

‖∇u(t, ·)‖L2 = 0. (3.2)

Proof. Let u ∈ (CtḢ
1
x ∩L6

t,x)(R+ ×R
4) be a global solution to (1.1). Just as

one proves the blow-up criterion for the local theory Theorem 2.1, we first
show:

Claim 3.1. ‖∇u‖L3
t,x(R

+×R4) <∞.

Proof. Since u ∈ L6
t,x(R

+ ×R
4), given η > 0, we may subdivide R+ = [0,∞)

into a finite number of subintervals Ij = [aj, aj+1), j = 0, 1, . . . , J , 0 = a0 <

a1 < · · · < aJ = ∞, on which ‖u‖L6
t,x
(Ij) ≤ η. Taking ∇ in the Duhamel

formula (2.1) and using (2.2):

‖∇u‖(L3
t,x∩L∞

t L2
x)
(I0) ≤ C‖et∆∇u0‖L2 + C‖

∫ t

0

S(t− s)∇(u3)ds‖L3
t,x(I0)

≤ C‖u0‖Ḣ1 + C‖u2∇u‖
L
3/2
t,x (I0)

≤ C‖u0‖Ḣ1 + C‖u‖2L6
t,x(I0)

‖∇u‖L3
t,x(I0)

,
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so by choosing η < 1√
2C

we ensure

‖∇u‖(L3
t,x∩L∞

t L2
x)(I0)

≤ 2C‖u0‖Ḣ1 .

In particular ‖u(a1)‖Ḣ1 ≤ 2C‖u0‖Ḣ1 , and so we may repeat this argument
on the next interval I1 to find ‖∇u‖(L3

t,x∩L∞

t L2
x)(I1)

≤ (2C)2‖u0‖Ḣ1 , and, con-

tinuing, ‖∇u‖(L3
t,x∩L∞

t L2
x)(Ij)

≤ (2C)j+1‖u0‖Ḣ1 , for j = 0, 1, . . . , J . The claim
follows.

Now denote the linear evolution by S(t) = et∆, so the solution in Duhamel
form is written

u(t) = S(t)u0 +

∫ t

0

S(t− s)u3(s)ds.

Let

I := S(t)u0, II :=

∫ τ

0

S(t− s)u3(s)ds, III :=

∫ t

τ

S(t− s)u3(s)ds,

for some τ to be determined later.

For term I we will take advantage of the decay of the heat propagator.
By density, we can approximate ∇u0 by v ∈ L1∩L2 and use a standard heat
estimate:

‖I‖Ḣ1 = ‖S(t)∇u0‖L2 ≤ ‖S(t)(∇u0 − v)‖L2 + ‖S(t)v‖L2

≤ ‖∇u0 − v‖L2 + ‖S(t)v‖L2 .

The first term can be made arbitrary small by the choice of v, while for
the second, by (2.2), ‖S(t)v‖L2 → 0 as t→ ∞, hence

‖I‖Ḣ1 → 0 as t→ ∞.

We now treat term III, which will allow us to fix τ. By the claim, for any
ǫ > 0, we can find τ such that ‖u‖L6

t,x([τ,∞)×R4), ‖∇u‖L3
t,x([τ,∞)×R4) ≤ ǫ. Since

we are considering the limit t → ∞, we may assume t > τ ≫ 1, and so by
the same estimate of the nonlinear term as in the proof of the claim,

‖III‖Ḣ1 . ‖u‖2L6
t,x([τ,t)×R4)‖∇u‖L3

t,x([τ,t)×R4) . ǫ3.

Having fixed τ in this manner, we turn to term II. First notice that

II =

∫ τ

0

S(t− s)u3(s)ds = S(t− τ)

∫ τ

0

S(τ − s)u3(s)ds.

12



Since

∫ τ

0

S(τ − s)u3(s)ds ∈ Ḣ1 (by u ∈ L6
x,t and (2.2)), the same approxi-

mation argument used for term I shows

‖II‖Ḣ1 = ‖S(t− τ)

∫ τ

0

S(τ − s)u3(s)ds‖Ḣ1

t→∞−−−→ 0.

Since ǫ was arbitrary, (3.2) follows.

Now if we assume u0 ∈ H1(R4), multiplying (1.1) by u and integrating
over space-time yields the L2 dissipation relation

‖u(t)‖2L2 = ‖u0‖2L2 + 2

∫ t

0

∫

R4

[u4 − |∇u|2]dxds. (3.3)

Because of (3.1), we have the variational estimate (2.11) and so for some
δ̄ > 0,

sup
t≥0

‖u(t)‖2L2 + 2δ̄‖∇u‖2L2
t,x(R+×R4) ≤ ‖u0‖2L2 .

This estimate immediately implies that for any ǫ0 > 0, there is some time
t0 such that ‖u(t0)‖Ḣ1 ≤ ǫ0, and we can directly apply the small data re-
sult (2.4) (with initial time t = t0) to conclude that SR+(u) < ∞, and so by
Proposition 3.1, lim

t→∞
‖u(t)‖Ḣ1 = 0, as required.

To remove the extra assumption u0 ∈ L2, split

u0 = w0 + v0, ‖w0‖Ḣ1 ≪ 1, v0 ∈ H1.

Define w(t) to be the solution to (1.1) with initial data w0:

wt = ∆w + w3

w(0, x) = w0(x) ∈ Ḣ1(R4).

From the small data theory (2.4), w ∈ CtḢ
1
x(R+ × R

4) is global, with

‖w‖L6
t,x(R+×R4) + ‖∇w‖(L∞

t L2
x∩L3

t,x)(R+×R4) . ‖∇w0‖L2 ≪ 1 (3.4)

and by Proposition 3.1, ‖w(t)‖Ḣ1

t→∞−−−→ 0.
Defining v by v := u− w, it will be a solution of the perturbed equation

vt −∆v = v3 + 3w2v + 3wv2.

13



Just as in the derivation of the L2-dissipation relation (3.3), multiply by v
and integrate in space-time:

‖v(t)‖2L2−‖v0‖2L2+2

∫ t

0

‖∇v‖2L2 = 2

∫ t

0

‖v‖4L4+6

∫ t

0

∫

R4

w2v2+6

∫ t

0

∫

R4

wv3.

By (3.4), picking ‖∇w0‖L2 small enough, ensures that condition (3.1) holds
also for v: sup

t≥0
‖∇v(t)‖L2 < ‖∇W‖L2 . Hence by (2.11), for some δ̄ > 0,

‖v(t)‖2L2 + δ̄

∫ t

0

‖∇v‖2L2 . ‖v0‖2L2 +

∫ t

0

∫

R4

w2v2 + 6

∫ t

0

∫

R4

wv3,

and so by Hölder and Sobolev,

‖v(t)‖2L2 + δ̄‖∇v‖2L2L2 . ‖v0‖2L2 + ‖w‖2L∞L4‖v‖2L2L4 + ‖w‖L∞L4‖v‖L∞L4‖v‖L2L4

. ‖v0‖2L2 + ‖∇w‖2L∞L2‖∇v‖2L2L2

+ ‖∇w‖L∞L2‖∇v‖L∞L2‖∇v‖L2L2 .

So by (3.4), choosing ‖∇w0‖L2 small enough yields

∫ ∞

0

‖∇v‖2L2dt <∞, and

hence there is T > 0 for which ‖∇v(T )‖L2 < ‖w0‖Ḣ1 and so ‖∇u(T )‖L2 ≤
2‖∇w0‖L2 . Choosing ‖∇w0‖L2 smaller still, if necessary, we are able to ap-
ply the small data result (2.4) to conclude SR+(u) < ∞, and moreover by
Proposition 3.1,

lim
t→∞

‖u(t)‖Ḣ1 = 0,

concluding the proof of the theorem.

4 Minimal blow-up solution

For any 0 ≤ E0 ≤ ‖∇W‖22, we define

L(E0) := sup{SI(u) | u a solution of (1.1) on I with sup
t∈I

‖∇u(t)‖22 ≤ E0},

where I = [0, T ) denotes the existence interval of the solution in question.
L : [0, ‖∇W‖22] → [0,∞] is a continuous (this follows from Proposition 2.1),
non-decreasing function with L(‖∇W‖22) = ∞. Moreover, from the small-
data theory (2.4),

L(E0) . E3
0 for E0 ≤ ǫ0.
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Thus, there exists a unique critical kinetic energy Ec ∈ (0, ‖∇W‖22] such that

L(E0) <∞ for E0 < Ec, L(E0) = ∞ for E0 ≥ Ec.

In particular, if u : I × R
4 → R is a maximal-lifespan solution, then

sup
t∈I

‖∇u(t)‖22 < Ec =⇒ u is global, and ‖u‖S(R+) ≤ L(sup
t∈I

‖∇u(t)‖22) <∞.

The goal of this section is the proof of the following theorem:

Theorem 4.1. There is a maximal-lifespan solution uc : I × R
4 → R to

(1.1) such that sup
t∈I

‖∇uc(t)‖2L2 = Ec, ‖uc‖S(I) = +∞. Moreover, there are

x(t) ∈ R
4, λ(t) ∈ R

+, such that

K =

{

1

λ(t)
uc

(

t,
x− x(t)

λ(t)

)

∣

∣ t ∈ I

}

(4.1)

is precompact in Ḣ1.

For the proof of this theorem we closely follow the arguments in [37].
The extraction of this minimal blow-up solution (and its compactness up to
scaling and translation) will be a consequence of the following proposition:

Proposition 4.1. Let un : In × R
4 be a sequence of solutions to (1.1) such

that
lim sup

n
sup
t∈In

‖∇un‖22 = Ec and lim
n→∞

‖un‖S(In) = +∞. (4.2)

where In are of the form [0, Tn). Denote the initial data by un(x, 0) = un,0(x).
Then the sequence {un,0}n converges, modulo scaling and translations, in Ḣ1

(up to an extraction of a subsequence).

Proof. The sequence {un,0}n is bounded in Ḣ1 by (4.2) so applying the profile
decomposition (up to a further subsequence) we get

un,0(x) =
J
∑

j=1

1

λ
j
n

φj(
x− xjn

λ
j
n

) + wJ
n(x)

with the properties listed in Proposition 2.2.
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Define the nonlinear profiles vj : Ij × R
4 → R, Ij = [0, T j

max), associated
to φj by setting them to be the maximal-lifespan solutions of (1.1) with initial
data vj(0) = φj. Also, for each j, n ≥ 1 we introduce vjn : Ijn × R

4 → R by

vjn(t) =
1

λ
j
n

vj
(

t

(λjn)2
,
x− xjn

λ
j
n

)

, Ijn := {t ∈ R :
t

(λjn)2
∈ Ij}.

Each vjn is a solution with vjn(0) = 1

λj
n
φ(x−xj

n

λj
n
) and maximal lifespan Ijn =

[0, T n,j
max), T

n,j
max = (λjn)

2T j
max.

For large n, by the asymptotic decoupling of the kinetic energy (property
(2.8)), there is a J0 ≥ 1 such that ‖∇φj‖22 ≤ ǫ0 for all j ≥ J0, where ǫ0 is
as in Theorem 2.1, 4. Hence, for j ≥ J0, the solutions vjn are global and
decaying to zero, and moreover

sup
t∈R+

‖∇vjn‖22 + ‖vjn‖2S(R+×R4) . ‖∇φj‖22 (4.3)

by the small data theory (2.4).

Claim 4.1. (There is at least one bad profile). There exists 1 ≤ j0 < J0 such
that ‖vj0‖S(Ij0 ) = ∞.

For contradiction, assume that for all 1 ≤ j < J0

‖vj‖S(Ij) <∞ (4.4)

which by the local theory implies Ij = Ijn = [0,∞) for all such j and for all
n. The goal is to deduce a bound on ‖un‖S(In)for sufficiently large n. To do
so, we will use Proposition 2.1, for which we first need to introduce a good
approximate solution.

Define

uJn(t) =
J
∑

j=1

vjn(t) + et∆wJ
n . (4.5)

We will show that for n and J large enough this is a good approximate
solution (in the sense of Proposition 2.1) and that ‖uJn‖S([0,+∞)) is uniformly
bounded. The validity of both points implies that the true solutions un
should not satisfy (4.2), reaching a contradiction.

First observe

∑

j≥1

‖vjn‖2S([0,∞)) =

J0−1
∑

j=1

‖vjn‖2S([0,∞)) +
∑

j≥J0

‖vjn‖2S([0,∞)) (4.6)
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. 1 +
∑

j≥J0

‖∇φj‖22 . 1 + Ec (4.7)

where we have used (4.4), property (2.8) and (4.2).
Now, using the above and (2.5) in Proposition 2.2:

lim
J→∞

lim
n

‖uJn‖S([0,+∞)) . 1 + Ec. (4.8)

For convenience, denote

‖u‖S̃(I) := ‖∇u‖L3
x,t(I×R4).

Under the assumption (4.4), we can also obtain

‖vj‖S̃(Ij) <∞,

and so similarly we have

lim
J→∞

lim
n

‖uJn‖S̃([0,+∞)) <∞.

To apply Proposition 2.1, it suffices to show that uJn asymptotically solves
(1.1) in the sense that

lim
J→∞

lim
n

‖∇[(∂t −∆)uJn − F (uJn)]‖
L

3
2
t,x([0,+∞)×R4)

= 0

which reduces (adding and subtracting the term F (
∑J

j=1 v
j
n) and using the

triangle inequality) to proving

lim
J→∞

lim
n

‖∇[
J
∑

j=1

F (vjn)− F (
J
∑

j=1

vjn)]‖
L

3
2
t,x([0,+∞)×R4)

= 0 (4.9)

and
lim
n

‖∇[F (uJn − et∆wJ
n)− F (uJn)]‖

L
3
2
t,x([0,+∞)×R4)

= 0. (4.10)

The following easy pointwise estimate will be of use:

|∇[(
J
∑

j=1

F (vj)− F (
J
∑

j=1

vj)]| .J

∑

i 6=j

|∇vj||vi|2. (4.11)
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We have shown that for all j ≥ 1 and n large enough vjn ∈ S̃([0,∞)), so using
property (2.7)

lim
n
‖|vjn|2∇vin‖

L
3
2
t,x([0,∞)×R4)

= 0

for all i 6= j; thus

lim
n
‖∇[(

J
∑

j=1

F (vj)− F (
J
∑

j=1

vj)]‖
L

3
2
t,x

.J lim
n→∞

lim
n

∑

i 6=j

‖∇vjn|vin|2‖
L

3
2
t,x

= 0

settling (4.9).

‖∇[F (uJn−et∆wJ
n)−F (uJn)]‖

L
3
2
t,x

. ‖∇et∆wJ
n‖L3

t,x
‖et∆wJ

n‖2L6
t,x
+‖|uJn|2∇et∆wJ

n‖
L

3
2
t,x

+

‖∇uJn‖L3
t,x
‖et∆wJ

n‖2L6
t,x

+ ‖∇uJn‖L3
t,x
‖et∆wJ

n‖L6
t,x
‖uJn‖L6

t,x
.

The first, third and fourth terms are easily seen to converge to zero (using
the space-time estimates, the fact that wJ

n is bounded in Ḣ1 and (2.5)), so
(4.10) is reduced to showing

lim
J→∞

lim
n
‖|uJn|2∇et∆wJ

n‖
L

3
2
t,x

= 0.

By Hölder and the space-time estimates,

‖|uJn|2∇et∆wJ
n‖

L
3
2
t,x

. ‖uJn‖
3
2

L6
t,x
‖∇et∆wJ

n‖
1
2

L3
t,x
‖uJn∇et∆wJ

n‖
1
2

L2
t,x

. ‖(
J
∑

j=1

vjn)∇et∆wJ
n‖

1
2

L2
t,x

+ ‖et∆wJ
n‖

1
2

L6
t,x
‖∇et∆wJ

n‖
1
2

L3
t,x

. ‖(
J
∑

j=1

vjn)∇et∆wJ
n‖

1
2

L2
t,x

+ ‖et∆wJ
n‖

1
2

L6
t,x
.

Again due to (2.5) it suffices to prove

lim
J→∞

lim
n
‖(

J
∑

j=1

vjn)∇et∆wJ
n‖L2

t,x
= 0.
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For any η > 0 by summability, we see that there exists J ′ = J ′(η) ≥ 1 such

that
∑

j≥J ′

‖vjn‖S([0,∞)) ≤ η. For this J ′,

lim
n
‖
(

J
∑

j=J ′

vjn

)

∇et∆wJ
n‖6L2

t,x
. lim

n

(

∑

j≥J ′

‖vjn‖S([0,∞))

)

‖∇et∆wJ
n‖6L3

t,x
. η.

As η > 0 is arbitrary, it suffices to show

lim
J→∞

lim
n
‖vjn∇et∆wJ

n‖L2
t,x

= 0, 1 ≤ j ≤ J ′.

Changing variables and assuming (by density) vj ∈ C∞
c (R+×R

4), by Hölder
and the scale-invariance of the norms, proving (4.10) reduces to proving

lim
J→∞

lim
n
‖∇et∆wJ

n‖L2
t,x(K) = 0,

for any compact K ∈ R
+ × R

4. This result is the direct heat analogue of
Lemma 2.5 in [38].

We have verified all the requirements of the stability proposition (2.1),
hence we conclude that

‖un‖S([0,∞)) . 1 + Ec

contradicting (4.2).
The problem now is that the kinetic energy is not conserved. The diffi-

culty arises from the possibility that the S-norm of several profiles is large
over short times, while their kinetic energy does not achieve the critical value
until later. To finish the proof of proposition we have to prove that only one
profile is responsible for the blow-up.

We can now (after possibly rearranging the indices) assume there exists
1 ≤ J1 < J0 such that

‖vj‖S(Ij) = ∞, 1 ≤ j ≤ J1 and ‖vj‖S([0,∞)) <∞, j > J1

Again, we follow the combinatorial argument of [38]: for each integer
m,n ≥ 1, define an integer j = j(m,n) ∈ {1, ..., J1} and an interval Km

n of
the form [0, τ ] by

sup
1≤j≤J1

‖vjn‖S(Km
n ) = ‖vj(m,n)

n ‖S(Km
n ) = m. (4.12)
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By the pigeonhole principle, there is a 1 ≤ j ≤ J1 such that for infinitely
many m one has j(m,n) = j1 for infinitely many n. Reordering the indices,
if necessary, we may assume j1 = 1. By the definition of the critical kinetic
energy

lim sup
m→∞

lim sup
n→∞

sup
t∈Km

n

‖∇v1n(t)‖22 ≥ Ec. (4.13)

By (4.12), all vjn have finite S-norms on Km
n for each m ≥ 1. In the same

way as before, we check again that the assumptions of Proposition 2.1 are sat-
isfied to conclude that for J and n large enough, uJn is a good approximation
to un on Km

n . In particular we have for each m ≥ 1,

lim
J→∞

lim sup
n→∞

‖uJn − un‖L∞

t Ḣ1
x(K

m
n ×R4) = 0. (4.14)

Lemma 4.1. (Kinetic energy decoupling for later times). For all J ≥ 1 and
m ≥ 1,

lim sup
n→∞

sup
t∈Km

n

|‖∇uJn(t)‖22 −
J
∑

j=1

‖∇vjn(t)‖22 − ‖∇wJ
n‖22| = 0 (4.15)

Proof. Fix J ≥ 1 and m ≥ 1. Then, for all t ∈ Km
n ,

‖∇uJn(t)‖22 = < ∇uJn(t),∇uJn(t) > =
J
∑

j=1

‖∇vjn(t)‖22 + ‖∇wJ
n‖22

+
∑

j 6=j′

< ∇vjn(t),∇vj
′

n (t) > +2
J
∑

j=1

< ∇et∆wJ
n ,∇vjn(t) > .

It suffices to prove (for all sequences tn ∈ Km
n ) that

< ∇vjn(tn),∇vj
′

n (tn) >
n→∞−−−→ 0 (4.16)

and
< ∇etn∆wJ

n ,∇vjn(tn) >
n→∞−−−→ 0. (4.17)

Since tn ∈ Km
n ⊂ [0, T n,j

max), for all 1 ≤ j ≤ J1, we have tn,j :=
tn

(λj
n)2

∈ Ij for

all j ≥ 1. For j > J1 the lifespan is R+. By refining the sequence using the
standard diagonalization argument, we can assume that tn,j converges (+∞
is also possible) for every j.
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We deal with (4.16) first. If both tn,j, tn,j′ → ∞, necessarily j, j′ > J1
and vj, vj

′

are global solutions satisfying the kinetic energy bound (3.1), so

by Theorem (3.1) ‖vj‖Ḣ1 , ‖vj′‖Ḣ1

t→∞−−−→ 0. Employing Hölder’s inequality
and the scaling invariance of the Ḣ1-norm, we get (4.16) for this case. When
tn,j → ∞ but tn,j′ → τj′ : using the continuity of the flow in Ḣ1 we can, for the

limit, replace ∇{ 1

λ
j′
n

vj
′

(tn,j′ ,
x− xjn

λ
j′
n

)} with ∇{ 1

λ
j′
n

vj
′

(τj′ ,
x− xjn

λ
j′
n

)}. By an L2-

approximation, we can also assume we are working with smooth, compactly
supported functions. In this case, we can bound < ∇vjn(tn),∇vj

′

n (tn) > by
‖vj(tn,j)‖Ḣ1‖vj′(τj′)‖Ḣ1 → 0, as n → ∞. The remaining case is when both
tn,j and tn,j′ converge to finite τj, τj′ in the interior of Ij, Ij

′

respectively. We
can replace as above tn,j, tn,j′ by τj, τj′ respectively, and perform a change of
variables:

< ∇vjn(tn),∇vj
′

n (tn) >=

∫

(
λjn

λ
j′
n

)2∇vj(τj, x),∇vj
′

(τj′ ,
λjn

λ
j′
n

x+
xjn − xj

′

n

λ
j′
n

)dx

which is going to zero assuming, without loss of generality that
λjn

λ
j′
n

→ 0 and

the functions in the integrand are compactly supported, thus concluding the
case (4.16).

For the case (4.17), perform a change of variable:

< ∇etn∆wJ
n ,∇vjn(tn) >=< ∇etn,j∆[λjnw

J
n(λ

j
nx+ xjn)],∇vj(tn,j) > .

When tn,j → ∞, using Hölder, the heat estimates (2.2) (and the boundedness
of wJ

n in Ḣ1 coming from the profile decomposition) and Theorem 3.1 as
before, we get to the result. For the case tn,j → τj < +∞, we can, as

before, replace tn,j by its limit τj in the integral

∫

∇etn,j∆[λjnw
J
n(λ

j
nx+ xjn)] ·

∇vj(τj, x)dx. Using (2.5) and (2.2) we can see that etn,j∆[λjnw
J
n(λ

j
nx+x

j
n)]⇀ 0

in Ḣ1, which concludes the proof of the case (4.17) and hence the proof of
the Lemma.

By (4.2), (4.14), (4.15), we get

Ec ≥ lim sup
n→∞

sup
t∈Km

n

‖∇un(t)‖2L2

= lim
J→∞

lim sup
n→∞

{‖∇wJ
n(t)‖2L2 + sup

t∈Km
n

J
∑

j=1

‖∇vjn(t)‖2L2}.
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Taking a limit in m and employing (4.13), we see that we actually have

equality everywhere. This implies that J1 = 1, vjn ≡ 0, ∀j ≥ 2, wn := w1
n

Ḣ1

−→
0. So un(0, x) = 1

λn
φ(x−x1

n

λ1
n
) + wn(x), for some functions φ,wn ∈ Ḣ1, wn

s−→
0 in Ḣ1.

Thus we have shown that for the sequence of initial data un,0 that

λ1nun,0(λ
1
nx+ x1n)

Ḣ1

−→ φ.

This finishes the proof of Proposition 4.1.

Now, we are in a position to prove Theorem 4.1.

Proof. By the definition of Ec we can find a sequence of solutions un : In ×
R

4 → R, with In compact, so that

sup
n

sup
t∈In

‖∇un(t)‖2L2 = Ec and lim
n

‖un‖S(In) = +∞.

An application of Proposition 4.1 shows that the corresponding sequence of
initial data converges strongly, modulo symmetries, to some φ ∈ Ḣ1. By

rescaling and translating un, we may in fact assume un,0 := un(0, ·) Ḣ1

−→ φ.
We define uc : I × R

4 → R to be the maximal-lifespan solution of (1.1)

emanating from initial data φ. Since un,0
Ḣ1

−→ φ, employing the stability

Proposition 2.1, I ⊂ lim inf In, and ‖un − uc‖L∞

t Ḣ1
x(K×R4)

n→∞−−−→ 0, for all

compact K ⊂ I. Thus, by (4.2):

sup
t∈I

‖∇uc(t)‖2L2 ≤ Ec. (4.18)

Applying the stability Proposition 2.1 once again we can also see that ‖uc‖S(I) =
∞. Hence, by the definition of the critical kinetic energy level, Ec,

sup
t∈I

‖∇uc(t)‖2L2 ≥ Ec. (4.19)

In conclusion,
sup
t∈I

‖∇uc(t)‖2L2 = Ec (4.20)

and
‖uc‖S(I) = +∞. (4.21)

Finally, the compactness modulo symmetries (4.1) follows from another ap-
plication of Proposition 4.1. We omit the standard proof (see for example
[35] or [38]).
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5 Rigidity

The main result of this section is the following theorem ruling out finite-time
blowup of compact (modulo symmetries) solutions. Note this is a consider-
ably stronger statement than we require, since it is not limited to solutions
with below-threshold kinetic energy:

Theorem 5.1. If u is a solution to (1.1) on maximal existence interval

I = [0, T ∗), such that K :=

{

1

λ(t)
u(t,

x− x(t)

λ(t)
) | t ∈ I

}

is precompact in

Ḣ1 for some x(t) ∈ R
4, λ(t) ∈ R

+, then T ∗ = +∞.

As a corollary, we can complete the proof of the main result Theorem 1.1
by showing:

Corollary 1. For any solution satisfying (1.8), Tmax(u(0)) = ∞.

Proof. By Theorem 5.1, the solution uc produced by Theorem 4.1 must be
global: Tmax(uc(0)) = ∞. But since ‖uc‖S(R+) = ∞, Theorem 3.1 shows
Ec = ‖∇W‖22, and the Corollary follows.

The rest of the section is devoted to the proof of the Theorem 5.1. Our
proof is inspired by the work of Kenig and Koch [34] for the Navier-Stokes
system, and it’s based on classical parabolic tools – local smallness regularity,
backwards uniqueness, and unique continuation – though implemented in a
somewhat different way. In particular, we will make use of the following two
results, proved in [17], [18] (also see [19]):

Theorem 5.2. (Backwards Uniqueness) Fix any R, δ,M, and c0 > 0. Let
QR,δ := (R4\BR(0))×(−δ, 0), and suppose a vector-valued function v and its
distributional derivatives satisfy v,∇v,∇2v ∈ L2(Ω) for any bounded subset
Ω ⊂ QR,δ, |v(x, t)| ≤ eM |x|2 for all (x, t) ∈ QR,δ, |vt − ∆v| ≤ c0(|∇v| + |v|)
on QR,δ, and v(x, 0) = 0 for all x ∈ R

4 \BR(0). Then v ≡ 0 in QR,δ.

Theorem 5.3. (Unique Continuation) Let Qr,δ := Br(0)× (−δ, 0), for some
r, δ > 0, and suppose a vector-valued function v and its distributional deriva-
tives satisfy v,∇v,∇2v ∈ L2(Qr,δ) and there exist c0, Ck > 0, (k ∈ N) such
that |vt − ∆v| ≤ c0(|∇v| + |v|) a.e. on Qr,δ and |v(x, t)| ≤ Ck(|x| +

√
−t)k

for all (x, t) ∈ Qr,δ. Then v(x, 0) ≡ 0 for all x ∈ Br(0).

As well, we establish the following:
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Lemma 5.1. (Local Smallness Regularity Criterion) For any k ∈ N, there
are ǫ0 > 0 and C such that: if u is a solution of equation (1.1) on Q1, where
Qr := Br(0)× (−r2, 0) for r > 0, and satisfies

ǫ := ‖u‖L∞

t (Ḣ1
x∩L4

x)(Q1)
< ǫ0

then u is smooth on Q 1
2
with bounds

max
Q 1

2

|Dku| ≤ Cǫ.

Proof. Assume ‖u‖L∞

t (Ḣ1
x∩L4

x)(Q1)
< ǫ, for ǫ small enough (to be picked). De-

fine

‖u‖2X(Q1)
:= ‖∇u‖2L∞

t L2
x∩L2

tL
4
x(Q1)

+ ‖u‖2L∞

t L4(Q1)
+ ‖D2u‖2L2

tL
2
x(Q1)

.

Assuming for ease of writing that u is real-valued, differentiating (1.1) and
defining ũ := ∇u, we get

ũt = ∆ũ+ 3u2ũ. (5.1)

Consider a smooth, compactly supported spatial cut-off function φ0(x) such
that supp(φ0) ⊂ B1(0) and φ0 ≡ 1 on Bρ0(0), for some 1

2
< ρ0 < 1 to be

chosen. Multiplying the above equation by φ2
0ũ and integrating in space-time

(from now on, unless otherwise specified, t ∈ [−1, 0]):

∫ t

−1

∫

|x|≤1

(ũt −∆ũ)φ2
0ũ dxdt = 3

∫ t

−1

∫

|x|≤1

(u2ũ)φ2
0ũ dxdt

⇒ 1

2
‖φ0ũ(t)‖2L2 +

∫ t

−1

∫

|x|≤1

φ2
0|∇ũ|2 dxdt

=
1

2
‖φ0ũ(0)‖2L2 + 3

∫ t

−1

∫

|x|≤1

φ2
0u

2ũ2dxdt+ 2

∫ t

−1

∫

|x|≤1

φ0∇φ0(ũ∇ũ)dxdt.

For the sake of brevity, let us define v0 := φ0ũ = φ0∇u and thus (always on
the same cylinder):

‖v0‖2L∞

t L2
x
+ ‖φ0∇ũ‖2L2

tL
2
x
. ‖v0(0, x)‖2L2 + ‖u2‖L∞

t L2
x
‖v20‖L1

tL
2
x
+ ‖φ0∇ũ‖L2

tL
2
x
‖ũ‖L2

tL
2
x

= ‖v0(0, x)‖2L2 + ‖u‖2L∞

t L4
x
‖v0‖2L2

tL
4
x
+ ‖φ0∇ũ‖L2

tL
2
x
‖ũ‖L2

tL
2
x
.
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By the smallness assumed on the cylinder Q1 and an application of Young’s
inequality, for any δ > 0 (and also using Hölder and the boundedness of the
domain):

‖v0‖2L∞

t L2
x
+‖φ0∇ũ‖2L2

tL
2
x
. ǫ2+ǫ2‖v0‖2L2

tL
4
x(Q1)

+δ2‖φ0∇ũ‖2L2
tL

2
x(Q1)

+
‖ũ‖2L∞

t L4
x(Q1)

δ2

⇒ ‖v0‖2L∞

t L2
x
+ ‖φ0∇ũ‖2L2

tL
2
x
. ǫ2 +

ǫ2

δ2
+ ǫ2‖v0‖2L2

tL
4
x

if δ is chosen small enough. Since ∇v0 = φ0∇ũ+∇φ0 ũ :

‖∇v0‖L2 . ‖φ0∇ũ‖L2 + ‖∇φ0‖L4‖ũ‖L4

and so using the Sobolev inequality,

‖v0‖2L∞

t L2
x
+ ‖∇v0‖2L2

tL
2
x
+ ‖v0‖2L2

tL
4
x
. ǫ2 + ǫ2‖v0‖2L2

tL
4
x
.

Choosing ǫ small enough yields

‖u‖X(Qρ0 )
. ǫ.

Define another smooth compactly supported cut-off function φ1(x) ≤
φ0(x), with support in Bρ0 , and φ1 ≡ 1 on Bρ1(0), some 1

2
< ρ1 < ρ0 < 1 to

be chosen. Let v̂ := D2u, and v1 := φ1v̂.

Remark 5.1. We will be abusing notation from this point onwards. For
the pointwise operations and estimates we are actually considering the mixed
partial derivatives ∂k∂ju, j, k = 1, ..., 4 but we will be writing D2u all the same
without taking care to specify the matrix element at hand. In the end, we are
using standard matrix norms.

Differentiating (5.1), multiplying by φ2
1v̂, and integrating over space gives

1

2
∂t

∫

φ2
1v̂

2dx+

∫

φ2
1|∇v̂|2dx = 3

∫

φ2
1u

2v̂2dx

+ 6

∫

φ2
1uũ

2v̂dx+ 2

∫

φ1∇φ1 · v̂∇v̂dx.
(5.2)

Since by the previous step, ‖∇v0‖L2L2(Qρ0 )
. ǫ, we can find −1 < t1 < −ρ20

such that ‖∇v0(·, t1)‖L2(Bρ0 )
. ǫ (where the implied constant may depend on

ρ0), so that

‖φ1v̂(·, t1)‖L2 = ‖φ1D
2u(·, t1)‖L2 ≤ ‖∇v0(·, t1)‖L2(Bρ0 )

. ǫ.
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Integrating (5.2) in t from t1 to 0, and using the estimates from the previous
step:

‖v1‖2L∞

t L2 + ‖φ1∇v̂‖2L2
tL

2
x
. ‖φ0u‖2L∞L4‖v1‖2L2L4 + ‖v̂∇v̂φ1∇φ1‖L1

tL
1
x
+ ǫ2

+ ‖φ0u‖L∞L4‖v0‖L∞L4‖v0‖L2L4‖v1‖L2L4

. ǫ2‖v1‖2L2L4 + ǫ3‖v1‖L2L4

+ ‖φ1∇v̂‖L2L2‖∇φ1v̂‖L2L2 + ǫ2

where everywhere here the time interval is [t1, 0]. We have

∇v0 = φ0D
2u+∇φ0∇u = φ0v̂ +∇φ0ũ

and so

|φ0v̂| . |∇v0|+ |∇φ0ũ| ⇒ |∇φ1v̂| . |∇φ1

φ0

||φ0v̂| . |∇v0|+ |∇φ0ũ|.

Thus
‖∇φ1v̂‖L2L2 . ‖∇v0‖L2L2 + ǫ . ǫ.

By Young’s inequality once more, for some δ1 > 0 sufficiently small,

‖v1‖2L∞L2 + ‖φ1∇v̂‖2L2L2 . ǫ2‖v1‖2L2L4 + δ21‖φ1∇v̂‖2L2L2 + δ21‖v1‖2L2L4 +
ǫ2

δ21
.

Using Sobolev again as above, ‖v1‖2L∞L2 + ‖v1‖2L2L4 + ‖∇v1‖2L2L2 . ǫ. In
particular

‖D2u‖X(Qρ1 )
. ǫ.

This process can be iterated a given finite number of times, to show that
for given k > 0, there are ǫ0 = ǫ0(k), C = C(k), such that if ‖u‖L∞(Ḣ1∩L4)(Q1)

=

ǫ < ǫ0, then ‖Dku‖X(Q1/2) ≤ Cǫ.

We proceed now with the proof of Theorem 5.1.

Proof. Let us assume that the conclusion is false, i.e., T ∗ < +∞. Note first
that

λ(t) → +∞.

In fact, lim inf
t→T ∗−

√
T ∗ − t λ(t) > 0, since if

√
T ∗ − tnλ(tn) → 0 along a sequence

tn ր T ∗, by the compactness assumption (and up to subsequence)

vn(x) :=
1

λ(tn)
uc(tn,

x− x(tn)

λ(tn)
)

Ḣ1

−→ ∃ v(x) ∈ Ḣ1.
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Let T̂ > 0 be the maximal existence time for the solution of the Cauchy
problem (1.1) with initial data v(x). Define wn(t, x) to be the solutions
with initial data wn(x, tn) = vn(x) prescribed at time tn, and denote their
maximal lifespans as [tn, T

max
n ). By continuous dependence on initial data,

0 < T̂ ≤ lim inf(Tmax
n − tn). But from scaling:

Tmax
n − tn = Tmax

(

1

λ(tn)
uc(tn,

· − x(tn)

λ(tn)
)

)

= λ2(tn)T
max(uc(tn, ·))

= λ2(tn)(T
∗ − tn) → 0,

a contradiction.
By compactness in Ḣ1, and the continuous embedding Ḣ1 →֒ L4, for

every ǫ > 0, there is an Rǫ > 0 such that for all t ∈ I := [0, T ∗) :
∫

|x−x(t)|≥ Rǫ
λ(t)

(

|∇uc(t, x)|2 + |uc(t, x)|4
)

dx < ǫ. (5.3)

Fix any {tn} ⊂ [0, T ∗), tn ր T ∗, and let λn = λ(tn) → ∞ and {xn} =
{x(tn)} ⊂ R

4, so that (up to subsequence)

vn(x) =
1

λn
uc(

x− xn

λn
, tn)

Ḣ1

−→ v̄, for some v̄ ∈ Ḣ1,

and also in L4 by Sobolev embedding.
We also make and prove the following claim as in [34]

Claim 5.1. For any R > 0,

lim
n→∞

∫

|x|≤R

|uc(x, tn)|2dx = 0.

Proof.
∫

|x|≤R

|uc(x, tn)|2dx =

∫

|x|≤R

|λnvn(λnx+ xn)|2dx

=
1

λ2n

∫

|y−xn|≤λnR

|vn(y)|2dy =
1

λ2n
‖vn‖2L2(BλnR(xn))

.

Denoting Br := Br(0), for any ǫ > 0,

1

λ2n
‖vn‖2L2(BλnR(xn))

=
1

λ2n
‖vn‖2L2(BλnR(xn))∩BǫλnR) +

1

λ2n
‖vn‖2L2(BλnR(xn))∩Bc

ǫλnR).
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Using Hölder’s inequality, and the compactness, we get

1

λ2n
‖vn‖2L2(BλnR(xn))

.
1

λ2n
‖vn‖2L4(BλnR(xn)∩Bc

ǫλnR)|BλnR(xn)|
1
2

+
1

λ2n
‖vn‖2L4(R4)|BǫλnR|

1
2

.
|BλnR(xn)|

1
2

λ2n

(

‖vn − v̄‖2L4(R4) + ‖v̄‖2L4(BλnR(xn)∩Bc
ǫλnR)

)

+ ǫ2R2‖v̄‖2L4(R4)

. R2‖vn − v̄‖2L4(R4) +R2‖v̄‖2L4(Bc
ǫλnR) + ǫ2R2‖v̄‖2L4(R4)

. R2‖vn − v̄‖2L4(R4) +R2‖v̄‖2L4(Bc
ǫλnR) + ǫ2R2.

The first term goes to zero (as n → ∞) because of the compactness, the
second goes to zero (for fixed ǫ) since λn → ∞, and the last one is arbitrarily
small with ǫ.

We also prove that the center of compactness x(t) is bounded:

Proposition 5.1. sup
0≤t<T ∗

|x(t)| <∞.

Proof. We will first make the assumption that

E := inf
t∈[0,T ∗)

E(uc(t)) > 0, (5.4)

and later show that this is indeed the case for compact blowing-up solutions,
without any size restriction. Note that under the assumptions of our Theorem
1.1, i.e., in the below threshold case, we certainly have that E > 0. This can
be easily deduced by the variational estimates in Lemma 2.1 and the small
data theory.

The energy dissipation relation

E(u(t2)) +

∫ t2

t1

‖ut‖2L2 ds = E(u(t1)) ≤ E(u(0)) (5.5)

for t2 > t1 > 0 will be of use. We will assume for contradiction that there is
a sequence of times tn ր T ∗ : |x(tn)| → ∞.

Choose a smooth cut-off function ψ such that

ψ(r) =

{

0 if r ≤ 1
1 if r ≥ 2
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and define ψR(x) := ψ(
|x|
R

). Choosing any t0 ∈ (0, T ∗), we can find R0 ≥ 1

such that
∫

R4

(

1

2
|∇uc(t0)|2 −

1

4
(uc(t0))

4

)

ψR0(x)dx ≤ 1

4
E. (5.6)

Since |x(tn)| → ∞ and λ(tn) → ∞, for any ǫ > 0, B Rǫ
λ(tn)

(x(tn)) ⊂ Bc
2R0

for n

large enough, and so by (5.3):

lim
tրT ∗

∫

R4

(

1

2
|∇uc(t)|2 −

1

4
(uc(t))

4

)

ψR0(x)dx = E,

hence we can find a t1 ∈ (t0, T
∗) such that

∫

R4

(

1

2
|∇uc(t1)|2 −

1

4
(uc(t1))

4

)

ψR0(x)dx ≥ 1

2
E. (5.7)

Combining (5.6) and (5.7):

∫ t1

t0

d

dt

∫

R4

(

1

2
|∇uc(t)|2 −

1

4
(uc(t))

4

)

ψR0(x)dxdt ≥
1

4
E. (5.8)

On the other hand:

d

dt

∫

R4

(

1

2
|∇uc(t)|2 −

1

4
(uc(t))

4

)

ψR0(x)dx =

∫

R4

(

∇uc · ∇(uc)t − u3c(uc)t
)

ψR0(x)dx

=

∫

R4

(∇uc · ∇(uc)t − ((uc)t −∆uc)(uc)t)ψR0(x)dx

= −
∫

R4

(uc)
2
tψR0 dx−

∫

R4

(uc)t∇uc · ∇ψR0 dx .

∫

R4

|(uc)t||∇uc| dx,

since |∇ψR0(x)| .
1

R0

≤ 1. So by Hölder,

∫ t1

t0

d

dt

∫

R4

(

1

2
|∇uc(t)|2 −

1

4
(uc(t))

4

)

ψR0(x)dxdt

. ‖∇uc‖L∞

t L2

√
t1 − t0 ‖(uc)t‖L2L2[t0,t1]×R4

. ‖(uc)t‖L2L2([t0,T ∗)×R4)

(5.9)
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where we have uniformly bounded the kinetic energy of uc by once more
employing the compactness. Combining (5.8) and (5.9) yields:

0 <
1

4
E . ‖(uc)t‖L2L2([t0,T ∗)×R4) → 0 as t0 ր T ∗ (5.10)

by the energy dissipation relation (5.5), a contradiction.
Now we show (5.4). Choose a smooth cut-off function φ such that

φ(r) =

{

1 if r ≤ 1
0 if r ≥ 2

and define φR(x) := φ( |x|
R
), and

IR(t) :=
1

2

∫

(uc(x, t))
2φR(x)dx, t ∈ [0, T ∗).

We then have

I ′R(t) =

∫

φR((uc)
4 − |∇uc|2)dx−

1

R

∫

uc∇uc · ∇φ(
x

R
)dx

and by Sobolev, Hardy and the compactness, we can immediately deduce
that

|I ′R(t)| ≤ C,

C a constant. Integrating from t0 to T ∗ > t > t0 ≥ 0:

|IR(t)− IR(t0)| ≤ C(t− t0).

By Claim 5.1, we get that IR(t) → 0 as t→ T ∗, for all R > 0. Hence

IR(t0) ≤ C(T ∗ − t0).

Since this bound is uniform in R, by taking R → ∞, we conclude uc(t0) ∈ L2,
and so indeed uc(t) ∈ L2, t ∈ [0, T ∗). Moreover defining

I(t) :=
1

2

∫

|uc(t, x)|2dx,

we conclude that
I(t) ≤ C(T ∗ − t). (5.11)
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Now the L2-dissipation relation (3.3) gives

I ′(t) = −
∫

(

|∇uc|2 − |uc|4
)

dx = −K(uc(t)),

K(u) :=

∫

(

|∇u|2 − |u|4
)

dx = 2E(u)− 1

2

∫

|u|4dx.

Now for any sequence {tn}n ր T ∗, let (up to subsequence)

1

λ(tk)
uc(

x− xk

λ(tk)
, tk)

Ḣ1

−→ v̄ ∈ Ḣ1.

Proceeding by contradiction, we suppose E ≤ 0. If so,

K(v̄) = lim
k→∞

K(uc(tk)) = 2E − 1

2

∫

|v̄|4 ≤ −1

2

∫

|v̄|4 < 0,

since v̄ ≡ 0 would contradict the assumption T ∗ <∞. So

I ′(tk) = −K(uc(tk)) → −K(v̄) > 0.

Thus I ′(t) > 0 for all t sufficiently close to T ∗; otherwise, we could find a
subsequence along which I ′ ≤ 0, and the preceding argument would provide
a contradiction. So I(t) is increasing for t near T ∗, which contradicts (5.11).

Thus we have shown that E > 0, completing the proof that |x(t)| remains
bounded.

Since |x(t)| remains bounded while λ(t)
t→T ∗

−−−→ ∞, by the compactness we
can find an R0 > 0 large enough such that for all x, |x| ≥ R0 :

‖uc‖L∞

t Ḣ1
x∩L∞

t L4
x(ΩT∗ ) < ǫ0,

where ΩT ∗ := (0, T ∗)× B√
T ∗(x0).

By an appropriate scaling and shifting argument, the Regularity Lemma 5.1
shows that uc is smooth on Ω := (R4 \ BR0(0)) × [3

4
T ∗, T ∗], with uniform

bounds on derivatives. Since u is continuous up to T ∗ outside BR0 , Claim 5.1
implies that uc(x, T

∗) ≡ 0, in the exterior of this ball. Since uc is bounded
and smooth in Ω, an application of the Backwards Uniqueness Theorem 5.2
implies that uc ≡ 0 in Ω. Define Ω̃ := R

4 × (3
4
T ∗, 7

8
T ∗]. Applying the Unique

Continuation Theorem 5.3 on a cylinder of sufficiently large spatial radius,
centered at a point of Ω, implies uc ≡ 0 in Ω̃. By the uniqueness guaran-
teed by the local wellposedness theory we get that uc ≡ 0, which contradicts
(4.21).
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6 Blow-up

In this section we give criteria on the initial data which ensure that the
corresponding solutions blow-up in finite-time.

The following result is well-known [39, 3, 8] but we give the proof for the
convenience of the reader.

Proposition 6.1. Solutions of

ut = ∆u+ |u|p−1u, 1 < p ≤ 2∗ − 1 =
d+ 2

d− 2

u(x, 0) = u0(x) ∈ H1(Rd)
(6.1)

with

E(u0) :=

∫

Rd

(

1

2
|∇u0|2dx−

1

p+ 1
|u0|p+1

)

dx < 0

must blow-up in finite-time, in the sense that there is no global solution u ∈
C([0,∞);H1(Rd)).

Notice that we can always find such initial data, e.g., if u0 = λf, f ∈
H1(Rd) we can force negative energy by taking λ large.

Proof. We first derive some identities satisfied as long as a solution remains
regular.

Multiplying the equation (6.1) first by u and then by ut and integrating
by parts we obtain the L2-dissipation relation

d

dt

(

1

2

∫

Rd

|u|2dx
)

=

∫

Rd

|u|p+1dx−
∫

Rd

|∇u|2dx =: −K(u) (6.2)

and the energy dissipation relation
∫

Rd

|ut|2dx =
d

dt

(

1

p+ 1

∫

Rd

|u|p+1dx− 1

2

∫

Rd

|∇u|2dx
)

= − d

dt
E(u(t)).

(6.3)
For convenience we define J(t) := −E(t) and hence by (6.3) we have that

J ′(t) :=

∫

Rd

|ut|2dx ≥ 0 and by the assumption on the energy J(0) > 0. It

will be also useful to write J(t) as

J(t) = J(0) +

∫ t

0

∫

Rd

|ut|2dxdt. (6.4)
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Define

I(t) =

∫ t

0

∫

Rd

|u|2dxdt+ A (6.5)

with A > 0, to be chosen later. With this definition

I ′(t) =

∫

Rd

|u|2dx (6.6)

and

I ′′(t) = 2

(
∫

Rd

|u|p+1dx−
∫

Rd

|∇u|2dx
)

. (6.7)

Since p > 1, δ := 1
2
(p−1) > 0; a comparison with the energy functional yields

I ′′(t) ≥ 4(1 + δ)J(t) = 4(1 + δ)

(

J(0) +

∫ t

0

∫

Rd

|ut|2dxdt
)

. (6.8)

We can also rewrite

I ′(t) =

∫

Rd

|u|2dx =

∫

Rd

|u0|2dx+ 2Re

∫ t

0

∫

Rd

ūutdxdt.

For any ǫ > 0 the Young and Hölder inequalities give

(I ′(t))2 ≤ 4(1+ǫ)

(
∫ t

0

∫

Rd

|u|2dxdt
)(

∫ t

0

∫

Rd

|ut|2dxdt
)

+(1+
1

ǫ
)

(
∫

Rd

|u0|2dx
)2

(6.9)
Combining (6.8),(6.4),(6.9), for any α > 0 we obtain:

I ′′(t)I(t)− (1 + α)(I ′(t))2 ≥ 4(1 + δ)

[

J(0) +

∫ t

0

∫

Rd

|ut|2dxdt
] [
∫ t

0

∫

Rd

|u|2dxdt+ A

]

− 4(1 + ǫ)(1 + α)

[
∫ t

0

∫

Rd

|u|2dxdt
] [
∫ t

0

∫

Rd

|ut|2dxdt
]

− (1 +
1

ǫ
)(1 + α)

[
∫

Rd

|u0|2dx
]2

.

(6.10)

Choose α, ǫ small enough for 1 + δ ≥ (1 + α)(1 + ǫ). Since J(0) > 0 picking
A large enough we can ensure I ′′(t)I(t) − (1 + α)(I ′(t))2 > 0. But this is
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equivalent to
d

dt

(

I ′(t)

Iα+1(t)

)

> 0 which in turn implies I′(t)
Iα+1(t)

>
I′(0)

Iα+1(0)
=: ã

for all t > 0. Integrating I ′(t) > ãIα+1 gives

1

α

(

1

Iα(0)
− 1

Iα(t)

)

> ãt ⇒ Iα(t) >
Iα(0)

1− Iα(0)αãt
→ ∞

as t → 1
Iα(0)αã

= 1
Aααã

=: t̂. This in turn implies that lim sup
t→t̂−

‖u‖L2 = ∞,

showing that the solution cannot be globally in CtH
1. Note also that (6.2)

implies lim sup
t→t̂−

‖u‖Lp+1 = ∞.

We present a refinement in the critical case which includes some positive
energy data, and in particular establishes Theorem 1.2. So consider now
equation (1.9), for which

E(u) =

∫

Rd

(

1

2
|∇u|2 − 1

2∗|u|
2∗
)

dx.

Proposition 6.2. Let u0 ∈ H1(Rd) such that

E(u0) < E(W ) and ‖∇u0‖L2 ≥ ‖∇W‖L2 . (6.11)

Then the corresponding solution u to (1.9) blows up in finite time. That is,
Tmax(u0) (coming from the Ḣ1 local theory as in Theorem (2.1)) is finite.

Proof. We will give a sketch of the proof, which is largely a modification of
the proof of the previous proposition.

By the Sobolev inequality (1.5),

E(u) =
1

2

∫

Rd

|∇u|2dx− 1

2∗

∫

Rd

|u|2∗dx ≥ 1

2
‖∇u‖2L2 − 1

2∗
‖W‖2∗L2∗

‖∇W‖2∗L2

‖∇u‖2∗L2 .

(6.12)

We define f(y) :=
1

2
y − 1

2∗C
2∗y

2∗
2 , C =

‖W‖L2∗

‖∇W‖L2
= ‖∇W‖−

2
d

L2 , so that by

energy dissipation and (6.11),

f(‖∇u‖2L2) ≤ E(u) ≤ E(u0) < E(W ). (6.13)

It is straightforward to verify that f(y) is concave for y ≥ 0 and attains
its maximum value f(‖∇W‖2L2) = E(W ) = 1

d
‖∇W‖2L2 at y = ‖∇W‖2L2 .
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Furthermore, it is strictly increasing on [0, ‖∇W‖2L2 ] and strictly decreasing
on [‖∇W‖2L2 ,+∞). Denote the inverse function of f on [‖∇W‖2L2 ,+∞) as

e = f−1 : (−∞, E(W )] → [‖∇W‖2L2 ,+∞),

strictly decreasing. By (6.13) and (6.11) then,

‖∇u(t)‖2L2 ≥ e(E(u(t)).

By the definitions of K = K(u) and the energy E = E(u)

−K(u) = −
∫

Rd

|∇u|2dx+
∫

Rd

|u|2∗dx =
2

d− 2

∫

Rd

|∇u|2dx− 2∗E(u)

≥ 2

d− 2
(e(E)− dE) =: g(E).

Note that g(E(W )) = 0 and for E < E(W ), g(E) > 0 and g′(E) =
2

d−2
e′(E)− 2∗ < −2∗. Defining I(t) as in (6.5):

I ′′(t) = −2K(u) ≥ 2g(E(u)) > 0.

By the Fundamental Theorem of Calculus and the energy dissipation relation,

2g(E(u)) = 2g(E(u0)) + 2

∫ t

0

|g′(E(u(s)))|
∫

Rd

|ut|2dxds.

One can now repeat the proof of Proposition 6.1 replacing (6.8) by

I ′′(t) ≥ 4(1+δ)J(t) = 4(1+δ)

(

2g(E(u0)) +

∫ t

0

2|g′(E(u(s)))|
∫

Rd

|ut|2dxds
)

(6.14)
Since g(E(u0)) > 0, we can proceed exactly as in the proof of the previous
Proposition to conclude that if Tmax = ∞, then we must have lim sup

t→t̂−
‖u(t)‖L2 =

∞ for some t̂ <∞, which by (6.6) implies lim sup
t→t̂−

‖u(t)‖L2∗ = ∞, and so by

Sobolev, lim sup
t→t̂−

‖∇u(t)‖L2 = ∞, contradicting Tmax <∞.
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