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GLOBAL SOLUTIONS FOR THE CRITICAL,

HIGHER-DEGREE COROTATIONAL HARMONIC MAP

HEAT FLOW TO S2

STEPHEN GUSTAFSON AND DIMITRIOS ROXANAS

Abstract. We study m-corotational solutions to the Harmonic
Map Heat Flow from R2 to S2. We first consider maps of zero
topological degree, with initial energy below the threshold given
by twice the energy of the harmonic map solutions. For m ≥ 2,
we establish the smooth global existence and decay of such solu-
tions via the concentration-compactness approach of Kenig-Merle,
recovering classical results of Struwe by this alternate method. The
proof relies on a profile decomposition, and the energy dissipation
relation. We then consider maps of degree m and initial energy
above the harmonic map threshold energy, but below three times
this energy. For m ≥ 4, we establish the smooth global existence
of such solutions, and their decay to a harmonic map (stability),
extending results of Gustafson-Nakanishi-Tsai to higher energies.
The proof rests on a stability-type argument used to rule out finite-
time bubbling.
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1. Introduction and Results

The harmonic map heat flow into S2 is given by the equation

ut = ∆u+ |∇u|2u, u(0, x) = u0(x) (1.1)

where for t ≥ 0,

u(t, ·) : R2 → S
2,

S
2 := {u = (u1, u2, u3) : |u| = 1} ⊂ R

3,

is the unit 2-sphere, ∆ denotes the Laplace operator in R2, and |∇u|2 =
2
∑

j=1

3
∑

i=1

(
∂ui
∂xj

)2. Equation (1.1) is the L2-gradient flow of the energy

functional

E(u) = 1

2

∫

R2

|∇u|2dx

for such maps. Taking formally the scalar product of the PDE with ut

and integrating over [0, t)× R2, we obtain

E(u(t, ·)) +
∫ t

0

∫

R2

|ut|2 = E(u0)

which implies that the energy is non-increasing. A more geometric way
to write (1.1) is

ut =

2
∑

j=1

Dj∂ju = P u∆u,

where P u denotes the orthogonal projection from R3 onto the tangent
plane

TuS
2 := {ξ ∈ R

3 : ξ · u = 0}
to S2 at u, ∂j =

∂
∂xj

is the usual partial derivative and Dj the covariant

derivative acting on vector fields ξ(x) ∈ Tu(x)S
2 :

Djξ := P u∂jξ = ∂jξ − (∂jξ · u)u = ∂jξ + (∂ju · ξ)u.
The harmonic map heat flow between Riemannian manifolds was

introduced by Eells-Sampson [16] to study harmonic maps, which are
its static solutions. Equation (1.1), where the target manifold is S2,
is, in addition, physically relevant as the purely diffusive case of the
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Landau-Lifshitz equations of ferromagnetism [35]. The setting of a two-
dimensional domain is therefore of physical importance, but is also
analytically interesting as the energy-critical one: the scaling u(x) 7→
u(λx) leaves both the equation and the energy invariant

E(u(·)) = E(u( ·
λ
)),

and so this is the borderline case for smooth global existence versus
possible singularity formation.
The question of singularity formation and characterization of possi-

ble blow-up has attracted a lot of attention. On a compact manifold
domain, Struwe [46] constructed a global weak solution whose singu-
larities occur through energy concentration at a finite number of space-
time points, at each of which a non-trivial harmonic map bubbles off:
for tn ր T ,

u(tn, an + λ(tn)x) → Q(x), λ(tn) → 0, an → a, Q harmonic

locally in space. Later work [38, 15, 39, 48, 49] (see also the book
[36]) showed that at a singularity, all the energy is accounted for by
the bubbles and the the weak limit (body map), and therefore that the
solution converges strongly to the body map, after all the bubbles are
removed.
Working in the subclass of the m-corotational solutions with m = 1,

on a disk, [10] showed that, indeed, finite time blow-up does occur in
some situations, using the sub-solution method. Formal analysis [4],
and later rigorous constructions [40, 41], show that for 1-corotational
maps described by the azimuthal angle u(r, t), approaching a blow-up
time tր T ,

u(t, r)−Q(
r

λ(t)
) → u∗ in Ḣ1,

λ(t) = c(u0)(1 + ot→T (1))
(T − t)L

| log(T − t)| 2L
2L−1

, c(u0) > 0,

where Q corresponds to the unique (up to scaling) harmonic map in
this class, and L ∈ Z+, with L = 1 providing the generic blow-up rate.
See also [14] for a related recent result, and [5, 6, 20, 21] concerning
the breakdown of solutions in higher (supercritical) dimensions.
On the other hand, Grotowski-Shatah [23], using maximum principle

methods, showed that on the unit disc in R2, m-corotational solutions
will not blow-up in finite-time for degrees m ≥ 2, given certain point-
wise bounds on the initial data. One of our goals is to extend this result
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to the domain R2, and, more importantly, to give amaximum principle-
free proof, which one can therefore hope might extend to systems such
as the Landau-Lifshitz equations.
In this work we specialize to m-co-rotational maps: in polar coordi-

nates,

u(t, (r, θ)) = (cos(mθ) sin(u(t, r)), sin(mθ) sin(u(t, r)), cos(u(t, r))).

for which (1.1) reduces to the problem

ut = urr +
1

r
ur −m2 sin 2u

2r2
, u(0, r) = u0(r) (1.2)

for the angle u(t, r). Without loss of generality we assume m > 0.
Defining

∆ru = urr +
1

r
ur, the radial Laplacian in R

2,

∆mu = (∆r −
m2

r2
)u,

we may write (1.2) as

ut = (∆r −
m2

r2
)u+

m2

r2
(u− sin 2u

2
)

= ∆mu+ F (u), F (u) =
m2

r2
(u− sin 2u

2
).

The energy for these maps is given by

E(u) = 2πE(u), E(u) :=
1

2

∫ ∞

0

(u2r +m2 sin
2(u)

r2
)rdr.

Note that finite energy requires

lim
r→0, ∞

u(r) ∈ πZ,

and indeed the assumption of finite energy is sufficient to guarantee the
existence of these above limits (e.g.,[25]). Form-corotational maps, the
classical energy lower-bound by the topological degree reads

E(u) =
1

2

∫ ∞

0

(

ur ±
m

r
sin(u)

)2

rdr ±m

∫ ∞

0

(cos(u))r dr

≥ 1

2

∫ ∞

0

(

ur ±
m

r
sin(u)

)2

rdr +m| cos(u(∞))− cos(u(0))|

≥ 2 |degree(u)|
(1.3)
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for the appropriate choice of ± sign. The m-corotational stationary
solutions – corresponding to the harmonic maps – are the functions
saturating this inequality, given by

Q(r) = π − 2 arctan(rm), Qr +
m

r
sin(Q) = 0, Q(0) = π, Q(∞) = 0

(1.4)
and their scalings Q( r

s
), s > 0, as well as the negatives and shifts

by πZ of these. Since these harmonic maps each minimize the energy
within their topological class, they provide natural thresholds for global
smoothness and decay vs. singularity formation.
In light of the above considerations, we make the following defini-

tions:
E0 := {u : [0,∞) → R | E(u) < 2E(Q), lim

r→0+
u(r) = 0, lim

r→∞
u(r) = 0},

E1 := {u : [0,∞) → R | E(Q) ≤ E(u) ≤ 3E(Q), lim
r→0+

u(r) = π, lim
r→∞

u(r) = 0}.

and note that

u ∈ E0 =⇒ degree(u) = 0, min
u∈E0

E(u) = E(0) = 0,

u ∈ E1 =⇒ degree(u) = m, min
u∈E1

E(u) = E(Q) = 2m.

Our first result concerns solutions in the “below-threshold” class E0:

Theorem 1.1. Assuming u0 ∈ E0, and m ≥ 2, (1.2) has a unique solu-
tion u(t, r), which is global in time, smooth, and decays: E(u(t, ·)) → 0
and sup

r
|u(t, r)| → 0, as t→ ∞.

The main purpose here is to give a proof which follows Kenig-Merle’s
concentration-compactness strategy [31], originally developed for (and
widely applied to) dispersive problems, but relevant also to certain
diffusive ones [17, 18, 30, 29]. The method is well-suited to the non-
compact domain, and, more pertinently, provides an alternative ap-
proach to the classical theory of Struwe and successors.
We first establish a local well-posedness theory for solutions of (1.2)

in E0 which parallels that for (say) the energy-critical nonlinear Schrö-
dinger equation, and differs from that appearing in the classical para-
bolic literature. Then the key tools for the concentration-compactness
strategy are a stability-under-small-perturbations variant of the local
theory, and a profile decomposition for an Ḣ1-like space, adapted to the
heat flow. A profile decomposition directly applicable to our setting
was not readily available, stemming from the absence of some Sobolev
embeddings in dimension two. So we take an indirect approach, first es-
tablishing estimates on the linear evolution in higher dimensions, which
then connect back to our problem through a change of variable.
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For applications of the concentration-compactness approach to other
(below threshold) geometric problems we refer, for instance, to [12] in
the context of Wave Maps, and to [2, 3, 27] for Schrödinger Maps. A
more comprehensive review of the literature can be found in [42].
To put our results in the “above-threshold” class E1 into context, we

first recall results from the series of papers [25, 26, 24, 28] which apply
to the m-corotational heat-flow (1.2), but more generally to solutions
of the Landau-Lifshitz family of equations

ut = a
(

∆u+ |∇u|2u
)

+ b u×∆u, u(0, x) = u0(x), a ≥ 0, b ∈ R

(1.5)
of degree m, with equivariant symmetry. For higher degrees, the m-
equivariant harmonic maps are shown to be asymptotically stable in the
strong sense that if the initial data has near-minimal (harmonic) energy
given the degree, the solution is globally smooth and asymptotically
converges to a nearby harmonic map:

Theorem 1.2. ([28]). Assume u0 is of degree m ≥ 3 with equivariant
symmetry, and

E(u0)− 4πm≪ 1.

Then the solution of (1.5) is globally regular (continuous into the energy
space) and there exists a harmonic map Q close to u0 (in the energy
norm) such that

‖u(t, ·)−Q‖L∞ + aE(u(t, ·)−Q) → 0, as t→ ∞.

Remarks:

• in the dissipative case (a > 0) these solutions are converging to
a harmonic map in the energy norm, while this is impossible
for the conservative case a = 0, known as the Schrödinger flow;

• the case m = 3 is significantly more complex that m ≥ 4,
in particular requiring a normal form-type argument ([28]) to
establish the asymptotic behaviour – for this reason we consider
only m ≥ 4 here;

• for the m = 2 corotational heat-flow, the above conclusion is
false: solutions are still global, but may exhibit blow-up in in-
finite time, or other complex behaviours ([28]);

• for m = 1, near-minimal energy solutions may exhibit finite-
time blow-up ([40, 41]).

Our main result is to extend this theorem, for the corotational heat-
flow, beyond the perturbative regime to the higher energy maps in E1:

Theorem 1.3. Assuming u0 ∈ E1 and m ≥ 4, (1.2) has a unique solu-
tion, which is global in time, smooth, and converges to a harmonic map:
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for some s > 0, E(u(t, ·)−Q(r/s)) → 0 and sup
r

|u(t, r)−Q(r/s)| → 0,

as t→ ∞.

We would like to emphasize here that solutions in this class are not
prohibited from forming a singularity by either energetic or topologi-
cal constraints – that these solutions remain globally smooth does not
follow from any classical theory.
The main point is to exclude the possibility of finite-time blowup.

As in [46], if the solution blows-up in finite time, it does so by bubbling
off a non-trivial harmonic map. The corotational symmetry (and finite
energy) ensures the only possible concentration points are r = 0 and
r = ∞. Finite-time energy concentration at spatial infinity is ruled out
using the energy dissipation relation. The condition E(u0) ≤ 3E(Q)
ensures only one bubble may form, and so following [38], if u(t, ·) ∈ E1

is a solution blowing up at time T , there exists a sequence of times
tn ր T , scales sn ց 0, and a function w0 ∈ E0 such that ξ(tn, ·) :=
u(tn, ·) − Q( ·

sn
) − w0 → 0 in the energy norm. This is contradicted

by adapting the modulation theory and linearized (about Q) evolution
estimates of [28] to estimate ξ(tn, ·), and show sn 6→ 0. We exploit
the fact that in certain space-time norms, the nonlinear interaction of
Q( r

sn
) and the (smooth, global) solution emanating from data w0 is

small on small time intervals.
The remaining impediment is possible infinite-time concentration.

But in that scenario, the energy must approach the minimal energy
E(Q), and so it is excluded by [28].
We emphasize that the proof does not in any way rely on the max-

imum principle. Therefore, the result may be extended beyond the
corotational class to the (larger) equivariant class, and even to the
Landau-Lifshitz equations (1.5) (work in progress).

2. Heat-Flow Below Threshold

In this section we prove Theorem 1.1 on the “below-threshold” solu-
tions of the corotational heat-flow.

2.1. Analytical ingredients.

2.1.1. Energy properties of maps in E0. We begin by showing the func-
tion class E0 is naturally endowed with the energy-space norm

‖u‖2X2 =

∫ ∞

0

(

u2r +m2u
2

r2

)

rdr,
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in the following sense: given δ1 > 0, there is C = C(δ1) > 0 such that

u ∈ E0, E(u) ≤ 2E(Q)− δ1 =⇒ 1

C
‖u‖2X2 ≤ E(u) ≤ C‖u‖2X2.

This follows directly from a version of the topological lower bound (1.3)
localized to intervals:

Lemma 2.1. If u ∈ E0, with E(u) ≤ 2E(Q) − δ1, for some δ1 > 0,
there is δ2 = δ2(δ1) > 0 such that

|u(r)| ≤ π − δ2.

Proof. As in [44, 12] we define

G(u) :=

∫ u

0

m| sin(s)|ds

and

Er2
r1
(u) :=

1

2

∫ r2

r1

(u2r +
m2 sin2(u)

r2
)rdr.

Then for all 0 ≤ r1 < r2 < ∞, by the Fundamental Theorem of
Calculus and Young’s inequality:

|G(u(r2))−G(u(r1))| =
∣

∣

∣

∣

∫ r2

r1

∂

∂r
G(u(r))dr

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ r2

r1

m| sin u|urdr
∣

∣

∣

∣

≤ 1

2

∫ r2

r1

(
m2 sin2(u)

r2
+ u2r)rdr ≤ Er2

r1
(u)

(2.1)

For u ∈ E0, G(u(∞)) = G(0) = 0 and G(u(0)) = G(π) = 0. From
(2.1) for any r > 0:

|G(u(r))| = |G(u(r))−G(u(0))| ≤ Er
0(u)

and

|G(u(r))| = |G(u(∞))−G(u(r))| ≤ E∞
r (u).

Thus

|G(u(r))| ≤ 1

2
E(u) ≤ 1

2
(2E(Q)− δ1) = 2m− δ1

2
.

G is odd, increasing on [−π, π], and G(π) = 2m, so

|u(r)| ≤ G−1(2m− δ1
2
) =: π − δ2, δ2 > 0.

�

We remark that due to the boundary conditions, E0 contains no non-
trivial static solutions (corresponding to harmonic maps) since these
are all monotone (1.4).
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2.1.2. Local well-posedness for maps in E0. From now on, unless oth-
erwise specified, all norms will be for functions defined on (0,∞), with
the measure rdr We define spaces rLp via norm

‖u‖rLp :=
∥

∥

∥

u

r

∥

∥

∥

Lp
,

and Xp via norms

‖u‖pXp := ‖ur‖pLp +mp‖u‖prLp, ‖u‖X∞ = ‖ur‖L∞ + ‖u‖rL∞.

Recall we may write the m-corotational heat-flow (1.2) for initial
data u0 ∈ E0 as

{

ut = ∆mu+ F (u)
u(0) = u0 ∈ X2 (2.2)

where ∆m = ∆r − m2

r2
and F (u) = m2

r2
(u − sin 2u

2
). We will say that

a function u : I × R → R, I = [0, T ), is a solution to (2.2) on I if
u ∈ CtX

2
r ∩ L4

t rL
4
r(K) for every compact K ⊂ I, and for every t ∈ I

u(t) = et∆mu0 +

∫ t

0

e(t−s)∆mF (u(s))ds.

We summarize the local theory:

Theorem 2.1. (Local well-posedness)

(1) (Local Existence) Let u0 ∈ X2 There exists an ǫ > 0 such that if
I = [0, T ) and ‖et∆mu0‖L4

t (I;rL
4) < ǫ, then there exists a unique

solution to (2.2), which moreover satisfies ‖u‖L4
t (I;rL

4) ≤ 2ǫ. To
each initial datum u0 we can associate a maximal time interval
I = [0, T

max
(u0)) on which there is a solution (T

max
(u0) may be

+∞).
(2) (Blow-up Criterion) T

max
(u0) < +∞ =⇒ ‖u‖L4

t ([0,Tmax(u0));rL4
r)
=

+∞.
(3) (Energy dissipation) ut ∈ L2

t ([0, Tmax(u0));L
2) and for each t <

Tmax(u0),

E(u(t)) +

∫ t

0

∫ ∞

0

u2t (s)rdr ds = E(u0).

(4) (Decay) If T
max

(u0) = +∞ and ‖u‖L4
t ([0,∞);rL4

r)
< +∞, then

‖u(t)‖X2 → 0 as t→ +∞.
(5) (Small data) If ‖u0‖X2 is sufficiently small, then Tmax(u0) = ∞

and ‖u‖L4
t ([0,∞);rL4

r)
. ‖u0‖X2; in particular ‖u(t)‖X2 → 0.

(6) (Continuous Dependence) T
max

is a lower semi-continuous func-
tion of u0 ∈ X2, and u0 → u(t, ·) is continuous on X2.
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This local well-posedness rests on space-time estimates for the linear
evolution et∆m . The decay estimate

‖et∆mφ‖Lp . t−(1/a−1/p)‖φ‖La, 1 ≤ a ≤ p ≤ ∞ (2.3)

is an immediate consequence of Young’s inequality and the explicit heat
kernel.
For φ = φ(r), f = f(t, r), the space-time estimates

m ≥ 2 : ‖et∆mφ‖S . ‖φ‖X2 ‖
∫ t

0

e(t−s)∆mf(s)ds‖S . ‖f‖L1
tX

2+L2
tX

1

(2.4)
where

‖u‖S := ‖u‖L∞

t X2 + ‖u‖L2
tX

∞ + ‖u‖L2
t r2L2 + ‖ur‖L2

tX
2

follow from the standard heat equation energy estimate for the derived
function∇

(

eiθu(t, r)
)

, and an interpolation estimate ([24]). We remark
that this procedure only yields the endpoint spaces u ∈ L2

tX
∞∩L2

t r
2L2,

ur ∈ L2
tX

2 under the restriction m ≥ 2. For m = 1, the estimate still
holds if these spaces are replaced by some Lr

tX
p with 1

r
+ 1

p
= 1

2
,

p < ∞, and this suffices for the local well-posedness. However, for
m = 1, the endpoint space would be required below in the profile
decomposition argument. That is the reason we impose m ≥ 2 here,
and in Theorem 1.1.
Given the space-time estimates (2.4), together will the elementary

pointwise inequalities

|1
r
F (u)| . 1

r3
|u|3, |∂rF (u)| .

1

r3
|u|3 + 1

r2
u2|ur| (2.5)

on the nonlinearity, the proof of the local well-posedness is a standard
variant of the corresponding proof for the critical NLS, based on the
Banach fixed-point theorem (see [9]). So we will omit most of the
details (which can be found in [42]), and just indicate how to establish
decay of global solutions with finite space-time norm.
Proof of the decay of global solutions: assuming ‖u‖L4rL4([0,∞) < ∞,

we first show that also ‖u‖S([0,∞)) < ∞. For a given ǫ̃ (to be chosen
small), subdivide the interval [0,∞) into a finite number of intervals
Ij = [tj , tj+1) so that ‖u‖L4rL4(Ij) ≤ ǫ̃. For t ∈ Ij , by the Duhamel
formula,

u(t) = e(t−tj )∆mu(tj) +

∫ t

tj

e(t−s)∆mF (u(s))ds.

Using (2.4), (2.5), and Hölder’s inequality, we arrive at

‖u‖S(Ij) ≤ C‖u(tj)‖X2+C‖u‖S(Ij)‖u‖2L4rL4(Ij)
≤ C‖u(tj)‖X2+Cǫ̃2‖u‖S(Ij).
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Choosing ǫ̃ such that Cǫ̃2 ≤ 1
2
yields

‖u‖S(Ij) ≤ 2C‖u(tj)‖X2 .

Since there are only finitely many Ij, it follows that ‖u‖S([0,∞)) < ∞.
So in particular, for any ǫ > 0, there is a T > 0 such that

‖u‖3S([T,+∞)) ≤ ǫ.

By the Duhamel formula, for t ≥ T ,

u(t) = e(t−T )∆mu(T ) +

∫ t

T

e(t−s)∆mF (u)ds.

By (2.4) and (2.5) as above,
∥

∥

∥

∥

∫ t

T

e(t−s)∆mF (u)ds

∥

∥

∥

∥

S([T,∞))

. ‖F (u)‖L4/3([T,∞);X4/3) . ‖u‖3S([T,∞)) . ǫ.

As well,

‖e(t−T )∆mu(T )‖X2 → 0 as t→ ∞,

by (2.3) and the density of X1 ∩X2 in X2. Therefore

lim sup
t→∞

‖u‖X2 . ǫ.

Since ǫ was arbitrary, the result follows. �

Remark 2.1. Uniform decay follows from energy space decay by the
elementary embedding X2 ⊂ L∞:

‖u(t)‖X2 → 0 =⇒ ‖u(t)‖L∞ . ‖u(t)‖X2 → 0.

Notice that our local theory combined with the previous section on
the equivalence of the X2 and the energy topology implies that if u0 ∈
E0, the boundary conditions persist in time, i.e. u(t, ·) ∈ E0 throughout
its lifespan.

2.1.3. Stability under perturbations. An important extension of the lo-
cal existence theory is the following “perturbation” or “stability” the-
orem. This type of result, which establishes the existence of a solution
to (2.2) nearby a given approximate one, goes back to [11, 47], and is
by now standard. We use the following version (for a proof see [42]):

Theorem 2.2. (Stability) Let I = [0, T ) and let ũ be defined on I ×
[0,∞) with

‖ũ‖L∞(I;X2) ≤ M, ‖ũ‖L4(I;rL4) ≤ L

for some M,L > 0, and set

e := ũt −∆mũ− F (ũ)
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Let u0 ∈ X be such that

‖u0 − ũ(·, 0)‖X2 ≤M ′

for some M ′ > 0. There is ǫ1 = ǫ1(M,M ′, L) > 0 such that if for some
0 < ǫ ≤ ǫ1 the smallness conditions

‖et∆m(u0 − ũ(0, ·)‖L4(I;rL4) ≤ ǫ

‖e‖L4/3(I;rL4/3) ≤ ǫ

hold, then there exists a solution of (2.2) with u(0) = u0 satisfying

‖u− ũ‖L4rL4(I) ≤ C(M ′,M, L)M ′.

2.2. Profile decomposition. The following proposition is the main
tool (together with the stability theorem above) in the concentration-
compactness approach to establishing global existence and decay. The
idea of a profile decomposition is to characterize the loss of compactness
in some embedding, and to recover some compactness. It can be traced
back to [37, 7, 45, 43] and their modern “evolution” counterparts [1,
31, 32].

Proposition 2.1. Let {un}n be a bounded sequence of radial functions
in X2. Then, after possibly passing to a subsequence (in which case, we
rename it un again), there exist a family of radial functions {φj}∞j=1 ⊂
X2 and scales λjn > 0 such that for each J ≥ 1,

un(x) =
J
∑

j=1

φj(
x

λjn
) + wJ

n(x),

where wJ
n ∈ X2 is such that

lim
J→∞

lim sup
n→∞

‖et∆mwJ
n‖L4

t rL
4
r
= 0, (2.8)

wJ
n(λ

j
nx)⇀ 0 in X2, ∀j ≤ J. (2.9)

Moreover, the scales are asymptotically orthogonal in the sense that

λjn
λin

+
λin
λjn

→ +∞, ∀i 6= j. (2.10)

Furthermore, for all J ≥ 1 we have the following decoupling properties:

‖un‖2X2 =
J
∑

j=1

‖φj‖2X2 + ‖wJ
n‖2X2 + on(1)
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E(un) =

J
∑

j=1

E(φj) + E(wJ
n) + on(1). (2.11)

The procedure through which one establishes such a decomposition
has become standard by now (e.g. see [1, 33]), thus we will only present
the equation-specific parts of the argument.
There are two general roadmaps to follow in establishing such a de-

composition. To get the convergence of the error wJ
n in the appropriate

space-time norm, one can either use a refinement of the space-time
estimates on the linear propagator, or a refinement of a Sobolev in-
equality through which the refinement of the space-time estimates will
follow via interpolation arguments. The first approach would require
more work in our case: arguments used in the Schrödinger case cannot
be applied directly due to the lack of an analogue of the restriction
theorems used. For the second approach, dimension two is very special
due to the lack of the usual embeddings.
Our strategy is to first establish (2.8) for the homogeneous linear

heat equation for radial functions in higher dimensions. We make use
of a refined Sobolev inequality, first proved in [1] for d = 3 and later
generalized to d > 3 in [8]. Then we convert this estimate to our 2d
spaces by a change of variable, and use interpolation again to obtain
the desired convergence.

Definition 2.1. An exponent pair (q, p) is L2-admissible in dimension
d if

2

q
+
d

p
=
d

2
,

and Ḣ1-admissible if
2

q
+
d

p
=
d− 2

2
.

We define the following Besov norm on L2 :

Ik(f) :=

(
∫

2k≤|ξ|≤2k+1

|f̂(ξ)|2dξ
)1/2

, ‖f‖B := sup
k∈Z

Ik(f).

The following refinement of the Sobolev inequality is from [8] (Lemma
3.1):

Lemma 2.2. (Refined Sobolev) For d ≥ 3 there is a constant C =

C(d) > 0 such that for every u ∈ Ḣ1(Rd), we have

‖u‖Lp ≤ C‖∇u‖
2
p

L2‖∇u‖
1− 2

p

B , (2.12)
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where p = 2∗ = 2d
d−2

.

The next result, from [19], provides a decomposition of bounded
sequences in L2(Rd) (for a different, but equivalent Besov norm). Here,
we specialize to radial functions.

Proposition 2.2. Let {fn}n be a bounded sequence of radially sym-
metric functions in L2(Rd), d ≥ 3. Then there exist a subsequence
(still denoted by {fn}n), a sequence of scales {λjn}n ⊂ (0,∞) satisfying
(2.10), and bounded radial {gj}j, {rJn}n ⊂ L2(Rd), such that for every
J ≥ 1, x ∈ Rd,

fn(x) =

J
∑

j=1

1

(λjn)d/2
gj(

x

λjn
) + rJn(x),

‖fn‖2L2 =

J
∑

j=1

‖gj‖2L2 + ‖rJn‖2L2 + on(1),

lim
J→∞

lim sup
n→∞

‖rJn‖B = 0.

Applying the above result to a bounded radially symmetric sequence
{vn} ⊂ Ḣ1(Rd), we conclude that there is a subsequence (again denoted
by {vn}), a family of scales λjn satisfying (2.10)), and radial ψj ∈ Ḣ1

such that for every J ≥ 1,

vn(x) =
J
∑

j=1

ψj
n(x) + w̃J

n(x) (2.13)

where ψj
n(x) :=

1

(λj
n)

d
2−1

ψj( x

λj
n
),

‖vn‖2Ḣ1 =
J
∑

j=1

‖ψj‖2
Ḣ1 + ‖w̃J

n‖2Ḣ1 + on(1)

and

lim sup
n

‖∇w̃J
n‖B

J→∞−−−→ 0. (2.14)

Denote the linear propagator for the homogeneous heat equation

vt = ∆v (2.15)

on Rd by S(t) := et∆. Evolving (2.13) by the linear propagator we get

S(t)vn =

J
∑

i=1

S(t)ψj
n + S(t)w̃J

n .
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Our first goal is to estimate S(t)w̃J
n in an appropriate space-time norm.

If σ is a function on Rd, we define σ(D) by

σ̂(D)f(ξ) := σ(ξ)f̂(ξ).

Also define σk(ξ) := χ2k≤|ξ|≤2k+1(ξ), k ∈ Z. Then if v solves (2.15),
by commutation of Fourier multipliers with derivatives, σk(ξ)v is also
solves (2.15). By standard decay estimate (2.3) for (2.15), for any k

‖∇(σk(ξ)w(t, ·)‖L2 ≤ ‖∇(σk(ξ)w(0, ·)‖L2.

Using Plancherel’s identity and properties of the Fourier transform and
the definition of multipliers:

‖∇(σkv)‖L2 = ‖∇̂(σkv)‖L2 = ‖|ξ|σkv̂‖L2 = Ik(∇v).
Hence, by taking supremum in k,

‖∇v(t, ·)‖B ≤ ‖∇v(0, ·)‖B.
This general observation implies

‖∇(S(t)w̃J
n)‖L∞

t Bx ≤ ‖∇w̃J
n‖B.

Then, due to (2.14) we conclude

lim
J→∞

lim sup
n→∞

‖∇(S(t)w̃J
n)‖L∞

t Bx = 0. (2.16)

For every t > 0, (2.12) gives:

‖S(t)w̃J
n‖

L
2d
d−2
x

. ‖∇(S(t)w̃J
n)‖

2(d−2)
2d

L2 · ‖∇(S(t)w̃J
n)‖

1−
2(d−2)

2d
B

. ‖∇w̃J
n‖

2(d−2)
2d

L2 · ‖∇(S(t)w̃J
n)‖

1− 2(d−2)
2d

B

and so

‖S(t)w̃J
n‖

L∞

t L
2d
d−2
x

. ‖∇w̃J
n‖

2(d−2)
2d

L2 · ‖∇(S(t)w̃J
n)‖

1−
2(d−2)

2d
L∞

t Bx
.

Since ‖∇w̃J
n‖L2 is uniformly bounded, using (2.16):

lim
J→∞

lim sup
n→∞

‖S(t)w̃J
n‖

L∞

t L
2d
d−2
x

= 0. (2.17)

It is straightforward to verify, using the Hardy inequality in dimen-
sion d = 2m+ 2, that the map

X2 ∋ u = u(r) 7→ v(r) =
u(r)

rm
∈ Ḣ1

rad(R
d)

is an isomorphism (e.g., see Lemma 4 in [13]) and moreover

ut = ∆mu ⇐⇒ vt = ∆Rdv.
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Moreover, if (r, p) is an L2-admissible pair for d = 2, i.e. 1
r
+ 1

p
= 1

2
,

then

‖u
r
‖rLr

t (I;L
p
r(rdr))

=

∫

I

(
∫ ∞

0

r1−p

r2m+2
|u|pr2m+1dr

)r/p

=

∫

I

(
∫ ∞

0

r1−p

r2m+2
rmp|v|pr2m+1dr

)r/p

=

∫

I

(
∫ ∞

0

rp(m−1)−2m|v|pr2m+1dr

)r/p

.

Taking p = 2m
m−1

, and thus r = 2m, we observe that

‖u
r
‖Lr

t (I;L
p
r(rdr)) = ‖v‖Lr

t (I;L
p(R2m+2),

and this choice of (r,p) is an Ḣ1-admissible pair in dimension 2m+ 2.
These observations are the connecting link between the two-dimensional

problem and the higher-dimensional estimates. So for un bounded in
X2, vn = un

rm
is bounded in Ḣ1(Rd) and we have (2.13). First, one has

to show that

lim
J→∞

lim sup
n→∞

‖S(t)w̃J
n‖L2m(I;L

2m
m−1 (R2m+2)

= 0. (2.18)

For this we use interpolation and (2.17) :

‖S(t)w̃J
n‖L2m

t L
2m
m−1

≤ ‖S(t)w̃J
n‖

m−1
m

L∞

t L
2m+2

m
r

· ‖S(t)w̃J
n‖

1
m

L2
tL

2(m+1)
m−1

r

.

Taking lim
J→∞

lim sup
n→∞

, and noting that the second term is uniformly

bounded (by the standard space-time estimates for the heat equation
– see e.g., [22]), the claim (2.18) follows. Undoing the transformation
un = rmvn in (2.13) yields

un(x) =

J
∑

j=1

φj(
r

λjn
) + wJ

n , w
J
n = rmw̃J

n .

Now, again by interpolation

‖u
r
‖L4

tL
4
r
≤ ‖u

r
‖

m
2(m−1)

L2m
t L

2m
m−1
r

· ‖u
r
‖

m−2
2(m−1)

L2
tL

∞

r
.

Invoking (2.18), we get (2.8), i.e.,

lim
J→∞

lim sup
n

‖et∆mwJ
n‖L4

t rL
4
r
= 0.

The rest of the proof of the profile decomposition follows the same
arguments as in the references cited at the beginning of this section,
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and is thus omitted, with the exception of the asymptotic energy split-
ting (2.11) which we now demonstrate.
Expanding using the definition,

E(un) =

∫ ∞

0

[

J
∑

j=1

(
1

λjn
)2(φj

r(
r

λjn
))2 +

J
∑

j=1,i<j

1

λjnλin
φj
r(
r

λjn
)φi

r(
r

λin
) + (wJ

n,r(r))
2

+ 2
J
∑

j=1

wJ
n,r(r)

1

λjn
φj
r(
r

λjn
) +

m2

r2
sin2(

J
∑

j=1

φj(
r

λjn
) + wJ

n,r(r))]rdr,

We need to show that E(un)−
∑J

j=1E(φ
j)−E(wJ

n) = on(1). Expanding
this out,

E(un)−
J
∑

j=1

E(φj)−E(wJ
n)

=

∫ ∞

0

J
∑

j=1,i<j

1

λjnλin
φj
r(
r

λjn
)φi

r(
r

λin
)rdr + 2

∫ ∞

0

[
J
∑

j=1

wJ
n,r(r)

1

λjn
φj
r(
r

λjn
)]rdr

+

∫ ∞

0

m2

r2
[sin2(

J
∑

j=1

φj(
r

λjn
) + wJ

n(r))−
J
∑

j=1

sin2(φj(
r

λjn
))− sin2(wJ

n(r))]rdr.

For the first two sums it suffices to look at single pairs and show
they all are on(1). Using an approximation argument, we can assume
every function involved is in C∞

c and that all the supports lie in some
ball B(0, R). The argument is standard so we only give a sketch: for
the first sum, we just change variables, assuming without loss of gen-

erality si,jn := λj
n

λi
n
goes to zero. Then, by Hölder’s inequality, each term

in the sum is bounded by ‖φi
r‖X2

∫ si,jn R

0

(φj
r(r))

2rdr = on(1). For the

second one, change variables again and employ the weak convergence
of wJ

n(λ
j
nr) to zero, for all j ≤ J, i.e., (2.9).

For the rest we will use the trigonometric identity

sin2(a + b)− sin2(a)− sin2(b) =
1

2
sin(2a) sin(2b)− 2 sin2(a) sin2(b)

and the inequality derived from it,

| sin2(a+ b)− sin2(a)− sin2(b)| ≤ C|a||b|
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for some C > 0. We want to show that
∣

∣

∣

∣

∣

∫ ∞

0

m2

r2
[sin2(

J
∑

j=1

φj(
r

λjn
) + wJ

n(r))−
J
∑

j=1

sin2(φj(
r

λjn
))− sin2(wJ

n(r))]rdr

∣

∣

∣

∣

∣

= on(1).

Using (2.2) J − 1 times, this can be reduced to showing the following
two estimates:

∫ ∞

0

|φj( r

λj
n
)||φi( r

λi
n
)|

r2
rdr = on(1), i 6= j

∫ ∞

0

|wJ
n(r)|φj( r

λj
n
)|

r2
rdr = on(1) for any j ≤ J. (2.19)

The proof of (2.2) follows the same rescaling argument as before.
As for (2.19), a change of variables gives

∫ ∞

0

|wJ
n(λ

j
nr

′)||φj(r′)|r
′dr′

(r′)2

which suggests that we should use the weak convergence; however,
because of the absolute value, we cannot directly obtain the result.

Since ‖φj

r
‖L2(rdr) < +∞, for every ǫ > 0 we can find an R = R(ǫ) > 1

such that

(
∫

r≥R

|φ
j(r)

r
|2rdr

)1/2

+

(

∫

r≤ 1
R

|φ
j(r)

r
|2rdr

)1/2

<
ǫ

2M
,

where

M := sup
n

‖wJ
n‖X2 < +∞.

So if we split the integral at hand into the obvious three regions, then
the inner and outer contributions, by Hölder’s inequality, are< ǫ

2
, while

for the one in the middle we have
∫

1
R
≤r≤R

|wJ
n(λ

j
nr)||φj(r)|rdr

r2
<

∫

1
R
≤r≤R

|wJ
n(λ

j
nr)||φj(r)|dr.

But, on a fixed interval Ω = [a, b], 0 < a < b < ∞, ‖u‖X2([a,b]) and
‖u‖H1([a,b]) are equivalent, so by the compact embedding of H1([a, b]) in
L2([a, b]), wJ

n(λ
j
nr) → 0 in L2([a, b]). So by Hölder again, we conclude

that for n sufficiently large, the integral in (2.19) is < ǫ, and the result
follows. �
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2.3. Minimal blow-up solution. For u0 ∈ E0, define

Ec = inf{E(u0) | u solves (2.2) with u(0) = u0, ‖u‖L4rL4([0,Tmax)) = +∞},
the infimum of the energies of initial data leading to solutions which
fail either to be global or to decay to zero, in the sense of the local well-
posedness theory. Note that Tmax can be finite (blow-up), or infinite
(corresponding to a global but not decaying solution).
Observe that Theorem 1.1 is equivalent to Ec ≥ 2E(Q). Note also

that Ec > 0, since for u0 ∈ E0, E(u0) small =⇒ ‖u0‖X2 small, and
by the local theory, such solutions are global and decay.
We will follow the contradiction approach of Kenig-Merle: under the

assumption

0 < Ec < 2E(Q)

we will first show existence of a critical element – a datum with en-
ergy Ec giving rise to a solution that that either fails to exist globally
or decay to zero. Then, as an immediate consequence of energy dissi-
pation, we show that such a critical element cannot exist, reaching a
contradiction.

Proposition 2.3. Assume Ec < 2E(Q). There exists u0,c ∈ X2 with
E(u0,c) = Ec such that if uc(t, r) is the solution of (2.2) with initial
data u0,c and maximal interval of existence I = [0, T

max
(u0,c)), then

‖uc‖L4rL4(I) = +∞.

For the proof of this proposition we follow the same strategy as in
[31, 34].

Proof. Let {u0,n}n ⊂ X2 such that E(u0,n) ց Ec, n → ∞, and the
corresponding solutions un of (2.2) with maximal intervals of existence
In = [0, Tmax(u0,n)) satisfy ‖un‖L4rL4(In) = +∞. By the comparability
of the energy and the X2−norm, the sequence {u0,n}n is bounded in
X2. Thus, passing to a subsequence, if necessary, we have the profile
decomposition

u0,n(r) =

J
∑

j=1

φj(
r

λjn
) + wJ

n(r)

with the stated properties in Proposition 2.1.
Define the nonlinear profile vj : Ij × [0,∞) → R associated to φj to

be the maximal-lifespan solution to (2.2) with initial data φj, and for
each j, n ≥ 1, define vjn : Ijn × [0,∞) → R by

vjn(t, r) = vj(
t

(λjn)2
,
r

λjn
), Ijn := {t ∈ R

+ :
t

(λjn)2
∈ Ij},
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the solution to (2.2) with initial data vjn(0) = φj( r

λj
n
). The energy

decoupling reads

E(u0,n) =

J
∑

j=1

E(φj) + E(wJ
n) + on(1) ∀J.

Taking limn , we get

Ec =
J
∑

j=1

E(φj) + lim
n
E(wJ

n)

which by the positivity of every term implies
J
∑

j=1

E(φj) ≤ Ec, for any

J, and so

sup
j
E(φj) ≤ Ec.

The goal is to show that φj = 0, j ≥ 2 and E(φ1) = Ec.
We consider the following possibilities:

Case 1 : supj E(φ
j) < Ec. Then by the definition of Ec, each vj

(hence also vjn) is global (I
j = [0,∞)) and decaying: ‖vj‖L4([0,∞);rL4) <

∞. Define an approximate solution (to un(t)) of the nonlinear equation
by

uJn(t) =

J
∑

j=1

vjn(t) + et∆mwJ
n .

What we want to show is that uJn is a good approximate solution to un
(for n, J sufficiently large) in the sense of the Stability Theorem 2.2.
This would imply that un(t) is global, a contradiction.
First, to see that sup

n,J
‖uJn‖L4rL4(R+) < +∞ : for any ǫ > 0, (2.8)

provides a J such that

lim
n
‖uJn‖L4rL4(R+) ≤ lim

n
‖

J
∑

j=1

vjn‖L4rL4(R+) + lim
n
‖et∆mwJ

n‖L4rL4(R+)

≤
J
∑

j=1

‖vj‖L4rL4(R+) + ǫ.

To conclude the claim, we will show that the latter norms are bounded
uniformly in J . We can split the sum into two parts (for every fixed
J); one over 1 ≤ j ≤ J0, and the rest. Let ǫ0 be such that Theorem
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2.1 guarantees that, if ‖u0‖X2 ≤ ǫ0, then the corresponding solution u
is global with ‖u‖L4

t rL
4 ≤ Cǫ0. Pick J0 such that

∑

j≥J0

E(φj) ≤ ǫ0.

Then for j ≥ J0, the ‖vj‖L4
t rL

4 are uniformly bounded, and the claim
follows.
By construction, we have ‖uJn(0) − un(0)‖X2 = 0, ∀J, n, and also,

‖et∆m(uJn(0)− un(0))‖L4rL4(R+) = 0, ∀J, n.
The perturbed PDE for uJn(t) is

∂tu
J
n −∆mu

J
n =

J
∑

j=1

F (vjn),

hence the error is given by

eJn = F (uJn)−
J
∑

j=1

F (vjn),

where F is the nonlinear term F (u) = m2

r2
(u− sin 2u

2
). We will show that

the error is small in the dual norm ‖ · ‖
L
4/3
t rL

4/3
r

for sufficiently large n

and J. Explicitly,

eJn =
m2

2r2

(

2uJn − sin(2uJn)−
J
∑

j=1

(2vjn − sin(2vjn)

)

.

For simplicity, denote W J
n (r, t) := et∆mwJ

n(r). We will make use of the
following trigonometric relation:

| sin(2u) + sin(2v)− sin(2u+ 2v)| = |2 sin(2u) sin2(v) + 2 sin(2v) sin2(u)|
. |u||v|2 + |v||u|2.

Using this,

|
J
∑

j=1

sin(vjn)+ sin(W J
n )− sin(

J
∑

j=1

vjn +W J
n )± sin(

J
∑

j=1

vjn)|

. |
J
∑

j=1

sin(vjn)− sin(

J
∑

j=1

vjn)|+ |W J
n ||

J
∑

j=1

vjn|2 + |W J
n |2|

J
∑

j=1

vjn|
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Define A := |W J
n | |

J
∑

j=1

vjn|2 + |W J
n |2 |

J
∑

j=1

vjn|, B := |
J
∑

j=1

sin(vjn) −

sin(
J
∑

j=1

vjn)|. By Hölder’s inequality:

‖ 1

r2
A‖L4/3rL4/3 ≤ ‖W J

n ‖L4rL4 ‖
J
∑

j=1

vjn‖2L4rL4 + ‖W J
n ‖2L4rL4 ‖

J
∑

j=1

vjn‖L4rL4

≤ ‖W J
n ‖L4rL4(

J
∑

j=1

‖vjn‖L4rL4)2 + ‖W J
n ‖2L4rL4(

J
∑

j=1

‖vjn‖L4rL4).

But by (2.8),

lim
J→∞

lim sup
n→∞

‖W J
n ‖L4rL4 = 0,

and hence, by the scaling invariance of the L4rL4−norm,

lim
J→∞

lim sup
n→∞

‖A‖L4/3rL4/3 = 0.

For term B, again by adding and subtracting sin(
J−1
∑

j=1

vjn) we get, using

the trigonometric inequality:

B . |
J−1
∑

j=1

sin(vjn)− sin(
J−1
∑

j=1

vjn)|+ |vJn ||
J−1
∑

j=1

vjn|2 + |vJn |2|
J−1
∑

j=1

vjn|.

We will show how to treat the second term, and after that the proce-
dure can be easily iterated. It consists of terms of the form |vJn ||vjn|2 and
|vJn |2|vjn|. We treat terms of the first type, namely ‖ |vJn |

2

r2
|vjn|
r
‖L4/3rL4/3

(and the others follow in the same way). We may employ an approx-
imation argument to assume the functions are smooth and compactly
supported in space-time, say on [0, T ]× [0, R]. Without loss of gener-

ality, assume sJ,jn := λJ
n

λj
n
→ 0. Changing variables (in space and time),

and using Hölder’s inequality, we find that the above norm is controlled
by

‖vJ‖2L4rL4 ‖vj‖L4rL4([0,(sJ,jn )2T ]×[0,(sJ,jn )R])

n→∞−−−→ 0.

The other terms may be treated similarly, proving

lim
J→∞

lim sup
n→∞

‖eJn‖L4/3rL4/3 = 0.

Thus, we have shown that for sufficiently large J and n, uJn(t) is a
good approximate solution in the sense of Stability Theorem 2.2, from
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which it follows that un(t) is global, with ‖un‖L4
t rL

4 <∞, a contradic-
tion.

Case 2 : sup
j
E(φj) = Ec. This immediately implies (possibly after

a relabeling) that φj = 0 for j ≥ 2, and the profile decomposition
simplifies to

u0,n(r) = φ1(
r

λ1n
) + w1

n(r).

By the energy splitting and the fact that E(u0,n) → Ec, we get

lim
n
E(w1

n) = 0,

from where, by the comparability of the energy and the X2-norm, it
follows that

ũ0,n(r) := u0,n(λ
1
nr) → φ1(r)

strongly in X2. We also get that E(φ1) = Ec.
Define our critical element uc to be the solution of (2.2) emanating

from initial data φ1. To complete the proof of the Proposition, we
must conclude that ‖uc‖L4([0,Tmax(φ1));rL4) = ∞. To see that, assume it
is false, and again employ the Stability Theorem 2.2 as above to reach
a contradiction. �

2.4. Rigidity. In this short section, we complete the proof of Theo-
rem 1.1 by showing, as an immediate consequence of energy dissipation,
that:

Proposition 2.4. The critical element uc found in Proposition 2.3
cannot exist.

Proof. By the energy dissipation relation, for 0 < t < Tmax(φ1),

E(uc(t)) < E(uc(0)) = Ec ∈ (0, 2E(Q))

unless uc is a stationary solution. There are no non-zero stationary
solutions in E1, so this strict inequality holds. Thus E(uc(t)) < Ec for
some t > 0, whence it follows from the definition of Ec that uc is global
with ‖uc‖L4

t rL
4 <∞, a contradiction. �

3. Heat Flow Above Threshold

In this section we prove Theorem 1.3 on the “above-threshold” solu-
tions of the corotational heat-flow.
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3.1. Corotational maps in E1. Recall, we consider here solutions
u(r, t) of

ut = urr +
1

r
ur +

m2

2r2
sin(2u) (3.1)

in the class

E1 := {u | E(Q) ≤ E(u0) ≤ 3E(Q), u(0) = π, lim
r→∞

u(r) = 0},

where the energy is given by

E(u) =
1

2

∫ ∞

0

(

u2r +
m2

r2
sin2(u)

)

rdr.

Recall the unique (up to scaling) static solution with these boundary
conditions is

Q(r) = π − 2 tan−1(rm),

and define the following quantities

h(r) := sin(Q(r)) =
2rm

1 + r2m
, ĥ(r) := cos(Q(r)) =

r2m − 1

r2m + 1
.

For later use, we record the easy computations

hr = −m
r
hĥ, ĥr =

m

r
h2.

We will denote scalings by

Qs(r) := Q(r/s), hs(r) = h(r/s), etc., s > 0.

Recall that the energy space (for maps with trivial topology) is:

X2 = {w : [0,∞) 7→ R |
∫ ∞

0

(

w2
r +

w2

r2

)

r dr <∞}.

3.2. No concentration at spatial infinity. As discussed in the in-
troduction, the mechanism of possible singularity formation is well-
known: energy concentration by bubbling off static solutions (harmonic
maps). By the corotational symmetry and finite energy, a concentra-
tion may a priori occur only at the spatial origin or infinity. The latter
cannot happen in finite time:

Lemma 3.1. Let u be a finite energy smooth solution on (3.1) on
(0, T ). No energy concentration at spatial infinity is possible:

lim
R→∞

lim sup
t→T

E(u(t);Bc
R) = 0.
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Proof. The energy dissipation relation

E(u(t2)) +

∫ t2

t1

‖ut‖2L2ds = E(u(t1))

for 0 ≤ t1 < t2 < T will be used. First choose a smooth, radial cut-off
function ψ such that

ψ(r) =

{

0 if r ≤ 1
1 if r ≥ 2

and define ψR(r) := ψ(
r

R
).

If there was energy concentration at spatial infinity at time t = T,
for some δ > 0, we would have

lim sup
tրT

E(u(t);Bc
R) ≥ δ > 0, ∀R > 0,

and we could find sequences of radii Rn ր ∞ and times tn ր T such
that lim

n
E(u(tn), B

c
Rn
) ≥ δ > 0. Define the “exterior” energy

ÊR(t) :=
1

2

∫ ∞

0

ψR(r)

(

u2r +
m2

r2
sin2(u)

)

rdr.

By the finiteness of the energy, for any t0 < T there is an R0 > 1,
such that ÊR0(t0) ≤ δ

4
. By assumption, there is T > t1 > t0 such that

ÊR0(t1) ≥ δ
2
.

By direct calculation

d

dt
ÊR0(t) = −

∫ ∞

0

ψR0u
2
t rdr −

∫ ∞

0

urut
dψR0

dr
rdr.

Using
d

dr
ψR(r) =

1

R
ψ′(

r

R
) and ( 3.2):

δ

4
≤
∫ t1

t0

d

dt
E(u(t);Bc

R0
)dt = −

∫ t1

t0

∫ ∞

0

ψR0u
2
t rdr −

∫ t1

t0

∫ ∞

0

urutψ
′
R0
rdr.

≤
(
∫ t1

t0

∫ ∞

0

u2t rdr

)1/2

·
(
∫ t1

t0

∫ ∞

0

u2r
(

ψ′
R0

)2
)1/2

.
1

R0

(t1 − t0)
1/2E(u0),

which yields a contradiction taking t0 ր T . �
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3.3. Bubbling description. Having ruled out energy concentration
at infinity, and since the energy bound and boundary conditions in E1

prohibit the formation of more than one bubble, the following propo-
sition giving the strong convergence of the solution at a blow-up time,
after removal of the bubble, is a direct adaptation of Theorem 1.1 in
[38]:

Proposition 3.1. Let u0 ∈ E1 and u(t) the corresponding solution to
(3.1) blowing up at time t = T > 0. Then there exists a sequence of
times tj ր T, a sequence of scales sj = o(

√

T − tj), a map w0 ∈ E0,
and a decomposition

u(tj, r) = Q(
r

sj
) + w0(r) + ξ(tj , r)

such that ξ(tj, 0) = lim
r→∞

ξ(tj, r) = 0 and ξ(tj) → 0 in X2 as j → ∞.

So to exclude finite-time singularity formation, it suffices to show:

Proposition 3.2. Assume m ≥ 4. Suppose u(t, r) is a smooth solution
of (3.1) on [0, T ) such that along some sequence tj → T−, there are
sj > 0 such that

u(tj, ·)−Qsj → w0 in X2 (3.2)

for some w0 ∈ X2 with E(w0) < 2E(Q). Then sj 6→ 0.

The next three subsections build up to to a proof of this.

3.4. Approximate solution. Introduce the solution w(t, r) of (3.1)
with initial data at t = tj given by w0:

wt − wrr − 1
r
wr − m2

2r2
sin(2w) = 0

w(tj, r) = w0(r) ∈ X2, E(w0) < 2E(Q)
. (3.3)

By Theorem 1.1, we know that w is a global, smooth solution with

‖w‖L∞

t X2∩L2
t (X

∞∩rX2)([tj ,∞)) <∞. (3.4)

For later use, we record one consequence of the higher regularity gained
after the initial time:

w

r2
∈ L2

tX
2([t∗,∞)) for every t∗ > tj .

This follows from the observations that by standard parabolic reg-
ularity estimates (for example by performing energy-type estimates
on the differentiated PDE), the function v(x, t) = w(r, t)eimθ satisfies
D2v ∈ L2

tL
2
x([t

∗,∞)) , and that w/r2 and wr/r are controlled pointwise
by |D2v| (for any m ≥ 2).
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For fixed s > 0, Qs is also a (static) solution of (3.1). Since the PDE
is nonlinear, of course the sum Qs + w is not a solution:
(

∂t − ∂2r −
1

r
∂r −

m2

2r2
sin(2 · )

)

(Qs + w)

=
m2

2r2
(sin(2Qs) + sin(2w)− sin(2Qs + 2w))

=
m2

2r2
(sin(2Qs)(1− cos(2w)) + sin(2w)(1− cos(2Qs)) =: Eqn(Qs + w).

However, Qs(t) + w is a good approximate solution over short time
intervals in the sense:

Lemma 3.2. ‖Eqn(Qs(t) +w)‖L2
tX

1 . ‖w‖L2
tX

∞ + ‖w‖2
L4
tX

4 and there-

fore by (3.4),

‖Eqn(Qs(t) + w)‖L2
tX

1[tj ,T ) → 0 as tj → T − . (3.5)

Remark: We do not need it here, but if 0 < s(t) ≪ 1, then Qs(t) + w
is a good approximate solution globally, in the sense that ‖Eqn(Qs(t)+
w)‖L2

tX
1[tj ,∞) → 0 as sup

t∈[tj ,∞)

s(t) → 0.

Proof. This is an easy consequence of the elementary pointwise esti-
mates

|Eqn(Qs + w)| . 1

r2
(

hsw2 + (hs)2w
)

|∂rEqn(Qs + w)| . 1

r3
(

hsw2 + (hs)2w
)

+
1

r2
(

hs|w||wr|+ (hs)2|wr|
)

.

Then using ‖hs

r
‖L2 . 1, ‖hs

r2
‖L1 . 1, and Hölder’s inequality, the

Lemma follows. �

3.5. Linearized evolution estimates.

Lemma 3.3. Assume m ≥ 4. Let ξ(·, t) ∈ X2 be a solution of the
inhomogeneous linearized equation about Qs, where s = s(t) > 0 is a
differentiable function of time,

{

∂tξ +Hsξ = f(r, t)
ξ(r, 0) = ξ0(r)

}

Hs := −∂2r −
1

r
∂r −

m2

r2
cos(2Qs),

which also satisfies the orthogonality condition
(

ξ(·, t), hs(t)
)

L2
rdr

≡ 0. (3.6)

Then we have the estimates

‖ξ‖L∞

t X2∩L2
tX

∞ . ‖ξ0‖X2 + ‖f‖L1
tX

2+L2
tX

1 + ‖ṡ‖L2
t
. (3.7)
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Proof. The idea comes from [28] where it appeared as a linearization of
a generalized Hasimoto transformation, while here we apply it directly
at the linear level: exploit the factorized form of the linearized operator

Hs = (Ls)∗Ls, Ls = ∂r +
m

r
cos(Qs) = hs∂r(h

s)−1,

and the fact that the reverse factorization is positive,

(Ls)(Ls)∗ = −∂2r−
1

r
∂r+

1

r2
(

1 +m2 − 2m cos(Qs)
)

≥ −∂2r−
1

r
∂r+

(m− 1)2

r2
.

(3.8)
Applying Ls to the linearized equation produces

∂tη + Ls(Ls)∗η = Lsf + (∂tL
s)η η := Lsξ, ∂tL

s =
m2

r

1

s
(hs)2ṡ.

Multiplying this equation by η, integrating over space and time, and
using (3.8) gives

‖η‖2L∞

t L2 + ‖η‖2L2
tX

2 . ‖Lsξ0‖2L2 + ‖(Lsf)η‖L1
tL

1 + ‖1
s
(hs)2

η

r
‖L2

tL
1‖ṡ‖L2

t
.

Using Hölder’s inequality on the right, then Young’s, as well as
‖1
s
(hs)2‖L2 . 1, yields

‖η‖L∞

t L2∩L2
tX

2 . ‖ξ0‖X2 + ‖f‖L1
tX

2+L2
tX

1 + ‖ṡ‖L2
t
.

Finally, in [28] it was shown that we can invert Ls under the orthogo-
nality condition (3.6) to bound ξ:

m ≥ 4, (ξ, hs)L2 = 0 =⇒ ‖ξ‖Xp . ‖Lsξ‖Lp, 2 ≤ p ≤ ∞.

Together with the standard embedding ‖η‖L∞ . ‖η‖X2 this completes
the proof. �

3.6. Modulation argument.

Proof. (of Proposition 3.2) Let w(r, t) be as in (3.3). For t ∈ [tj , T ),
the idea is to write the solution u(r, t) in the form

u(r, t) = Qs(t)(r) + w(r, t) + ξ(r, t), (3.9)

where s(t) > 0 is chosen so that the orthogonality condition (3.6)
holds. The fact that we can make such a choice follows from a standard
implicit function theorem argument:

Lemma 3.4. There is ǫ0 > 0 such that for any s0 > 0 and any ξ ∈ X2

with ‖ξ‖X2 ≤ ǫ0, there is 0 < s = s(ξ, s0) such that

Qs0+ξ = Qs+ξ̃ with
(

ξ̃, hs
)

L2
rdr

= 0,

∣

∣

∣

∣

s

s0
− 1

∣

∣

∣

∣

+‖ξ̃‖X2 . ‖ξ‖X2 ≤ ǫ0.
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Proof. First take s0 = 1. For s > 0 and ξ ∈ X2 define

g(s; ξ) := (Q−Qs + ξ, hs)L2
rdr
,

a smooth function of s and ξ because the spatial decay of h(r) implies
‖rh(r)‖L2

rdr
<∞ (provided m > 2). We observe that g(1; 0) = 0, and

∂sg(1; 0) =
(

(−m
s
hs, hs) + (Q−Qs + ξ, ∂sh

s)
)

|s=1,ξ=0 = −m‖h‖2L2
rdr

6= 0,

so by the Implicit Function Theorem there is ǫ0 > 0 such that for all
ξ with ‖ξ‖X2 ≤ ǫ0, there is s = s(ξ) with |s − 1| . ‖ξ‖X2 such that

g(s; ξ) = 0. Then also ξ̃ := ξ+Q−Qs =⇒ ‖ξ̃‖X2 . ‖ξ‖X2 + |s−1| .
‖ξ‖X2. The case of general s0 > 0 follows from simple rescaling, and
the scale invariance of the X2-norm. �

This lemma shows that as long as

inf
s>0

‖u(·, t)− w(·, t)−Qs‖X2 < ǫ0, (3.10)

we may write u in the form (3.9), with orthogonality (3.6) holding.
In particular, (3.2) implies that for any 0 < δ0 < ǫ0, by taking j

large enough, and therefore ‖u(·, tj)−Qs(tj ) −w0‖X2 small enough, we
may write

u(tj, r) = Qs(0)+w0(r)+ξ(r, 0),
(

ξ(·, 0), hs(0)
)

= 0, ‖ξ(·, 0)‖X2 ≤ δ0.
(3.11)

So by continuity, (3.10) holds on some non-empty time interval I =
[tj, τ), tj < τ ≤ T , on which we may write u(r, t) as in (3.9) with
orthogonality (3.6).
Moreover by regularity of u(r, t), by shrinking τ even more if needed,

we may also assume

‖ξ‖L∞

t X2∩L2
tX

∞([tj ,τ)) ≤ δ
2
3
0 , (3.12)

which in particular implies (3.10) for δ0 sufficiently small.
We will use a standard “continuity argument”. That is, we will

carry out all our estimates over the time interval I = [tj , τ) under the
assumption (3.12), and then conclude that we may take τ = T provided
δ0 is chosen sufficiently small.
Inserting (3.9) into the PDE and using standard trigonometric iden-

tities yields the following equation for ξ:

(∂t +Hs)ξ = −mṡ
s
hs + Eqn(Qs + w) +

m2

2r2
(V sin(2ξ) +N) , (3.13)

where

V = cos(2Qs)(cos(2w)− 1))− sin(2Qs) sin(2w),
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and N contains only terms super-linear in ξ coming from the terms

cos(2Qs)[2(w + ξ)− sin(2(w + ξ))] and

sin(2Qs)[1− cos(2(w + ξ))].

Rather than write out all the terms of N explicitly, we just record the
elementary estimates

|N | . (hs + |w|)ξ2 + |ξ|3

|Nr| . (1 + |w|)(|wr|+
hs

r
)ξ2 +

1

r
|ξ|3 + (hs + |w|)|ξ||ξr|+ ξ2|ξr|.

(3.14)

Our goal is to estimate all the terms on the right side of (3.13) in
appropriate space-time norms, so that we may apply the linear esti-
mates (3.7).
For the first term, using ‖1

s
hs‖X1 . 1, we have

‖ −m
ṡ

s
hs‖L2

tX
1 . ‖ṡ‖L2

t
. (3.15)

The main estimates for V are

|V | . w2 + hs|w| =⇒ ‖ 1

r2
V ‖L2 . ‖w

r
‖2L4 + ‖w

r
‖L∞ ,

using ‖hs

r
‖L2 . 1, and

|Vr| . |w||wr|+
1

r
(hs)2w2 + hs|wr|+

1

r
hs|w|

=⇒ ‖1
r
Vr‖L2 . ‖w

r
‖L4‖wr‖L4 + ‖w

r
‖2L4 + ‖wr‖L∞ + ‖w

r
‖L∞ ,

using ‖hs‖L∞ . 1 and ‖hs

r
‖L2 . 1. Combining these, we obtain a

spatial-norm estimate on the linear term on the right side of (3.13),

‖m
2

2r2
V sin(2ξ)‖X1 .

(

‖w‖2X4 + ‖w‖X∞

)

‖ξ‖X2,

and from there a space-time estimate:

‖m
2

2r2
V sin(2ξ)‖L2

tX
1 .

(

‖w‖2L4
tX

4 + ‖w‖L2
tX

∞

)

‖ξ‖L∞

t X2 , (3.16)

where, recall, the time interval over which these norms are taken is
I = [tj , τ).
Finally, from (3.14), we estimate the nonlinear terms:

‖ 1

r3
N‖L1 .

(

‖h
s

r
‖L2 + ‖w

r
‖L2

)

‖ξ
r
‖2L4 + ‖ξ

r
‖3L3 . ‖ξ

r
‖2L4 + ‖ξ

r
‖3L3 ,
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and using ‖w‖L∞ . ‖w‖X2 . 1, and ‖hs‖X2 . 1,

‖ 1

r2
Nr‖L1 . ‖ξ

r
‖2L4 + ‖ξ

r
‖3L3 + ‖ξ

r
‖L4‖ξr‖L4 + ‖ξ

r
‖2L4‖ξr‖L2 .

These last two give

‖ 1

r2
N‖X1 . ‖ξ‖2X4 + ‖ξ‖3X3 + ‖ξ‖2X4‖ξ‖X2,

and then the space-time estimate:

‖m
2

2r2
N‖L2

tX
1 . ‖ξ‖2L4

tX
4(1 + ‖ξ‖L∞

t X2) + ‖ξ‖3L6
tX

3 . (3.17)

Now applying the linear estimates (3.7) to (3.13), using (3.11), (3.15),
(3.5) (taking j larger as needed), (3.16), and (3.17), as well as (3.4),
we get

‖ξ‖L∞

t X2∩L2
tX

∞ ≤ C
(

δ0 + ‖ṡ‖L2
t
+
(

‖w‖2L4
tX

4 + ‖w‖L2
tX

∞

)

‖ξ‖L∞

t X2

+‖ξ‖2L4
tX

4(1 + ‖ξ‖L∞

t X2) + ‖ξ‖3L6
tX

3

)

.

(3.18)

By (3.4), by choosing j larger still, if needed, we can ensure that on
the interval [tj , T ) ⊃ I,

C
(

‖w‖2L4
tX

4([tj ,T ) + ‖w‖L2
tX

∞([tj ,T )

)

<
1

2
, (3.19)

so that the estimate (3.18) becomes

‖ξ‖L∞

t X2∩L2
tX

∞ . δ0 + ‖ṡ‖L2
t
+ ‖ξ‖2L∞

t X2∩L2
tX

∞ + ‖ξ‖3L∞

t X2∩L2
tX

∞ ,

and then by using (3.12),

‖ξ‖L∞

t X2∩L2
tX

∞ . δ0 + ‖ṡ‖L2
t
. (3.20)

It remains to estimate ṡ. For this, we differentiate the orthogonality
relation (3.6), rewritten as

(

ξ,
1

s
hs
)

L2
rdr

for convenience of calculation, with respect to t, and use the equa-
tion (3.13) for ξ:

0 =

(

ξ, −ṡ 1
r2
(r(r2h)′)s

)

+

(

−mṡ
s
hs + Eqn(Qs + w) +

m2

2r2
(V sin(2ξ) +N) ,

1

s
hs
)
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where we used Hshs = 0. The first term is bounded by

|ṡ|‖ξ
r
‖L2‖1

r
(r(r2h)′)s‖L2 . |ṡ|‖ξ‖X2,

while
(

−mṡ
s
hs,

1

s
hs
)

= −mṡ‖1
r
(rh)s‖2L2 = −mṡ‖h‖2L2 ,

so
(

m‖h‖2L2 +O(‖ξ‖X2)
)

ṡ =

(

Eqn(Qs + w) +
m2

2r2
(V sin(2ξ) +N) ,

1

s
hs
)

.

(3.21)
Then by (3.12) and ‖r 1

s
hs‖L∞ = ‖rh‖L∞ . 1,

|ṡ| . ‖Eqn(Qs + w)‖X1 + ‖ 1

r2
V sin(2ξ)‖X1 + ‖ 1

r2
N‖X1 ,

and so by (3.5), (3.16), (3.4), (3.14) and (3.12):

‖ṡ‖L2
t
. δ0 +

(

‖w‖2L4
tX

4 + ‖w‖L2
tX

∞

)

‖ξ‖L∞

t X2 .

Using (3.20) then shows

‖ṡ‖L2
t
≤ C

(

δ0 +
(

‖w‖2L4
tX

4 + ‖w‖L2
tX

∞

)

‖ṡ‖L2
t

)

.

As above, by taking j larger if needed we can ensure (3.19) and so
(using again (3.12))

‖ṡ‖L2
t
+ ‖ξ‖L∞

t X2∩L2
t∩X

∞ . δ0.

This now shows that in our bootstrap assumption (3.12), since we take

δ0 ≪ δ
2/3
0 , we may indeed take τ = T , and all of our previous estimates

hold on the full time interval [tj , T ).
It remains to show that s(t) stays bounded away from zero. Recall

the pointwise bounds used above

|V | . w2 + hs|w|,
|N | . (hs + |w|)ξ2 + |ξ|3,

Eqn(Qs + w) .
1

r2
(

hsw2 + (hs)2w
)

.

We isolate the term in the equation (3.21) for s coming from the part
of Eqn(Qs + w) which behaves linearly in w, and write:

ṡ

s
= v1 + v2 + v3

where

|v1| . ‖w
r3
‖L2‖1

s
(rh3)s‖L2 . ‖|w|

r2
‖X2 ∈ L2

t ,
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|v2| . ‖w
2

r2
‖L∞‖ 1

s2
(h2)s‖L1 . ‖w‖2X∞ ∈ L1

t

and

|v3| . ‖w
2

r2
‖L2‖ξ

r
‖L∞‖1

s
(rh)s‖L2 + ‖w

r
‖L∞‖ξ

r
‖L∞‖ 1

s2
hs‖L1

+ ‖ξ
2

r2
‖L∞‖ 1

s2
(hs)3‖L1 + ‖ξ

2

r2
‖L2(‖w

r
‖L∞ + ‖ξ

r
‖L∞)‖1

s
(rh)s‖L2

. ‖w‖2X4‖ξ‖X∞ + ‖w‖X∞‖ξ‖X∞ + ‖ξ‖2X∞ + ‖ξ‖2X4(‖w‖X∞ + ‖ξ‖X∞)

∈ L1
t .

So ṡ
s
∈ L1

t + L2
t over [t∗, T ), and by the Fundamental Theorem of

Calculus, and Cauchy-Schwartz,

sup
t∗≤t<T

∣

∣

∣

∣

log

(

s(t)

s(t∗)

)
∣

∣

∣

∣

≤ ‖ ṡ
s
‖L1

t ([t
∗,T )) +

√
t− t∗‖ ṡ

s
‖L2

t ([t
∗,T )) <∞,

so that s(t) remains bounded away from zero, as required. �

3.7. Completion of the proof. Proposition 3.2 shows that a solution
of (3.1), with m ≥ 4 and u0 ∈ E1 cannot form a finite-time singularity.
Hence such a solution is global. Moreover, it cannot form a singularity
at infinite time t = ∞, since such this would produce a sequence tj →
∞, with 0 < sj → 0 or ∞, along which u(·, tj) − Qsj → v0 with
X2 ∋ v0 a static solution, hence v0 ≡ 0. This is however prohibited by
the asymptotic stability result of [28]. Hence we must have E(u(·, t)−
Qs∞) → 0 for some s∞ > 0. Uniform convergence then follows from
the embedding X2 ⊂ L∞. This completes the proof of Theorem 1.3. �
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