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UPDATE

Disrupted glycosylation of lipids and proteins is
a cause of neurodegeneration

Tobias Moll, Pamela J. Shaw and Johnathan Cooper-Knock

Glycosyltransferases represent a large family of enzymes that catalyse the biosynthesis of oligosaccharides, polysaccharides, and

glycoconjugates. A number of studies have implicated glycosyltransferases in the pathogenesis of neurodegenerative diseases but

differentiating cause from effect has been difficult. We have recently discovered that mutations proximal to the substrate binding

site of glycosyltransferase 8 domain containing 1 (GLT8D1) are associated with familial amyotrophic lateral sclerosis (ALS). We

demonstrated that ALS-associated mutations reduce activity of the enzyme suggesting a loss-of-function mechanism that is an

attractive therapeutic target. Our work is the first evidence that isolated dysfunction of a glycosyltransferase is sufficient to cause a

neurodegenerative disease, but connection between neurodegeneration and genetic variation within glycosyltransferases is not new.

Previous studies have identified associations between mutations in UGT8 and sporadic ALS, and between ST6GAL1 mutations and

conversion of mild cognitive impairment into clinical Alzheimer’s disease. In this review we consider potential mechanisms

connecting glycosyltransferase dysfunction to neurodegeneration. The most prominent candidates are ganglioside synthesis and

impaired addition of O-linked b-N-acetylglucosamine (O-GlcNAc) groups to proteins important for axonal and synaptic function.

Special consideration is given to examples where genetic mutations within glycosyltransferases are associated with neurodegenera-

tion in recognition of the fact that these changes are likely to be upstream causes present from birth.
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Introduction
Glycosyltransferases represent a large family of enzymes

that catalyse biosynthesis of oligosaccharides, polysacchar-

ides, and glycoconjugates. Sugar moieties are transferred

from activated sugar donors to specific acceptor molecules

via the formation of glycosidic bonds (Chuh et al., 2016).

Acceptor molecules include other sugars, nucleic acids,

lipids, and proteins. Glycosyltransferases reside predomin-

antly within the Golgi apparatus of eukaryotes as type II

transmembrane proteins. Over 90 glycosyltransferase

families have been described (www.cazy.org/GlycosylTran

sferases.html). Sequence alignment tools have been useful

for predicting glycosyltransferase function, including a

metal-binding motif important for configuration of sub-

strate within the active site (Lairson et al., 2008).

However, even closely related sequences have been shown

to exhibit different catalytic activity (Breton et al., 2006).

Glycosyltransferases are classified as either ‘retaining’ or

‘inverting’ enzymes according to whether the anomeric

bond within the donor substrate is retained or inverted

during the sugar transfer.
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Neurodegenerative diseases are increasing in frequency,

in part due to an ageing population. Despite this, neurode-

generative diseases represent a significant unmet health

need without effective treatments or clearly delineated

pathogenic mechanisms. Changes in expression levels of

glycosyltransferases have been strongly linked with neuro-

degeneration (Ludemann et al., 2005; Desplats et al., 2007;

Schneider 2018), but determining whether these effects are

upstream of neurotoxicity is difficult. Two distinct

glycosyltransferase-associated mechanisms are prominent:

ganglioside synthesis and addition of O-linked b-N-acetyl-

glucosamine to proteins (O-GlcNAcylation). Major gan-

gliosides are sialic acid-containing glycosphingolipids.

Within the mammalian brain they are synthesized in the

endoplasmic reticulum from a lactosylceramide precursor

before remodelling during transit from the cis- to the

trans-Golgi network by a series of glycosyltransferase en-

zymes (Fig. 1). Mature gangliosides are expressed on the

plasma membrane of most vertebrate cells and within

bodily fluids. They are particularly abundant on neuronal

and glial cells within the CNS where they are thought to

function prominently in cell signalling (Vajn et al., 2013).

Altered levels of gangliosides have been reported in animal

models of amyotrophic lateral sclerosis (ALS) and in post-

mortem CNS tissue from ALS patients (Ariga, 2014; Dodge

et al., 2015); similar findings have been reported in

Parkinson’s disease (Wu et al., 2012) and Alzheimer’s

disease (Gylys et al., 2007). O-GlcNAcylation occurs

predominantly in the brain and is regulated by

the glycosyltransferases O-linked N-acetylglucosamine

transferase (OGT) and EGF domain-specific O-linked

N-acetylglucosamine transferase (EOGT), which attach

the O-GlcNAc moiety to acceptor proteins at specific

serine/threonine residues via an O-linked glycosidic bond.

OGT acts intracellularly whereas EOGT acts extracellularly

on secreted and membrane proteins (Fig. 2).

O-GlcNAcylation of CNS proteins important for axonal

and synaptic function is significantly reduced in animal

models of neurodegenerative diseases and in patient tissue

from diseases including Parkinson’s disease, Huntington’s

Figure 1 Schematic overview of the biosynthesis and function of major gangliosides within the mammalian brain.

Lactosylceramide is synthesized at the cytoplasmic leaflet of the endoplasmic reticulum membrane from its ceramide precursor. De novo ceramide

is transported to the Golgi apparatus and is converted to glycosphingolipids and sphingomyelin through the addition of saccharides and

phosphocholine, respectively. Glycosphingolipids are transported in vesicles to the outer leaflet of the plasma membrane. Sialic acid-enriched

glycosphingolipids form gangliosides which are anchored to the membrane via their ceramide-lipid moiety. Four major gangliosides comprise

490% of total gangliosides within the brain. A-series gangliosides (red) are derived from GM3. B-series gangliosides (purple) are synthesized from

GM3 by GD3 synthase (St8sia1). G = the ‘ganglioside’ core; the second letter designates the quantity of sialic acid residues; M = mono; D = di; T

= tri. Gangliosides are essential to maintaining neuronal integrity with functions including, but not limited to, increasing the neuroprotective

properties of astrocytes, stabilizing interactions between neurons and glia, enhancing neurite outgrowth and negatively regulating neuroinflam-

mation through activation of the complement pathway.
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disease, Alzheimer’s disease and ALS (Liu et al., 2004;

Ludemann et al., 2005; Kumar et al., 2014; Frenkel-

Pinter et al., 2017).

Neurodegenerative diseases exhibit late age of onset and

it is therefore assumed that genetic mutations are upstream

of disease pathogenesis. As a result, the discovery of neu-

rodegenerative disease-associated DNA mutations is a sig-

nificant step towards identification of upstream therapeutic

targets. We have recently discovered that mutations prox-

imal to the substrate-binding site of glycosyltransferase 8

domain-containing 1 (GLT8D1) disrupt enzyme activity

and are associated with familial ALS (Cooper-Knock et

al., 2019). Our work is the first evidence that dysfunction

of a glycosyltransferase is sufficient to cause a neurodegen-

erative disease. Our data are consistent with an effect of

GLT8D1 mutations on ganglioside synthesis. In support of

this mechanism, we have demonstrated by immunocyto-

chemistry that ALS-associated GLT8D1 mutations reduce

membrane expression of glycosphingolipids, which include

gangliosides, in human cells (unpublished data). Moreover,

in this review we summarize previous literature linking gen-

etic changes within glycosyltransferases to neurodegenera-

tion, and provide new evidence that genetic mutations

within EOGT are significantly associated with sporadic

ALS making this another upstream therapeutic target.

Impaired ganglioside
synthesis is linked to
neurodegeration

Parkinson’s disease

Reduced glycosyltransferase expression and lowered ganglio-

side synthesis has been implicated in the pathogenesis of

Parkinson’s disease. A recent report described a reduction

in gene expression of the glycosyltransferases B3GALT4

and ST3GAL2 in neuromelanin-containing neurons in the

substantia nigra of patients with Parkinson’s disease com-

pared to control subjects (Schneider, 2018). These genes

are key players in the ganglioside biosynthesis pathway

(Fig. 1). It is proposed that reduced B3GALT4 and

ST3GAL2 expression leads to vulnerability of dopaminergic

neurons via aberrant ganglioside synthesis. Consistent with

this hypothesis, the number of GM1 ganglioside-expressing

cells in the Parkinson’s disease substantia nigra are reduced

(Wu et al., 2012), and levels of the major brain ganglio-

sides—GM1, GD1a, GD1b and GT1b—are decreased in

whole substantia nigra homogenates from patients with

Parkinson’s disease (Seyfried et al., 2018). Model systems

provide evidence that dysfunction of ganglioside synthesis

is a cause and not just an association of typical

Parkinson’s disease pathology: genetically engineered mice

lacking major brain gangliosides display overt motor impair-

ment with increasing age, which is accompanied by loss of

dopaminergic neurons from the substantia nigra pars com-

pacta and aggregation of �-synuclein (Wu et al., 2012).

Huntington’s disease

In a similar manner to Parkinson’s disease, reduced expres-

sion of glycosyltransferases involved in ganglioside synthe-

sis has also been described in the R6/1 mouse model of

Huntington’s disease and in human Huntington’s disease

patients (Desplats et al., 2007). In this study 480% of

gene expression changes observed in the striatum of R6/1

mice were also observed in the post-mortem caudate of

human Huntington’s disease subjects. Overlapping genes

were significantly enriched with glycosyltransferases

involved in ganglioside synthesis including ST3GAL5,

ST8SIA3, B4GALNT1 and ST3GAL2 (Fig. 1). Consistent

with impaired ganglioside synthesis, the same study

Figure 2 O-GlcNAcylation is implicated the pathophysi-

ology of neurodegenerative disease. An overview of

O-GlcNAcylation, a post-translational modification of O-GlcNAc,

which has been implicated in neurodegenerative diseases

Huntington’s disease, Alzheimer’s disease, Parkinson’s disease and

ALS. O-GlcNAcylation occurs predominantly in the brain and is

regulated by the glycosyltransferases OGT and EOGT, which attach

the O-GlcNAc moiety to acceptor proteins at specific serine/

threonine residues via an O-linked glycosidic bond; OGT acts

intracellularly whereas EOGT acts extracellularly on secreted and

membrane proteins.

1334 | BRAIN 2020: 143; 1332–1340 T. Moll et al.
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reported reduced ganglioside concentrations within both

the diseased human caudate and the mouse striatum. It

should be noted that despite significant homology to

ST8SIA1, which has a well described role in ganglioside

biosynthesis (Fig. 1), ST8SIA3 is traditionally associated

with N-glycosylation of secreted/membrane proteins

within the CNS (Lin et al., 2019). Like gangliosides, N-

glycosylated proteins are important for cell signalling.

Alzheimer’s disease

There is good evidence for perturbed ganglioside metabol-

ism in patients with Alzheimer’s disease, and in the devel-

opment of amyloid-b pathology in particular (Barrier et al.,

2007). In contrast to the findings in Parkinson’s disease and

Huntington’s disease, the key observation appears to be

increased ganglioside synthesis. Elevated GM1, GM2 and

GM3 levels have been reported in the cerebral cortices of

Alzheimer’s disease patients (Kracun et al., 1992; Gylys

et al., 2007). Development of amyloid-b deposition is the

defining pathology of Alzheimer’s disease and within brains

exhibiting early Alzheimer’s disease pathology, a significant

proportion of amyloid-b is bound to ganglioside species

(Yanagisawa and Ihara, 1998). It has even been suggested

that insoluble GM1-bound amyloid-b is the key toxin lead-

ing to neuronal death (Hayashi et al., 2004), as a result of

high affinity binding between GM1 and amyloid-b, which

facilitates formation of insoluble b-pleated sheets

(Yamamoto et al., 2007). With increasing age GM1 is loca-

lized to presynaptic nerve terminals and this may have a

role in directing amyloid-b deposition to the same locations

(Yamamoto et al., 2008). Unlike evidence regarding gan-

gliosides, reports of altered glycosyltransferase expression

in Alzheimer’s disease are more limited. There is evidence

that glycosyltransferase activity may modify Alzheimer’s

disease pathology: overexpression of the glycosyltransferase

B4GALNT1 leads to increased ganglioside expression but

also increases APP cleavage to form amyloid-b pathology

through suppression of lysosomal degradation of BACE1

(Yamaguchi et al., 2016). Currently, transgenic mouse

models of Alzheimer’s disease do not mirror changes in

ganglioside distribution seen in human post-mortem tissue

(Barrier et al., 2007).

Amyotrophic lateral sclerosis

ALS has been linked to abnormal lipid metabolism

(Desport et al., 2005) and in particular, gangliosides and

their ceramide precursors are thought to be modulators of

disease progression (Salazargrueso et al., 1990; Stevens

et al., 1993). Whether ganglioside production is increased

or decreased is controversial. As early as 1985 a 10% re-

duction in b-series gangliosides was identified within the

motor cortex of ALS brains compared to non-ALS controls

(Rapport et al., 1985). More recently elevated levels of

gangliosides GM1 and GM3 were reported within ALS

post-mortem spinal cords compared to age-matched

controls; findings were corroborated in the SOD1-G93A

transgenic ALS mouse model (Dodge et al., 2015).

Interestingly, autoantibodies against specific gangliosides

produce an inflammatory disease of spinal motor neurons

known as multifocal motor neuropathy with conduction

block (Harschnitz et al., 2014), which is a frequent differ-

ential diagnosis of ALS.

ALS specifically inflicts pathology on the upper and lower

motor neurons, the neuromuscular junction and muscle.

The accessibility of this system in disease models facilitates

the differentiation of up- and downstream disease associ-

ations. For example, increased expression of glycosphingo-

lipids is observed in muscle tissue from end-stage mutant

SOD1-ALS mice compared to controls, but similar changes

were observed in response to surgically-induced muscle de-

nervation suggesting a downstream effect (Henriques et al.,

2015). Moreover, neurotransmission at the neuromuscular

junction is unchanged in aged GM2 and GD3-deficient

mice compared to controls (Zitman et al., 2011).

However, our discovery that mutations in the glycosyl-

transferase GLT8D1 are a cause of familial ALS is a step

forward, which places glycosyltransferase activity irrefut-

ably upstream in the development of disease.

Genetic mutations in glyco-
syltransferases cause
neurodegeneration
Genetic mutations in the development of an age-associated

neurodegenerative disease are, by definition, upstream

causes or risk factors rather than secondary to the disease

process. Mutations discovered to date are included in

Table 1 and described below.

GLT8D1

A recent study from our lab demonstrated that mutations

within the glycosyltransferase domain of GLT8D1 are

associated with familial ALS (Cooper-Knock et al., 2019).

The function of GLT8D1 is unknown, but it is ubiquitously

expressed and localized to the Golgi apparatus. Based on

sequence homology, GLT8D1 is a member of glycosyltrans-

ferase family 8 and is expected to catalyse the transfer of a

glycosyl group from a donor to an acceptor via a ‘retain-

ing’ mechanism. Mutated GLT8D1 carrying ALS-associated

amino acid changes is toxic to neuronal and non-neuronal

cell lines, and induces motor deficits in zebrafish embryos;

these observations are consistent with a role in motor

neuron degeneration. Interestingly, relative toxicity of

ALS-associated mutations in model systems mirrors the

clinical severity. Glycosyltransferase enzyme activity is

reduced in the mutated form of GLT8D1 commensurate

with an increase in substrate affinity, which is predicted

to impair cycling of substrate through the enzyme and

thus reduce overall velocity (Cooper-Knock et al., 2019).

Glycosyltransferases in neurodegeneration BRAIN 2020: 143; 1332–1340 | 1335
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Taken together, these data are consistent with loss-of-func-

tion toxicity. Our study is the first time inherited mutations

that diminish glycosyltransferase enzyme activity have

been associated with ALS. We have recently demonstrated

by immunocytochemistry that ALS-associated mutations

reduce membrane expression of glycosphingolipids in

human cells (unpublished data). Glycosphingolipids include

gangliosides and this would be consistent with disruption

of ganglioside signalling within the CNS. GLT8D1 was re-

cently identified as a risk gene for schizophrenia (Yang

et al., 2018), and while schizophrenia is not a neurodegen-

erative disorder, it is noteworthy that ALS and schizophre-

nia share common genetic risk (McLaughlin et al., 2017).

UDP glycosyltransferase 8 (UGT8)

Like GLT8D1, UGT8 is a member of glycosyltransferase

family 8. UGT8 functions in the biosynthesis of galactocer-

ebroside, a sphingolipid that forms the myelin membrane in

the central and peripheral nervous systems. Rare and po-

tentially pathogenic copy number variants have been iden-

tified in the promotor region of UGT8 following in an

unbiased genome-wide screen for de novo DNA mutations

in 12 trios including sporadic ALS patients and unaffected

parents (Pamphlett et al., 2011). Abnormal lipid biosynthe-

sis and metabolism is a pathological hallmark of ALS

(Dupuis et al., 2008; Dorst et al., 2011), therefore it is

possible that UGT8 plays a role in the hypolipidaemia

observed in ALS patients and the SOD1-G93A ALS

mouse model (Kim et al., 2011; Yang et al., 2013). Mice

lacking Ugt8a, the orthologue of UGT8, exhibit impaired

locomotor activity and disruption in nerve conduction fol-

lowed by degeneration of the myelin sheath (Bosio et al.,

1996; Coetzee et al., 1996), which is rescued following

transgenic expression of UGT8A (Zoller et al., 2005).

Interestingly the rescue occurred with expression of

UGT8A under a promoter exclusively expressed within

oligodendrocytes, which is consistent with other evidence

implicating these cells in ALS-associated neurodegeneration

(Morrison et al., 2013).

ST6 b-galactoside a-2,6-sialyltransfer-
ase 1 (ST6GAL1)

ST6GAL1 is an ‘inverting’ enzyme and a member of glyco-

syltransferase family 29. ST6GAL1 catalyses the transfer of

sialic acid onto galactose-containing substrates including cell-

surface signalling lipids and proteins (Garnham et al., 2019).

A genome-wide association study implicated polymorphisms

within ST6GAL1 in the conversion of mild cognitive impair-

ment into clinical Alzheimer’s disease (Lee et al., 2017).

Interestingly ST6GAL1 is cleaved and occurs in a soluble

form; this cleavage is mediated by BACE1 (Kitazume et

al., 2001), which is also involved in the cleavage of APP

to form amyloid-b. Indeed, overexpression of ST6GAL1 in-

creases APP secretion (Nakagawa et al., 2006) suggesting

that the activity of ST6GAL1 can directly modify the central

pathway in the development of Alzheimer’s pathology.

Glycosyltransferase
O-GlcNAcylation: a key reg-
ulator of neurodegeneration?
Protein glycosylation and more specifically the addition of O-

GlcNAc groups to CNS proteins important for axonal and

synaptic function, is significantly reduced in animal models of

neurodegenerative diseases and in patient tissue from diseases

Table 1 Defects affecting specific glycosyltransferase enzymes observed in neurodegenerative disease

Glycosyltransferase Functional consequence Neurodegenerative

disorder

Defect observed Reference

ST6GAL1 Disrupted cell surface signalling Alzheimer’s disease DNA mutations Lee et al., 2017

B3GALT4 Reduced ganglioside biosynthesis

(GD1b)

Parkinson’s disease Reduced gene expression Schneider, 2018

ST3GAL2 Reduced ganglioside biosynthesis

(GT1b)
Parkinson’s disease

Huntington’s disease

Reduced gene expression Schneider, 2018

Desplats et al., 2007

B4GALNT1 Reduced ganglioside biosynthesis Huntington’s disease Reduced gene expression Desplats et al., 2007

ST8SIA3 Implicated in ganglioside biosyn-

thesis but described role in

N-glycosylation

Huntington’s disease Reduced gene expression Desplats et al., 2007

ST3GAL5 Reduced ganglioside biosynthesis Huntington’s disease Reduced gene expression Desplats et al., 2007

GLT8D1 Reduced membrane expression

of glycosphingolipids

ALS DNA mutations Cooper-Knock et al.,

2019
UGT8 Disruption of myelin synthesis ALS DNA mutations Pamphlett et al., 2011

EOGT Disruption of O-GlcNAcylation ALS DNA mutations This article

OGT Impaired O-GlcNAcylation Alzheimer’s disease

ALS

Reduced concentration of

O-GlcNAcylated proteins
Liu et al., 2004

Ludemann et al., 2005

OGT Excessive O-GlcNAcylation Parkinson’s disease Increased concentration of

O-GlcNAcylated proteins

Wani et al., 2017

1336 | BRAIN 2020: 143; 1332–1340 T. Moll et al.
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including Huntington’s disease, Alzheimer’s disease and ALS

(Liu et al., 2004; Ludemann et al., 2005; Kumar et al., 2014;

Frenkel-Pinter et al., 2017) (Table 1). O-GlcNAcylation is

reported to negatively regulate tau phosphorylation (Liu et

al., 2004), which is key in the pathogenesis of a number of

neurodegenerative diseases, including Alzheimer’s disease. In

contrast, an increase in O-GlcNAcylation is observed in the

post-mortem temporal cortex of patients with Parkinson’s

disease and is postulated to contribute to neurodegeneration

through the inhibition of autophagy leading to an increase in

�-synuclein accumulation (Wani et al., 2017). Neurofilaments

are critical components of the neuronal cytoskeleton that can

undergo O-GlcNAcylation (Yuan et al., 2012).

Neurofilament levels are significantly higher in the serum

and CSF of ALS patients compared to control subjects

(Benatar et al., 2018). This increase is thought to be a con-

sequence of axonal damage. However, there is evidence that

neurofilament damage may be upstream in the pathogenesis

of ALS including the observation that increased phosphoryl-

ation of neurofilaments is associated with neurotoxicity

(Julien, 1997). It is thought that phosphorylation and

O-GlcNAcylation are reciprocal, meaning that reduced

O-GlcNAcylation could precipitate harmful phosphorylation;

indeed this has been observed in a transgenic rat model of

SOD1-ALS (Ludemann et al., 2005).

O-GlcNAcylation occurs predominantly in the brain and

is regulated by the glycosyltransferases OGT and EOGT;

the reverse reaction is catalysed by O-GlcNAcase (OGA).

Together these reactions constitute a dynamic and revers-

ible process (Fig. 2). OGT is an inverting enzyme and a

member of glycosyltransferase family 41; OGT is highly

enriched in the brain, where it is 10 times more active

than in peripheral tissue (Okuyama and Marshall, 2003).

OGT is localized to the nucleus, soma, dendrites and

presynaptic terminals of neurons (Akimoto et al., 2003).

Removal of postsynaptic OGT from primary neurons in-

hibits both synapse formation and the development of den-

dritic spines (Lagerlof et al., 2017). This highlights the

importance of OGT in maintaining synaptic stability, and

notably loss of synaptic stability is a unifying feature of

neurodegenerative disease. EOGT is an inverting enzyme

and a member of glycosyltransferase family 61. Despite

distinct sites of action, OGT and EOGT are both regulated

via the hexosamine biosynthetic pathway (Ogawa et al.,

2015). EOGT activity is involved in Notch signalling,

which is important for neurodevelopment. Indeed, homo-

zygous loss-of-function mutations in EOGT produce

Adams-Oliver syndrome, a congenital developmental dis-

order associated with actin cytoskeleton defects.

ALS-associated genetic variants
within O-GlcNAcylation pathway
enzymes

While homozygous EOGT mutations affect neurodevelop-

ment, we hypothesized that heterozygous mutations within

EOGT might negatively impact on the maintenance of axon

integrity and increase risk of developing ALS. To test this

hypothesis we performed rare-variant burden testing

(Cirulli et al., 2015) within EOGT to check for a genetic

association with ALS. We used whole genome sequencing

data from 4493 sporadic ALS patients and 1924 control

subjects (van der Spek et al., 2019); we identified 32 mis-

sense rare (MAF 5 1%) variants within EOGT that were

exclusively or predominantly found in ALS cases (Table 2).

When considering all rare missense variants found in cases

and controls across all exons of EOGT, there was a signifi-

cant enrichment of such mutations in ALS patients (Firth

logistic regression, P = 0.007). Similar testing did not iden-

tify an enrichment of ALS-associated mutations within

OGT, indeed we only identified two rare missense muta-

tions within OGT in 4493 sporadic ALS patients. It should

be noted that OGT is encoded on the X chromosome and

therefore males are necessarily hemizygous, which may pre-

dispose to a neurodevelopmental phenotype rather than a

late age-of-onset disease: for example mutations within N-

terminal tetratricopeptide repeats of OGT are associated

with X-linked intellectual disability (Gundogdu et al.,

2018). There was no significant burden of ALS-associated

mutations within OGA (P = 0.91).

Conclusions
Overall there is substantial evidence for dysfunction of gly-

cosyltransferases in neurodegenerative diseases including

ALS, Alzheimer’s disease, Huntington’s disease and

Parkinson’s disease. There are diverse functions associated

with glycosyltransferase activity and for many of the en-

zymes the biological pathway associated with their activity

is not yet clear. However, in our analysis, dysfunction

associated with neurodegenerative disease can be seen to

converge on the ganglioside synthesis pathway and altered

O-GlcNAcylation. The exact nature of the defect appears

to be variable in different diseases; for example ganglioside

concentrations are reduced in Parkinson’s disease and

Huntington’s disease, increased in Alzheimer’s disease and

there is evidence for change in both directions in ALS.

Similarly, increased O-GlcNAcylation is associated with

the development of Parkinson’s disease pathology but

reduced O-GlcNAcylation is associated with the develop-

ment of tau pathology. We suggest that consensus will arise

via efforts to position glycosyltransferase dysfunction

within the cascade of pathogenesis leading to neuronal

death—it is not glycosyltransferase dysfunction per se that

is interesting, but rather upstream changes in glycosyltrans-

ferase function that initiate toxicity. With this in mind we

have highlighted genetic associations between mutations in

glycosyltransferases and neurodegenerative disease. Most

prominently we have recently discovered autosomal dom-

inant mutations in GLT8D1 to be a monogenic cause of

ALS. Disease-associated mutations have also been dis-

covered in UGT8 and ST6GAL1; and we have revealed a
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new association between ALS and mutations in EOGT.

Glycosyltransferases are likely to be an important thera-

peutic target in the effort of develop disease-modifying

therapies for neurodegenerative disease.
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