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Abstract 

We have extended the Ligand Knowledge Base (LKB) approach to consider a broad range of bidentate 

ligands, varying donors, substituents and backbones, which gives rise to a diverse set of 224 ligands in 

a new database, LKB-bid. Using a subset of steric and electronic parameters described previously for 

bidentate P,P-donor ligands (LKB-PP), here this approach has been applied to a wider set of bidentate 

ligands, to explore how these modifications affect the properties of organometallic complexes. The 

resulting database has been processed with Principal Component Analysis (PCA), generating a “map” 
of ligand space which highlights the contribution of donor atoms and bridge length to the variation in 

ligand properties. This mapping of bidentate ligand space with DFT-calculated steric and electronic 

parameters has demonstrated that the properties of ligands with different donor atoms can be 

captured within a single computational approach, providing both an overview of ligand space and 

scope for the more detailed investigation and comparison of different ligand classes. 

Introduction  

While some homogeneous organometallic catalysts have found widespread use, for example in cross-

coupling, metathesis, hydroformylation and hydrogenation, one of the key challenges in this area 

remains the selection of suitable ligands for a given synthetic task.1, 2 Ligand selection can aim to 

optimise catalyst properties, most commonly activity, selectivity and stability, although other figures-

of-merit for the catalyst, such as cost, toxicity and solubility, may also be of interest.  

Some of the most successful examples of homogeneous catalysis have been found to be viable with 

different ligand classes, as shown, for example, by the evolution of ruthenium metathesis catalysts 

from P-donor spectator ligands to N-heterocyclic carbenes, with the latter also supported by chelating 

benzylidene ethers and other types of ligand.3 Similarly, in copper-catalysed Ullmann cross-coupling 

reactions the choice of ligand can be used to modify selectivity in aminoalcohol substrates; in this 

case, N,N- and O,O-donor ligands can be used to control selectivity, although the mechanistic 

considerations are complex.4 Detailed mechanistic studies of catalytic reactions can shed light on why 

different catalysts alter activity and selectivity and help to elucidate ligand effects.5 However, such 

studies are time-consuming and thus generally remain focussed on comparing a small number of 

systems in considerable detail, rather than large-scale evaluation and prediction of ligand effects on 

catalysis,6 so alternative approaches, avoiding full mechanistic studies, remain desirable.7 

To guide catalyst optimisations, ligand steric and electronic parameters have been reported by a 

number of authors for different ligand classes, using both experimental and calculated data, and their 



utility for guiding catalyst optimisation has been described in a recent review.2 When calculated, ligand 

steric and electronic parameters can also be used to set novel ligand designs into context,8 and thus 

suggest possible applications.6, 9 Tolman’s early work on P-donor ligands10 also considered extension 

of his cone angle steric parameter to bidentate ligands, and other attempts to consider several types 

of ligands in a single data framework have been reported (recently reviewed in 2). However, most of 

these parameters are specific to a single type of ligand, often with limited transferability. Early 

comparisons between P-donors and carbenes hinted at the problems with developing an approach 

suitable for their comparison.11, 12 For electronic properties in particular, a range of metal complexes 

had to be considered for the determination of CO stretching data (note that related experimental 

work has been reviewed recently in reference 13), eventually leading to the identification of a 

transferable calculated electronic parameter based on a range of iridium complexes.11 However, such 

combined approaches remain rare and most ligand classes are considered separately/in isolation. 

A more general, quantitative tool for experimental design, guiding catalyst discovery and optimisation 

to promising candidates across a wide range of chemical space as accessed by changing ligands, would 

be highly desirable. In such an approach, parameters should be relatively easy to determine, ideally 

by computation to allow the consideration of novel designs before synthesis, as well as transferable 

to different coordination environments and ligand donor atoms. Here, we have extended the Ligand 

Knowledge Base (LKB) approach, developed by a consortium of research groups in Bristol,14, 15 to 

consider a broad range of bidentate ligands, varying donors, substituents and backbones. This gives 

rise to a diverse set of 224 ligands. Using a subset of steric and electronic parameters described 

previously for bidentate P,P-donor ligands (LKB-PP),16-18 this approach has been applied to explore 

how these modifications affect the properties of organometallic complexes. Insights from this 

exploration of wider bidentate chemical space and some potential applications for this database (LKB-

bid) in experimental design and catalyst optimisation are also discussed. 

Database Design 

The LKB approach has been described extensively elsewhere, including the development of a database 

for bidentate P,P- and P,N-donor ligands (LKB-PP)16, 17 and its application to screening backbone and 

substituent effects (LKB-PPscreen).18  

In brief, this approach uses a standard DFT approach (see ESI for full computational details and sample 

files) to optimise the free ligand,14 as well as a range of representative complexes; calculations at this 

level of theory can capture relatively subtle electronic effects, important to catalyst properties. From 

these ground state geometry optimisations, data are harvested. Some of these parameters (note that 

the term descriptors will be used interchangeably throughout) deliberately capture isolated steric and 

electronic effects, while others measure combined effects on complex properties. The resulting 

database, LKB-bid in the present case, is then analysed with a statistical data projection approach, 

principal component analysis (PCA),19 to reduce the dimensionality and facilitate visualisation. This is 

possible because the descriptors are reasonably highly correlated, as they are derived from the same 

ligand in different environments, and PCA can be used to derive a new set of uncorrelated variables 

(principal components, PCs), which are linear combinations of the original descriptors and capture 

most of the variation in the dataset in fewer dimensions. Plots of the first few PCs allow the generation 

of so-called maps of chemical space,20 and both individual descriptors and PCs can also be used in 



multivariate regression models where a suitable figure-of-merit/response can be identified, allowing 

both the interpretation of data, and, at times, prediction for related or novel systems.15, 17, 21, 22  

In common with earlier work,14 a standard DFT approach (BP86/6-31G*, with LACV3P on metal atoms; 

for full references and workflow, see computational details in ESI) has been used. The functional used 

overbinds slightly, compensating for the lack of dispersion corrections and ensuring that most 

geometry optimisations are successful. We have previously shown that the steric parameters used can 

capture some of the differences between standard and dispersion-corrected data.23 Descriptors are 

based on potential energies, avoiding the more expensive frequency calculations. The chelate effect24 

and ligand hemilability can be challenging to capture computationally, even with more sophisticated 

considerations of solvent and dispersion effects, along with thermochemical corrections to capture 

entropy, and such corrections have not been attempted on the scale of this database. It is worth 

bearing in mind, however, that trends in ligand effects are likely to be reasonably robust, even where 

energy effects are not fully captured.  

 

Scheme 1: Main ligand variations explored. See ESI for full list of ligands and labels used (Table S1). 



PCA is not statistically robust,21 making analyses sensitive to outlier observations and ligands were 

chosen to be representative of different chemistries, seeking to balance different donor combinations. 

Systematic variations of donors, substituents and backbones (Scheme 1) have been combined with 

chemically interesting ligands drawn from published work (Scheme 1), balancing synthetic relevance 

and chemical adventure. Where several coordination modes and protonation states could be 

considered for the ligand, we have used the most likely/stable one. The full ligand list and labels have 

been included in the ESI (Table S1), while Schemes 1 and 2 provide an overview of the main structural 

variations considered. Some charged ligands have been included, as have representative 

monodentate ligands to capture the effect of the backbone on ligand properties.  

 

Scheme 2: Examples of additional ligands included in LKB-bid. See ESI for full list and detailed labels.  



With a view to utilising ligand data already reported, the current database relies on some of the 

descriptors selected for LKB-PP,17 which have a bias towards late transition metal complexes, 

discussed further below. However, the “split ligand descriptors” developed previously,16, 17 capturing 

the proton affinity, HOMO and LUMO energies for each individual donor atom with suitable 

truncation, became increasingly difficult to construct as ligand variation increased; these descriptors 

have thus been dropped from consideration here. They correlate quite highly with other descriptors 

capturing -donicity, e.g. those derived from the [ZnCl2] fragment, such that these properties continue 

to be captured. The distances between donor atoms and the centre of the He8 wedges used to 

calculated steric parameters have been adjusted to take account of different donor atom types (“D–
X” distance = 2.28 Å (P), 2.00 Å (C, N), 2.05 Å (O)). As described previously,16, 17 these steric parameters 

mimic the steric hindrance of an idealised octahedral coordination environment by placing a wedge 

of helium atoms where cis ligands would be found. This allows the calculation of a computationally-

convenient, repulsive interaction energy for ligands in their chelating conformation. The He8_wedge 

parameter freezes the donor atom positions as optimised in the [ZnCl2] complexes, found to provide 

a reasonable approximation of the “natural” bite angle, while the nHe8 calculation allows for 

movement of donors in response to steric pressure, albeit constrained to the D-X distances noted, 

designed to capture whether ligands can respond to steric hindrance.17  In addition, we have 

introduced the binding energy of the [AuCl] fragment,15, 25 calculated for individual donor atoms, as a 

possible descriptor for ligand hemilability to this database as well.  

We note that in LKB-PP, the P,N-donor ligands considered appear slightly separate from P,P donors in 

the chemical space sampled by LKB-PP, suggesting that the difference in donor atoms, dampened by 

using the change in metal-donor distance compared to a reference ligand, is nonetheless an important 

source of variation in the data which has been captured by the PCA analysis.15, 16 In the present 

database, consideration of a range of different donors, including carbenes and phosphines, 

highlighted that the main difference arises from the strength of metal-ligand binding. This can be 

useful in some contexts, but in the present case the focus should be on the effect of ligands on the 

properties of the metal complexes, i.e. treating them as spectator ligands. Rather than using measured 

metal-donor distances, the change compared to a representative reference ligand (Scheme 3 and 

highlighted in green in ligand list, see ESI) for each donor set has been used to reduce the impact of 

different binding modes on the data analysis. Where chemically relevant, these references have two 

atoms in the backbone between donors and methyl substituents; in some cases (cp01, co02, nn_ch02, 

oo_ch02, co_ch01), the nearest comparable ligand was used instead.  



 

Scheme 3: Reference ligands used. 

Scheme 4 shows the complexes calculated and Table 1 summarises the data harvested from these 

calculations. The complete database is available as part of the ESI. 

 

Scheme 4: Complexes calculated for LKB-bid. 

Table 1: Descriptor data harvested from calculations on complexes (Scheme 4). 

Descriptor Derivation (Unit) 

Free Ligand 

He8_wedge Interaction energy between ligand in chelating conformation and wedge 
of 8 He atoms, maintaining donor atom position similar to [ZnCl2] 
complex,a EHe8_wedge = E(He8(D1D2)) – E(He8) – E((D1D2)) (kcal mol-1) 



nHe8 Interaction energy between ligand in chelating conformation and wedge 
of 8 He atoms, donor atoms free to move at fixed X-D distances,b EnHe8 = 
E(He8(D1D2)) – E(He8) – E((D1D2)) (kcal mol-1) 

Zinc complexes Zn(D1D2)Cl2 

BE(Zn) 
Bond energy for dissociation of D1D2 ligand from metal fragment (kcal 
mol-1) c 

Zn–Cl Average Zn–Cl distance (Å) ∠D1–Zn–D2 Ligand bite angle in complex (degrees) 

∆D1–R(Zn), ∆D2-R(Zn)c Change in average D–R distances cf. free ligand (Å) 

∆Zn–D1, ∆Zn–D2 Change in Zn–D distances cf. reference ligand (Scheme 4) (Å) 

Q(Zn) NBO charge on ZnCl2 fragment 

Palladium complexes Pd(D1D2)Cl2 

BE(Pd) 
Bond energy for dissociation of D1D2 ligand from metal fragment (kcal 
mol-1) d 

Pd–Cl Average Pd–Cl distance (Å) ∠D1–Pd–D2 Ligand bite angle in complex (degrees) 

∆D1–R(Pd), ∆D2-R(Pd)c Change in average D–R distances cf. free ligand (Å) 

∆Pd–D1, ∆Pd–D2 Change in Pd–P distances cf. reference ligand (Scheme 4) (Å) 

Q(Pd) NBO charge on PdCl2 fragment 

Gold Complexes ([AuClL], not included in main PCA) 

BE(Au, D1), BE(Au, D2) Bond energy for dissociation of single donor from [AuCl] fragment (kcal 

mol-1)d 

a Donor atoms in fixed positions, fixed “D–X” distance = 2.28 Å (P), 2.00 Å (C, N), 2.05 Å (O) ; b Fixed 

“D–X” distances (as for He8_wedgea), D atom position free to move; c R = Substituents on D atoms, d 

BE = [Etot(fragment)+Etot(L)]-Etot(complex) 

 

Some basic descriptive statistics for key descriptors are shown in Table 2 for the larger subsets (N>10) 

of ligands with different donors. These confirm that the chosen descriptors are responsive to chemical 

changes yet avoid excessive outliers. The full analysis can be found in the ESI (see spreadsheet). In 

addition, we have considered bivariate correlations between descriptors (see spreadsheet). These are 

largely as might be expected, i.e. high for descriptors capturing similar behaviours in different 

complexes (BE, bite angles) and for those related through electronic effects (e.g. between BE and 

ligand trans influences). Changes in M-L distances compared to reference compounds are not showing 

high linear correlations (>0.5) with other descriptors, but especially those derived from the Pd complex 



show some correlation with descriptors related to steric and -donation effects, again as expected 

from our understanding of metal-ligand interactions.  

Table 2: Mean (standard deviation) for representative descriptors by donors (only showing those with 

N>10, see spreadsheet for full table). 

D1,D2 He8_wedge nHe8 BE(Zn) BE(Pd) ∠D1–Zn–D2 

C,N (N=38) 21.0 (7.4) 19.1 (5.7) 54.3 (5.2) 94.3 (6.7) 91.9 (11.1) 
N,N (N=41) 14.5 (7.8) 13.8 (7.1) 46.4 (5.6) 73.3 (7.6) 81.3 (9.2) 
N,O (N=20) 10.1 (4.8) 8.5 (5.3) 36.2 (5.1) 55.2 (6.2) 79.7 (9.4) 
O,O (N=11) 6.1 (2.5) 6.4 (3.6) 34.8 (6.3) 44.3 (6.4) 80.6 (8.9) 
P,P (N=25) 22.5 (9.3) 18.3 (5.5) 33.7 (5.0) 89.5 (8.3) 88.9 (12.1) 
P,N (N=30) 16.3 (7.0) 14.0 (5.7) 37.5 (3.8) 79.0 (6.6) 82.7 (11.4) 
P,O (N=16) 10.4 (4.0) 9.2 (3.5) 32.7 (3.2) 65.5 (4.1) 79.8 (8.9) 

 

Maps of Bidentate Ligand Space 

LKB-bid can be processed further, focussing on the use of PCA to aid visualisation of the ligand space 

mapped. Here we first consider all ligands (section a), before focussing on a subset of ligands with C, 

N and O donors (section b). 

a. All Ligands 

Eighteen ligand descriptors have thus been calculated as described above for 217 bidentate ligands as 

well as 7 cases combining two monodentate ligands, assuming a cis-, bisligation in all complexes. In 

addition, binding energies for the coordination of the [AuCl] fragment to individual donor atoms were 

calculated for most ligands. For some C,N donor ligands (cn01-03, 06), the gold fragment migrated 

from N to C, so a binding energy could not be calculated. These descriptors have thus been left out of 

the main analysis but will be considered further below.  

 

  



Figure 1: PC score plot, showing PCs 1 and 2, for the full ligand set (224 ligands). Each marker 

corresponds to a ligand and these first two PCs capture 52% of the variation in the database. Colour-

coding according to donor atoms for main plot, and according to backbone length for inset. Green 

ellipse marks charged ligands. See ESI for larger version of main plot, showing all ligand numbers. 

 

Figure 1 shows the ligand scores for the database based on a set of eighteen ligand descriptors, i.e. 

excluding those derived from the [AuCl] fragment. This was obtained by PCA of the correlation matrix, 

and Figure 1 displays the first two PCs, which capture 52% of the variation in the database.  

Table 3 shows descriptor loadings for PCs 1-3, illustrating that most descriptors load highly onto the 

first two PCs (see also Fig. S1 for a plot of descriptor loadings; see ESI for all diagnostics (Table S2, 

Figure S1, spreadsheet) and detailed plots (Figures S2-S8)). As noted earlier, PCA is not statistically 

robust, with different ligand sets altering the composition of each PC, which are linear combinations 

of descriptors used. We note that bite angles, M-Cl distances and the He8 steric descriptors load more 

highly on PC1, suggesting perhaps that steric and -bonding effects are more strongly captured in this 

dimension. However, most descriptors load on both PC1 and PC2 (Table 3 and ESI), making a more 

detailed interpretation challenging in this case. 

 

Table 3: Descriptor loadings for PCs 1-3. 

 
PC1 PC2 PC3 

% variation captured 35.9 15.6 12.6 

He8_wedge 0.296 0.184 -0.307 

nHe8 0.286 0.145 -0.318 

BE(Zn) 0.212 -0.451 0.106 

Zn–Cl 0.332 -0.261 -0.022 

∆Zn–D1 -0.020 0.190 0.128 

∆Zn–D2 -0.024 0.092 0.029 

∆D1–R(Zn) -0.219 -0.220 -0.374 

∆D2–R(Zn) -0.117 -0.355 -0.183 ∠D1–Zn–D2 0.313 -0.068 -0.313 

Q(Zn) -0.256 0.271 -0.196 

BE(Pd) 0.316 -0.144 0.297 

Pd-Cl 0.343 0.066 0.163 

∆Pd–D1 0.163 0.306 -0.170 

∆Pd–D2 0.185 0.148 -0.248 

∆D1–R(Pd) -0.206 -0.242 -0.376 

∆D2–R(Pd) -0.120 -0.305 -0.196 ∠D1–Pd–D2 0.292 0.007 -0.270 

Q(Pd) -0.170 0.289 -0.091 

 



Data points close to each other on this map indicate greater similarity, as measured by the descriptors 

used, while those further apart are more different. Note that 18 descriptors will give rise to 18 PCs, 

albeit of decreasing importance, and additional dimensions beyond PCs 1 and 2 may be important 

here. This has been discussed further in the ESI (Figures S9-S11); here we will focus on the first two 

PCs to simplify visualisation and discussion.  

The PC score plot shows a separation of data according to donor atoms, with P,P-donor ligands most 

distant from other ligand types in the top right hand corner/North East of the map (in line with calling 

these plots “maps”, a geographical naming convention is useful here). With PCA designed to identify 

the largest sources of variation in the data, the differentiation of the second row, larger P-donor atoms 

is not surprising and aligns well with our chemical knowledge. Most C,C-donor ligands have moved 

away from other systems as well, along the equator (PC1>2, PC20), presumably driven by higher M-

C binding energies than the other ligands considered, but only a few examples have been included 

here and such undersampling is hampering more detailed conclusions from being drawn.  

Compared to ligands with the same donors, mixed donor systems have more similar properties across 

different donor atoms, shown by an overlap of data points from different ligand classes near to the 

equator and towards the South West; this is particularly pronounced for N,N-, N,O- and O,O-ligands, 

but P,N- and C,N-donor ligands also show some overlap, at least in terms of these first two principal 

components. (Note that this is true when considering PC3, as well, Figures S9 and S11.) Finally, there 

is a group of ligands slightly separate from others in the South East quadrant of the map (PC1>0, 

PC2<0, marked with green ellipse in Fig. 1), close to the central meridian. These ligands are charged, 

giving them higher ligand binding energies to metal fragments and illustrating how the PCA approach 

is sensitive to the main variations in data. (The ESI also includes PCA maps excluding these ligands, 

Tables S3, Figures S12, S13.) 

South West to North East banding of ligand types arises from the variation in donors, while, as shown 

as an inset in Figure 1, variation from North West to South East, i.e. across the other diagonal of this 

map, is to some extent related to backbone length. This becomes even more obvious when excluding 

charged ligands (see ESI, Figures S11, S12); a similar spread of data according to backbone was 

observed for LKB-PPscreen.18 Note, however, that the sampling of longer backbone lengths is uneven 

across different ligand classes. In addition, bridge flexibility, facilitating the adoption of a chair-like 

backbone conformation, as well as length, can influence the ligand position, as shown in Figure S8b, 

which suggests that more flexible ligands and longer bridges are likely to be found towards the Eastern 

side of the map for each ligand class. 

b. C-, N- and O-Donor Ligands 

As noted in a recent review,2 perhaps the computationally most well-sampled ligand classes in 

catalysis are monodentate P-donor and carbene ligands, with bidentate P,P-donor ligands a relatively 

distant third. That notwithstanding, other ligand classes play important roles in this field, especially 

for supporting earth abundant, first row transition metal centres, where carbenes along with N- and 

O-donor ligands tend to be popular.26 

With a view to exploring these subsets of ligands in greater detail, the PCA was repeated after removal 

of ligands containing at least one P-donor. The map resulting from consideration of the first two PCs 

is shown as Figure 2 and now captures 57 % of the variation in the database for 146 ligands. (See ESI 



for details and diagnostics) With the P-donor ligands, which lie away from other bidentate ligands 

(Figure 1) due to familiar differences in M-L bonding, removed from consideration, resolution of the 

remaining ligand clusters is improved, facilitating more detailed analysis of similarities and differences 

for the remaining ligands.  

 

Figure 2: PC score plot, showing PCs 1 and 2, for ligands with C-, N- and O-donors only (146 ligands). 

Each marker corresponds to a ligand and these first two PCs capture 57% of the variation in the 

database. Colour-coding according to donor atoms. Green ellipse marks charged ligands. See ESI for 

larger version of main plot, showing all ligand numbers. 

Again, clustering according to donors (Figure 2) and banding according to backbone length and 

flexibility (ESI Figure S21) can be observed, with charged ligands as a slightly separate band towards 

the South East (marked by green ellipse), illustrating how PCA highlights the key sources of variation 

in the data. Perhaps most interesting are the ligands with different donor atoms which appear in the 

same area of ligand space, i.e. N,N-, O,O- and N,O-donor ligands at PC1 -5.5 - -2, PC2 -2 to 2 (Figure 3). 

This proximity is maintained for PC3 as well (see ESI, Figure S23) and highlights the similarity of their 

properties for the descriptors considered here. Indeed, while N,N-donor ligands tend to have higher 

metal – ligand binding energies on average than O,O-donor ligands, with N,O-ligands in-between 

(Table 2), the ligands in this area of chemical space are much more similar, helping to explain their 

placement in proximity to each other. From a structural perspective, this is perhaps not surprising, as 

the ligands in this area have mostly small substituents (Figure 3 top) or the donor is part of a 

ring/double bond (Figure 3 bottom), and the bridges are relatively short.  



 

 

Figure 3: Focus on ligand space where N,N-, N-,O- and O,O-donor ligands overlap, including 

representative structures. Donors are shown in red where this is ambiguous. 

While recognising and quantifying such similarities can provide useful information for experimental 

designs, facilitating the selection of a representative ligand set for screening, we note that the 

parameters used so far have treated all ligands as bidentate (or cis-, bis-ligating for the small number 

of monodentate ligands considered) and calculated binding energies have assumed full dissociation. 

In some cases, especially those with mixed donors, hemilability may be more likely and binding 

energies of individual donors to a [AuCl] fragment have been calculated to probe this further. Figure 

4 shows the same PC scores as Figure 2, focussing just on C-, N- and O-donor ligands, but is coloured 

according to the binding energies for this fragment to individual donor atoms.  

 



    

Figure 4: PC score plot, showing PCs 1 and 2, for ligands with C-, N- and O-donors, coloured by BE (Au, 

D) descriptors. See ESI for these plots with ligand numbers (Figure S25). 

The differences between donors are most pronounced for C,N-donor ligands, predominantly found in 

the North East quadrant, but even for N,O-donor ligands (West), the differences are often in excess of 

10 kcal mol-1, suggesting a clear preference for this gold complex to bind to donor 1 (C and N 

respectively) over the other. This may well help to create a flexible coordination sphere, valuable in 

some catalytic cycles where a hemilabile ligand can “protect” a vacant site when needed.27 Ligands 

with one charged donor (South East) not unexpectedly also exhibit quite large differences.  

These observations align well with the mechanistic complexities for catalytic cycles such as the 

Ullmann coupling of aminoalcohols4 mentioned above. This potential variability of ligand coordination 

will merit further consideration, including an exploration of ligand hemilability and full or partial 

displacement by charged substrates, especially when the latter are deprotonated in the proposed 

catalytic cycles. As an example, no_ch01 is a deprotonated aminoalcohol (Me2N(CH2)2O-), which has 

higher binding energies to all metal fragments than bipyridyl (nn07), phenanthroline (nn08) and acac 

ligands such as oo_ch02. Therefore, these compounds appear in different areas of ligand space, as 

noted above, but might all be present in a reaction mixture for copper-catalysed Ullmann coupling. 

Exploration of such competitive binding lies outside of the scope of the study reported here as it is 

very reaction specific whereas we pursued a general approach, but work is currently under way to 

combine such data-driven insights with calculated mechanistic data. 

 

Summary and Conclusions 

This mapping of bidentate ligand space with DFT-calculated steric and electronic parameters has 

demonstrated that ligands with different donor atoms can be combined and their properties captured 

within a single computational approach. Since PCA highlights the biggest sources of variation in the 

data, it becomes increasingly difficult to accommodate substantial variation in donors or backbones, 

but we have shown how further data analysis can be used to explore areas of overlap. It would also 

be feasible to focus on a subset of ligands, as demonstrated in earlier work on LKB-PP, for more 



detailed mapping and applications to screening and prediction,16, 17 while still retaining the same 

descriptors, allowing the generation of both detailed and overview maps of bidentate ligand space. 

The observed progression across maps according to changing donors and bridge lengths is satisfying, 

highlighting the importance of these two variables in ligand optimisation. Substituent effects around 

the donor site will also be of interest and have been explored extensively for bidentate P-donor ligands 

in LKB-PPscreen,18 but we have not investigated this variation systematically, focussing instead on 

representative ligands in this initial study. The parameters used have been derived from a limited 

number of coordination environments (square planar [PdCl2] and tetrahedral [ZnCl2] fragments, along 

with the He8-wedges used to mimic the steric hindrance of cis ligands in an octahedral complex), but 

we expect them to have some transferability to other coordination environments. This has been 

demonstrated for P,P-donor ligands where the bond energy for complete dissociation of the ligands 

from octahedral [Cr(CO)4(PP)] complexes could be predicted from a multivariate linear regression 

model based on these parameters.16 Expansion to include other coordination environments is 

certainly feasible, but brings additional computational challenges (see ESI for a more detailed 

discussion).  

Work is currently under way to generate experimental data, screening a range of ligands under 

comparable conditions, which will allow us to test the experimental utility of the present approach in 

the future. There are also indications that ligand hemilability and displacement by other ligands could 

be important, but this will require further mechanistic investigation to fully quantify, and may lead to 

the introduction of additional descriptors, with a focus on key reactions, in the future. Finally, we note 

that our focus so far has been on late transition metals and an expansion to early/harder metal centres 

may well enhance the insights for ligands with C-, N-, and O-donors. The work of Odom’s group is of 
particular interest in this area.28  
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