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Abstract

Background: Cryptosporidium spp. are causative agents of gastrointestinal diseases in a wide variety of vertebrate
hosts. Mortality resulting from the disease is low in livestock, although severe cryptosporidiosis has been associated
with fatality in young animals.

Methods: The goal of this systematic review and meta-analysis was to review the prevalence and molecular data on
Cryptosporidium infections in selected terrestrial domestic and wild ungulates of the families Bovidae (bison, buffalo,

cattle, goat, impala, mouflon sheep, sheep, yak), Cervidae (red deer, roe deer, white-tailed deer), Camelidae (alpaca,
camel), Suidae (boar, pig), Giraffidae (giraffes) and Equidae (horses). Data collection was carried out using PubMed,
Scopus, Science Direct and Cochran databases, with 429 papers being included in this systematic analysis.

Results: The results show that overall 18.9% of ungulates from the investigated species were infected with Crypto-
sporidium spp. Considering livestock species (cattle, sheep, goats, pigs, horses and buffaloes), analysis revealed higher
Cryptosporidium infection prevalence in ungulates of the Cetartiodactyla than in those of the Perissodactyla, with
cattle (29%) being the most commonly infected farm animal.

Conclusions: Overall, the investigated domestic ungulates are considered potential sources of Cryptosporidium con-
tamination in the environment. Control measures should be developed to reduce the occurrence of Cryptosporidium
infection in these animals. Furthermore, literature on wild populations of the named ungulate species revealed a
widespread presence and potential reservoir function of wildlife.
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Background

Cryptosporidium, the causative agent of cryptosporidi-
osis, is an ubiquitous protozoan parasite. It causes gas-
trointestinal disease in a wide variety of vertebrate
hosts, including ungulates of the orders Artiodactyla
and Perissodactyla, as well as humans. Several Crypto-
sporidium species are known to be zoonotic with ani-
mals as major reservoirs [1]. In resource-limited settings,
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cryptosporidiosis is a leading cause of diarrhoeal death
in children younger than five years across the globe, only
second to rotaviral enteritis [2]. Cryptosporidiosis is also
a significant contributor to health care cost in developed
countries. It is estimated that in the USA 748,000 cases
of human cryptosporidiosis occur annually [3]. Resi-
dents of and travelers to developing countries may be at
greater risk of infection due to poor water treatment and
food sanitation [4, 5]. Cryptosporidiosis typically induces
self-limiting diarrhea in immunocompetent individu-
als, but the infection can be severe and life-threatening
in immunocompromised subjects [6]. It is one of the
most important diseases in young ruminants, espe-
cially neonatal calves [7, 8]. The clinical presentation of
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cryptosporidiosis varies from asymptomatic to deadly,
leading to important economic losses due to growth
retardation, reduced productivity and mortality [9, 10].
Considering that an infected bovine calf can shed up
to 1.1 x 10% oocysts per gram of feces at the peak of the
infection, cattle (and very likely wild ruminants) are sig-
nificant contributors of environmental Cryptosporidium
oocysts [11, 12], causing water-borne [13-15] and food-
borne [16, 17] diarrhea outbreaks in humans worldwide.
The worldwide annual excretion of Cryptosporidium spp.
oocysts by livestock has been calculated to be 3.2 x 10%
[18], with cattle being the host species causing most
environmental contamination. Cattle are able to carry
different species including C. hominis which implies an
associated significant public health risk [19]. In addition,
Cryptosporidium oocysts are infective at the time they
are passed in feces and are highly resilient to a wide range
of environmental factors including disinfection and water
treatment processes. Moreover, low infection doses are
sufficient to cause disease in suitable hosts, e.g. 10-100
oocysts are described to provoke diarrhea in humans [20,
21].

Over the past few decades, a major subject of debate
and controversy in the epidemiology of Cryptosporidium
is whether, and to what extent, domestic and wildlife
species may act as natural reservoirs of human crypto-
sporidiosis [22, 23]. This is principally due to the fact that
the genus Cryptosporidium encompasses nearly 40 valid
species with marked differences in host range, among
which over 10 (mainly C. hominis, C. parvum and C.
meleagridis) have been reported in humans [24] with a
variety of genotypes being zoonotic [1, 22, 25]. The pub-
lic health significance of animal cryptosporidiosis varies
greatly depending on factors such as geographical vari-
ation in prevalence and genotype distribution, seasonal-
ity, load of environmental contamination with oocysts
and access to surface waters intended for human con-
sumption or recreation [9, 26]. In particular, genotyping
data from epidemiological surveys conducted globally
indicate that infected calves are the major reservoir for
zoonotic C. parvum in many areas [26, 27], with lambs,
kids and foals being potential additional sources of C.
parvum infection for humans in some areas of the world
[28-31]. Pigs are only sporadically infected with zoonotic
Cryptosporidium species and are therefore considered
minor contributors to the zoonotic transmission of
cryptosporidiosis in humans [32]. Adult livestock typi-
cally harbor low level and asymptomatic infections but
are epidemiologically important as cryptic carriers of the
parasite, enabling re-infections at the herd level. Little is
known of the molecular epidemiology and transmission
cycles of cryptosporidiosis in wild ungulates. However,
recent surveys have revealed the presence of C. parvum
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in wild hoofed species including the American mustang
(Equus ferus caballus) [33], Scottish roe deer (Capreolus
capreolus) and red deer (Cervus elaphus) [34], and Span-
ish wild boars (Sus scrofa scrofa) [35], which may repre-
sent a threat to water quality and public health [34].

In the present study, we conducted a systematic review
of publications on the prevalence of Cryptosporidium
infections and Cryptosporidium species distribution in
domestic and wild ungulates in order to ascertain the
extent to which hoofed animals should be considered as
relevant reservoirs of human infection.

Methods

Search strategy

To evaluate the prevalence of Cryptosporidium infec-
tion in hoofed animals, we performed a comprehensive
review of literatures (full text or abstracts) published
online. English databases including PubMed, Scopus, Sci-
ence Direct and Cochran were searched for publications
related to Cryptosporidium infection of animals world-
wide, from 1984 to 2016. We used the following MeSH
terms alone or in combination: “Cryptosporidium” or
“cryptosporidiosis” and “prevalence” and “livestock” or
“cattle” or “buffaloes” or “sheep” or “pigs” or “camels” or
“alpacas” or “horses” or “ruminants” or “wildlife” To iden-
tify additional published articles, we used the PubMed
option of “related articles” and checked the reference
lists of the original and review articles. The more agri-
cultural and veterinary focused database CAB abstracts
was searched using the following search terms: “Crypto-
sporidium” or “cryptosporidiosis” and “prevalence” and
“cattle” or “cows” or “calves” or “buffaloes” or “sheep” or
“lambs” or “goats” or “kids” or “camels” or “alpacas” or
“crias” or “llamas” or “pigs” or “piglets” or “horses” or
“foals” or “deer” or “fawns” or “farm animals” or “rumi-
nants” or “livestock” or “wildlife”. A protocol for the liter-
ature review was devised (Fig. 1) in accordance with the
PRISMA guidelines [36] (Additional file 1: Table S1).

Inclusion and exclusion criteria

As part of the eligibility for inclusion, titles that suggested
the topic Cryptosporidium in domestic and wild hoofed
animals were selected. The abstracts from the selected
reference titles were reviewed by two independent
reviewers to determine if the studies met the inclusion
criteria and, if so, the entire articles were reviewed in full.
If more than one report was published from the same
study, only one was included. Exclusion criteria included
studies only on human cryptosporidiosis or case reports.
Studies on epidemiology of Cryptosporidium spp. in
groups unrelated to hoofed animals, or studies present-
ing overall prevalence estimates, where samples were
collected from the ground, and data from each animal
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Fig. 1 Flow diagram describing the paper selection process according to PRISMA guidelines

were not independently retrievable, were also excluded.
The language of data collection was limited to English.
In order to provide contemporaneous and representative
estimates, studies were excluded if they presented data
collected prior to 1984. On several occasions, we con-
tacted the authors for the collection of raw data.

Data extraction and tabulation

A data extraction form was used to collect the follow-
ing data from each study: first author, year of publica-
tion, location of study, period of study, host species, age
range, clinical signs (diarrhoeic versus non-diarrhoeic),
population nature (e.g. domestic, captive or wild), total
number of fecal samples, utilized detection method
(conventional microscopy, CM; immunofluorescence

antibody test, IFA; enzyme-linked immunosorbent
assay, ELISA; immunochromatographic test, ICT;
quantitative latex agglutination, QLAT; and polymerase
chain reaction, PCR), number of Cryptosporidium-pos-
itive samples and identity of Cryptosporidium species
and genotypes.

Retrieving sequences and phylogenetic analyses

To examine the genetic relationships among Crypto-
sporidium spp. (C. hominis, C. felis, C. parvum, C.
erinacei, C. xiaoi, C. ryanae, C. scrofarum, C. muris,
C. andersoni, C. ubiquitum, C. bovis and C. suis) in
ungulates, a phylogenetic tree was constructed using
the program Splits Tree v.4.0 based on the Neighbor-
Net method and Median-Joining analysis of sequences
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of the 185 rRNA gene [37]. For this purpose, the
sequences of the 185 rRNA gene of these Cryptosporid-
ium spp. were retrieved from the GenBank database
in the FASTA format. These sequences were initially
obtained from various herbivores, including cattle, buf-
faloes, yaks, camels, goats, sheep and deer, as well as

pigs.
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Meta-analysis

A meta-analysis was performed for studies describ-
ing Cryptosporidium infection prevalence in domestic
animals that are common in many parts of the world,
i.e. cattle, sheep, goats, buffaloes, horses and pigs. This
analysis was performed to enhance knowledge on the
potential role of livestock in zoonotic Cryptosporidium

Table 1 Summarized Cryptosporidium prevalence data for major domestic farmed animals. Data for wild populations of the given
species not included (see for full datasets and other host species in Additional file 2: Table S2)

Host species Region No. of studies Utilized diagnostic methods Retrieved minimum Retrieved
prevalence (%) maximum
prevalence (%)
Buffalo (Bubalus bubalis) Africa 6 CM, PCR 1.3 (CM) 52.0 (CM)
Asia 16 CM, ICT, PCR 3.6 (CM) 50.0 (CM)
Australia 2 PCR 13.1 (PCR) 30.0 (PCR)
Europe 1 ELISA 14.7 (ELISA)
South America 2 CM, PCR 94 (CM) 48.2 (PCR)
Cattle (Bos taurus) Africa 29 CM, ELISA, PCR 0.5 (CM) 86.7 (CM)
Asia 74 CM, ICT, IFA, PCR 1.5 (CM) 93.0 (CM)
Australia 7 CM, IFA, PCR 3.6 (IFA) 73.5 (PCR)
Europe 60 CM, ELISA, ICT, IFA, PCR, QLAT 0.0 (CM) 71.7 (CM)
New Zealand 5 CM, IFA 2.6 (IFA) 212 (CM)
North America 29 CM, IFA, PCR 1.1 (IFA) 78.0 (CM)
South America 11 CM, ICT, PCR 3.0 (CW) 56.1 (CM)
Goat (Capra hircus) Africa 10 CM, ELISA 0.0 (CM) 76.5 (ELISA)
Asia 15 CM, ICT, IFA 0.0 (IFA) 429 (CM)
Australia 1 PCR 44 (PCR)
Europe 22 CM, ELISA, IFA 0.0 (CM) 93.0 (IFA)
North America 3 M 20.0 (CM) 72.5 (CM)
South America 3 M 4.8 (CM) 100 (CM)
Sheep (Ovis aries) Africa 10 CM, ELISA, PCR 1.3 (CM) 41.8 (ELISA)
Asia 17 CM, ELISA, ICT, PCR 1.8 (CM) 66.6 (CM)
Australia 7 PCR 2.2 (PCR) 81.3 (PCR)
Europe 22 CM, IFA, ELISA 1.4 (CM) 100.0 (CM)
North America 9 CM, IFA, PCR 20.0 (CM) 774 (PCR)
South America 5 CM, PCR 0.0 (CM) 25.0 (PCR)
Pig (Sus scrofa) Africa 5 CM, ELISA, IFA, PCR 13.6 (CM) 449 (ELISA)
Asia 13 CM, IFA, PCR 04 (IFA) 558 (PCR)
Australia 3 CM, PCR 0.3 (CM) 22.1 (PCR)
Europe 13 CM, IFA, PCR 0.1 (CM) 40.9 (IFA)
North America 6 CM, IFA 2.8(ns) 6 (CM)
South America 3 CM, PCR 0.0 (CM) 22 (PCR)
Horse (Equus caballus) Africa 3 CM, PCR 0.0 (CM) 2.9 (PCR)
Asia 7 CM, PCR 2.7 (PCR) 37.0 (CM)
Europe 10 CM, ELISA, IFA, PCR (PCR) 25.0 (IFA)
New Zealand 2 M 18.0 (CM) 83.3 (CM)
North America 6 CM, IFA, PCR 0.0 (IFA/PCRY) 17.0 (IFA)
South America 7 M 0.0 (CM) 100.0 (CM)

@ Multiple studies revealed the same prevalence data
Abbreviation: ns, not stated
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Fig. 3 Forest plot of prevalence of Cryptosporidium spp. infection in goats using molecular methods (first author, year and country)

transmission since these animals feature a close con-
tact to humans. The pooled prevalence of Cryptosporid-
ium infection as well as its 95% confidence interval (CI)
was calculated for each study. A forest plot was gener-
ated to display the summarized results and heterogene-
ity among the included studies. To ensure comparable
sensitivity of tests used in analyzed studies, only results
from studies based on PCR as a diagnostic method were
included. Studies using PCR methods only for molecu-
lar Cryptosporidium species/genotype identification but
utilizing alternative diagnostic methods to determine
prevalence were not included. The heterogeneity was
expected in advance and statistical analyses including I
and Cochrane’s Q test (with a significance level of P<0.1)
were used to quantify these variations. The meta-analy-
sis considering the random effects model [38] was per-
formed using the Stats Direct statistical software (http://
www.statsdirect.com).

Results

The initial database search retrieved 14,970 publications.
The screening of these records enabled us to exclude
14,456 studies due to not meeting the inclusion criteria.
Altogether, 514 studies were retained for further investi-
gation. During the secondary assessment of these papers,
another 85 were excluded because of one of the follow-
ing reasons: other host species including wild hoofed

animals; report of the same results as another paper pub-
lished by the same author; and language of publication
(e.g. Chinese, Spanish, etc.). Papers evaluating crypto-
sporidiosis in camels, yaks, donkeys, alpacas and llamas
were excluded in the secondary analysis of data, as the
meta-analysis focused on Cryptosporidium infection in
cattle, sheep, goats, pigs, buffaloes and horses. Eventually,
429 studies which evaluated Cryptosporidium infection
during three decades met our eligibility criteria and were
retained for analysis (Fig. 1).

Different diagnostic procedures were used for the
detection of Cryptosporidium oocysts to a varying extent
in the different studies. The included publications fea-
tured CM examination (n=2371), IFA (n=107), ELISA
(n=25), ICT (n=9), quantitative latex agglutination
(QLAT) (n=1) and polymerase chain reaction (PCR)
(n=99) (Additional file 2: Table S2).

In total, 196,638 stool samples from Artiodactyla and
Perissodactyla ungulates were evaluated, of which 37,206
(18.9%) subjects were positive for Cryptosporidium infec-
tion. Among the 196,638 stool samples, 90,744 were
associated with the domestic hoofed animals (includ-
ing camels, yaks, donkeys, alpacas and llamas), display-
ing a Cryptosporidium infection prevalence of 13.6%
(n=12,377) (Table 1 and Additional file 2: Table S2).

All subsequent analyses included only the studies that
focused on Cryptosporidium infection in cattle, sheep,
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goats, pigs, buffaloes and horses (#=429). Among them,
201 provided data on cattle, 66 on sheep, 55 on goats,
39 on pigs, 37 on horses and 28 on buffaloes (Additional
file 2: Table S2).

A total of 105,894 samples from 245 studies on com-
mon livestock, defined as cattle, sheep, goats, pigs, horses
and buffaloes, were examined for Cryptosporidium
infection, with 24,829 (23.4%) being positive for Crypto-
sporidium spp. using CM and PCR methods. Most of
the studies were conducted on cattle (n=163) and sheep
(n=46).

The pooled prevalence rates using the CM method
were 22.5% (95% CI: 19.6-25.6%), 20.7% (95% CI: 15.2—
26.8%), 18.7% (95% CI: 12.36-26.2%), 15.5% (95% CI:
10.5-21.3%), 13.8% (95% CI: 6.6—22.9%) and 18.6% (95%
CI: 11.1-27.4%) for cattle, sheep, goats, pigs, horses
and buffaloes, respectively (Table 2). The pooled preva-
lence rates using the PCR method were 29.1% (95% CI:

Page 8 of 23

23.1-35.6%), 24.4% (95% CI: 16.4-33.4%), 8.2% (95% CI:
3.7-14.3%), 22.6% (95% CIL: 13.7-33%), 4.7% (95% CL
2-8.4%) and 26.0% (95% CI: 12.2-42.8%) for cattle, sheep,
goats, pigs, horses and buffaloes, respectively (Table 2).
Analysis of available data by regions (continents and
New Zealand) showed a moderate geographical varia-
tion of observed prevalence (Table 1). Although diagnos-
tic tests varied among regions, the observed prevalence
mostly fell within the 5-30% range (Table 2). Regarding
cattle, a considerably lower maximum prevalence was
seen in New Zealand compared to other regions. Crypto-
sporidium prevalence in goat tended to be lower in Asia;
however, only one study was available for Australia. For
sheep it was the highest in the regions with most inten-
sive sheep production, i.e. Australia, Europe and North
America (Table 1). Cryptosporidium prevalence in pigs
was the highest in Asia, Africa and Europe. In horses,
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Fig. 4 Forest plot of prevalence of Cryptosporidium spp. infection in sheep using molecular methods (first author, year and country)
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studies in South America reported the highest Crypto-
sporidium prevalence.

The forest plot diagrams of prevalence of Crypto-
sporidium infection in domestic hoofed animals derived
from studies using a PCR method are shown in Figs. 2,
3,4,5,6,7. As forest plots show, there is a considerable
variation of study numbers and observed prevalence in
a given host species within each defined geographical
region, even if only studies based on PCR methodology
are included. Considering a wider range of studies, i.e.
studies that use either CM or PCR (Table 2), cattle are
most commonly infected globally while horses feature
the lowest Cryptosporidium prevalence.

The highest and lowest prevalence rate of Crypto-
sporidium infection in domestic hoofed animals was
observed in America (26%) and Africa (14%) continents,
respectively (Table 3, Fig. 8). Among 53 countries with
data, Canada (60%) showed the highest infection rate
whereas China, Thailand and Germany (8%) had the low-
est infection rate (Table 3, Fig. 8).

The distribution of Cryptosporidium species/genotypes
by host and geographical region is summarized in Table 4.
Cryptosporidium parvum (monoinfections 4172/10,583;
39.4%) and C. andersoni (monoinfections 1992/10,583;
18.8%) were the most commonly detected Cryptosporid-
ium species (Table 4). A phylogenetic network was con-
structed based on sequences of Cryptosporidium spp.
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(Fig. 9) using the Neighbor-Net method. On the basis of
this phylogenetic analysis, 10 clades (I, II, III, IV, V, VI,
VII, VIII, IX and X) containing 12 Cryptosporidium spp.
were identified (Fig. 9). Interestingly, C. andersoni and C.
muris were placed together in Clade I, and C. xigoi and
C. bovis were both placed in Clade III. It further demon-
strated a pairwise sister relationship between clades III
and IV (clustering C. wiaoi, C. bovis, and C. ryanae), VI
and VII (containing C. ubiquitum and C. suis) and VIII
and IX (containing C. hominis and C. erinacei), respec-
tively. Interestingly, the result of the phylogenetic analy-
sis indicated that clades II (C. scrofarum), 111 (C. bovis
and C. xiaoi) and IV (C. ryanae) could have originated
from a common ancestor. The distribution of Crypto-
sporidium spp. in a wide range of domestic and wild
ungulates is presented in Table 4. The C. parvum is the
most common genotype in cattle (54.1%), goats (42.1%)
and horses (40.2%), followed by C. ryanae in buffaloes
(66.6%), C. suis in pigs (54.1%), and C. xiaoi in sheep
(48.9%). In terms of transmission dynamics and clinical
importance of zoonotic Cryptosporidium spp., C. homi-
nis, C. parvum, C. andersoni, C. bovis and C. ubiquitum
were identified in sheep/goats, cattle/goats/horses/pigs/
sheep, cattle/camels/sheep/yaks, buffaloes/cattle/sheep/
pigs/red deer and alpacas/buffaloes/cattle/goats/impalas/
sheep/red deers, respectively (Table 4).
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Table 3 The prevalence of Cryptosporidium infection in terrestrial ungulates (cattle, sheep, goat, pig, horse and buffalo) using
conventional microscopic methods. Data are presented separately by continent and country

Continent Country Prevalence, pooled proportion (95% Cl) (%)

Africa (43 studies; 17,424 samples) Egypt 10 (4.44-19.32)
Ethiopia 17 (7.15-30.13)
Ghana 29°
Kenya 15(10.72-21.30)
Malawi 18 (10.48-28.78)
Nigeria 17 (13.07-22.33)
South Africa 0.5°
Tanzania 11 (1.59-29.29)
Tunisia 14 (2.09-44.93)
Total prevalence in Africa: 14 (11.12-18.31)

America (37 studies; 15,860 samples) Argentina 25(18.83-33.58)
Brazil 16 (5.82-30.23)
Canada 60 (23.32-91.14)
Chile 56°
Costa Rica 112
Mexico 41 (31.81-52.23)
Trinidad 32 (6.47-67.24)
USA 11(2.84-24.39)
Total prevalence in America: 26 (18.41-34.67)

Asia (90 studies; 37,458 samples) Bangladesh 9(2.93-20.36)
China 8(5.62-12.95)
India 21 (16.02-28.47)
Iran 16 (11.96-20.68)
Iraq 17 (11.36-25.23)
Japan 24 (0.02-72.52)
Malaysia 24 (8.43-46.55)
Myanmar 56°
Nepal 35 (28.81-43.45)
Pakistan 16 (9.05-25.96)
South Korea 17 (11.53-23.57)
SriLanka 28°
Taiwan 35(3244-38.15)
Thailand 8(3.08-17.41)
Vietnam 18°
Total prevalence in Asia: 17 (14.94-20.30)

Australia (4 studies; 923 samples) Australia 23 (0.00-71.85)
New Zealand 20 (15.42-25.92)
Total prevalence in Australia: 21 (7.28-40.02)

Europe (71 studies, 34,229 samples) Austria e
Czech Republic 17 (9.87-27.11)
Denmark 33 (14.90-55.60)
France 17 (2.56-41.08)
Germany 8 (3.62-4831)
Greece 17 (9.87-27.11)
Ireland 23 (3.84-52.25)
Netherlands 60°
Poland 11 (3.62-21.85)

Portugal 172
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Table 3 (continued)
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Continent Country Prevalence, pooled proportion (95% Cl) (%)
Romania 21(15.02-27.97)
Serbia 40 (31.95-49.48)
Spain 29 (19.80-39.75)
Sweden 8?
Switzerland 55°
Turkey 34(19.82-50.61)
UK 34 (0.59-85.50)

Total prevalence in Europe: 23 (20.37-27.68)

? One study was performed in these countries

Discussion

In this systematic review and meta-analysis, we found
that 18.9% of the overall populations of the investigated
ungulate species were infected with Cryptosporidium
spp. Our study showed that although the prevalence of
Cryptosporidium infection was higher in ungulates of the
Cetartiodactyla than in Perissodactyla, the prevalence in
the latter was not negligible and needs to be considered
in terms of pathogen transmission and cycling. From
the data collected and summarized on wild animals (as
included in Table 4, and Additional file 2: Table S2), it is
obvious that sylvatic cycles play a major role in Crypto-
sporidium transmission. Wild terrestrial ungulates are
likely serving as important reservoir for the parasite, and
certainly the infection of livestock and humans may occur
by contact to wildlife feces. For meta-analysis, worldwide
Cryptosporidium prevalence and species/genotype iden-
tity common livestock species have been scrutinized.
Overall, Cryptosporidium prevalence in farmed ani-
mals is the highest in the Americas and Europe (Table 3)
which could be attributed to the intensive farm animal
production in these regions. More specifically, consid-
ering domestic farm animals, the pooled prevalence of
equine Cryptosporidium infection was 4.7%, compared to
the pooled prevalence of 29.1%, 26.0%, 24.4%, 22.6% and
8.2% in cattle, buffaloes, sheep, pigs and goats, respec-
tively. Regarding the number of studies published for the
different geographical regions, our analysis does not sup-
port under investigation of certain regions (e.g. Asia) as
cause of a detection bias. This reinforces the suggestion
that animal production intensity affects the prevalence
of Cryptosporidium spp. Concentrated animal feed-
ing operations (CAFOs) are most common in cattle and
pigs. For example, in the USA, in 2002 more than 71%
of all produced beef were derived from operations hold-
ing more than 5000 heads of cattle each. It is known that
CAFOs pose a major problem due to the high amounts of
manure that are released to the environment, facilitating
potential pathogen transmission to humans, wildlife and

other agricultural operations [39]. Furthermore, patho-
gen transmission within a CAFO seems much more likely
than in more extensive farming systems. Accordingly, a
high prevalence of Cryptosporidium was observed in ani-
mals from countries with many CAFO operations, espe-
cially in studies in Asia and Europe, with both regions
harboring the majority of the commercial pig raising
industry [40]. High prevalences in pigs in Africa may be
attributed to the opposite effect of extensive farming with
high exposure to environmental contamination. Other
host animals displaying a high prevalence, such as buf-
faloes and sheep, are also generally kept in larger groups
on commercial operations. The comparatively low prev-
alence rates in equines and goats may potentially result
from smaller animal groups and free-range nature of the
animal management.

Between wild and domestic animals, it appears that
Cryptosporidium prevalence is lower in wild populations
than in farmed populations in the same host species. For
example, Zahedi et al. [41] reported Cryptosporidium
infection rates of 30% in farmed buffalo but 12% in wild
buffalo. This suggests that animal density and confine-
ment to the same (contaminated) environment facili-
tate Cryptosporidium transmission in domestic animals,
and there is no clear host species disposition in terms of
general susceptibility to infection with the genus Crypto-
sporidium despite the observed variation in Crypto-
sporidium infection rates among host species (Table 4).

Cryptosporidiosis in ungulates, especially ruminants,
has several economic and health implications. Crypto-
sporidiosis in neonatal calves can lead to profuse watery
diarrhea, loss of appetite, lethargy, dehydration and even
death, thus may require costly treatments [42]. Moreo-
ver, as shown in sheep and goats, cryptosporidiosis can
exhibit long-term effects on the growth of animals [43,
44]. Additionally, infected calves can shed over 1 x 10
oocysts each day, which can survive in the environments
for months. The ingestion of very few oocysts can cause
infection in susceptible hosts, including humans [23, 45].
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Fig. 8 Overall prevalence of Cryptosporidium in different geographical regions in the world. The prevalence in each country was determined from
conventional microscopy data in farmed animals (cattle, sheep, goats, pigs, horses and buffaloes)

It has been shown that the median infection dose of C.
parvum for humans range from below 10 to over 1000
oocysts [22]. Zoonotic transmission of Cryptosporidium
spp. can easily occur seasonally from young animals such
as bovine calves to humans, frequently as an occupa-
tional hazard [45, 46].

Nearly 40 Cryptosporidium species have been recog-
nized based on molecular, morphological and biologi-
cal characteristics of the parasites. Previous studies have
shown that four major species are responsible for bovine
cryptosporidiosis, namely C. parvum, C. andersoni, C.
bovis and C. ryanae [1]. We showed that the most preva-
lent Cryptosporidium species in ungulates are C. par-
vum and C. andersoni, comprising 39.4% and 18.8% of
detected parasites, respectively.

The data also suggest that some Cryptosporidium spe-
cies are shared among ungulate hosts (Table 4). This indi-
cates the occurrence of some inter-species transmission
of Cryptosporidium spp. among ungulate species, making
wildlife an important reservoir for infections in domes-
tic animals. Currently, most data on the distribution of
Cryptosporidium species and genotypes are available on

domestic animal populations. Amazingly, there are clear
differences in the distribution of Cryptosporidium spe-
cies within the same host species among geographical
regions. For example, studies from Ethiopia and Nige-
ria indicate that C. andersoni and C. bovis are the most
prevalent species in cattle. In contrast, in countries with
concentrated animal feeding operations (CAFO) such as
Australia, Iran, Japan and New Zealand, as well as many
European and North American countries, C. parvum is
prevalent in cattle (Table 4). Similarly, alpacas in their
region of origin are mostly infected with C. parvum and
C. ubiquitum, while alpacas in the UK only tested posi-
tive for C. parvum (Table 4). Calves, lambs and goat
kids in areas with more human activities can even have
C. hominis infections [19, 41, 47, 48]. Thus, it might be
speculated that husbandry systems and contact to other
livestock and humans strongly influence the distribution
of Cryptosporidium species in an ungulate population.
Our meta-analysis had several limitations. We
observed a substantial heterogeneity among the
included studies. Heterogeneity in the meta-analyses
of prevalence is not uncommon, and the random-effect
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model implicitly incorporates some of the heterogene-
ity [49]. Nevertheless, we investigated several factors
that can contribute to the observed heterogeneity. The
diagnostic method used for the detection of Crypto-
sporidium infection was one of the main confounding
variables. For example, the pooled prevalence of bovine
Cryptosporidium infection was estimated 29.1% using
PCR compared to 22.5% using conventional micros-
copy. This seems to indicate that molecular methods
such as PCR are highly sensitive and specific for the
detection of Cryptosporidium infection, but compared
with conventional microscopic methods, they are more
expensive and require a higher degree of expertise [50].

There are geographical differences in the estimated
pooled prevalence of Cryptosporidium infection. The
prevalence was highest in the continent of America,
followed by Europe, Australia, Asia and Africa. Canada
had the highest prevalence among countries. Study
design, time of sampling, age of animals, and condi-
tions of keeping animals are other factors that can
contribute to the observed heterogeneity in crypto-
sporidiosis prevalence, in addition to the nature of ani-
mal management.

The outcome of our study is probably affected by the
publication bias. Publication bias occurs when the results
of studies affect the likelihood of their inclusion in the
systematic review and meta-analysis [49]. Our systematic
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review was limited to studies published after 1984 in
English. Moreover, many studies did not provide enough
information to be included in the meta-analysis.

Conclusions

Results of the meta-analysis suggest that Crypto-
sporidium infection is highly prevalent in ungu-
lates, especially ruminants. Geographical differences
in Cryptosporidium prevalence and distribution of
Cryptosporidium species are seen for most domestic
ungulate hosts. These within-host-species differences
could be partially attributed to differences in animal
management among geographical regions. The high-
est prevalence in farmed ungulates occurs in America
and Europe where CAFO is widely practiced. The major
farm animal hosts of Cryptosporidium spp. appear to be
cattle, buffalo, sheep and pigs. These farm animals are
potent reservoirs for a variety of Cryptosporidium spe-
cies. Cryptosporidium prevalence is also clearly higher
in farmed animals than in wild ungulate populations.
Inter-species transmission of Cryptosporidium spp.
appears to be affected by contact with other host spe-
cies (humans or other animals) and infection pressure
(intensive farming), rendering the investigated ungulate
hosts capable of propagating both zoonotic and non-
zoonotic Cryptosporidium species.
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